Watermarking Public-Key
Cryptographic Primitives

Rishab Goyal', Sam Kim?, Nathan Manohar?,
Brent Waters!#, and David J. Wu®

! UT Austin, Austin, TX
2 Stanford University, Stanford, CA
3 UCLA, Los Angeles, CA
4 NTT Research, East Palo Alto, CA
® University of Virginia, Charlottesville, VA

Abstract. A software watermarking scheme enables users to embed a
message or mark within a program while preserving its functionality.
Moreover, it is difficult for an adversary to remove a watermark from
a marked program without corrupting its behavior. Existing construc-
tions of software watermarking from standard assumptions have focused
exclusively on watermarking pseudorandom functions (PRFs).

In this work, we study watermarking public-key primitives such as
the signing key of a digital signature scheme or the decryption key of a
public-key (predicate) encryption scheme. While watermarking public-key
primitives might intuitively seem more challenging than watermarking
PRFs, our constructions only rely on simple assumptions. Our water-
markable signature scheme can be built from the minimal assumption of
one-way functions while our watermarkable public-key encryption scheme
can be built from most standard algebraic assumptions that imply public-
key encryption (e.g., factoring, discrete log, or lattice assumptions). Our
schemes also satisfy a number of appealing properties: public marking,
public mark-extraction, and collusion resistance. Our schemes are the
first to simultaneously achieve all of these properties.

The key enabler of our new constructions is a relaxed notion of
functionality-preserving. While traditionally, we require that a marked
program (approximately) preserve the input/output behavior of the orig-
inal program, in the public-key setting, preserving the “functionality”
does not necessarily require preserving the ezact input/output behavior.
For instance, if we want to mark a signing algorithm, it suffices that the
marked algorithm still output valid signatures (even if those signatures
might be different from the ones output by the unmarked algorithm).
Similarly, if we want to mark a decryption algorithm, it suffices that
the marked algorithm correctly decrypt all valid ciphertexts (but may
behave differently from the unmarked algorithm on invalid or malformed
ciphertexts). Our relaxed notion of functionality-preserving captures the
essence of watermarking and still supports the traditional applications,
but provides additional flexibility to enable new and simple realizations
of this powerful cryptographic notion.

1 Introduction

Watermarking is a way to embed special information called a “mark” into digital
objects such as images, videos, audio, or software so that the marked object has
the same appearance or behavior of the original object. Moreover, it should be
difficult for an adversary to remove the mark without damaging the object itself.
Watermarking is a useful tool both for protecting ownership and for preventing
unauthorized distribution of digital media.

Software watermarking. In this work, we focus on software watermarking for
cryptographic functionalities. Barak et al. [8, 9] and Hopper et al. [35] provided
the first rigorous mathematical framework for software watermarking. Very briefly,
a software watermarking scheme consists of two main algorithms. First, there
is a marking algorithm that takes as input a program, modeled as a Boolean
circuit C, and outputs a new marked circuit C’ with the property that C' and C”
agree almost everywhere. Second, there is an extraction algorithm that takes as
input a circuit C' and outputs a bit indicating whether the program is marked
or not. In the case of message-embedding watermarking, the marking algorithm
additionally takes a message 7 as input, and the extraction algorithm will either
output the mark 7 or a special symbol L to indicate an unmarked program. The
primary security requirement is unremovability, which says that given a marked
circuit C’ with an embedded message 7, no efficient adversary can construct a
new circuit C’ that has roughly the same behavior as C’, and yet the extraction
algorithm on C fails to output 7. Notably, there are no restrictions on the circuit
the adversary can output (other than the requirement that the adversary be
efficient). This notion of security is often referred to as security against arbitrary
removal strategies and captures the intuitive notion of watermarking where an
adversary cannot replicate a program’s functionality without also preserving the
watermark.

Realizing the strong security requirements put forth in the early works on
cryptographic watermarking [8, 35, 9] has proven challenging. In fact, Barak et al.
showed an impossibility result (under indistinguishability obfuscation) on the
existence of watermarking schemes that are perfectly functionality-preserving (i.e.,
schemes where the input/output behavior of the marked function is identical to
that of the original function). In light of this lower bound, early works [44, 60,
48] provided partial results for watermarking specific classes of cryptographic
functionalities by imposing limitations on the adversary’s ability to modify the
program and remove the watermark.

The first positive result on constructing watermarking schemes with security
against arbitrary adversarial strategies was due to Cohen et al. [27] who showed
that if we relax the perfect functionality-preserving requirement to only require
statistical functionality-preserving (i.e., the marked function only has to imple-
ment the original function almost everywhere), then watermarking is possible.
Moreover, Cohen et al. showed how to watermark several classes of cryptographic
primitives, including pseudorandom functions (PRFs) and public-key encryption,
with strong security from indistinguishability obfuscation. Since the seminal work

of Cohen et al., a number of works have studied how to build watermarkable fam-
ilies of PRF's from weaker assumptions such as lattice-based assumptions [37, 38|
or CCA-secure encryption [52].

Watermarking public-key primitives. Existing constructions of software
watermarking from standard cryptographic assumptions all focus on watermarking
symmetric primitives, notably, PRFs [37, 52, 38]. The one exception is the work
of Baldimtsi et al. [6], who showed how to watermark public-key cryptographic
primitives, but in a stateful setting, and under a modified security model where a
trusted watermarking authority generates both unmarked and marked keys.% Our
focus in this work is constructing software watermarking schemes for two classes of
public-key cryptographic primitives: digital signatures and (CPA-secure) public-
key encryption (and more generally, public-key predicate encryption [19, 55, 36]).

1.1 Owur Contributions

In this work, we show how to construct a watermarkable signature scheme, where
the signing functionality can be marked, as well as a watermarkable public-key
(predicate) encryption scheme, where the decryption functionality can be marked.
Moreover, all of our constructions are based on very weak assumptions: namely,
our watermarkable signature scheme can be constructed based on any vanilla
signature scheme (say, from one-way functions [31]), and our watermarkable
public-key predicate encryption scheme can be based on any public-key encryption
scheme together with a low-complexity pseudorandom generator (implied by
most standard intractability assumptions [45, 46, 47, 7]). One caveat is that our
watermarkable predicate encryption scheme is only bounded-collusion secure.

Relaxing functionality-preserving. In spite of the recent progress in realizing
new constructions of cryptographic watermarking from standard assumptions,
watermarking remains a challenging notion to realize. Existing constructions of
watermarking [37, 52, 38] from standard assumptions do not support properties
like collusion resistance (where the watermark remains unremovable even if a
user sees multiple marked versions of the program) or public verifiability (where
anyone is able to tell if a program is marked). Moreover, these constructions rely
on heavy cryptographic machinery, such as fully homomorphic encryption, even
to watermark a PRF.

Our starting point, in this work, is to take a step back and revisit some of the
definitions underlying software watermarking. Much like Cohen et al. [27] started
by relaxing perfect functionality-preserving to statistical functionality-preserving
and used that as the basis for obtaining the first positive results on watermarking,
we also start by identifying another meaningful relaxation of the functionality-
preserving requirement. As discussed above, functionality-preserving is typically
synonymous with preserving a program’s input/output behavior: namely the

5In the standard watermarking model, anyone can generate keys (without going through
or trusting the watermarking authority), and at a later time, decide if they want to
mark the keys or not.

input/output behavior of a marked circuit C” should be almost identical to that
of the original circuit C. In many settings, such as when C implements a PRF,
this is indeed the most natural notion of functionality-preserving. However, when
considering the signing functionality of a signature scheme or the decryption
functionality of an encryption scheme, there is additional flexibility:

— Suppose the circuit C' implements the signing algorithm for a signature
scheme. The functionality we care about is that on input a message m, C(m)
outputs a valid signature (with respect to the verification key vk). In this case,
we can preserve this functionality without preserving the exact input/output
behavior. Namely, we can allow the marked circuit C’ to behave differently
from C, as long as C’'(m) still outputs a valid signature (under vk) on the
message m. In particular, the marked circuit is just as good as the original
signing circuit even if they do not have identical input/output behavior. For
instance, if we are watermarking the signing key used in a signature-based
challenge-response authentication scheme, it suffices that the marked key still
produces valid signatures, even if those signatures are not exactly the same
as the ones output by an unmarked key.

— Suppose the circuit C' implements the decryption algorithm for a public-key
encryption scheme. In this case, the functionality we care about is that on
input a valid ciphertext ct (i.e., one output by the encryption algorithm), C'(ct)
outputs the underlying message m. In this case, the set of valid ciphertexts
(i.e., those in the support of the honest encryption algorithm) might form a
sparse subset of a larger space. In this case, we can define our functionality-
preserving requirement to just require the marked circuit C’ to correctly
decrypt the set of valid ciphertexts. If we invoke C” on an invalid or malformed
ciphertext, then C’ and C are allowed to disagree. Analogous to the case with
the signature scheme, the marked circuit C” is just as useful as a decryption
circuit. Since the behavior of the decryption algorithm on a malformed
ciphertext is usually unspecified, preserving this behavior seems non-essential
for most applications. For example, if we are watermarking the decryption
key (e.g., for a Blu-Ray player), it suffices that the marked key correctly
decrypts valid ciphertexts.

To summarize, in the public-key setting, we can capture the spirit of “functionality-
preserving” watermarking without requiring that the marked circuit and the
unmarked circuit have identical input/output behaviors. It turns out that this
added degree of freedom enables new constructions of software watermarking from
simple assumptions (e.g., one-way functions or public-key encryption) that also
satisfy a number of desirable properties that have eluded all existing watermarking
constructions: collusion resistance, public marking, and public extraction. We
discuss these properties in greater detail below and then comment more broadly
on their implications.

Our results. By working with our relaxed notion of functionality-preserving,
we construct watermarkable signatures and watermarkable public-key predicate
encryption schemes that simultaneously achieve all of the following properties:

— Collusion resistance: Existing constructions of watermarking [27, 14, 37,
52, 38] only provide unremovability against adversaries that see a single
marked key. While this is the natural notion in the setting where programs
are either marked or unmarked, this is not true in the message-embedding case.
In fact, in all the aforementioned constructions, an adversary that obtains
two copies of a key marked with different messages 7 # 7’ can efficiently
construct a new program that is functionally-similar to the marked program,
and yet does not contain the watermark. Such watermarking schemes are not
collusion resistant. We say that a watermarking scheme is collusion resistant
if an adversary who sees marked versions of a circuit C' with marks 7,...,7,
cannot construct a new circuit C’ that is functionally-close to C' and yet,
on input C’, the extraction algorithm fails to produce one of 71,...,7,.” In
applications where keys are watermarked with different identities (for instance,
when the decryption key embedded in a Blu-Ray player is marked with the
owner’s name), collusion resistant unremovability is a critical property. In this
work, we construct a watermarkable signature scheme that is fully collusion
resistant (i.e., collusion resistant against an adversary who can see an arbitrary
polynomial of marked circuits) and a watermarkable public-key predicate
encryption scheme that provides bounded-collusion resistance.

— Public marking: A watermarking scheme supports public marking if anyone
is able to run the marking algorithm. Conversely, a scheme supports secret
marking if only the holder of a secret watermarking key is able to watermark
programs. Public marking is a desirable feature because users are able to wa-
termark their secret keys without having to share them with a watermarking
authority. Several previous watermarking schemes for PRFs [52, 38] provided
public marking, but at the expense of giving the watermarking authority
a trapdoor that allows it to break security of all of the keys in the system
(including unmarked keys). Our schemes naturally support public marking
without this drawback (and, in fact, our schemes do not require the existence
of a central watermarking authority at all).

— Public extraction: A watermarking scheme supports public mark-extraction
if anyone can run the extraction algorithm and obtain the watermark within
a piece of software. This is useful if users want to directly prove software
ownership (or authenticity) without going through a trusted watermarking
authority. Obtaining watermarkable PRFs with public extraction from stan-
dard assumptions remains a major open problem, and existing watermarking
schemes with this property [27] all rely on indistinguishability obfuscation.
In this work, all of our schemes support public mark-extraction.

— Security against a malicious watermarking authority: A watermark-
ing scheme that supports public marking and public mark-extraction is very
appealing because users do not need to trust a central watermarking authority
for marking or extraction. Our schemes give the first watermarking scheme

"This is conceptually very similar to the closely-related cryptographic primitive of
traitor tracing, and we discuss the similarities and differences in greater detail later in
this section and in Section 1.2.

that supports public marking and public extraction. This resolves a key open
question in the work of Cohen et al. [27], although under a relaxed (but still
meaningful) notion of functionality-preserving. In fact, our schemes remain
secure even if the public parameters of the watermarking scheme are chosen
maliciously.

Our relaxed notion of functionality-preserving is certainly much weaker than
the more stringent requirement of preserving input/output behavior. But, as we
discussed above, our relaxed notion still seems to capture the essence of the re-
quirement in the context of watermarking signatures and encryption schemes. By
relaxing this functionality-preserving requirement, we are able to achieve stronger
security notions from weaker cryptographic assumptions. At a philosophical level,
our work highlights the need to further explore and identify the “right” set of
definitions for software watermarking that enable useful and meaningful construc-
tions from simple assumptions while still supporting the standard applications of
software watermarking.

Watermarking digital signatures. Our watermarkable digital signature scheme
relies on constrained signatures (also known as policy-based signatures) [10, 59].
In a constrained signature scheme over a message space M, the signing key sk
can be used to derive a constrained signing key sky for a particular predicate
f: M — {0,1} with the property that the constrained key sky can be used to
sign all messages m where f(m) = 1. The security property is that an adversary
who is given constrained keys sky, . .., sk, for functions fi, ..., f, cannot produce
a valid signature on any message m where f;(m) = 0 for all i € [n]. It is straight-
forward to construct constrained signatures from any standard signature scheme
using certificates [10], and we briefly recall this basic construction in Section 3.3.

A constrained signature scheme that supports the class of “prefix-based”
constraints immediately gives rise to a watermarkable signature scheme. In more
detail, if we want to construct a watermarkable signature with message space M
and mark space T, we use a prefix-constrained signature scheme with message
space 7 x M. Signing and verification keys for the watermarkable signature
directly correspond to signing and verification keys for the underlying prefix-
constrained signature scheme. A signature on a message m consists of a tuple
om = (L, 0’) where ¢’ is a signature on (L, m). To verify a signature o = (7, ¢”)
on a message m, the verification algorithm checks that ¢’ is a valid signature
on the pair (7,m). Now, to mark a signing key with mark 7* € T, the user
constrains the signing key sk to the prefix-based constraint f«: 7 x M — {0,1}
where fr«(7,2) = 1if 7* = 7 and 0 otherwise. The marked circuit C.~ is a circuit
that takes as input a message m and outputs (7*,¢’), where ¢’ is a signature on
(7*,m) using the constrained key sk,«. To extract a watermark from a candidate
circuit C’, simply sample a random message m <~ M,® compute (7,0') < C'(m),
and output 7 if ¢’ is a valid signature on (7,m). Note that if C’ only succeeds

8More generally, we can consider a stronger notion of unremovability where we replace
the uniform distribution over M with any (adversarially-chosen) efficiently-sampleable
distribution over M where the circuit succeeds in generating valid signatures with

in producing valid signatures with e probability (for non-negligible €), then
this procedure can be repeated A/e times. If no marks are extracted after \/e
iterations, then output L (to indicate an unmarked circuit).

By correctness of the underlying constrained signature scheme, the marked
circuit C;« outputs valid signatures on all messages m € M, so the marked
circuit is functionality-preserving (even though the signatures output by C are
noticeably different than the signatures output by the original signing algorithm).
Unremovability follows from security of the underlying constrained signature.
Namely, an adversary who only has signing circuits marked with 7, ..., 7, should
only be able to compute signatures on tuples of the form (7;,m) for i € [n].
Thus, if the extraction algorithm outputs some 7’ # 7; for all ¢ € [n], then the
adversary’s circuit must have forged a valid signature on (77, m) for some message
m € M, which breaks security of the underlying constrained signature scheme. In
addition, if the underlying constrained signature scheme is collusion resistant (i.e.,
security holds against adversaries that obtain an a priori unbounded polynomial
number of constrained keys), then the resulting watermarkable signature scheme
is also collusion resistant. We describe this construction and its security analysis
in greater detail in Section 3.

Watermarking public-key encryption and traitor tracing. Turning now
to (CPA-secure) public-key encryption, we first describe a correspondence between
watermarkable public-key encryption and traitor tracing [24]. In traitor tracing,
there is a set of n honest users, each associated with a numeric identity i € [n].
In addition, there is a central authority that generates a public key pk for the
scheme as well as secret decryption keys sk; for each user ¢ € [n]. Anyone can
encrypt a message under the public key pk, and each legitimate user is able
to decrypt the resulting ciphertext using their individual secret key sk;. The
tracing property says that there is an efficient tracing algorithm that, given
black-box access to any valid decryption circuit, is able to recover at least one of
the secret decryption keys sk; that went into constructing the private decoder.
As noted by Nishimaki et al. [49], a collusion resistant watermarkable public-key
encryption scheme can be used to build a traitor tracing scheme: namely, the
secret decryption keys for each user would correspond to watermarked decryption
keys, where the watermark is the user’s index.

With a few syntactic changes, the converse also holds; namely, any traitor trac-
ing scheme that supports public tracing also implies a watermarkable public-key
encryption scheme under our relaxed notion of functionality-preserving. Typically,
in a traitor tracing scheme, there is a central authority that generates the public
key and all of the decryption keys at the same time. In watermarking, however,
anyone should be able to sample a public/private key-pair and, later on, have the
ability to watermark their decryption key. However, this distinction is superficial,
as we can always take the master secret key of the traitor tracing scheme to
be the setup randomness and let that be the secret key in the watermarkable
public-key encryption scheme. To mark the secret key with an identity 7 € [n], the

non-negligible probability. Notably, the support of this distribution may have negligible
density in M. We provide more details in the full version of this paper.

marking algorithm would run the setup algorithm of the traitor tracing scheme
and output decryption key sk;. Unremovability of the scheme follows directly
from the traceability of the underlying traitor tracing scheme.”

Watermarking advanced public-key functionalities. Having established a
correspondence between traitor tracing schemes with public tracing and water-
markable public-key encryption schemes, we ask whether we can watermark more
complex public-key functionalities like identity-based encryption [54, 13, 26],
attribute-based encryption [53, 34], or predicate encryption [19, 55, 36]. In the
following description, we focus on predicate encryption, the most general notion
among these primitives. In a (key-policy) predicate encryption scheme, cipher-
texts are associated with an attribute x as well as a message m, while secret keys
are associated with functions or predicates f. A secret key sk for a predicate
f can decrypt all ciphertexts encrypted with respect to an attribute x where
f(x) = 1. The security property is that an adversary who has keys sk, ..., sk;,
for predicates f1,..., f, cannot learn anything about ciphertexts encrypted to
an attribute x where f;(z) = 0 for all ¢ € [n]. Moreover, in a predicate encryption
scheme, the ciphertexts hide the attribute x (whereas in the similar setting of
attribute-based encryption, the attribute is public).

The question we ask is whether we can watermark the decryption keys
sk in a predicate encryption scheme. As an example application, imagine an
organization that uses a predicate encryption scheme for enforcing access control
(e.g., ciphertexts are tagged with different classification levels), and it wants to
issue decryption keys to different clients, each marked with the client’s identity.
Then, if a client uses their key to construct an unauthorized decryption device,
it is possible to identify the identity of the client (by extracting the watermark).

Constructing a watermarkable predicate encryption scheme. In this
work, we show that a generalization of the traitor tracing scheme by Nishi-
maki et al. [49] in combination with a hierarchical functional encryption scheme [22]
gives a watermarkable (bounded-collusion) predicate encryption scheme based
only on public-key encryption and the existence of pseudorandom generators
(PRGs) computable in NC' (which follow from standard intractability assump-
tions such as factoring, discrete log, or lattice-based assumptions [45, 46, 47, 7]).
This notion is conceptually similar to the notion of attribute-based traitor tracing,
and we compare and contrast the two notions in Section 1.1. In contrast to the
setting of watermarking public-key encryption, watermarking predicate encryp-
tion does not appear to follow from attribute-based traitor tracing (although the
converse does follow).

9Traditionally, in a traitor tracing scheme, the tracing algorithm requires a secret
tracing key output by the tracing algorithm [16, 30, 33, 23]. A traitor tracing scheme
supports public tracing [18, 2, 49] if the tracing algorithm does not depend on any
secret information. In this simple construction of watermarkable public-key encryption
from traitor tracing, the extraction algorithm would not have access to the tracing key,
so instantiating this basic blueprint will require a traitor tracing scheme that supports
public tracing.

The starting point of our construction is the classic approach for constructing
traitor tracing via a private linear broadcast encryption (PLBE) introduced by
Boneh et al. [16]. In a PLBE scheme with n users, each associated with an index
i € [n], it is possible to construct a ciphertext that can only be decrypted by
users whose index 7 < T is smaller than some threshold 7'. Moreover, ciphertexts
encrypted to two different thresholds T' < T” are only distinguishable if a user
possesses a secret key for an index ¢ € {T, T+ 1,...,7" — 1}. A PLBE scheme
that supports n users implies a traitor tracing scheme with identity space [n]:
namely, to trace a circuit C, the tracing algorithm encrypts (random) messages
to indices 1 = 0,1,...,n, and tests whether C' correctly decrypts the ciphertext
or not. When i = 0, decryption always fails, while at ¢ = n, decryption should
succeed with noticeable probability. Thus, there must be some index ¢ where
there is a “big jump” in the decryption success probability, which corresponds to
the user possessing the decryption key for index i. When n is polynomial, the
tracing algorithm can simply do a linear scan over the entire identity space to
identify the big jumps. Nishimaki et al. [49] show how to generalize this approach
to the setting where the identity space is exponential (which allows embedding
arbitrary information in the decryption keys).

As described above, a traitor tracing scheme that supports public tracing
directly implies a watermarkable public-key encryption scheme. To extend this
to the setting of watermarking a predicate encryption scheme, we use a hierar-
chical functional encryption scheme. In a standard functional encryption (FE)
scheme [17, 50], encryption keys are associated with functions f, and decrypting
a ciphertext encrypting a value x with a function key sk; for f yields the value
f(z). It is not difficult to see that a FE scheme can be used to build a predicate
encryption scheme as well as a PLBE scheme (this is the approach taken by
Nishimaki et al. [49] in their traitor-tracing construction). In a hierarchical FE
scheme [22], there is an additional delegation function that allows one to take a
function key sk for a function f and delegate it to a key skgyo¢ for the function
go f. At a high-level, our construction of a watermarkable predicate encryption
scheme relies on a two-level hierarchical FE scheme, where the ordinary function
keys are used to implement a predicate encryption scheme, while the marked
keys consist of a delegated key that embeds a PLBE functionality (used to embed
the watermark).

In more detail, to encrypt a message m with attribute x, we construct an FE
encryption of the triple (z,m, 1), where the last component is a special flag (used
for mark extraction). A predicate encryption key for the predicate f consists of
an FE key for the associated function g¢ where

(x,m) b=0
gy (@,m) = { (04,0") b=1and f(z) =0
(1Y, m) b=1and f(z) = 1.
By construction, decrypting an honestly-generated ciphertext with attribute x

and message m with a key f where f(x) = 1 will always yield the pair (1¢,m),
from which the message can be recovered. Now, to mark a key sk; with a mark

7 € {0,1}°\ {1}, we take sky and use the delegation mechanism to issue a
function key for the function h, o g5 where

ho) (00" z <7
(z,m) =
(14,m) x>,

where we interpret z, 7 € {0,1}¢ as the binary representation of an ¢-bit integer.
We make two observations. First, the marked key can still be used to decrypt all
honestly-generated ciphertexts (namely, ciphertexts where the flag is set to 1).
However, notice that when the flag b = 0, the marked key can only decrypt
ciphertexts where the encrypted attribute z exceeds the threshold 7 associated
with the marked key. This precisely coincides with the semantics of a PLBE
scheme. We can now apply the techniques developed by Nishimaki et al. [49] to
extract the associated identity 7, thereby recovering the watermark. We provide
the full description of this scheme and its analysis in Section 4. Overall, we
show that we can obtain a bounded-collusion resistant watermarkable family of
predicate encryption schemes from public-key encryption and low-complexity
PRGs; both of these assumptions can be instantiated by most assumptions
that imply public-key encryption (e.g., factoring, discrete log, or lattice-based
assumptions [45, 46, 47, 7]).

The parameter sizes of the resulting bounded-collusion watermarkable pred-
icate encryption scheme are directly inherited from those of the underlying
bounded-collusion hierarchical functional encryption scheme, which can in turn
be built from a standard bounded-collusion functional encryption scheme [22].
For instance, instantiating the underlying functional encryption scheme with [32]
yields a watermarkable predicate encryption scheme where the ciphertext size
scales with O(Q*), where Q is the collusion bound. Alternatively, with the FE
scheme from [3], the ciphertext size scales with O(Q?) and with the scheme
from [5], the ciphertext size scales with O(Q).

1.2 Additional Related Work

In this section, we survey some additional related work as well as compare our
new watermarking notions to related notions studied in prior work.

Constrained signatures. Numerous works [43, 21, 10, 59] have studied con-
structing constrained signatures (and variants thereof) together with properties
like privacy, anonymity, succinct keys, or succinct signatures.

Traitor tracing. Since the work of Chor et al. [24], there have been a vast number
of constructions of fully collusion resistant traitor tracing from combinatorial
constructions [15, 56], pairing-based assumptions [16, 18, 30, 29, 41, 42], lattice-
based assumptions [33, 23], and indistinguishability obfuscation [20, 49]. With
the exception of [49], the existing constructions only support efficient tracing
over a polynomial-size identity space (this is referred to as “flexible” traitor
tracing [49]). There are also numerous constructions that provide security in the
bounded-collusion setting [24, 58, 39, 12, 25, 57, 51, 1, 28, 11, 40, 2].

10

Attribute-based traitor tracing. Directly relevant to our notion of water-
markable predicate encryption is the notion of attribute-based traitor trac-
ing [1, 41, 42, 23], which is a hybrid of attribute-based encryption and traitor
tracing. The main difference between these two notions is that in the traitor-
tracing setting, the marking and key-generation algorithms are combined (namely,
the key-generation algorithm takes as input the function together with the mark).
In watermarking, we have the additional flexibility that we can embed the water-
mark after issuing the key as well as support watermarking adversarially-chosen
keys. When considering the simpler notion of watermarkable public-key encryption
and traitor tracing, we can equate these two notions with a suitable redefinition
of the traitor tracing schema (assuming that the traitor tracing scheme supports
a public tracing algorithm). However, this equivalence does not seem to extend
to the setting of attribute-based encryption or predicate encryption. Another
key difference is that existing constructions of attribute-based traitor tracing
from standard assumptions only support tracing over a polynomial-size iden-
tity space, while in the standard notions of message-embedding watermarking,
the identity space is exponential. Note that since a watermarkable predicate
encryption scheme implies an attribute-based traitor tracing scheme, our results
give a bounded-collusion attribute-based traitor tracing scheme that supports an
exponential number of possible identities.

2 Preliminaries

We begin by introducing the notation that we use in this work. We use A
(often implicitly) to denote the security parameter. We write poly(A) to denote
a quantity that is bounded by a fixed polynomial in A and negl(A) to denote
a function that is o(1/A°) for all ¢ € N. We say that an event occurs with
overwhelming probability if its complement occurs with negligible probability.
We say an algorithm is efficient if it runs in probabilistic polynomial time in
the length of its input. For two families of distributions Dy = {D1x},y and

Dy = {D2 2} ren We write Dy ~ D, if the two distributions are computationally
indistinguishable (i.e., no efficient algorithm can distinguish distribution Dy from

D4 except with negligible probability), and Dy 2 D, if the two distributions are
statistically indistinguishable (i.e., the statistical distance between D; and Ds is
negl(})).

For an integer n > 1, we write [n] to denote the set of integers {1,...,n}. For
integers n > m > 1, we write [m, n] to denote the set of integers {m,m +1,...,n},
and [m,n]r to denote the closed interval between m and n (inclusive) over the
real numbers. For a distribution D, we write = < D to denote that x is drawn
from D. For a finite set S, we write z < S to denote that z is drawn uniformly
at random from S. For sets X’ and Y, we write Funs[X,)] to denote the set of
all functions from X to). In the the full version of this paper, we also recall the
definition of a digital signature scheme and a public-key predicate encryption
scheme.

11

3 Watermarking Digital Signatures

In this section, we show how to watermark a digital signature scheme. We begin
by formally introducing the notion of a watermarkable signature scheme. Our
definitions are based on adaptations of existing definitions of watermarking
PRFs [27, 14, 37, 52, 38] as well as the candidate definitions for watermarking
public-key functionalities put forward in the work of Cohen et al. [27]. We
present our construction in the fully public-key setting (namely, both marking
and extraction are public operations, and there is no watermarking secret key).

Definition 3.1 (Watermarkable Signature). A watermarkable digital signa-
ture scheme with message space M and mark space T is a tuple of algorithms
(Setup, KeyGen, Sign, Verify, Mark, Extract) with the following properties:

— Setup(1*) — wpp: On input the security parameter X, the setup algorithm
outputs a set of watermarking public parameters wpp.

— The public parameters wpp induce a digital signature scheme (KeyGen, Sign,
Verify) with message space M, verification key space VIC, signing key space
SK, and signature space STG. Note that we implicitly allow KeyGen, Sign,
and Verify to take wpp as input.

— Mark(wpp, sk, 7) = C: On input the watermarking parameters wpp, a signing
key sk € SK, and a mark T € T, the marking algorithm outputs a circuit
C: M — SIG.

— Extract(wpp,vk,C) — 7/L: On input the watermarking parameters wpp,
a verification key vk € VK, and a circuit C: M — SZIG, the extraction
algorithm either outputs a mark T € T or a special symbol L.

Remark 3.2 (Comparison with Cohen et al. [27]). There are several differences
between our watermarking schema and that introduced by Cohen et al. [27]. We
summarize these below:

— Extraction semantics: Our extraction algorithm Extract additionally takes
the verification key associated with the signing circuit as an additional input.
This does not seem like a substantial limitation to the usefulness of the
scheme since in most applications, the verification key associated with a
signature scheme is assumed to be publicly known.

— Independent key-generation and marking algorithms: In addition, we
have independent key-generation and marking algorithms. The schema from
Cohen et al. for public-key primitives introduced an additional restriction
that the watermark is generated at the same time as the signing key, while
in our scheme, the signing key can be generated independently, and later
on, a user can decide to mark the key. Thus, our schema provides additional
flexibility in how keys are generated and marked. In particular, our definition
allows a user to take the same signing key and mark it with different messages
(for instance, to give to different users). This definition is more similar to
existing definitions for watermarking secret-key primitives, which consider
independent key-generation and marking algorithms.

12

We additionally note that if we allow the verification key to depend on the
mark (i.e., as in the Cohen et al. construction), there is a simple way to
satisfy their definition.'® In particular, we simply include the mark 7 as part
of the signing key and verification key. A signature on a message m is just
the pair (7, 0), where o is a vanilla signature on m. Verification first affirms
that the first component of the signature is the mark 7 and then checks o as
usual. If the adversary constructs a circuit that outputs valid signatures with
probability better than € > 1/2 + 1/poly(\),!! then the output of the circuit
contains the mark 7 on a majority of inputs. In this case, the extraction
algorithm can evaluate the circuit on poly(\) random inputs and output the
majority tag. This basic construction does not apply in our setting because
we require that the signing/verification keys be generated independently of
the mark.

— Collusion resistance: Since our definition separates the key-generation
and marking algorithms, the same signing key can be marked with different
messages. Correspondingly, we can define a notion of collusion resistant
watermarking, where unremovability holds even if the adversary sees the
same signing key marked with distinct messages. This is a critical property
for any realistic application of watermarking where a single key might be
marked with multiple identities.

Correctness. Next, we introduce the correctness requirements of a watermarking
scheme. There are three main properties we care about. The first is the usual
notion of extraction correctness, which says that the extraction algorithm should
successfully recover the watermark from an honestly-marked key. The second
property is a “meaningfulness” or “non-triviality” property, which says that
most circuits should not be marked. Finally, the third property is functionality-
preserving. As noted in Section 1.1, one of the main differences between this work
and previous works on software watermarking is we consider a relaxed notion of
functionality-preserving, where we require that a marked signing key can sign
arbitrary messages (that verify with respect to the same verification key), but
we allow the resulting signatures to be different from the signatures output by
the original signing key. In other words, the marked key implements a perfectly
valid signing algorithm, but it does not have to preserve the exact input/output
behavior of the unmarked signing key. We give the precise definition below:

Definition 3.3 (Correctness). Let ITwu = (Setup, KeyGen, Sign, Verify, Mark,
Extract) be a watermarkable signature scheme with message space M, signature
space SIG, and verification key space VIC. Then, IIwm is correct if for all

10This basic construction also directly extends to their notion of watermarkable
public-key encryption, which considers the analogous restriction where the encryp-
tion/decryption keys are sampled jointly with the watermark.

" As noted in Remark 3.9, the unremovability definition in Cohen et al. [27] (for
message-embedding watermarking) is satisfiable only when the adversary is restricted
to constructing circuits that agree with the marked circuit on strictly more than half
of the inputs. This coincides with the setting where our simple construction applies.

13

wpp < Setup(1?), the induced signature scheme (KeyGen, Sign, Verify) is correct,
and the following properties also hold:

— Extraction correctness: For all marks 7 € T,
Pr[(vk, sk) < KeyGen(1*, wpp) : Extract(wpp, vk, Mark(wpp, sk, 7)) # 7] = negl()).

— Meaningfulness: For all fized circuits C: M — SIG (independent of the
public parameters wpp) and all verification keys vk € VK,

Pr[Extract(wpp, vk, C') # L] = negl(}),
and for (vk,sk) < KeyGen(wpp),
Pr[Extract(wpp, vk, Sign(wpp, sk, -)) # L] = negl(}).

— Functionality-preserving: For all marks 7 € T and all messages m € M,
if we take (vk,sk) < KeyGen(1*,wpp) and C <+ Mark(wpp, sk, 7),

Pr[Verify(wpp, vk, m, C(m)) # 1] = negl(A).

Remark 3.4 (Unique Signature Schemes and Functionality-Preserving). We note
that if we have a unique signature scheme (i.e., a signature scheme where for every
message m € M, there is a unique signature o that verifies with respect to the
verification key), then our notion of functionality-preserving precisely coincides
with preserving the input/output behavior of the original signing circuit. We
do not know how to watermark a unique signature scheme and leave this as an
intriguing open problem.

Security of the underlying signature scheme. The first security requirement
is that the underlying signature scheme associated with a watermarkable signature
scheme satisfies the usual notion of unforgeability. In fact, we would like the
stronger property that even if the watermarking parameters wpp are chosen in a
malicious manner, the resulting signature scheme remains secure (i.e., provides
unforgeability). Recent constructions of watermarking for PRF's [52, 38] have the
drawback that even a semi-honest watermarking authority is able to break security
of the unmarked keys in the system (and previous constructions from standard
assumptions [37] become insecure if the watermarking authority generates the
parameters maliciously). Our security notion ensures that a malicious party
cannot generate the parameters in such a way as to embed a “trapdoor” into
the signature scheme. In fact, since our watermarking scheme supports both
public marking and public verification, this property means that users can use
the scheme without needing to trust any central authority; this is an appealing
property that is not satisfied by any existing watermarking scheme.

Definition 3.5 (Signature Unforgeability). Let IIwm = (Setup, KeyGen,
Sign, Verify, Mark, Extract) be a watermarkable signature scheme. We say that
ITww satisfies signature unforgeability if the induced signature scheme (KeyGen,

14

Sign, Verify) satisfies unforgeability. We say that IIwwm satisfies signature unforge-
ability in the presence of a malicious authority if the induced signature scheme
satisfies unforgeability even if the adversary can choose the public parameters

wpp for Ilwm.

Unremovability. The main security requirement we require from a watermarking
scheme is unremovability: namely, an adversary that obtains one or more marked
keys cannot produce a new key that preserves the same functionality as the
original key and, yet, does not contain the watermark. Our definition is the direct
generalization of the corresponding notion of unremovability in the setting of
watermarking PRFs [27, 14], with the following differences:

— First, we use the same relaxation of functionality-preserving discussed above:
namely, the adversary is allowed to construct any circuit that outputs valid sig-
natures with noticeable probability (that verify under the signature scheme’s
verification key); it does not have to preserve the input/output behavior of the
marked circuits it is given. This gives the adversary more power, but is consis-
tent with our relaxed view of what it means to be “functionality-preserving”
in the public-key setting.

— Second, we allow the adversary to make multiple marking queries: namely, the
adversary can see the same signing key marked with different and adversarially-
chosen identities, and, even then, we require that the adversary cannot
produce a new circuit whose watermark is not one of the ones corresponding
to a signing circuit already given to the adversary. Namely, if an adversary
sees a signing key marked with identities 71 and 75, it cannot create a new
functional signing circuit where the watermark is not one of 7 or 7. We
discuss this notion of collusion resistance in greater detail in Remark 3.8.

— Finally, because of our relaxed notion of functionality-preserving, signatures
output by the unmarked key can look different from signatures output by
the marked key, so we additionally give the adversary access to the signing
oracle with the unmarked key.

We give our formal definition below:

Definition 3.6 (Watermarking Signatures Security Experiment). Let
ITwm = (Setup, KeyGen, Sign, Verify, Mark, Extract) be a watermarkable signature
scheme with message space M, mark space T, and signature space SIG. Then,
for an adversary A, we define the watermarking signatures security experiment
as follows:

1. The challenger begins by sampling wpp < Setup(1*) and (vk, sk) < KeyGen(1*, wpp).
The challenger gives (wpp,vk) to the adversary.
2. The adversary is now given access to the following oracles:
— Marking oracle: On input a mark 7 € T, the challenger replies with
C- + Mark(wpp, sk, 7).
— Signing oracle: On input a message m € M, the challenger replies
with o <+ Sign(sk,m).

15

3. The adversary outputs a circuit C*: M — SZG.
The output of the experiment, denoted ExptWMg;, [\, A] is Extract(wpp, vk, C*).

Definition 3.7 (e-Unremovability). Let Ilwm be a watermarkable signature
scheme with message space M and signature space SIG. We say an adversary
A is e-unremovable admissible if the adversary’s circuit C*: M — SZG in the
watermarking signatures security experiment satisfies

Pr[m <& M : Verify(wpp, vk, m, C*(m)) = 1] > e.

In the watermarking signatures security experiment, let Q C T be the set of
marks the adversary submitted to the marking oracle. Then, Ilww satisfies e-
unremovability if for all efficient and e-unremovability admissible adversaries A,
Pr[ExptWMg, [\, A] ¢ Q] = negl(A).

Remark 3.8 (Collusion Resistance). We say that a watermarking scheme is fully
collusion resistant if unremovability holds against all efficient adversaries that
can make any a priori unbounded poly(\) queries to the marking oracle. We
say that it is g-bounded collusion resistant if unremovability hold only against
efficient adversaries that make at most ¢ marking queries. Existing watermarking
schemes for cryptographic functionalities from standard assumptions are only
1-collusion resistant [37, 52, 38].

Remark 8.9 (Small Unremovability Thresholds). Previously, Cohen et al. [27]
showed that message-embedding watermarking schemes satisfying e-unremovability
are possible only when & > 1/2 + 1/poly(A). This lower bound does not apply
to our notion of e-unremovability (Definition 3.7). In fact, our constructions
satisfy e-unremovability for any non-negligible e = 1/poly(A). The reason is that
our mark-extraction algorithm takes in the verification key as input, while the
Cohen et al. definition does not (i.e., their extraction algorithm only takes the
circuit as input).

To provide some additional detail, we first recall the attack from Cohen et al.
when € = 1/2. Let C be the challenge circuit marked with a message m in the
unremovability security game, and let C’ be an arbitrary circuit (for a different
function) marked with a message m’ # m. In both the secret and public marking
setting, the adversary can generate C’ by either using the marking oracle (secret-
marking setting) or using the public marking algorithm (public-marking setting).
To carry out the attack, the adversary constructs a challenge circuit C* that
agrees with C' on half of the points (chosen randomly) and agrees with C’ on
the other half. By symmetry, the extraction algorithm on C* outputs m and
m' with equal probability, where the probability is taken over the coins of the
Extract algorithm and the adversary’s randomness used to determine m, m’, and
C*. This means that the probability that the extraction algorithm outputs m is
at most 1/2, and so the adversary succeeds with probability at least 1/2.

The above attack critically relies on the fact that the adversary is able to
obtain a marked circuit C’" where the extraction algorithm on C” outputs m’ # m.

16

In order to mount the same attack in our setting, the adversary needs to be
able to obtain a circuit C” such that Extract(wpp,vk,C’) = m/, where vk is
the verification key chosen by the challenger. In the security game, there is no
mechanism for the adversary to obtain a marked circuit with respect to vk other
than by making a marking query on m/’. If the adversary makes a marking query
on m/, then as long as the extraction algorithm recovers either m or m’, the
adversary does not break unremovability. Observe that if, on the contrary, vk is
not provided as input to Extract, then the adversary can easily construct a circuit
with an embedded mark m’ (by marking an arbitrary key of its choosing) and
mount the Cohen et al. attack. This distinction, where the extraction algorithm
is defined with respect to a specific verification key, enables us to circumvent the
lower bound for e-unremovability when £ < 1/2.

3.1 Building Block: Constrained Signatures

As discussed in Section 1.1, the main building block we use to construct a
watermarkable signature scheme is a prefix-constrained signature (which can
be built generically from any signature scheme, or more generally, any one-way
function). We recall the formal definition below:

Definition 3.10 (Constrained Signatures [10, 59]). A constrained signature
scheme with message space M and constraint family F C Funs|M,{0,1}] is a
tuple of algorithm Ilcsig = (Setup, Sign, Verify, Constrain, ConstrainSign) with the
following properties:

— Setup(1*) — (vk, msk): On input the security parameter \, the setup algorithm
outputs the verification key and the master secret key msk.

— Sign(msk,m) — o: On input the master signing key msk and a message
m € M, the signing algorithm outputs a signature o.

— Verify(vk,m,c) — b: On input the verification key vk, a message m € M,
and a signature o, the verification algorithm outputs a bit b € {0,1}.

— Constrain(msk, f) — sky: On input the master signing key msk and a function
f € F, the constrain algorithm outputs a constrained key sky.

— ConstrainSign(sky,m) — o: On input a constrained key sk; and a message
m € M, the signing algorithm outputs a signature o.

Definition 3.11 (Correctness). A constrained signature scheme Ilcsig = (Setup,
Sign, Verify, Constrain, ConstrainSign) with message space M and constraint family
F is correct if for all messages m € M and taking (vk, msk) < Setup(1*),

Pr[Verify(vk, m, Sign(msk, m)) = 1] = 1.

In addition, for all constraints f € F where f(m) = 1, if we compute sky
Constrain(msk, f),

Pr[Verify(vk, m, ConstrainSign(sk s, m)) = 1] = 1.

17

Definition 3.12 (Constrained Unforgeability). Let IIcsi; = (Setup, Sign,
Verify, Constrain, ConstrainSign) be a constrained signature scheme with message
space M and constraint family F. We define the constrained unforgeability
experiment between an adversary A and a challenger as follows:

1. At the beginning of the experiment, the challenger samples (vk,msk) <
Setup(1*) and gives vk to the adversary.
2. The adversary is then given access to the following oracles:
— Comnstrain oracle: On input a function f € F, the challenger replies
with sky < Constrain(msk, f).
— Signing oracle: On input a message m € M, the challenger replies
with a signature o < Sign(msk, m).
— At the end of the game, the adversary outputs a message-signature pair
(m*,0*).

The output of the experiment, denoted ExptCSig[A, A] is 1 if the following condi-
tions hold:

— The adversary did not make a signing query on message m*.

— The adversary did not make a constrain query on any function f € F where
f(m*) = 1.

— Verify(vk,m*,o*) = 1.

We say that Ilcsig is secure if for all efficient adversaries A, Pr[ExptCSig[A, \] =
1] = negl()).

3.2 Watermarking Signatures from Constrained Signatures

In this section, we show how to construct a fully collusion-resistant watermarking
scheme for digital signatures from prefix-constrained signatures.

Construction 3.13 (Watermarkable Signatures from Prefix-Constrained Signatures)
Fiz a message space M and a mark space T. Let ¢ = 1/poly(\) be an unremov-
ability parameter. We define the following primitives:

— Let Z be a tag space, and let T' =T U{L}.

— For a mark ™ € T, let fr«: T' x M — {0,1} be the function where
fr(r,m) =1 if 7 =7* and 0 otherwise.

— Let Ilcsig = (CSig.Setup, CSig.Sign, CSig.Verify, CSig.Constrain, CSig.ConstrainSign)
be a constrained signature scheme with message space M' = T' x M and
function class F = {t* € T: fr«}. Let SIG' be the signature space of Ilcsig.

We construct a watermarkable signature scheme Ilwm = (Setup, KeyGen, Sign,
Verify, Mark, Extract) with signature space SIG = Z x T' x SIG’ as follows:

— Setup(1*) — wpp: On input the security parameter \, sample z <& Z, and
output wpp = 2.

18

— KeyGen(1*, wpp) — (vk,sk): On input the security parameter X and public pa-
rameters wpp = z, the key-generation algorithm outputs a signing/verification
key-pair (vk,sk) < CSig.Setup(1*).

— Sign(wpp,sk,m) — o: On input the public parameters wpp = z, a sign-
ing key sk, and a message m € M, the signing algorithm signs o’ <+
CSig.Sign(sk, (L, m)), and outputs the signature o = (z, L,o”).

— Verify(wpp, vk, m,) — b: On input the public parameters wpp = z, a ver-
ification key vk, a message m € M, and a signature o = (2',7',0"), the
verification algorithm outputs 0 if 2’ # z, and, otherwise, it outputs the bit
b « CSig.Verify(vk, (7', m), 0’).

— Mark(wpp,sk,7) — C: On input the public parameters wpp = z, a sign-
ing key sk, and a mark T € T, the marking algorithm computes sk, <+
CSig.Constrain(sk, f;) and outputs a circuit Cr: M — SIG where C(-) 1=
(z,7, CSig.ConstrainSign(sk,, (7,))).

— Extract(wpp,vk,C) — 7/L: On input the public parameters wpp = z, a
verification key vk, and a circuit C: M — SIG, the extraction algorithm
performs the following procedure T = A\/e = poly(\) times:

e Fori € [T], sample m; < M and compute (z},7/,0}) C(m). If z} = z
and CSig.Verify(vk, (17, m;),0}) = 1, abort and output /.

If the above procedure does not abort with some output T, then output 1.

Correctness and security analysis. We now state our correctness and security
theorems, but defer their formal analysis to the full version of this paper.

Theorem 3.14 (Correctness). Suppose 1/ |Z| = negl(\) and Icsig is correct.
Then, the watermarkable signature scheme Ilwnm from Construction 3.13 is correct
(Definition 3.3).

Theorem 3.15 (Signature Unforgeability). If Iicsig satisfies constrained
unforgeability (Definition 3.12), then the watermarkable signature scheme Iwm
from Construction 3.13 satisfies signature unforgeability in the presence of a
malicious watermarking authority (Definition 3.5).

Theorem 3.16 (Unremovability). Teke any ¢ = 1/poly(N). If 1/|M| =
negl(\) and Ilcsig satisfies constrained unforgeability (Definition 3.12), then the
watermarkable signature scheme ITww from Construction 3.13 is e-unremouvable.

3.3 Instantiations and Extensions

As noted by Bellare and Fuchsbauer [10], fully collusion resistant constrained
signatures (for arbitrary circuit constraints) satisfying unforgeability follow im-
mediately from any standard signature scheme (which can in turn be based on
one-way functions [31]). We briefly recall the “certificate-based” construction here.
The public parameters for the constrained signature scheme is a verification key
vk for a standard signature scheme, and the master secret key is the associated
signing key sk. To issue a constrained key for a function f, the authority generates

19

a fresh pair of signing and verification keys (vk’,sk’), and constructs a signature
(“certificate”) o on (vk’, f) with the master signing key sk. The constrained key
is the tuple (vk’,sk’, f,o). A signature on m using the constrained key consists
of a signature ¢’ on m using sk’ together with the tuple (vk’, f, o). To verify,
one checks that o is a valid signature on (vk', f) with respect to the master
verification key vk, that f(m) = 1, and that ¢’ is a valid signature on m with
respect to vk’. From this construction, we obtain the following corollary:

Corollary 3.17 (Watermarkable Signatures from One-Way Functions).
Take any & = 1/poly()\) and mark space T = {0,1}¢, where £ = poly(\). Assuming
one-way functions exist, there exists a fully collusion resistant watermarkable
family of signatures with mark space T that satisfies e-unremovability (Defini-
tion 3.7) and where the underlying signature scheme is unforgeable even against
a malicious authority (Definition 3.5).

In the full version of this paper, we describe a variant of our watermarkable
signature scheme that achieves mark-unforgeability in the secret-marking setting
(i.e., no efficient adversary is able to come up with a marked circuit of its own).

4 Watermarking Public-Key Predicate Encryption

In this section, we show how to watermark a public-key predicate encryption
scheme. In particular, this notion implies watermarking for simpler classes of
public-key primitives like public-key encryption,'? identity-based encryption,
and attribute-based encryption. We begin by formally introducing the notion
of watermarking public-key predicate encryption schemes. Our definitions have
a very similar flavor to our corresponding definitions for watermarking digital
signature schemes from Section 3 and the previous definitions of Cohen et al. [27].

Definition 4.1 (Watermarkable Public-Key Predicate Encryption). A
watermarkable public-key predicate encryption scheme with message space M,
attribute space X, function space F C Funs[X,{0,1}], and mark space T is a
tuple of algorithms (WMSetup, PESetup, KeyGen, Encrypt, Decrypt, Mark, Extract)
with the following properties:

— WMSetup(1*) — wpp: On input the security parameter \, the watermarking
setup algorithm outputs a set of watermarking public parameters wpp.

— The watermarking parameters wpp induces a public-key predicate-encryption
scheme (PESetup, KeyGen, Encrypt, Decrypt) with message space M, attribute
space X, and function space F. We implicitly allow PESetup, KeyGen, Encrypt,
and Decrypt to take the watermarking parameters wpp as input. Let PK denote
the space of master public keys, SIC denote the space of function keys, and
CT denote the ciphertext space of the induced predicate encryption scheme.

12 As noted in Section 1.1, a traitor-tracing scheme that supports public tracing (e.g., [18,
49, 2]) directly gives a watermarkable public-key encryption scheme.

20

— Mark(wpp, sk, 7) — C-: On input the watermarking parameters wpp, a secret
key sk € SK, and a mark T € T, the marking algorithm outputs a circuit
C.: CT - MU{L}.

— Extract(wpp, mpk, C) — 7/L: On input the watermarking parameters wpp, a
master public key mpk € PK and a circuit C: CT — MU{L}, the extraction
algorithm either outputs a mark T € T or a special symbol L.

Definition 4.2 (Correctness). Let ITwym = (WMSetup, PESetup, KeyGen, Encrypt,
Decrypt, Mark, Extract) be a watermarkable predicate encryption scheme for func-
tion family F. Then, Ilwwm is correct if for wpp < Setup(1?), the induced public-
key predicate encryption scheme (PESetup, KeyGen, Encrypt, Decrypt) is correct
and the following properties also hold:

— Extraction correctness: For all marks 7 € T and all functions f € F,
if we take (mpk, msk) <— PESetup(1*,wpp) and sk; <+ KeyGen(wpp, msk, f),
then

Pr[Extract(wpp, mpk, Mark(wpp, sk¢, 7)) # 7] = negl(X).

— Meaningfulness: For all fized circuits C: CT — MU{L} (independent of
the public parameters wpp) and all master public keys mpk € PK,

Pr[Extract(wpp, mpk, C) # L] = negl(\),

and for all functions f € F, (mpk,msk) < PESetup(1*,wpp), and sky <
KeyGen(wpp, msk, f),

Pr[Extract(wpp, mpk, Decrypt(wpp, sky, -)) # L] = negl(A).

— Functionality-preserving: For all marks T € T, all messages m € M,
all attributes © € X, and all functions f € F where f(x) = 1, if we
take (mpk, msk) < PESetup(1*, wpp), sky < KeyGen(wpp, mpk, f) and C +
Mark(wpp, sk, 7), we have that

Pr[C(Encrypt(wpp, mpk, 2, m)) # m| = negl(\).

Definition 4.3 (Security). Let ITwm = (WMSetup, PESetup, KeyGen, Encrypt,
Decrypt, Mark, Extract) be a watermarkable predicate encryption scheme. Then,
ITwwm is secure if the induced predicate encryption scheme (PESetup, KeyGen,
Encrypt, Decrypt) is secure. We say that Ilwwm satisfies security in the presence of
a malicious authority if the induced predicate encryption scheme is secure even
if the adversary is allowed to choose the watermarking parameters wpp.

Definition 4.4 (Watermarking PE Security Experiment). Let ITwv =
(WMSetup, PESetup, KeyGen, Encrypt, Decrypt, Mark, Extract) be a watermarkable
predicate encryption scheme with message space M, attribute space X, function
space F C Funs[X,{0,1}], and mark space T. Let CT denote the ciphertext
space for ITwnm. For an adversary A, we define the watermarking PE security
experiment as follows:

21

1. The challenger begins by sampling wpp <+ WMSetup(1*) and (mpk, msk) <
KeyGen(1*,wpp). It gives (wpp, mpk) to the adversary A.

2. The adversary specifies a function f € F it would like to target. The challenger
computes a secret key sky <— KeyGen(wpp, msk, f), but does not give sky to
the adversary.

8. The adversary can then make marking oracle queries. On each marking query,
the adversary specifies a mark 7 € T, and the challenger replies with the
circuit Cr <— Mark(wpp, sky, 7).

4. At the end of the experiment, the adversary outputs a circuit C*: CT —
MUA{L} and an attribute z € X.

The output of the experiment, denoted ExptWMpg (A, A), is Extract(wpp, mpk, C").

Definition 4.5 (¢-Unremovability). Let ITwm be a watermarkable public-key
encryption scheme with message space M and ciphertext space CT. We say an
adversary A is e-unremovable admissible if the adversary in the watermarking
security game outputs an attribute x € X and a circuit C*: CT — MU {L}
where

Pr[m < M : C*(Encrypt(wpp, mpk, z,m)) = m] > e.

In the watermarking PE security experiment, let @ C T be the set of marks the ad-
versary submitted to the marking oracle. Then, IIwwm satisfies e-unremovability if
for all efficient and e-unremovability admissible adversaries A, Pr[ExptWMpg[\, A] ¢
Q] = negl()\).

Remark 4.6 (Collusion Resistance). We say that a watermarkable predicate
encryption scheme ITwwm iS (Gkey, gmark)-collusion resistant if the induced predicate
encryption scheme is gey-bounded collusion resistant and the watermarking
adversary in the unremovability game can make at most gmark marking queries.
When giey and gmark can be arbitrary and a priori unbounded polynomials, we
say ITwwm is fully collusion resistant.

Remark 4.7 (Stronger Notions of Unremovability). Our definitions of unremov-
ability (Definitions 4.4 and 4.5) only allows the adversary to request (multiple)
marked version of a single predicate encryption key sk¢. A stronger notion would
allow the adversary to specify both a decryption function f as well as a mark
7 on each marking oracle query. Such a scheme would then be secure even if
an adversary could obtain marked versions of different decryption keys. Our
construction does not achieve this stronger notion and we leave this as an open
problem.

Remark 4.8 (Watermarking Functional Encryption). A further generalization
of watermarking predicate encryption is to watermark the decryption keys in
a functional encryption scheme. One challenge here is characterizing the set of
decryption keys that can be marked. For example, it is not possible to watermark a
decryption key for a constant-valued function, since the adversary can implement
the decryption functionality with a circuit that just computes the constant
function (which, of course, removes the watermark). It seems plausible that

22

we can watermark decryption keys corresponding to functions with “high min-
entropy:” namely, functions f: X —) where for any y € Y, Prlz & X :
f(z) = y] = negl(\). While it is straightforward to modify our construction of
watermarkable predicate encryption to support marking function keys of this
form, in the resulting construction, we would additionally have to provide the
Extract algorithm a description of the function f associated with a particular
decryption circuit. Whether this a reasonable modeling assumption will depend
on the particular application. It is an interesting question to both develop a
better understanding of the types of function families that can be watermarked as
well as identify a suitable schema for watermarking general functional encryption
schemes.

4.1 Building Blocks: Functional Encryption and Traitor Tracing

In this section, we review the main building blocks we use to construct our scheme
for watermarking predicate encryption.

Hierarchical functional encryption. Our main building block for constructing
a watermarkable predicate encryption scheme is a general-purpose hierarchical
functional encryption scheme. Below, we recall the formal definition from [4, 22]:

Definition 4.9 (Hierarchical Functional Encryption [4, 22]). A hierar-
chical functional encryption (FE) scheme with domain X, range Y, and func-
tion space F is a tuple of algorithms Ilyge = (Setup, KeyGen, Encrypt, Decrypt,
Delegate) with the following properties:

— Setup(1*) — (mpk, msk): On input the security parameter X, the setup algo-
rithm outputs the master public key mpk and the master secret key msk.

— KeyGen(msk, f) — sky: On input the master secret key msk and a function
f € F, the key-generation algorithm outputs a secret key skg.

— Encrypt(mpk, z) — ct,: On input the master public key mpk and an input
x € X, the encryption algorithm outputs a ciphertext ct,.

— Decrypt(sk,ct) — y/L: On input a secret key sk and a ciphertext ct, the
decryption algorithm either outputs a value y € Y or a special symbol L.

— Delegate(sky, g) — skgor: On input a secret key sky and a function g € F,
the delegate algorithm outputs a secret key skyof.

A hierarchical functional encryption scheme should satisfy the following properties:

— Correctness: For allz € X and functions f € F, if we sample (mpk, msk) +
Setup(1*), sk < KeyGen(msk, f), and ct, « Encrypt(mpk,z), then

Pr[Decrypt(sky, cty) = f(z)] = 1.

— Delegation correctness: For all x € X and functions f,g € F where
go f € F, if we sample (mpk,msk) < Setup(1*), sk; < KeyGen(msk, f),
skgos < Delegate(sky, g), and ct, < Encrypt(mpk, z), then

Pr[Decrypt(skgor, cty) = g(f(x))] = 1.

23

Note that this definition only considers correctness for single-hop delegation.
We can define a corresponding notion of multi-hop delegation correctness.
However, single-hop delegation already suffices for our construction.

— Security: Due to space limitations, we defer the security definition of hier-
archical functional encryption to the full version of this paper.

Remark 4.10 (Collusion Resistance). We say that a (hierarchical) functional
encryption scheme ITypg is g-bounded collusion resistant if the security property
holds against all efficient adversaries that make at most g key-generation queries
and that it is fully collusion resistant if security holds against all adversaries that
can make an a priori unbounded polynomial number of key-generation queries.

The jump-finding problem. We recall the jump-finding problem introduced in
the work of Nishimaki et al. [49] for constructing flexible traitor tracing schemes
(i.e., traitor tracing schemes where the space of identities that can be traced is
exponential). We rely on similar techniques to watermark the decryption keys in
a predicate encryption scheme.

Definition 4.11 (Noisy Jump Finding Problem [49, Definition 3.6]).
The (N, q, 9, e)-jump-finding problem is defined as follows. An adversary chooses
a set C C [N] of g unknown points. Then, the adversary provides an oracle
P:[0,N] — [0, 1]g with the following properties:

= [P(N) = P(0)] > ¢.
— Forany z,y € [0, N] where x < y and [z+1,y|NC = &, then |P(y) — P(z)| <
J.

The (N, q,0,¢)-jump finding problem is to interact with the oracle P and output
an element in C. In the (N, q,d,e)-noisy jump finding problem, the oracle P is
replaced with a randomized oracle Q: [0, N] — {0,1} where on input x € [0, N],
Q(z) outputs 1 with probability P(x). A fresh independent draw is chosen for
each query to Q(z).

Theorem 4.12 (Noisy Jump Finding Algorithm [49, Theorem 3.7]).
There is an efficient algorithm QTraceQ()\,N,q,é,) that runs in time t =
poly(\,log N, q,1/6) and makes at most t queries to Q that solves the (N, q,d,¢€)-
noisy-jump-finding problem whenever € > §(5 + 2([log N — 1])q). In particu-
lar, QTraceQ()\,N,q, d,e) will output at least one element in C with probability
1 —negl(X) and will never output an element outside C. Moreover, any element x
output by QTraceQ()\, N, q,9,¢) has the property that P(x) — P(x — 1) > §, where
P(z) = Pr[Q(z) = 1].

4.2 Watermarking Predicate Encryption from Hierarchical FE

In this section, we show how to construct a (bounded) collusion resistant water-
markable predicate encryption scheme for general predicates from any (bounded)
collusion resistant hierarchical functional encryption scheme for general circuits.

24

Construction 4.13 (Watermarkable PE from Hierarchical FE) Let M =
{0,1}" be a message space, X = {0,1}*\ {18} be an attribute space, F C
Funs[{0,1}*,{0,1}] be a class of predicates, and T C X = {0,1}*\ {1} be a
mark space. Let ¢ = 1/poly(\) be an unremovability parameter. We rely on the
following ingredients:

— Let Z =M ={0,1}" be a tag space.

— Let gmark = poly(\) be a bound on the number of marking oracle queries the
watermarking adversary is allowed to make. In Remark 4.17, we describe
a stmple adaptation of the extraction algorithm that achieves full collusion
resistance (assuming a fully collusion resistant hierarchical FE scheme)

— For a function f € F, let gg: {0,115+ — {0, 1} be the function defined
as follows:

(x,m) b=0

gr(x,m,b) =< (0°,0") b=1 and f(x) =0 (4.1)
(1Y,m) b=1 and f(z) =1,

where x € {0,1}¢, m € {0,1}", and b € {0,1}. Define the function class
g = {f cF: gf}.
— For a mark 7 € {0,1}¢, define the function h,: {0,1}*" — {0,1}+" as
follows:
(040" w<rT

o (,m) = { Q) oo (4.2)

where x € {0,1}* and m € {0,1}", and are interpreted as values in [0,2¢ —1]
and [0,2™ — 1], respectively.

— Let ITyeg = (HFE.Setup, HFE.KeyGen, HFE.Encrypt, HFE.Decrypt, HFE.Delegate)
be a hierarchical FE scheme with domain {0,1}+" 1 range {0,1}+7, and
function class G. Let CT be the space of ciphertexts for IIygg.

We construct a watermarkable predicate encryption scheme ITwy = (WMSetup,
PESetup, KeyGen, Encrypt, Decrypt, Mark, Extract) as follows:

— WMSetup(1*) — wpp: On input the security parameter X, sample z <= {0,1}"
and output wpp = z.

— PESetup(1*, wpp) — (mpk, msk): On input the security parameter X and the
watermarking parameters wpp = z, the key-generation algorithm outputs a
key-pair (mpk, msk) < HFE.Setup(1%).

— KeyGen(wpp, msk, f) — sky: On input the watermarking parameters wpp = z,
a master secret key msk, and a function f € F, the key-generation algorithm
outputs a secret key sky < HFE.KeyGen(msk, gf), where gy is defined in
Eq. (4.1).

— Encrypt(wpp, mpk,z,m) — cty m: On input the watermarking parameters
wpp = z, a master public key mpk, an attribute x € {0,1}¢, and a mes-
sage m € {0,1}", the encryption algorithm outputs a ciphertext cty m,
HFE.Encrypt(mpk, (z,m & z,1)) € CT.

25

— Decrypt(wpp, sk,ct) — m/L: On input the watermarking parameter wpp =
z, a secret key sk, and a ciphertext ct, the decryption algorithm computes
y < HFE.Decrypt(sk,ct). If y = L, then output L. Otherwise, it parses
y = (z,m') where x € {0,1} and m’ € {0,1}". It outputs m’ @ z if x = 1
and L otherwise.

— Mark(wpp, sk, 7) = C: On input the watermarking parameters wpp = z, a
secret key sk, and a mark T € {0,1}, the marking algorithm constructs a new
key sk, < HFE.Delegate(sk, h,), where h, is defined in Eq. (4.2). Finally, it
outputs the circuit C: CT — M U{L} that computes the marked function
Plz,sk;] defined as follows:

On input a ciphertext ct € CT :

1. Compute y + HFE.Decrypt(sk,,ct). If y = L, output L.
2. Otherwise, parse y = (z,m’), where x € {0,1}* and m’ € {0,1}".
Output m' @ z if x = 1 and L otherwise.

Fig.1: The marked function Pz, sk,]

— Extract(wpp, mpk,C) — 7/.L: On input the watermarking parameters wpp =
z, a master public key mpk, and a circuit C: CT — MU{L}, the extraction
algorithm first performs the following decryption check T = \/e = poly(X)
times:

e For each i € [T], sample m; & M and compute the ciphertext ct; +
HFE.Encrypt(mpk, (1¢,m; @ 2,0)) and y; + C(ct;).

If for all i € [T, y; # my, then output L. Otherwise, the extraction algorithm
constructs the following function Qc: {0,1}* — {0,1}:

On input an input x € {0,1}° (interpreted as a value in [0,2¢ —1]):

e Sample a random m < {0,1}" and construct the ciphertext ct <
HFE.Encrypt(mpk, (x,m & z,0)).
e Compute m' < C(ct) and output 1 if m =m’ and 0 otherwise.

Fig. 2: The extraction test function Q¢

Let 6 = /(5420 — 1)gmark) and compute 7 < QTrace?C (X, 2 — 1, gmark, 0, €).
If 7 = 1%, then output L. Otherwise, output 7. In Remark 4.17, we describe a
variant of the Extract algorithm that does not require an explicit bound Gmark
to be provided as input.

Correctness and security analysis. We now state our correctness and security
theorems, but defer their formal analysis to the full version of this paper.

26

Theorem 4.14 (Correctness). Suppose 1/ = poly(}), 1/ | M| = negl(}), and
Iyee is correct and secure (Definition 4.9). Then, the watermarkable predicate
encryption scheme Ilwm from Construction 4.13 is correct.

Theorem 4.15 (Predicate Encryption Security). If IIgg is secure (Defi-
nition 4.9), then Construction 4.13 is secure even in the presence of a malicious
authority (Definition 4.3).

Theorem 4.16 (e-Unremovability). Take any ¢ = 1/poly(N). If 1/|M| =
negl(A) and Iyge is secure (Definition 4.9), then the watermarkable predicate
encryption scheme Ilwm from Construction 4.13 is e-unremovable.

Remark 4.17 (Extraction Without an A Priori Bound). As described, the Extract
algorithm in Construction 4.13 assumes there is an a priori bound g¢mak on
the number of marked keys the adversary sees (and this bound is provided as
an input to the Extract algorithm). It is straightforward to extend Extract to
operate when no explicit bound is provided. Namely, instead of running QTrace®
with ¢ = ¢mark, the algorithm instead runs QTrace on successive powers of two
q=20,2",22 ... 2 where § = £/(5 + 2(¢ — 1)q)). By Theorem 4.12, if QTrace?
succeeds, it produces a 7 € {0, 1}* such that |Pr[Q(7) = 1] — Pr[Q(7 — 1) = 1]| >
8. Moreover, we can show that for all efficiently-computable 7 ¢ Q, we have
that Pr[Q(r) = 1] — Pr[Q(r — 1) = 1] = negl(\). Thus, if QTrace? outputs a
mark 7, then 7 € Q, as required. Moreover, once ¢ > gmark, We can appeal to
Theorem 4.12 to conclude that with overwhelming probability, the extraction
algorithm will output a 7 such that this condition holds. This algorithm will
terminate after at most O(10g gmark) = poly()) iterations.

4.3 Instantiations and Extensions

In the full version of this paper, we describe two ways to instantiate our water-
markable predicate encryption scheme: one secure against bounded collusions
based on the existence of public-key encryption and low-depth pseudorandom
generators (PRGs)!'® and one secure against unbounded collusions based on
indistinguishability obfuscation (and one-way functions). We also describe a
simple variant of our construction that provides watermarking unforgeability in
the secret-marking setting. We state the main conclusions below:

Corollary 4.18 (Bounded Collusion-Resistant Watermarkable Predi-
cate Encryption). Take any ¢ = 1/poly(X), any fized polynomials q, quey, gmark =
poly()\), and mark space T = {0,1}¢, where £ = poly()\). Assuming public-key
encryption and a PRG computable in NC, there exists a (Qkey Gmark) -bounded
collusion resistant watermarkable family of predicate encryption schemes with
mark space T that satisfies e-unremovability (Definition 4.5, Remark 4.6). More-
over, the associated predicate encryption scheme is qg-bounded collusion resistant

3These are known to follow from most algebraic cryptographic assumptions such as the
hardness of factoring, the discrete log assumption, or standard lattice assumptions [45,
46, 47, 7.

27

and remains secure even in the presence of a malicious watermarking authority
(Definition 4.3).

Corollary 4.19 (Fully Collusion-Resistant Watermarkable Predicate En-
cryption). Take any £ = 1/poly(\) and mark space T = {0,1}*. Assuming in-
distinguishability obfuscation and the existence of one-way functions, there exists
a fully collusion resistant watermarkable family of predicate encryption schemes
with mark space T that provides e-unremovability (Definition 4.5) and where the
associated predicate encryption scheme is fully collusion resistant and secure even
in the presence of a malicious watermarking authority (Definition 4.3).

Acknowledgments

We thank Aayush Jain for helpful discussions on this work and the anonymous
CRYPTO reviewers for useful feedback on the presentation. R. Goyal was sup-
ported by an IBM PhD fellowship. S. Kim was supported by NSF, DARPA,
a grant from ONR, and the Simons Foundation. N. Manohar was supported
in part by a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955,
NSF grants 1619348, 1228984, 1136174, and 1065276, and BSF grant 2012378.
B. Waters was supported by NSF CNS-1908611, CNS-1414082, a DARPA/ARL
SAFEWARE award and a Packard Foundation Fellowship. Opinions, findings and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the official policy or position of the Department of
Defense, the National Science Foundation, or the U.S. Government.

References

1. M. Abdalla, A. W. Dent, J. Malone-Lee, G. Neven, D. H. Phan, and N. P. Smart.
Identity-based traitor tracing. In PKC, 2007.

2. S. Agrawal, S. Bhattacherjee, D. H. Phan, D. Stehlé, and S. Yamada. Efficient
public trace and revoke from standard assumptions: Extended abstract. In ACM
CCS, pages 2277-2293, 2017.

3. S. Agrawal and A. Rosen. Functional encryption for bounded collusions, revisited.
In TCC, 2017.

4. P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfusca-
tion and applications. TACR Cryptology ePrint Archive, 2013, 2013.

5. P. Ananth and V. Vaikuntanathan. Optimal bounded-collusion secure functional
encryption. TACR Cryptology ePrint Archive, 2019:314, 2019.

6. F. Baldimtsi, A. Kiayias, and K. Samari. Watermarking public-key cryptographic
functionalities and implementations. In ISC| 2017.

7. A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In
EUROCRYPT, 2012.

8. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

9. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2), 2012.

28

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

M. Bellare and G. Fuchsbauer. Policy-based signatures. In PKC, 2014.

O. Billet and D. H. Phan. Efficient traitor tracing from collusion secure codes. In
ICITS, 2008.

D. Boneh and M. K. Franklin. An efficient public key traitor tracing scheme. In
CRYPTO, 1999.

D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In
CRYPTO, 2001.

D. Boneh, K. Lewi, and D. J. Wu. Constraining pseudorandom functions privately.
In PKC, 2017.

D. Boneh and M. Naor. Traitor tracing with constant size ciphertext. In ACM
CCS, 2008.

D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In EUROCRYPT, 2006.

D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In TCC, 2011.

D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and revoke
system. In ACM CCS, 2006.

D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC, 2007.

D. Boneh and M. Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In CRYPTO, 2014.

E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom
functions. In PKC, 2014.

Z. Brakerski, N. Chandran, V. Goyal, A. Jain, A. Sahai, and G. Segev. Hierarchical
functional encryption. In ITCS, 2017.

Y. Chen, V. Vaikuntanathan, B. Waters, H. Wee, and D. Wichs. Traitor-tracing
from LWE made simple and attribute-based. In T'C'C, 2018.

B. Chor, A. Fiat, and M. Naor. Tracing traitors. In CRYPTO, 1994.

B. Chor, A. Fiat, M. Naor, and B. Pinkas. Tracing traitors. IEEE Trans. Information
Theory, 46(3), 2000.

C. C. Cocks. An identity based encryption scheme based on quadratic residues. In
IMA, 2001.

A. Cohen, J. Holmgren, R. Nishimaki, V. Vaikuntanathan, and D. Wichs. Water-
marking cryptographic capabilities. In STOC, 2016.

N. Fazio, A. Nicolosi, and D. H. Phan. Traitor tracing with optimal transmission
rate. In ISC, 2007.

D. M. Freeman. Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In EUROCRYPT, 2010.

S. Garg, A. Kumarasubramanian, A. Sahai, and B. Waters. Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In ACM CCS, 2010.

O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with bounded
collusions via multi-party computation. In CRYPTO, 2012.

R. Goyal, V. Koppula, and B. Waters. Collusion resistant traitor tracing from
learning with errors. In STOC, 2018.

V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In ACM CCS, 2006.

N. Hopper, D. Molnar, and D. A. Wagner. From weak to strong watermarking. In
TCC, 2007.

29

36

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In EUROCRYPT, 2008.

S. Kim and D. J. Wu. Watermarking cryptographic functionalities from standard
lattice assumptions. In CRYPTO, 2017.

S. Kim and D. J. Wu. Watermarking PRFs from lattices: Stronger security via
extractable PRFs. In CRYPTO, 2019.

K. Kurosawa and Y. Desmedt. Optimum traitor tracing and asymmetric schemes.
In EUROCRYPT, 1998.

S. Ling, D. H. Phan, D. Stehlé, and R. Steinfeld. Hardness of k-LWE and applications
in traitor tracing. In CRYPTO, 2014.

Z. Liu, Z. Cao, and D. S. Wong. Blackbox traceable CP-ABE: how to catch people
leaking their keys by selling decryption devices on eBay. In ACM CCS, 2013.

Z. Liu and D. S. Wong. Practical ciphertext-policy attribute-based encryption:
Traitor tracing, revocation, and large universe. In ACNS, 2015.

H. K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures. In
CT-RSA, 2011.

D. Naccache, A. Shamir, and J. P. Stern. How to copyright a function? In PKC,
1999.

M. Naor and O. Reingold. Synthesizers and their application to the parallel
construction of pseudo-random functions. In FOCS, 1995.

M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In FOCS, pages 458-467, 1997.

M. Naor, O. Reingold, and A. Rosen. Pseudo-random functions and factoring
(extended abstract). In STOC, pages 11-20, 2000.

R. Nishimaki. How to watermark cryptographic functions. In EUROCRYPT, 2013.
R. Nishimaki, D. Wichs, and M. Zhandry. Anonymous traitor tracing: How to
embed arbitrary information in a key. In FEUROCRYPT, 2016.

A. O’Neill. Definitional issues in functional encryption. JACR Cryptology ePrint
Archive, 2010, 2010.

D. H. Phan, R. Safavi-Naini, and D. Tonien. Generic construction of hybrid public
key traitor tracing with full-public-traceability. In ICALP, 2006.

W. Quach, D. Wichs, and G. Zirdelis. Watermarking PRFs under standard as-
sumptions: Public marking and security with extraction queries. In T'CC, 2018.
A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005.
A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO,
1984.

E. Shi, J. Bethencourt, H. T. Chan, D. X. Song, and A. Perrig. Multi-dimensional
range query over encrypted data. In IEEE S&P, 2007.

T. Sirvent. Traitor tracing scheme with constant ciphertext rate against powerful
pirates. TACR Cryptology ePrint Archive, 2006, 2006.

J. Staddon, D. R. Stinson, and R. Wei. Combinatorial properties of frameproof
and traceability codes. IEEE Trans. Information Theory, 47(3), 2001.

D. R. Stinson and R. Wei. Combinatorial properties and constructions of traceability
schemes and frameproof codes. SIAM J. Discrete Math., 11(1), 1998.

R. Tsabary. An equivalence between attribute-based signatures and homomorphic
signatures, and new constructions for both. In T'C'C, 2017.

M. Yoshida and T. Fujiwara. Toward digital watermarking for cryptographic data.
IEICE Transactions, 94-A(1), 2011.

30

	Watermarking Public-Key Cryptographic Primitives

