Txilm: Lossy Block Compression with Salted Short Hashing

Donghui Ding
ICT/CAS & University of Chinese Academy of Sciences

Xin Jiang

ICT/CAS & University of Chinese Academy of Sciences

Hao Wang
Monoxide Dev Team & ICT/CAS

Jiaping Wang
Monoxide Dev Team & ICT/CAS

Xiaobing Zhang
Monoxide Dev Team & ICT/CAS

Yi Sun
ICT/CAS & University of Chinese Academy of Sciences

Abstract

Current blockchains are restricted by the low throughput.
Aimed at this problem, we propose Txilm, a protocol that
compresses the size of transaction presentation in each block
and thus saves the bandwidth of the blockchain network. In
this protocol, a block carries short hashes of TXIDs instead
of complete transactions. Combined with the transaction list
sorted by TXIDs, Txilm realizes 80 times of data size reduc-
tion compared with the original blockchains. We also evaluate
the probability of hash collisions, and provide methods of re-
solving such collisions. Finally, we design strategies to protect
against possible attacks on Txilm.

1 Introduction

Blockchains have been applied to wide areas such as finance
and supply chains. However, current blockchains are restricted
by the low throughput. For example, Bitcoin only handles 7
transactions each second, while PayPal achieves 500 transac-
tions/sec throughput and Visa even 4000 transactions/sec.

Aimed at the throughput problem of Bitcoin, compact
blocks are proposed by BIP152. A compact block carries only
32-byte TXIDs instead of complete transactions (300—400
bytes roughly), and the network bandwidth consumed by each
transaction is thus reduced by around 10 times. BIP152 is
safe because most transactions have already been stored in
the memory pool of each Bitcoin node.

On the basis of BIP152, we propose Txilm, which further
reduces the size of the transaction representation in a compact
block to around 40 bits. This achieves 6.4x compression
over the original proposal of compact blocks. Txilm is simple
without using additional data structures such as bloom filters
or IBLTs (invertible bloom lookup tables). Furthermore, our
proposal doesn’t rely on consistent memory pools across full
nodes.

We also optimize Txilm using the transaction list sorted by
TXIDs. Such optimization reduces the transaction representa-
tion in a block to 32 bits, which yields 8 x compression over

the original proposal of compact blocks. An 80 times of data
size reduction is thus realized.

2 Txilm Protocol

In this section, we first give the design of Txilm Protocol, and
then evaluate the probability of hash collisions. We further
reduce the probability using the sorted transaction list. And
finally, we analyze the possible attacks on Txilm, and propose
our defense strategies.

2.1 Protocol Design

Txilm derives from the compression of TXIDs. The 32-byte
TXID is the SHA256 value of a transaction, which acts as the
unique identifier of this transaction in the Bitcoin blockchain.
Based on the TXID, the representation of a transaction can be
further compressed by a short hash function:

TXID-HASH = h (TXID)

In the above equation, h is a function that generates 32-
bit to 64-bit hash values, such as CRC32, CRC40 or CRC64.
Each new compact block includes only a list of TX-HASH,
ordered as the original list of transactions.

Ambiguity may occur with such a k-bit small-sized hash,
which needs to be resolved by each full node. Once receiving
a new block that includes the TX-HASH list from the sender,
the receiver searches each received TX-HASH in the TXID list
produced by its memory pool. For each TX-HASH, three cases
may happen as follows:

1. Not found: There is no transaction in the memory pool
that matches the received TX-HASH. The receiver will
ask the sender or other peers for the missing TXID.

2. A single match is found: the TXID for the received
TX-HASH is resolved.

3. Multiple matches are found: the receiver will collect all
matched TXIDs as candidates for a 2nd-stage resolving.

Each block header carries the SHA256-Merkle root of all
contained TXIDs. In the 2nd-stage, all combinations of candi-
dates are iterated for recomputing this Merkle tree. A correct
combination will result in a matched TXID Merkle root with
the one carried by the block header.

An optimization for the 2nd-stage is to add a lightweight
pre-check before actually recomputing the Merkle root. We
propose a lightweight Merkle tree for pre-check by replacing
SHA256 with CRC32, which leads to a 4-byte root. When
creating a new block, the 4-byte CRC32-Merkle root is com-
puted using the TXIDs and encoded into the block. This yields
a 40x acceleration in searching the right combination.

If any of the combinations can not match the Merkle root
in the block header, the receiver will fall back to ask the
sender to transfer the complete TXID list of the block, which
is described in the original BIP152 proposal. This situation
happens when at least one TXID in the memory pool has the
same TX-HASH in the received TX-HASH list, but the TXID is
not the one that the block intends to include.

Iterating the combination of candidates consumes a con-
siderable amount of CPU time, and incurs additional latency.
The feasibility of this proposal thus highly depends on the
probability of hash collisions, which is related to the length
of the hash value (the k-bit) and also the size of the memory
pool and block.

2.2 Probability of a Single Collision

A single collision is defined as the Case3 occurring at least
once. Such collision can be within the TX-HASH list received,

or the ones between the received list and the memory pool.

. k
Given a TX-HASH with k bits, the collision rate is (%) .

So the probability of a single collision occurring in a new
block can be formulated as Generalized Birthday Problem.
Assuming we have total m transactions in the memory pool
and the new block carries n transactions, the probability of a
single collision is approximated as:

Po—1- [1 - (;)k] o) ()

We simulated the hash collisions to evaluate above proba-
bility model. In this simulation, k was iterated from 20 to 40.
Two sets S, and S,, were defined to simulate the memory pool
and block respectively. We set |S,,| = m and |S,| = n, and
filled S,, and S, with k-bit random values. During each itera-
tion of k, we refilled the values in §,, and S, for N = 100,000
times, and counted 7, the times of following two cases:

1. At least one value in S, and S, is equal.

2. §, contains equal values.

Figure 1 reveals the relation between P;. and k. We set m =
3000 and n = 200, and k on the horizontal axis ranges from

* —— simulation

expect
0.4 4 P

0.3 4

4

PSC

0.2

0.1

P i

0.0 ekt Ak

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
K

Figure 1: Relation between P, and k

20 to 40. The dotted line is the measured frequency of at least
one collision in each iteration of k, which is represented by %
Meanwhile, the solid line is the expected value of Py deduced
from Equation 1. It demonstrates that the measured value is
consistent with expected value. We recommend k = 40 as a
reasonable value with better compression ratio and pretty low
collision rate, which makes Py, = 0.00000056.

2.3 Optimization by Sorted Transaction List

Txilm can be optimized by introducing the sorted transaction
list. In this optimization, both the TX-HASHes in a new block
and the transactions in the memory pool are sorted by the
lexicographic order of TXIDs. The candidate space of any
ambiguous TX-HASH will therefore be narrowed to a range
bound by its previous and next TXID with resolved TX-HASH,
instead of the entire memory pool. Assuming the newly con-
firmed TXIDs are evenly distributed in the sorted memory
pool, the size of the potential collision space will be reduced
from m to %. The collision within a block only occurs if
the ambiguous TX-HASHes are adjacent after sorting. This
dramatically reduces the collision probability and the cost
of resolving ambiguity, which allows even shorter hash with
higher compression ratio.

With this optimization, the probability model is updated
as:

Po—1- [1 - (;)k] " @)

Given the same parameters including m, n and k, this model
achieves a lower Py, compared with Equation 1. When m =
3000 and n = 200, we recommend k = 32, which makes Py, =
0.00000072. This yields a 80 times of data size reduction
compared with the original version of the blockchain.

2.4 Collision Attack

An attacker may create a new transaction with its TX-HASH
matched to an existing transaction. A flood of such malicious
transactions for collisions can invalidate the collision proba-
bility analysis stated above and make the verification of new
blocks expensive, which eventually results in higher fork rate.
We propose simple strategies to address this attack model.

A simple strategy for defense is to introduce a salt while
calculating the TX-HASH:

TXID-HASH=h(Salt + TXID)

The salt is specific to the block carrying those TX-HASHes,
and is included in the encoded data (e.g., the block header).
For example, just take the CRC32-Merkle root as the salt, or
introduce another 4-byte field with random bits.

By introducing salts, the attacker cannot create malicious
transactions even when existing transactions are known to
all, until a new block carrying these existing transactions is
generated. Malicious transactions are also unlikely to reach
the entire network faster than a new block unless the attacker
controls a large botnet.

In extreme cases, the massive collision attack is still possi-
ble regardless of the high cost. We require miners fall back to

TXID list when the entire network is under attack. Such attack
can be noticed by all miners when verifying new blocks. A
miner can simply count the number of ambiguous TX-HASH
per-block. If the counts are significantly higher than the ex-
pected value and forks are observed, the next block should
fall back to TXID list.

3 Conclusion

This paper proposes Txilm, a protocol that compresses trans-
action representation in the blockchain. Each block in Txilm
carries the short hashes of TXIDs (i.e., TX-HASHes) instead of
complete transactions. When receiving a block from the peers,
a full node can search the transactions in its local memory
pool based on the TX-HASHes and resolve the hash collisions
using Merkle tree. We analyze the probability of hash colli-
sions by simulation, and use the salted hash to protect against
possible attacks. Combined with the transaction list sorted
by TXIDs, Txilm realizes 80 times of data size reduction and
thus dramatically saves the network bandwidth.

In our future work, we will implement Txilm Protocol,
and measure the effect of this protocol on the blockchain
throughput by experiments.

	Introduction
	Txilm Protocol
	Protocol Design
	Probability of a Single Collision
	Optimization by Sorted Transaction List
	Collision Attack

	Conclusion

