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Abstract. In this work, we explore the question of simultaneous privacy
and soundness amplification for non-interactive zero-knowledge argument
systems (NIZK). We show that any δs−sound and δz−zero-knowledge
NIZK candidate satisfying δs + δz = 1 − ε, for any constant ε > 0, can
be turned into a computationally sound and zero-knowledge candidate
with the only extra assumption of a subexponentially secure public-key
encryption.
We develop novel techniques to leverage the use of leakage simulation
lemma (Jetchev-Peitzrak TCC 2014) to argue amplification. A crucial
component of our result is a new notion for secret sharing NP instances.
We believe that this may be of independent interest.
To achieve this result we analyze following two transformations:

– Parallel Repetition: We show that using parallel repetition any
δs−sound and δz−zero-knowledge NIZK candidate can be turned into
(roughly) δns−sound and 1 − (1 − δz)n−zero-knowledge candidate.
Here n is the repetition parameter.

– MPC based Repetition: We propose a new transformation that
amplifies zero-knowledge in the same way that parallel repetition
amplifies soundness. We show that using this any δs−sound and
δz−zero-knowledge NIZK candidate can be turned into (roughly) 1−
(1− δs)n−sound and 2 · δnz−zero-knowledge candidate.

Then we show that using these transformations in a zig-zag fashion
we can obtain our result. Finally, we also present a simple transforma-
tion which directly turns any NIZK candidate satisfying δs, δz < 1/3 −
1/poly(λ) to a secure one.

1 Introduction

Amplification techniques are central to cryptography and complexity the-
ory. The basic approach is to first obtain a construction which achieves
the desired property but “with some error”. In the next step, the initial
construction is compiled into a final one which achieves a much smaller
error parameter. This is often done by having the final construction in-
voke the initial construction several times. Thus, we say that the com-
piler is used to “amplify” the desired security property by reducing or
eliminating the error.



Amplification techniques have served as a gateway towards significant
progress in cryptography (as well as complexity theory). As an exam-
ple, all the initial constructions of zero-knowledge proofs were obtained
via soundness amplification. First a zero-knowledge proof with a signifi-
cant soundness error was obtained, and then, either sequential or parallel
repetition was used to reduce the soundness error to negligible. Within
the area of complexity theory, soundness amplification of interactive pro-
tocols has played a central role in various important advances such as
in probabilistically checkable proofs (PCPs) and hardness of approxima-
tion. Another rich line of research studies hardness amplifications and its
various connections to coding theory [23]. Not only does amplification
help us develop our understanding of the assumptions that the primi-
tives can be based upon, it is an invaluable tool to construct complex
primitives. A notable recent success is that of [1], where, a security am-
plification theorem for functional encryption was pivotal to constructing
first obfuscation scheme from succinctly stated and instance-independent
assumptions.

Simultaneous Amplification. The problem of amplification is known
to be especially challenging if one tries to amplify multiple properties
simultaneously. A well-known example of this concerns oblivious transfer
(OT). Weak oblivious transfer considers a situation where the security
of both the sender and the receiver is prone to failure: a malicious sender
might have advantage ε1 in guessing the choice bit of the receiver, while,
a malicious receiver might have advantage ε2 in guessing the input bit of
the sender which it did not select. A rich body of literature has studied
amplification techniques to obtain a full-fledged OT given a weak OT
[11, 36, 37]. These amplification techniques have proven to be useful in a
variety of problem including cryptography from noisy channels [10, 24],
and, multi-party differentially private protocols [16].

Our Focus: Amplification for Non-Interactive Zero-Knowledge Ar-
guments. In this work, we study simultaneous amplification of soundness
and zero-knowledge. As discussed before, a number of works have stud-
ied amplifying soundness for interactive proofs (and arguments), and as
such, some of these results apply even to zero-knowledge protocols. How-
ever what if the zero-knowledge property had an error to start with?3

More concretely, we are interested in the following question.
Suppose one is given a non-interactive zero-knowledge (NIZK) argument
with soundness error δs and zero-knowledge error δz, is it possible to com-
pile it into a full-fledged secure non-interactive zero-knowledge argument
system?
In more detail, consider (δs, δz)−NIZK, where δs is the probability with
which any efficient adversary can win in the soundness experiment. Sim-
ilarly δz is the advantage with which any efficient adversary can distin-

3 The most important reason to consider this is that it may be easier to construct
NIZK with relaxed soundness and zero knowledge requirements. Indeed, in the past,
even slight relaxations of zero knowledge, such as ε-zero knowledge [12], have led to
simpler protocols.
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guish between simulated and honest proofs. (Please see next Section for
more formal definitions.)
We first observe that it is trivial to construct a NIZK candidate where δs+
δz = 1. This can be constructed by sampling a crs as a bit which is set to 1
with probability δs and 0 otherwise. If crs = 1, the verification algorithm
is supposed to verify the string ⊥ as a valid proof, and otherwise it should
only verify a valid NP witness of the given instance as a valid proof. This
system is trivially δs-sound, and a simulator that just outputs ⊥ achieves
(1 − δs) = δz-zero knowledge. Of course, we cannot expect this trivial
system to be amplifiable.
Thus the above question can be rewritten as:

Is it possible to amplify (δs, δz)−non-interactive zero-knowledge, where
δs + δz = 1− ε for any constant ε > 0, to full-fledged non-interactive

zero-knowledge under standard cryptographic assumptions?

To our knowledge, this question has not been studied before. We believe
the question of amplifying soundness and zero-knowledge simultaneously
is a basic one which is interesting in its own right.
We answer this in the affirmative, by giving such a transformation assum-
ing that subexponentially secure public-key encryption exists. Formally,
we prove the following theorem:

Theorem 1. Assume a subexponentially secure PKE scheme, and a NIZK
candidate Π with δs−soundness and δz−zero-knowledge where δz, δs are
in (0, 1) with δs + δz < 1 for all polynomial time adversaries, then there
exists a fully secure NIZK candidate against all polynomial time adver-
saries.

NIZK is a basic primitive in cryptography which is widely used to obtain
the constructions of other basic and advanced primitives. Yet, despite
much effort, NIZK is unfortunately known from very few assumptions:
[19, 17, 18, 35, 6, 5, 13, 8, 32]. E.g., we do not yet know a NIZK system
that is proven secure under the assumption of (even subexponentially
secure) DDH or LWE. Given this state of the art our work gives an
alternative easier path to construct NIZKs since now one only needs to
obtain constructions satisfying δs + δz < 1 (as opposed to constructions
achieving the standard notion where δs and δz are negligible).
We develop several novel techniques to prove our result. An interesting
primitive we introduce is the notion of secret sharing NP instances.

Secret Sharing of NP Instances. Towards constructing a NIZK ampli-
fication theorem, our main technical tool is what we call secret sharing of
NP Instances. Very roughly, this allows breaking a (statement, witness)
pair into n different (statement, witness) pairs such that each pair can
then be verified individually while no single pair (or upto a threshold t
of pairs) reveals any information about the original witness. Addition-
ally it allows that if more than some other threshold t′ of instances are
satisfiable then x itself should be satisfiable. We believe secret sharing
of NP instances to be a novel conceptual tool which is of independent
interest. Please see Section 2 for more details and a technical overview.
Inspired by [1],to prove our result, we use and build upon the ideas used
to prove the dense model theorem [33].
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Related Works. We are not aware of any prior works on on amplifying
zero-knowledge and soundness simultaneously. However there have been
a number of prior works on amplification in general. Soundness amplifi-
cation of interactive proofs has been studied in a rich line of works [3, 21,
31, 7]. As mentioned before, another line of research studies amplifica-
tion and combiners for oblivious transfer [20, 30]. Another related result
concerns “polarization” (which is a type of simultaneous amplification)
of complete problems for SZK [34].

2 Technical Overview

Suppose we have been given a NIZK candidate where δs + δz = 1− ε for
any constant ε > 0, how do we construct one where δs + δz < negl?
We study three basic transformations and analyze their effects on the
parameters (δs, δz).

– Parallel Repetition: We show that this transformation converts a
NIZK candidate with parameters (δs, δz) to roughly (δns , 1−(1−δz)n),
where n is some parameter which can be set to be any polynomial
in λ. Thus, this transformation boosts soundness but worsens zero-
knowledge property.

– MPC-based Repetition: We show that this transformation con-
verts a NIZK candidate with parameters (δs, δz) to roughly (1− (1−
δs)

n, 2 · δnz ), where n is some parameter which can be set to be any
polynomial in λ. Thus, this transformation boosts zero-knowledge
but worsens soundness property.

– MPC-based Amplification: This transformation converts a NIZK
candidate with parameters (δs, δz) satisfying δs, δz < 1/3−1/poly(λ)
to a fully secure NIZK candidate.

Then, we show using these three transformation how to take any (δS , δz)
NIZK satisfying δs+δz = 1− ε for any constant ε > 0, and output a fully
secure NIZK candidate.

2.1 Parallel Repetition

As a warm up that is useful to introduce some of the ideas we will
use, let us first consider the standard parallel repetition transformation.
The construction is as follows. Let Π be the underlying candidate. The
setup algorithm of the transformed candidate Π‖ does the following. It
computes Π.Setup(1λ) → crsi for i ∈ [n], where n is some repetition
parameter. It sets crs = (crs1, ..., crsn). The prover then proves x ∈ L
using the given witness w, employing each crsi independently to form
n proofs π = (π1, ..., πn). Finally, the verification succeeds if each πi
verifies with respect to crsi. We discuss at a high level various properties
associated with this scheme.

(δns + negl)-Soundness: This is already known from many of the pre-
vious works (such as [7]) that soundness is amplified this way for any
non-interactive argument system upon parallel repetition. The (overly
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simplified) intuition is the following. If the soundness error is δs, then
there exists a hardcore set S of size (1 − δs) · |R| where R is the space
of randomness for the coins of Π.Setup. This hardcore set has the prop-
erty that if crs is generated using randomness from this set, then any
adversary A of some large bounded size, will only break soundness with
a small probability εs. Then, if we have n parallel systems, the proba-
bility that no crsi is sampled using randomness from this set S falls as
δns . In order to prove this formally, in spirit of [7], we prove the following
lemma. The details can be found in the full version.

Lemma 1. Let F : {0, 1}λ → {0, 1}l be a function where l = poly(λ) and
E : {0, 1}λ+l+r(λ) → {0, 1} be a circuit of size e. Let δ ≥ ε ∈ (0, 1) and
s, s′ > 0 be functions of λ. If for all circuits C : {0, 1}l(λ) → {0, 1}r(λ) of
size s we have

Pr
u

$←−{0,1}λ
[E(u, F (u), C(F (u))) = 1] ≤ δ

Then there exists a set S of size |S| = (1 − δ)2λ and a polynomial
soverhead(λ) (independent of s, s′ and e) such that: For all circuits C′ :

{0, 1}l(λ) → {0, 1}r(λ) of size less than s′ = sε(1−δ)
δ
− e− soverhead

Pr
u

$←−S
[E(u, F (u), C′(F (u))) = 1] ≤ ε

Roughly F is the algorithm Π.Setup, C is the adversary and E is the
algorithm that tests if soundness is broken. Since the size of E is a factor
that determines the size of the adversary that can be handled, we want
to keep it small. Thus, we work with a NIZK argument of knowledge
candidate instead of a NIZK candidate. This is done by using a public
key of a public key encryption scheme (generated at setup) to encrypt
the witness, and the NIZK system is used to prove that this encrypted
witness is valid. Then, it becomes possible to check if the soundness of
Π was broken by simply decrypting the witness and testing its validity
for the instance x. This ensures that size of E is polynomially bounded.

1 − (1 − δz)n−Zero-Knowledge: Since parameters are very crucial to
achieve our result, we also have to show that zero-knowledge is not com-
pletely destroyed by parallel repetition. This is so that we can tolerate
some amount of degradation. To achieve this theorem, we prove and rely
on the following lemma:

Theorem 2. Fix 1λ, x ∈ SAT with |x| = poly(λ) and corresponding
witness u. Define two functions Eb for b ∈ {0, 1}, that takes as input
{0, 1}`b . Here `b is the length of randomness required to compute the
following.
Consider the following process:
1. Sample r1, r2 ← {0, 1}`0 .
2. Run Π.Setup(1λ; r1)→ crs.
3. Run Π.Prove(crs, x, u)→ π.
4. Sample r̃ ← {0, 1}`1
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5. Compute (c̃rs, π̃)← Π.Sim(1λ, x; r̃).
6. E0 on input (r1, r2) ∈ {0, 1}`0 outputs (crs, π).
7. E1 on input r̃ ∈ {0, 1}`1 outputs (c̃rs, π̃).

If Π satisfies δ−zero knowledge for all adversaries of size s, then, there
exists two computable (not necessarily efficient) measures M0 and M1

(Mb defined over {0, 1}`b for b ∈ {0, 1}) of density exactly 1 − δ such
that, for all circuits A of size s′ < sε2/128(`0 + `1 + 1),∣∣∣∣∣ Pr

(r1,r2)←DM0

[A(E0(r1, r2)) = 1]− Pr
r̃←DM1

[A(E1(r̃)) = 1]

∣∣∣∣∣ < ε

Here both measures may depend on (x, u)

This theorem roughly says that there exists two measures S0 and S1 of
density exactly 1 − δz such that the when the proof and setup is done
using randomness from S0 then for a bounded adversary it is compu-
tationally indistinguishable from the case when the crs and the proof is
simulated using randomness from S1. Thus, using this one can show that
if randomness from for all n parallel systems is generated from this mea-
sure S0, then it is computationally close to the case when the proofs for
all n systems are simulated using randomness from S1. Since the densities
of S0 and S1 is exactly equal to 1− δz, this allows to (informally) argue
that the zero-knowledge parameter of the resulting candidate is (very
roughly) bounded by 1 − (1 − δz)n + negl. Here is the formal theorem
statement:

Theorem 3. Assuming Π is δz−zero-knowledge against adversaries of
size s, Π‖ is (1−(1−δz)n)+O(n ·ε)−zero-knowledge against adversaries
of size s′ = s · ε2/poly(λ) for some fixed polynomial poly.

The details can be found in the full version. Given that we have a way
to reduce soundness error while not letting zero-knowledge degrade too
much, we turn to the next question:

Is there a natural transformation that amplifies zero-knowledge, while
not degrading soundness too much?

We consider this question and propose a very natural transformation to
achieve this. We call it MPC-based repetition because it achieves param-
eters similar to parallel repetition where the roles of zero-knowledge error
and soundness error are switched, but it is based on secure multi-party
computation (MPC) protocols instead of simple parallel invocation of
the NIZK candidate. In another words, it is a natural dual of the con-
struction above.

2.2 MPC-based Repetition:

A First Idea: Before we describe our approach, we first describe a seem-
ingly more natural approach that we do not know how to analyze: Specif-
ically, consider the new candidate which runs Π.Setup→ crsi for i ∈ [2].
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The prover first computes π1 with respect to crs1 for the given NP rela-
tion. The prover then considers the NP relation that is satisfied with a
“witness” that is any valid proof with respect to the verification proce-
dure of the NIZK candidate. Then, the prover can use π1 as a witness to
to satisfy this new relation, and thus compute π2 with respect to crs2.
The output is then set as π2. For this construction it may seem reason-
able to expect that soundness should fall as 1− (1−δs)2, because if both
crs1, crs2 are sampled using randomness from the hardcore set, then the
soundness should hold. It may also seem reasonable to expect that zero-
knowledge should be amplified as δ2z as it appears that zero-knowledge
should be retained as long as either π1 or π2 is computed from the hard-
core set. We do not know how to formally convert this intuition into a
proof. In fact, as far as we know, this intuition may be false, and we leave
it as an interesting open problem to analyse this construction. We now
summarize the difficulties in turning the intuition above into a proof:

– Arguing soundness is hard because the NIZK candidate is only re-
quired to have computational soundness. Therefore, with respect to
crs2 there may always exist a valid witness π1 for an instance x, crs1
even when x /∈ L. As a result, we do not know how to analyze how
soundness is affected by this construction.

– Arguing zero-knowledge is also hard for important technical reasons
related to hard core sets, that we also have to keep in mind when
we try to repair this state of affairs. When randomness is sampled
from the hardcore measure to prove instance x, crs1, it may already
leak information about the witness for x, as the hardcore measure
now can depend on w.

For the reasons above we consider a completely different approach. Cru-
cial to our approach is the following primitive, which we call verifiable
sharing scheme for NP statements (denoted by NPSS). We believe this
notion may be of independent interest to other interesting applications.

Secret Sharing NP Instances: Informally speaking4, an NPSS scheme
consists of three algorithms Share,Verify, and Sim. Given any instance x ∈
SAT and its witness w, we have that Share(n, x, w) outputs n instances
along with witnesses {xi, wi}i∈[n] such that the following guarantees are
met. The scheme is parameterized by two thresholds t1, t2.
1. If x ∈ SAT with w being a valid witness, then the output of Share(n, x, w)

will have the property that wi is a valid witness of the statement
xi ∈ SAT for all i ∈ [n].

2. Robustness for threshold t1. There exists a verification algorithm
Verify such that if Verify(n, x, x1, ..., xn) = 1, then if there is a set
S ⊂ [n] of size greater than or equal to t1 such that xi ∈ SAT
for i ∈ S, then we have that x ∈ SAT. Furthermore there is an
efficient algorithm that recovers the witness to x given witnesses for
the statements xi where i ∈ S.

3. Simulatability for threshold t2. Consider any set Z ⊂ [n] of size
less than or equal to t2. Then, informally, we want that the instances
x1, .., xn and witnesses {wi}i∈Z should not “reveal any knowledge”

4 Formal details can be found in Section 5.
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about membership of x in SAT. That is, the output of Sim(n, x, Z) is
computationally indistinguishable from the output of Share(n, x, w)
restricted to all instances x1, . . . , xn and witnesses {wi}i∈Z .

Our actual notion of NPSS also includes a setup algorithm Setup(1λ) that
outputs public parameters pp, that is also input to constituent NPSS
algorithms. We will describe how to construct such a sharing scheme for
various choices of t1, t2 later. Assuming we have such a notion, we now
describe how to achieve our goal. The following is our construction of Π⊥
with repetition parameter n. Here is our construction. In the following
set t1 = n and t2 = n− 1 for the NPSS scheme.

– Π⊥.Setup(1λ) :
• Run Π.Setup(1λ)→ crsi for i ∈ [n].
• Run NPSS.Setup(1λ)→ pp.
• Output crs = (pp, crs1, ...., crsn).

– Π⊥.Prove(crs, x, w) :
• Run NPSS.Share(pp, n, x, w)→ (x1, ..., xn, w1, ..., wn)
• Run Π.Prove(crsi, xi, wi)→ πi for i ∈ [n].
• Output π = (x1, ..., xn, π1, ...., πn).

– Π⊥.Verify(crs, x, π) :
• Parse π = (x1, ..., xn, π1, ...., πn).
• Run NPSS.Verify(pp, n, x, x1, ..., xn).
• Run Π.Verify(xi, wi) for i ∈ [n].
• Output 1 if all these steps pass. Output 0 otherwise.

We now revisit both the soundness and zero-knowledge property to ob-
serve the change in the parameters.

(1 − (1 − δs))
n−Soundness: The idea here is that since the size of

the hardcore measure is (1 − δs)|R|, where R is the set from which the
randomness for Π.Setup is chosen, with probability (1 − δs)

n all crsi
for i ∈ [n] will behave nicely. In such a case, if crsi is used to prove
xi ∈ SAT, then any efficient adversary can produce a false proof only
with some tiny probability εs. Thus, by the robustness property and the
lemmas described above we can argue soundness. A PKE scheme plays
an important role because the associated secret key is used by our reduc-
tion to verify in polynomial time if the adversary has indeed succeeded
in breaking soundness. Note that this is a highly simplified description
and the proof requires a very careful analysis of the the structure of
the adversary. This proof can be found in Section 8. Here is the formal
theorem:

Theorem 4. Assuming PKE is perfectly correct and Π is δs−sound
against adversaries of size s, then for every 1 > ε > 0, Π⊥ is (1 −
(1− δs)n) +O(ε)−sound against adversaries of size s′ = O(s · ε · δs/(1−
δs))− poly(λ) for a fixed polynomial poly.

2 · δnz−zero-knowledge: Proving zero-knowledge for this construction
turns out to be highly nontrivial. Let us understand why is this the
case. Consider an honest sharing of instance x and witness y, denoted
by x1, ..., xn with corresponding witnesses w1, ...., wn. As noted above,
Theorem 2 says that there exist two hardcore measures S0,i and S1,i
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of density 1 − δz such that the distribution of honestly generated pair
(crsi, πi) for xi generated using randomness from S0,i is computationally
close to the simulated distribution generated by choosing randomness
from S1,i. Thus it seems that with probability at least 1− δnz , we should
have at least one index i ∈ [n], where we can shift to simulating proofs
for one index i∗. Then, it seems plausible that we can use the security of
NPSS scheme to simulate sharing x1, ..., xn, {wi}i6=i∗ . But unfortunately,
this intuition fails to materialize as these measures S0,i,S1,i are inefficient
and may depend on wi itself. In fact, this has been a major hurdle in
various amplification scenarios, and that is why amplifying security for
complex cryptographic primitives is considered a hard problem.
In order to fix this issue, we rely on the techniques building the dense
model theorem. We overcome this issue by using the following idea, which
can be made formal via the work on simulating auxiliary input [27, 9].
Because the hardcore measure has reasonable probability mass 1− δz, it
cannot verifiably contain useful information to the adversary. For exam-
ple, even if the hardcore distribution revealed the first few bits of the wi,
the adversary could not know for sure that these bits were in fact the
correct bits. Indeed, we use the works of [27, 9] to make this idea precise,
and show that the hardcore measures can be simulated in a way that
fools all efficient adversaries, with a simulation that runs in subexponen-
tial time. This allows us to argue witness indistinguishability. Finally, as
witness indistinguishability is enough to get zero-knowledge the result
holds. Similar techniques were also used in [1], to give an amplification
theorem for any functional encryption scheme. Let us now go over the
steps of the argument carefully. We will prove witness indistinguishabil-
ity first. Consider an instance x and two witnesses (y0, y1). For all indices
i ∈ [n] let us output crs = (pp, crs1, ..., crsn), instance x1, ..., xn and proofs
π1, ..., πn. We construct a series of hybrids from Hybrid0 to Hybridm
where Hybrid0 is the hybrid where witness yb for a random b ∈ {0, 1} is
used to prove honestly and Hybridm is independent of the witness. We
prove that |Pr[A(Hybrid0) = 1] − Pr[A(Hybridm) = 1]| ≤ δnz + negl
for any efficient adversary A. Thus, this gives us the required result.
Before delving slightly in the details, we recall the following two theo-
rems. First theorem describes how sampling an element from measures of
high density is computationally indistinguishable to sampling an element
uniformly from a large set constructed using the measure.

Theorem 5 (Imported Theorem [22] ). Let M be any measure on
{0, 1}n of density µ(M) ≥ 1 − ρ(n) Let γ(n) ∈ (0, 1/2) be any func-
tion. Then, for a random set S chosen according to the measure M the

following two holds with probability at least 1− 2(2−2nγ2(1−ρ)4/64):
– (1− γ(1−ρ)

4
)(1− ρ)2n ≤ |S| ≤ (1 + γ(1−ρ)

4
)(1− ρ)2n

– For such a random set S, for any distinguisher A with size |A| ≤
2n( γ

2(1−ρ)4
64n

) satisfying

| Pr
x←S

[A(x) = 1]− Pr
x←DM

[A(x) = 1]| ≤ γ

The following theorem from [9] says that for every distribution X and
every potentially inefficient function g : X → {0, 1}`X , there exists a rela-
tively efficient function h such that (X, g(X)) is computationally close to
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(X,h(X)). The complexity of h is roughly O(sε−22`X ). Here s is the size
of adversaries that h wants to fool and ε is the maximum distinguishing
advantage against adversaries of size s.

We also import a theorem from [9] that will be used by our security
proofs.

Theorem 6 (Imported Theorem [9]).

Let n, ` ∈ N, ε > 0 and Cleak be a family of distinguisher circuits from
{0, 1}n×{0, 1}` → {0, 1} of size s(n). Then, for every distribution (X,Z)
over {0, 1}n ×{0, 1}`, there exists a simulator h : {0, 1}n → {0, 1}` such
that:

– h has size bounded by s′ = O(s2`ε−2).

– (X,Z) and (X,h(X)) are indistinguishable by Cleak. That is for every
C ∈ Cleak,

| Pr
(x,z)←(X,Z)

[C(x, z) = 1]− Pr
x←X,h

[C(x, h(x)) = 1]| ≤ ε

Now we define our hybrids:

1. We define the first hybrid as the hybrid where each index i ∈ [n]
uses hardcore measure S0,i to generate πi with probability 1 − δz,
and its complement 1− S0,i otherwise. This is done by maintaining
a string z ∈ {0, 1}n which sets zi = 1 with probability 1 − δz and
zi = 0 otherwise. This string describes how randomness for various
indices are chosen. Note that this hybrid is identical to Hybrid0.

2. Next we define Hybrid2 where we abort if z = 0n. This occurs
with probability bounded by δnz . Thus |Pr[A(Hybrid1) = 1] −
Pr[A(Hybrid2) = 1]| ≤ δnz

3. Next, for all indices where zi = 1, generate πi using Π.Sim algorithm
where the randomness is sampled from S1,i whose density is also
equal to 1− δz. This hybrid is computationally close for an efficient
adversary due to theorem 2.

4. Now we consider the following inefficient machine Machine that takes
as input (z, x, x1, ..., xn, {wi}i|zi=0) and outputs (R1, .., Rn) where
Ri is the randomness sampled to generate proof for the index i. This
may involve the machine to potentially brute force break x1, .., xn
and sample from various measures involved. This hybrid is identical
to the previous hybrid as its just a representation change. At this
point, ideally we would like to use theorem 6 from [27, 9], recalled
above. We would like to “fake” the output of Machine using an ef-
ficient simulator h constructed using theorem 6. However since the
size of h grows exponentially with the length of the randomness used
to prove, there is no hope to argue any security.

5. To fix this, we observe that the density of hardcore measure as well
as its complement is quite large. In other words, suppose, δz, 1−δz >
2−λ/10. Thus we can rely on theorem 5 and have Machine to sample
a large enough sets Seti for i ∈ [n] from the measures and use that
set to generate the proofs. This hybrid is indistinguishable because
of theorem 5. By large enough, we mean that they will at least have
about 2−λ/10 · |R| elements.
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6. Now for each index i ∈ [n], sample uniformly a set SetRi from the
space of randomness of Π by choosing q = λ2λ/10 inputs. Thus the
probability of SetRi ∩ Seti = φ is bounded by e−λ. Then, change
Machine to take as input z, SetR1, .., SetRn, x1, ..., xn and output in-
dices (j1, ..., jn). Each index ji denotes the index of the randomness
in SetRi used for generating (crsi, πi) pair for system i. This is picked
by sampling randomness uniformly from Seti ∩SetRi. These hybrids
are statistically close with the the statistical distance being bounded
by the probability that the intersection of SetRi and Seti is empty.

7. Now since Machine always outputs indices of length bounded by λ2,
we can use theorem 6 to simulate it. This ensure that size of h grows

as s′ ·2nλ
2

· ε′−2. Here ε′ is the advantage with which we want to fool
the adversary of size s′.

8. Finally we use complexity leveraging and a super-strong PKE to
instantiate NPSS to argue that even for adversaries of the same size
as that of h, cannot distinguish the case when x1, ..., xn, {wi}i|zi=0

are generated using yb, or they are simulated. This makes the hybrid
independent of b.

This leaves us with the following question:

How to Construct NPSS? Our constructions of NPSS are inspired by
the MPC-in-the-head paradigm [25]. The idea is to visualise n parties
P1, .., Pn in an MPC protocol where each party Pi has an additive secret
sharing yi of the witness w. What they do is, they run MPC protocol
to compute the relation function R(x,Σiyi). In an honest behavior this
should output 1. Thus when the MPC protocol, such as [4], is run each
party Pi receives an output outi and it has its view viewi (which con-
tains its randomness, input yi and messages sent and received by it).
Then there is also a transcript T which is the collection of messages sent
and received by each party. We define xi to be the circuit that has a
PKE encryption of the commitment of T , inputs yi and party’s random-
ness hardwired and it takes as input a set of corresponding commitment
openings and checks:
1. viewi is a valid view for this MPC protocol corresponding to the tran-

script T . That is each message in the view is computed correctly us-
ing incoming messages and a fixed valid input and randomness. This
step only takes as input the openings corresponding to commitments
of viewi.

2. The output in the viewi is 1.
This allows us to secret share instances. We can prove security we rely
on properties of underlying MPC protocol. For example, [4] has two
properties (other than correctness):
1. Upto n/3 semi-honest views are simulatable.
2. Even if at most n/3 parties behave arbitrarily, they can’t force honest

parties to receive an incorrect output. This property is called perfect
robustness.

This allows us to give an instantiation for t1 = bn/3c and t2 = bn/3c.
We rely on the protocol of [14] in the OT-hybrid model [26] to get an
instantiation for t1 = n and t2 = n = 1. The details can be found in
Section 6.3 and the full version.
Thus, this is the formal theorem:
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Theorem 7. Assume that there exists a subexponentially secure public
key encryption and a NIZK candidate Π satisfying δz−zero-knowledge
against adversaries of size SizeΠ where δz, 1 − δz > 2−λ/5. If SizeΠ >
Size1ε

−2poly(λ) for any 1 > ε > 0 and 0 < Size1 < 2λ/5 then the con-
struction Π⊥ satisfies 2δnz + O(nε + 2−λ

c

)−witness indistinguishability
against adversaries of size Size1. Here poly is some fixed polynomial.
c > 0 is a fixed constant.

2.3 The general case: δs + δz < 1

This is perhaps best understood using an example. Consider δs = 0.3
and δz = 0.60. Consider the following steps:

– Run parallel repetition using the repetition parameter n1 = log2 λ.
Thus the new parameters are (upto negligible additive factors) δ′s =
0.3n1 and δ′z = 1 − 0.4n1 . Observe that δ′s = λ− log2 10/3 and δ′z =
1− λ− log2 10/4.

– On the resulting candidate, perform sequential repetition with pa-
rameter n2 = λlog2 10/3. Thus, we observe that the soundness param-
eter changes as δ′′s = 1− (1− δ′s)n2 . Note that this is roughly 1− e−1

( e is the base of natural logarithm). As for the zero-knowledge,
δ′′z = 2 · (1 − λ=log2 10/4)n2 . As log2 10/3 > log2 10/4 > 0, we have
that δ′′z = negl for some negligible. Thus, finally we made progress.

– Apply parallel repetition with parameter λ to get a fully secure NIZK!
The idea above can be used to handle any parameters satisfying δs+δz =
1− ε for any constant ε > 0. Details can be found in Section 9.

Simultaneous Amplification: We observe that the transformation de-
scribed above is highly inefficient as we have to compose one transforma-
tion on top of other. When δs, δz ≤ 1/3− 1/poly then one can provide a
single transformation which yields a fully secure NIZK. The details can
be found in the full version.

2.4 Reader’s Guide.

In Section 3, we recall some preliminaries useful for the rest of the pa-
per. In Section 4 we define the notion of a NIZK candidate. In Section
5 we define the notion of NPSS. In full version [15], we construct the
notion of NPSS. In Section 7 we prove a lemma useful for arguing sound-
ness amplification. In Section 8, we analyse our MPC based repetition
transformation. We analyse the parallel repetition construction in the
full version. In Section 9 we show how to convert a candidate satisfying
δs+δz = 1− ε for any constant ε > 0 to a fully secure candidate. Finally,
in full version, we present our direct transformation that transforms any
candidate with δs, δz < 1/3− 1/poly(λ) to a fully secure one.

3 Preliminaries

We denote by λ the security parameter. We say that a function ε(λ) is
negligible in λ if ε(λ) = o(1/λc) for every c ∈ N, and we write negl(λ)
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to denote a negligible function in λ. For a distribution X, we denote by
x← X the process of sampling a value of x from the distribution X. For

a set S, we denote by s
$←− S the process of sampling uniformly from S.

For two sequence of random variable X = {Xλ}λ∈N and Y = {Yλ}λ∈N,
we say that X and Y are computationally indistinguishable if for any
probabilistic polynomial time distinguisher D,∣∣∣∣Pr[D(1λ, x← Xλ) = 1]− Pr[D(1λ, y ← Yλ) = 1]

∣∣∣∣ ≤ negl(λ)

for any sufficiently large λ ∈ N. We say that the distributions are subex-
ponentially indistinguishable if this negl is 2−λ

ε

for some constant ε > 0.
We now define the notion of statistical distance.

Definition 1 (Statistical Distance). Let E be a finite set, Ω a prob-
ability space, and X,Y : Ω → E random variables. We define the sta-
tistical distance between X and Y to be the function Dist defined by
Dist(X,Y ) = 1

2
Σe∈E |PrX(X = e)− PrY (Y = e)|

3.1 Amplification Preliminaries

Now we recall some notions and theorems that will be useful for the rest
of the paper.

Definition 2 (Distinguishing Gap). For any adversary A and two
distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N, define A’s distinguishing
gap in distinguishing these distributions to be |Prx←Xλ [A(1λ, x) = 1] −
Pry←Yλ [A(1λ, y) = 1]|

Now we recall the definition of a measure.

Definition 3. A measure is a function M : {0, 1}k → [0, 1]. The size of
a measure is |M| = Σx∈{0,1}kM(x). The density of a measure, µ(M) =

|M|2−k

Each measure M induces a probability distribution DM.

Definition 4. Let M : {0, 1}k → [0, 1] be a measure. The distribution
defined by measure M (denoted by DM) is a distribution over {0, 1}k,
where for every x ∈ {0, 1}k, PrX←DM [X = x] =M(x)/|M|.

We will consider a scaled version Mc of a measure M for a constant
0 < c < 1 defined as Mc = cM. Note that Mc induces the same
distribution as M.

3.2 Useful Lemmas

We first import the following theorem from [29].
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Theorem 8 (Imported Theorem [29]). Let E : {0, 1}n → X and
F : {0, 1}m → X be two functions, and let ε, γ ∈ (0, 1) and s > 0 be
given. If for all distinguishers A with size s we have

| Pr
x←{0,1}n

[A(E(x)) = 1]− Pr
y←{0,1}m

[A(F (y)) = 1]| ≤ ε

Then there exist two measures M0 (on {0, 1}n) and M1 (on {0, 1}n)
that depend on γ, s such that:

– µ(Mb) ≥ 1− ε for b ∈ {0, 1}
– For all distinguishers A′ of size s′ = sγ2

128(m+n+1)

| Pr
x←DM0

[A(E(x)) = 1]− Pr
y←DM1

[A(F (y)) = 1]| ≤ γ

Now we describe a lemma from [22], that shows that if we sample a set
S from any measure M by choosing each element i in the support with
probabilityM(i), then no circuit of (some) bounded size can distinguish
a sample x chosen randomly from the set S from an element sampled
from distribution given by M. Formally,

Theorem 9 (Imported Theorem [22]. ). Let M be any measure on
{0, 1}n of density µ(M) ≥ 1 − ρ(n) Let γ(n) ∈ (0, 1/2) be any func-
tion. Then, for a random set S chosen according to the measure M the

following two holds with probability at least 1− 2(2−2nγ2(1−ρ)4/64):
– (1− γ(1−ρ)

4
)(1− ρ)2n ≤ |S| ≤ (1 + γ(1−ρ)

4
)(1− ρ)2n

– For such a random set S, for any distinguisher A with size |A| ≤
2n( γ

2(1−ρ)4
64n

) satisfying

| Pr
x←S

[A(x) = 1]− Pr
x←DM

[A(x) = 1]| ≤ γ

We also import a theorem from [9] that will be used by our security
proofs. This lemma would be useful to simulate the randomness used to
encrypt in an inefficient hybrid.

Theorem 10 (Imported Theorem [9].).
Let n, ` ∈ N, ε > 0 and Cleak be a family of distinguisher circuits from
{0, 1}n×{0, 1}` → {0, 1} of size s(n). Then, for every distribution (X,Z)
over {0, 1}n ×{0, 1}`, there exists a simulator h : {0, 1}n → {0, 1}` such
that:

– h has size bounded by s′ = O(s2`ε−2).
– (X,Z) and (X,h(X)) are indistinguishable by Cleak. That is for every
C ∈ Cleak,

| Pr
(x,z)←(X,Z)

[C(x, z) = 1]− Pr
x←X,h

[C(x, h(x)) = 1]| ≤ ε

4 Definitions

Let SAT denote the language of satisfiable circuits. Let R denote the
corresponding relation for SAT. For any instance x in SAT such that w
is a witness of x, we write R(x,w) = 1 and x(w) = 1 to mean the same
thing. Any candidate for an NP-complete language can be used to build
a candidate for SAT (via NP reductions) and that is why we focus on
that.
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4.1 Non-Interactive Zero-Knowledge Candidates

A NIZK candidate Π = (Setup,Prove,Verify, Sim) is composed of the
following p.p.t. algorithms:

– Setup(1λ)→ crs: The setup algorithm is a randomized algorithm
that takes as input the security parameter and outputs a common
reference string crs.

– Prove(crs, x, w)→ π: The proving algorithm is a randomized algo-
rithm that takes as input a common reference string crs, an instance
x in the language SAT and a witness w such that R(x,w) = 1. The
algorithm outputs a proof string π.

– Verify(crs, x, π)→ {0, 1}: The deterministic verification algorithm takes
as input a common reference string crs, an instance x and a string π
and it outputs from the set {0, 1}

– Sim(1λ, x)→ (c̃rs, π̃): The randomized Sim algorithm (short for sim-
ulator) takes as an input an instance x and outputs a common ref-
erence string c̃rs along with a simulated proof string π̃.

Remark 1. Wherever unspecified, the strings such as crs, π e.t.c. lie in
{0, 1}∗.

Completeness We say that a NIZK candidate Π is complete if the
following property is satisfied. For any instance x in SAT and its witness
w such that R(x,w) = 1 it holds that:

Pr[crs← Setup(1λ), π ← Prove(crs, x, w),Verify(crs, x, π) = 1] ≥ 1−negl(λ)

Here the probability is taken over coins of the algorithms of Π

δs−Soundness We define two notion of soundness:

Adaptive Soundness: For any non-uniform p.p.t adversary A consider
the following experiment:
1. Run crs← Setup(1λ).
2. Adversary outputs (x, π)← A(1λ, crs).
3. Output 1 if x /∈ SAT and Verify(crs, x, π) = 1.

We say that the candidate Π is (adaptive) δs−sound if the probability
that the above experiment (over coins of all algorithms of the candidate
and the adversary) outputs 1 is at most δs.

Non-Adaptive Soundness: For any non uniform p.p.t adversary A and
any instance x /∈ SAT with |x| = poly(λ), consider the following experi-
ment:
1. Run crs← Setup(1λ).
2. Adversary outputs π ← A(1λ, crs).
3. Output 1 if Verify(crs, x, π) = 1.

We say that the candidate Π is (non-adaptive)-δs sound if the probability
that the above experiment (over coins of all algorithms of the candidate
and the adversary) outputs 1 is at most δs.

Remark 2. Wherever unspecified we will refer to the adaptive soundness
of any candidate.
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δz−Zero Knowledge We say that a NIZK candidate Π is δz−zero
knowledge if the following property is satisfied. For any instance x and
a witness w such that R(x,w) = 1, and all p.p.t adversaries A

|Pr[crs← Setup(1λ),A(crs, x, π ← Prove(crs, x, w)) = 1]−

Pr[(crs, π)← Sim(1λ, x),A(crs, x, π) = 1]| ≤ δz(λ)

Here the probability is taken over coins of the algorithms of Π and the
adversary A.

Remark 3. In general, a NIZK candidate is not required to satisfy sound-
ness or zero knowledge. So, for example a candidate that outputs the
witness in the clear is also a valid candidate. We will specify soundness
and zero-knowledge properties when referring to them.

Remark 4. We say that a NIZK candidate is secure if it is negl(λ)−sound
and negl(λ)−zero knowledge for some negligible function negl.

Remark 5. (Length of Instance.) We could also consider a definition
where length of instance is given as input to the Setup algorithm so
that the the argument system can only be used for statements of that
fixed length. In particular, it can also be set as the security parame-
ter. Our analysis can be easily extended for such a definition. We omit
introducing this parameter for simplicity

NIWI Candidate A non-interactive witness indistinguishable argument
(NIWI) candidate Π consists of three algorithms Setup, Prove and Verify
with the same syntax as for a NIZK candidate. It has same completeness
and δs−soundness property. Instead of δz−zero-knowledge property it
has δw−witness indistinguishability requirement which is defined below.

δw−Witness Indistinguishability We say that a NIWI candidate
Π is δw−witness indistinguishability if the following property is satisfied.
For any instance x and any valid witness w0, w1 such that R(x,wb) = 1
for b ∈ {0, 1}, and all (non-uniform) p.p.t adversaries A

|Pr[crs← Setup(1λ),A(crs, x, π ← Prove(crs, x, w0), w0, w1) = 1]−

Pr[crs← Setup(1λ),A(crs, x, π ← Prove(crs, x, w1), w0, w1) = 1]| ≤ δw(λ)

Here the probability is taken over coins of the algorithms of Π and the
adversary A.

5 Verifiable Sharing for Statements

In this section, we define a new notion of sharing for SAT statements.
We will denote it with NPSS. A verifiable sharing scheme for statements
NPSS consists of the following p.p.t. algorithms:

– Setup(1λ)→ pp: The setup algorithm takes as input the security
parameter and outputs public parameters pp.
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– Share(pp, n, x, w)→ (x1, ..., xn, w1, .., wn): The sharing algorithm takes
as input an instance x and a witness w such that R(x,w) = 1
along with number of parties n and the public parameter pp. It out-
puts n instances (x1, .., xn) along with valid corresponding witnesses
{wi}i∈[n].

– Verify(pp, n, x, x1, .., xn) :→ {1, 0}: The Verify algorithm is a deter-
ministic algorithm that takes as input public parameter pp, any in-
stance x, a number n and a set of n instances xi for i ∈ [n]. It
outputs from {0, 1}.

We require that a NPSS satisfy the following properties.

Correctness: We say a verifiable sharing scheme for statements in SAT
is correct if it happens for any satisfiable instance x in SAT having a
witness w and n ∈ N,

Pr


Setup(1λ)→ pp

Share(pp, n, x, w)→ (x1, ..., xn, w1, .., wn)
R(xi, wi) = 1∀i ∈ [n]

Verify(pp, n, x, x1, ..., xn) = 1

 ≥ 1− 2−λ (1)

Here the probability is only over the coins of Setup.

Next important property is of robustness for a threshold tNPSS,r. This
property says that if (x1, .., xn) be shared instances associated with x.
Then if there exists any set T of size tNPSS,r such that xi is in SAT for
all i ∈ T , this implies that x itself is satisfiable.

Robustness: This property says that for any instance x, number n ∈ N,
any sharing (x1, .., xn) and any T ⊆ [n] of size at least tNPSS,r: If ∃{wi}i∈T
such that Verify(pp, x, n, x1, .., xn) = 1 and R(xi, wi) = 1 for all i ∈ T ,
then there exists w such that w is a witness of x. Formally, for any (even
unbounded adversary A), the following holds:

Pr


Setup(1λ)→ pp

A(pp)→ (x, x1, ..., xn)
Verify(pp, n, x, x1, ..., xn) = 1
∃wi, R(xi, wi) = 1∀i ∈ [T ]

@w,R(x,w) = 1

 ≤ 2−λ (2)

Here the probability is over the coins of the Setup.

Finally, last property is that of simulatability for a threshold tNPSS,sim. In
layman terms it says that for any instance x, a set of tNPSS,sim witnesses
do not reveal anything about membership of x in the language SAT.

Simulatability: This property says that there exists a polynomial time
simulator Sim that takes as input any x ∈ SAT, n, and a set T ⊆ [n] of
size less than or equal to tNPSS,sim. It outputs simulated instance-shares
Sim(pp, n, x, T ) → (x1, .., xn, {wi}i∈T ). Then consider the following dis-
tributions:

Distribution 1.
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– Run Setup(1λ)→ pp
– Compute Share(pp, n, x, w)→ (x1, ..., xn, w1, ..., xn)
– Output {pp, x, x1, ..., xn, {wi}i∈[T ]}

Distribution 2.
– Run Setup(1λ)→ pp
– Compute Sim(pp, n, x, T )→ (x1, ..., xn, {wi}i∈T )
– Output {pp, x, x1, ..., xn, {wi}i∈[T ]}

Then it holds that for any polynomial time adversary A, the distinguish-
ing gap between these two distributions is negl(λ) for some negligible
function negl
Remark: In general, we ask Robustness and Simulatability property to
hold with respect to thresholds tNPSS,r and tNPSS,sim. Whenever required,
we will instantiate these values once and omit explicitly mentioning them
for simplicity.

6 Instantiating Verifiable Sharing of Statements

This section is organized as follows. In Section 6.1 we describe an MPC
Framework that will be used to construct verifiable sharing scheme. In
Section 6.2 we describe how to instantiate the framework. Then in Sec-
tion 6.3 we describe the construction.

6.1 Σ-Pre-processing MPC

In this section we define an MPC framework associated with a protocol
Σ, which we call Σ−pre-processing MPC. This framework will be used to
instantiate verifiable sharing of statements. Let F = {Fλ}λ∈N be a class
of polynomial sized circuits. Here the security parameter λ is the length
of inputs to this family. Our MPC framework consists of the following
algorithms

– Preproc(y, n, 1`)→ (y1, r1, ..., yn, rn): This randomized algorithm takes
as input the number of parties n, size of the function ` and the input
y. It outputs pre-processed inputs and randomness y1, r1, ..., yn, rn.
Here yi, ri is viewed as input and randomness of the party Pi par-
ticipating in the protocol Σ.

– Eval(f, y1, r1, ..., yn, rn)→ T : The deterministic Eval algorithm takes
as input the function f ∈ F|y| and n input-randomness pairs (yi, ri)
for i ∈ [n]. It outputs the entire emulated transcript of the protocolΣ
(run by n parties P1, .., Pn) to compute f using the inputs (y1, .., yn)
and the randomness (r1, .., rn). Let us represent the transcript as
T = {(i, j, k, Ti,j,k),Outi}i∈[n],j∈[n],k∈φ|f|,. Here Ti,j,k represents the
message sent by party Pi to Pj in round k. Here φ|f | denotes the
number of rounds in Σ and Outi denotes the output of Pi.

Notation: We now give some notation. Let T denote the transcript
of the protocol Σ run between n parties to compute any function f
on the inputs {yi}i∈[n] using randomness {ri}i∈[n]. We define by viewi
the set containing the input yi, randomness ri and messages sent and
received by the party i along with its output Outi. More formally, we
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let viewi = {yi, ri, {Ti,j,k}j∈[n],k∈φ|f| ,Outi, {Tj,i,k}j∈[n],k∈φ|f|}. Further,
we say that for any party i, viewi is consistent with the transcript T
if the messages sent and received by party i are exactly equal to ones
described in the transcript T and Outi is also the output that occurs in
the transcript.
Second, by VΣ,f,n() we denote a circuit that takes as input (i, viewi)
for i ∈ [n] and checks if the viewi is consistent with the protocol Σ
computing f . If the check passes it outputs 1 and 0 otherwise. That is,
it internally emulates the next message function and checks if all the
outgoing messages of Pi are correctly computed using the input and
previous messages. We say that viewi is consistent if VΣ,f,n(i, viewi) = 1.
Now we require the following properties from this framework.

Perfect Correctness:

Definition 5. (Perfect Correctness) For any input y ∈ {0, 1}∗, n ∈ N
and function f ∈ F|y|, consider the following experiment :

– Run Preproc(y, n, 1|f |)→ (y1, r1, ..., yn, rn).
– Run Eval(f, y1, r1, ..., yn, rn)→ T .
– Output 1 if Outi = f(y) for all i ∈ [n] and 0 otherwise.

We say that a Σ−preprocessing MPC is perfectly correct if Pr[Expt(y, n, f) =
1] = 1. Here the probability is taken over the coins of all the algorithms

Perfect Privacy:

Definition 6. (Privacy for a threshold tΣ,sim) We say that the a Σ−preprocessing
MPC satisfies perfect privacy for a threshold tΣ,sim if there exists a sim-
ulator Sim such that for any y ∈ {0, 1}∗, any f ∈ F|y| and any set S of
size less than or equal to tΣ,sim the following two experiments are com-
putationally close.
Expt1

– Run Preproc(y, n, 1|y|)→ (y1, r1, ..., yn, rn)
– Run Eval(f, y1, r1, .., yn, rn)→ T
– Output {viewi}i∈S

Expt2
– Output Sim(1|y|, f(y), n, S)→ {viewi}i∈S

Robustness:

Definition 7. (Robustness for a threshold tΣ,r) We say that a Σ−preprocessing
MPC is robust if the following happens: Let f ∈ Fλ for any λ ∈ N
be a function such that f(y) 6= 1 for all y ∈ {0, 1}λ. Then, given any
number of parties n, candidate transcript T and its consistent views
{viewi}i∈S corresponding to some set S ⊆ [n] of size tΣ,r, it holds that
if VΣ,f,n(i, viewi) = 1 for all i ∈ S then,

Outi 6= 1

for some i ∈ S

This intuitively means that a collusion of at most n− tΣ,r parties can’t
force an incorrect output onto honest parties.
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6.2 Instantiating MPC Framework for tΣ,sim = bn/3c
and tΣ,r = d2n/3e

We cite [4] as the protocol. This protocol satisfies these three properties
[2]:

1. Perfect correctness for 0 corruptions.

2. Perfect security for up to n/3 semi-honest corruptions.

3. Perfect robustness for up to n/3 corruptions.

The framework then works as follows. The Preproc algorithm takes as
input the witness w and secret shares it using additive secret sharing
scheme to get shares y1, .., yn. It also samples randomness for the par-
ties (r1, .., rn) to participate in a protocol computing f(Σiyi). The Eval
algorithm emulates the protocol and outputs the transcript.
Thus using [4] we can achieve robustness and perfect privacy properties.

6.3 Construction of Verifiable Sharing Scheme for
Statements

In this section we construct Verifiable Sharing Scheme for Statements
from a Σ−pre-processing MPC ∆Σ with thresholds tΣ,r, tΣ,sim and a
statistically binding non-interactive commitment scheme Com. We de-
scribe the construction below.

– Setup(1λ) : Run the setup of the commitment scheme Com.Setup(1λ)→
pp.

– Share(pp, n, x, w) : The algorithm takes as input the number of
parties n, instance x and witness w along with commitment pa-
rameters pp. It runs the algorithm described in Figure 1 to output
(x1, ..., xn, w1, .., wn).

– Verify(pp, n, x, x1, ..., xn) : The Verify algorithm takes as input the
instance x and shares x1, .., xn and does the following:

• Let f = R(x, ·) be the relation function hardwired with x. Check
that there exists strings ZT = {Zi, ZOut,i, Zi,j,k, Zj,i,k}i∈[n],j∈[n],k∈[φ|f|]
in the circuit descriptions.

• Check that these commitments to the views Zview,i for i ∈ [n]
are consistent to a single commitment to a transcript ZT =
{Zi, ZOut,i, Zi,j,k, Zj,i,k}i∈[n],j∈[n],k∈[φ|f|]. Here each Zview,i = {Zi, ZOut,i,

Zi,j,k, Zj,i,k}j∈[n],k∈[φ|f|] for all i ∈ [n].
• If all the above checks pass output 1 otherwise output 0.

We prove the associated properties in the full version.

7 Technical Lemmas

Now we prove some technical lemmas useful for the rest of the paper.

We now present a hardcore set lemma that represents the soundness
experiment.
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Inputs: Commitment parameter pp, Number of parties n, instance x ∈ SAT
and a valid witness w.
Notation: Let f = R(x, ·) be the circuit denoting the corresponding NP rela-
tion R hardwired with the instance x.

1. Run the pre-process algorithm of the MPC framework on input w. That is
∆.Preproc(w, n, 1|f |)→ (y1, r1, ..., yn, rn)

2. Run the evaluation algorithm of the framework to get a transcript.
∆Σ .Eval(f, y1, r1, ..., yn, rn)→ T

3. Parse the transcript as {i, j, k, Ti,j,k,Outi}i∈[n],j∈[n],k∈φ|f| . Here Ti,j,k refers
to the message sent by party Pi to party Pj in round k, and Outi refers to
the output of party Pi.

4. Let viewi denote the set {yi, ri, Ti,j,k, Tj,i,k,Outi}j∈[n],k∈φ|f| .
5. Compute commitments Zi,j,k = Com(pp, Ti,j,k; si,j,k) for i, j ∈ [n] and
k ∈ φ|f |.

6. Compute commitments ZOut,i = Com(pp,Outi, si,Out) and Zi =
Com(pp, yi, ri; si) for i ∈ [n].

7. Define by Zview,i = {Zi, ZOut,i, Zi,j,k, Zj,i,k}j∈[n],k∈φ|f| . Output the circuit

xi[Zview,i, f ] ( defined in Figure 2) as the ith share.
8. For every i ∈ [n] witness are given out as the set of associ-

ated commitment openings and the views,. That is output wi =
{{si, sOut,i, si,j,k, sj,i,k}j∈[n],k∈φ|f| , viewi}.

Fig. 1: Description of Share algorithm

Inputs: Commitment openings {si, sOut,i, si,j,k, sj,i,k}j∈[n],k∈φ|f| , view of the
party Pi viewi = {yi, ri, Ti,j,k, Tj,i,k,Outi}
Hardwired: pp, Zview,i = {Zi, ZOut,i, Zi,j,k, Zj,i,k}j∈[n],k∈[φ|f|] and function f .

1. Check that the commitment openings are valid.
– Zi = Com(pp, yi, ri; si).
– ZOut,i = Com(pp,Outi, sOut,i).
– Zi,j,k = Com(pp, Ti,j,k; si,j,k) for all j ∈ [n] and k ∈ [φ|f |]
– Zj,i,k = Com(pp, Tj,i,k; sj,i,k) for all j ∈ [n] and k ∈ [φ|f |]

2. Check that VΣ,f,n(i, viewi) = 1.
3. If all the above checks output 1, output 1 otherwise output 0.

Fig. 2: Description of circuit xi

Lemma 2. Let F : {0, 1}λ → {0, 1}l be a function where l = poly(λ) and
E : {0, 1}λ+l+r(λ) → {0, 1} be a circuit of size e. Let δ ≥ ε ∈ (0, 1) and
s, s′ > 0 be functions of λ. If for all circuits C : {0, 1}l(λ) → {0, 1}r(λ) of
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size s we have

Pr
u

$←−{0,1}λ
[E(u, F (u), C(F (u))) = 1] ≤ δ

Then there exists a set S of size |S| = (1 − δ)2λ and a polynomial
soverhead(λ) (independent of s, s′ and e) such that: For all circuits C′ :

{0, 1}l(λ) → {0, 1}r(λ) of size less than s′ = sε(1−δ)
δ
− e− soverhead

Pr
u

$←−S
[E(u, F (u), C′(F (u))) = 1] ≤ ε

Proof. The proof strategy can be described as follows: we assume that
there does not exist a hardcore set of size (1−δ)2λ for circuits of size less
than s′. We use this fact to construct a circuit of size s which contradicts
the assumption made in the theorem statement.

Formally, let us assume that the following happens: for every set S ⊂
{0, 1}λ such that |S| = (1− δ)2λ there exists a circuit CS of size s′,

Pr
u

$←−S
[E(u, F (u), CS(F (u))) = 1] ≥ ε

We now define two collections:
1. Collection of inputs X ⊆ {0, 1}λ. This collection is initialised to

be empty and stores the list of “solved inputs”. Here, we say that
x ∈ {0, 1}λ is solved by C, if E(F (x), C(F (x))) = 1.

2. Collection of circuits C which stores circuits of size s′. This collection
is also initialised to be empty and stores circuits that “solve” at least
δ(1− ε) fraction of input points.

This collection C will later be used to build a circuit C[C] of size s such
that it will solve at least X. Contradiction will come from the fact |X| is
greater than 2λδ.
Both X and C are build iteratively as follows. Pick any set S1 of size
(1−δ)·2λ. There exists a circuit C1 of size s′ such that Pr

u
$←−S1

[E(u, F (u),

C1(F (u))) = 1] ≥ ε as per the hypothesis. Let X1 be the maximal subset
of S1 of size at least (1−δ)ε2λ such that Pr

u
$←−X1

[E(u, F (u), C1(F (u))) =

1] = 1. The size |X1| ≥ ε(1− δ)2λ.

We now update X = X ∪X1 and C = C ∪ C1.

This process is repeated t times (defined later) as follows.
1. Select a set Si of size at least (1− δ)2λ ⊆ {0, 1}λ \ X.
2. Let Ci be a circuit of size s′ such that Pr

u
$←−Si

[E(u, F (u), Ci(F (u))) =

1] ≥ ε.
3. LetXi be a maximal set of cardinality at least (1−δ)ε2λ, Pr

u
$←−Xi

[E(u,

F (u), Ci(F (u))) = 1] = 1
4. Update C = C ∪ Ci and X = X ∪Xi

Define a circuit C[C] for C = (C1, .., Ct). On any input F (x) ∈ {0, 1}l(λ),
it checks if there exist i such that E(x, F (x), Ci(F (x))) = 1. If this is the
case it outputs Ci(F (x)), otherwise it outputs C1(F (x)). We now claim
this process cannot continue indefinitely. Observe the following:
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1. |X| > t · ε · (1− δ) · 2λ
2. |C[C]| ≤ ts′+t·e+t·soverhead(λ), for some fixed polynomial soverhead

independent of s, s′ and e.

Thus we can achieve a contradiction if the following holds simultaneously.

1. |X| ≥ t · ε · (1− δ) · 2λ ≥ δ2λ.
2. |C[C]| ≤ t · s′ + t · e+ t · sovehead(λ) ≤ s.

This is because these conditions ensure that C[C] is a required circuit
that violates the hypothesis. For these conditions to happen we can set
any s′ and t satisfying, t ≥ 1−δ

δ·ε and s′ ≤ s−p(λ)
t
− e− soverhead.

8 Sequential Repetition

In this section, we construct Π⊥ which is an analogue of parallel repe-
tition. It starts from δz-zero knowledge candidate, δs sound NIZK can-
didate and constructs (roughly) δnz−zero knowledge and 1 − (1 − δs)n
sound NIZK candidate Π⊥. Note that these are the parameters for par-
allel repetition where soundness and zero knowledge errors (parameters)
are interchanged and that is why we call it sequential repetition.

Ingredient: We require a verifiable sharing scheme NPSS with the fol-
lowing properties:

– Perfect Correctness.
– Robustness holds if T = [n].
– Computational Simulatability as long as at most n− 1 witnesses are

revealed.

Such a scheme can be constructed by instantiating Σ−preprocessing
MPC framework with perfectly correct, information theoretically secure
GMW protocol [14] in the OT hybrid model [28]. This protocol satisfies
information theoretic security for n− 1 corruptions. More details can be
found in the full version. We also assume that the commitment scheme
used in constructing NPSS uses perfectly correct a public key encryption
scheme PKE. We now describe our construction.

– Π⊥.Setup(1λ) :

• Run Π.Setup(1λ)→ crsi for i ∈ [n].
• Run NPSS.Setup(1λ)→ pp.
• Output crs = (pp, crs1, ...., crsn).

– Π⊥.Prove(crs, x, w) :

• Run NPSS.Share(pp, n, x, w)→ (x1, ..., xn, w1, ..., wn)
• Run Π.Prove(crsi, xi, wi)→ πi for i ∈ [n].
• Output π = (x1, ..., xn, π1, ...., πn).

– Π⊥.Verify(crs, x, π) :

• Parse π = (x1, ..., xn, π1, ...., πn).
• Run NPSS.Verify(pp, n, x, x1, ..., xn).
• Run Π.Verify(xi, wi) for i ∈ [n].
• Output 1 if all these steps pass. Output 0 otherwise.

Completeness. Completeness follows immediately from the complete-
ness of Π.
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(1− (1− δs)n)− soundness:

Theorem 11. Assuming PKE is perfectly correct and Π is δs−sound
against adversaries of size s, then for every 1 > ε > 0, Π⊥ is (1 − (1 −
δs)

n)+O(ε)−sound against adversaries of size s′ = O(s ·ε ·δs/(1−δs))−
poly(λ) for a fixed polynomial poly.

Proof. Let C = (C1, ..., Cn) be the circuit attacking the soundness ex-
periment.
First define a function:
F (r)

– Compute Π.Setup(1λ; r)→ crs.
– Output crs.

Let pp← NPSS.Setup(1λ). We fix pp, and we claim that soundness holds
with overwhelming probability over the coins for generating pp. Now,
C(F (u1), ..., F (un)) = x, x1, ..., xn, π1, ..., πn. Define the output of Ci as
x, xi, πi
Denote c = δs. Let us recall the soundness experiment in detail.

– The challenger samples Π.Setup(1λ)→ crsi for i ∈ [t]. Then it hands
over crs⊥ = (pp, crs1, .., crst)

– The adversary on input crs⊥ comes up with a proof π = (x1, .., xn, π1,
.., πn) and an instance x such that NPSS.Verify(pp, x, x1, .., xn) =
1, Π.Verify(crsi, xi, πi) = 1 for i ∈ [n]. The adversary wins if x is
unsatisfiable.

We begin by setting some notation for the rest of the proof.

– Define F (·) = Π.Setup(1λ, ·) : {0, 1}`rand(λ) → {0, 1}`crs(λ). Note
that both `crs, `rand are some polynomials.

– Let C = (C1, .., Cn) be the polynomial sized-circuit attacking the
soundness experiment. Each Ci : {0, 1}n`crs → {0, 1}`π+2·`x . Each
Ci is thought to output x, xi, πi. They have pp hardwired.

– Let E denote the circuit that on input (crsi, xi, πi) ∈ {0, 1}`crs+`pi
does the following. It checks that xi = xi[Zview,i, R(x, ·)] (as in the
construction of NPSS) and Π.Verify(crsi, xi, πi) = 1. Then it opens
the commitment Zview,i (using the secret-key corresponding to pp)
and checks if the circuit xi /∈ SAT. It outputs 1 if all these checks
pass. Since the commitment can be opened in poly(λ) time using the
decryption algorithm, size of E is poly(n, λ).

Since Π is c−sound against adversaries of size s, for all circuits D of size
s,

Pr
u

$←−{0,1}`rand
[E(u, F (u), D(F (u)) = 1] ≤ c

Thus there exists a hardcore set by lemma 2 H of size (1− c)2r(λ) such
that for any polynomial-sized circuit D′ with size s′ ≤ O(sεs′(1− c)/c−
soverhead − poly(λ)),

Pr
u

$←−H
[E(u, F (u), D′(F (u)) = 1] ≤ εs′ (3)

for any 0 < εs′ < 1.
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Define V to be the set {0, 1}r(λ) × ....{0, 1}r(λ) (i.e. the set of random-
ness used to sample all crsi for i ∈ [n]). For every set S ⊆ [n], define
VS = A1 × A2... × At, where Ai = H if i ∈ S and Ai = {0, 1}r \ H
otherwise. Note that V is a disjoint union of {VS}S⊆[n].

For any set W , we define by BreakW the following event that is satisfied
if the following conditions are satisfied.

1. (u1, .., un)
$←−W

2. Ci(F (u1), ..., F (un)) = (x, xi, πi) for all i ∈ [n].
3. Π.Verify(F (ui), xi, πi) = 1 for all i ∈ [n].
4. NPSS.Verify(pp, t, x, x1, .., xn) = 1
5. x /∈ SAT

Let,
Pr[BreakV ] = q

Then, note that,

Pr[BreakV ] = ΣS⊆[n] Pr[BreakVS ]|VS |/|V |

We make the following two claims now.

Claim. ΣS⊆[n],|S|<n|VS |/|V | ≤ (1− (1− c)n).

Proof. Consider n independent random variables yi for i ∈ [n] where
yi = 0 with probability c and 1 with probability 1 − c. The probability
that y 6= 1n is = 1− Pr[y = 1n]. Since each bit is independently chosen,
the claim follows as Pr[y = 1n] = (1− c)n

Thus, S∗ = [n]. Pr[BreakV ] ≤ (1− c)n ·Pr[BreakVS∗ ]+(1− (1− c)n) Now
we claim that Pr[BreakVS∗ ] ≤ nεs′
Observe that Pr[BreakV ] = q ≤ (1− c)n · Pr[BreakVS∗ ] + (1− (1− c)n)
Thus Pr[BreakVS∗ ] ≥ q − (1 − (1 − c)n) We now define another event
Soundi.

1. (u1, .., un)
$←− VS∗

2. Ci(F (u1), ..., F (un)) = (x, xi, πi) for all i ∈ [n].
3. Π.Verify(F (ui), xi, πi) = 1 for all i ∈ [n].
4. NPSS.Verify(pp, n, x, x1, .., xn) = 1
5. x /∈ SAT
6. xi /∈ SAT

Note that Pr[∪i∈S∗Soundi] ≥ Pr[BreakVS∗ ] due to robustness of NPSS
scheme. Thus by the union bound,

Σi∈S∗ Pr[Soundi] ≥ q − (1− (1− c)n)

as |S∗| = n, there exist i∗ such that,

Pr[Soundi∗ ] ≥
q − (1− (1− c)n)

n

Finally, define the event Finali∗

1. (u1, .., un)
$←− VS∗

2. C∗i (F (u1), ..., F (un)) = (x, x∗, π∗).
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3. Π.Verify(F (ui∗), x
∗, π∗) = 1.

4. Instance x∗ is of the form x∗ = x∗[Zview,i∗ , f ].
5. x∗ /∈ SAT.

As Finali is true whenever Soundi is, Pr[Finali] ≥ (q − (1− (1− c)n))/n.
This translates to the following

Pr
u1,..,un

$←−VS∗
[E(ui∗ , F (ui∗), Ci∗(F (u1), ..., F (un))) = 1] ≥ q − (1− (1− c)n)

n

This implies that there exists {ui}i 6=i∗ such that:

Pr
ui∗

$←−VS∗
[E(u∗i , F (ui∗), Ci∗(F (u1), ..., F (un))) = 1] ≥ q − (1− (1− c)n)

n

The circuit Ci∗(u1, ..., ui∗−1, ·, ui∗+1, .., un) violates equation 3 if q >
nεs′ + 1− (1− c)n.

2 · δns−zero-knowledge.

Theorem 12. Assume that there exists a subexponentially secure public
key encryption and a NIZK candidate Π satisfying δz−zero-knowledge
against adversaries of size SizeΠ where δz, 1 − δz > 2−λ/5. If SizeΠ >
Size1ε

−2poly(λ) for any 1 > ε > 0 and 0 < Size1 < 2λ/5 then the con-
struction Π⊥ satisfies 2δnz + O(nε + 2−λ

c

)−witness indistinguishability
against adversaries of size Size1. Here poly is some fixed polynomial.
c > 0 is a fixed constant.

We present the proof in the full version.

9 Amplifying Security when δs + δz < 1

Now we show the following theorem:

Theorem 13. Assume a subexponentially secure PKE scheme, and a
NIZK candidate Π with δs−soundness and δz−zero-knowledge where δz,
δs are any constants in (0, 1) with δs + δz < 1 for all polynomial time
adversaries, then there exists a fully secure NIZK candidate against all
polynomial time adversaries.

We prove this is as follows:

1. First we use parallel repetition with repetition parameter n1 = log λ.
Note that in that case, we get δs,1 = δn1

s + O(n1ε1) soundness and
δz,1 = 1−(1−δz)n1 +O(n1ε1) from the theorems on parallel repetition.
This holds for all adversaries of size Size1 = Size · ε2/poly(λ) where
Size is the size of the adversaries for which Π is secure and ε is chosen
and poly is fixed.

2. Then we apply sequential repetition on the new parameters. Let
a = log2(1/δs) and b = log2(1/(1 − δz)). Note that as δs + δz < 1,
b < a. Then δs,1 = 1/λa+O(ε log λ) and δz,1 = 1−1/λb+O(ε log λ).
We now apply sequential repetition with parameter n2 = λa. Once
we do this, following happens.
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– δs,2, which is the soundness of the resulting candidate, becomes
δs,2 = 1− (1− δs,1)n2 +O(n2ε2). It holds against all adversaries
of size Size2 = Size1 · ε22/poly(λ), where ε2 is chosen. Thus this
is 1− e−1 + O(poly(λ)ε+ ε2) if ε, ε2 are sufficiently small. Here
poly is some fixed polynomial.

– On the other hand zero-knowledge becomes δz,2 = 2 · δn2
z,1 +

O(n2ε2). This is equal to δn2
z,1 = (1 − 1/λb + log λε)λb . This is

equal to e−λ
a−b

+ poly(λ)ε if ε is sufficiently small. Thus this

results in δz,2 = 2 · e−λ
a−b

+O(poly(λ)ε+ ε3). Here poly is some
fixed polynomial.

Finally, we apply parallel repetition once again with parameter n3 =
λ to obtain the result.

– δs,3, which is the soundness of the resulting candidate, becomes
δs,3 = δn3

s,2 + O(n3ε3). It holds against all adversaries of size

Size3 = Size2 · ε23/poly(λ), where ε3 is chosen. This is 2−cλ +
O(poly(λ)(ε + ε2 + ε3)) if ε2, ε is chosen sufficiently small. Here
poly is some fixed polynomial and c > 0 is some constant.

– On the other hand zero-knowledge becomes δz,3 = 1 − (1 −
δz,2)λ+O(λε3). This is bounded by λ ·δz,2 +O(λε3) = O(2−λ

c
1 +

poly(λ)ε + ε2 + ε3) by union bound. Here poly is some fixed
polynomial and c1 > 0 is some constant.

This proves the result.
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