
Efficient MPC via Program Analysis: A
Framework for Efficient Optimal Mixing

(To appear in ACM CCS 2019)

Muhammad Ishaq1, Ana L. Milanova2, and Vassilis Zikas1

1 University of Edinburgh, Edinburgh, Scotland
{m.ishaq, vassilis.zikas}@inf.ed.ac.uk

2 Rensselaer Polytechnic Institute, Troy, New York
milanova@cs.rpi.edu

Abstract Multi-party computation (MPC) protocols have been ex-
tensively optimized in an effort to bring this technology to practice,
which has already started bearing fruits. The choice of which MPC
protocol to use depends on the computation we are trying to perform.
Protocol mixing is an effective black-box —with respect to the MPC
protocols—approach to optimize performance. Despite, however, consid-
erable progress in the recent years existing works are heuristic and either
give no guarantee or require an exponential (brute-force) search to find
the optimal assignment, a problem which was conjectured to be NP hard.

We provide a theoretically founded approach to optimal (MPC) protocol
assignment, i.e., optimal mixing, and prove that under mild and natural
assumptions, the problem is tractable both in theory and in practice for
computing best two-out-of-three combinations. Concretely, for the case of
two protocols, we utilize program analysis techniques—which we tailor to
MPC—to define a new integer program, which we term the Optimal Pro-
tocol Assignment (in short, OPA) problem whose solution is the optimal
(mixed) protocol assignment for these two protocols. Most importantly,
we prove that the solution to the linear program corresponding to the
relaxation of OPA is integral, and hence is also a solution to OPA. Since
linear programming can be efficiently solved, this yields the first efficient
protocol mixer. We showcase the quality of our OPA solver by applying
it to standard benchmarks from the mixing literature. Our OPA solver
can be applied on any two-out-of-three protocol combinations to obtain
a best two-out-of-three protocol assignment.

Keywords: protocol mixing, linear programming, multiparty computa-
tion, program analysis, cryptography

1 Introduction

Multi-party computation (in short, MPC) allows M parties p1, . . . , pM to per-
form any given computation on their private inputs in a secure manner. Infor-
mally, security means that the protocol should correctly compute the specified

2 Ishaq M., Milanova A. and Zikas V.

output (correctness) and it should not leak any information about the inputs,
other than what can be deduced from this output (privacy).

From the onset of MPC [Yao82; GMW87; BGW88; CCD88], there have been
two approaches to MPC protocol design: (1) the so-called garbled-circuit-based
approach, also referred to as Yao’s protocol [Yao82], and (2) the approach follow-
ing the secret-sharing-based (aka gate-by-gate evaluation) paradigm. The latter
was introduced by Goldreich, Micali and Wigderson (and is therefore often re-
ferred to as the GMW approach) [GMW87]; GMW works with boolean circuits
and was extended by Ben-Or, Goldwasser, and Wigderson in [BGW88]—the
so-called BGW protocol—to compute arithmetic circuits over finite fields.

The above approaches have inherent quantitative differences. First, the round
complexity of gate-by-gate evaluation is linear to the (multiplicative) depth of
the circuit, whereas Yao’s approach yields constant-round protocols; further-
more, unlike Yao’s protocol most of the costly computation and communica-
tion in GMW can be outsourced to an offline (pre-computation) phase which
is independent of the inputs. Thus, GMW (assuming preprocessing) is often
more efficient over a wide area network (WAN) where communication can be
the bottleneck3 and garbled-citcuit-based approaches, which inherently needs to
communicate a lot of information, is faster assuming fast networks.

Furthermore, all the above protocols have communication and/or computa-
tion proportional to the size of the circuit they aim to compute. For example,
as demonstrated in [DSZ15], it is much faster to use garbled-circuits on the
standard Boolean circuit for comparison, than using GMW on a state-of-the-art
representations of comparison as an arithmetic circuit. On the other hand, per-
forming multiplication (of bounded precisions floats or bounded size integers) is
much faster by means of GMW for an appropriately large field—it is effectively
computing a single-gate circuit—than by means of Yao’s protocol applied on the
state-of-the-art Boolean circuit for field multiplication.

The above demonstrates that there is no ”one size fit all” solution to op-
timal MPC. In order to decide what protocol to use, one would need to take
into account both the target computation, and the parameters of the network.
This might be feasible for simple computations, e.g., only comparisons or only
multiplications, but it becomes challenging when we are aiming to perform a
complicated computation, whose circuit is not even a-priori known. To cope
with this, the idea of mixed (or hybrid) protocols has been proposed [KSS13;
Hen+10; BLW08; SKM11; Cho+13]. These are protocols that evaluate differ-
ent parts of the computation by means of different protocols, e.g., part of the
computation is performed using garbled circuits, and another part is performed
using GMW.

Deciding which part of the computation should be computed using which
protocol is a challenging task. One of the reasons is that one needs to come up

3 This is demonstrated in existing benchmarks [DSZ15; Büs+18] (including ours)
which are run for the semi-honest setting and do not account for the cost of syn-
chrony, e.g., timeouts, hence the effect of the increased round complexity in GMW
is minimized.

Efficient Optimal Protocol Mixing 3

with an appropriate cost model, that estimates the costs for computing each
part of the specification with each of the candidates. Such costs were recently
calculated in [DSZ15] for hybrid protocols combining a garbled-circuits-based
protocol, with two versions of GMW, one for computing arithmetic circuits over
arithmetic fields of characteristic 2 and size k, i.e., Zk2 , and one for comput-
ing Boolean circuits (i.e., arithmetic circuits over Z2). Concretely, they devised
benchmarks that estimate for different useful computations, which protocol is
fastest in different scenarios.

One would hope that such a cost allocation would already reduce the problem
to a simple optimization problem: try to split the computation in modules from a
predefined set, and then compute the optimal allocation of protocols depending
on the cost of each module. Unfortunately this intuition is overly simplistic as
discussed below.

First, one needs to take into account the need to stitch different modules
together in a way that does not reveal information. In order to do so the pro-
tocol needs to allow each sub-protocol to pass its (output) state to the next
sub-protocol. This can be done by computing and outputting a secret sharing
of the state that is then given as input to the next module. Albeit, different
protocols handle different types of sharing, e.g., in GMW the shares are field
elements, whereas in Yao’s protocol one needs the inputs to be Boolean. This
means that in order for a GMW computed module to pass state to a Yao module
it needs to convert its sharing to a Boolean sharing. Such a conversion would
typically involve (secure) bit-decomposition of Zk2 elements which is an expensive
operation. Hence, in order to decide whether it is worth switching from GMW
to garbled-circuits, one needs to take into account the cost of converting the
associated shares.

Second, such conversion costs need to be incorporated in addition to the cost
of module computation. A model incorporating such costs into an optimization
problem was introduced in [SK11; KSS14], where the authors also specified an
Integer Program (IP) computing the optimal solution. Due to the difficulty of
solving Integer Programming in general, this lead to a conjecture that the prob-
lem of optimal protocol assignment is NP-hard. The conjecture was adopted
by follow-up works [Pat+16; Cha+17; Büs+18] and gave rise to heuristic ap-
proaches.

1.1 Our Results

In this work we show that the problem of optimal (MPC) protocol mixing is
tractable (efficiently solvable) for for the case of combinations of two multi-party
protocols. In a nutshell, starting from non-annotated source-code, we employ
a combination of program analysis and combinatorial optimization techniques
to devise an integer program, which we term the optimal protocol-assignment
problem (OPA). OPA yields a provably optimal mixing—up to parallelisa-
tion/scheduling and compiler optimizations (see §4 for details)—and, as we
prove, accepts a polynomial-time solver.

4 Ishaq M., Milanova A. and Zikas V.

We remark that our current approach does not directly extend to the case of
three protocols (see Remark 3 for details). Thus the question of whether or not
OPA can be efficiently solved in the three-protocol case remains open. However,
since the optimal two-protocol combination can be found in polynomial time,
we can use our solver to compute best two-out-of-c protocols combinations for
a constant c, by applying it to all possibles pairs of the c protocols, and picking
the pair (and the corresponding solution) that minimizes the objective function
across all

(
c
2

)
applications.

To demonstrate the quality of our OPA solver, we apply it to compute proto-
col assignments for known benchmarks from ABY [DSZ15] and HyCC [Büs+18],
for which code has been released namely Modular Exponentiation, Biometric
Matching and Private Set Intersection, Convolutional Neural Networks (CNNs)
of MiniONN [Liu+17] and Crytonets [Gil+16], k-means clustering algorithm,
DB Merge and DBJoin as well as new ones we introduce, namely Greatest Com-
mon Divisor (GCD) and Histogram. We remark that works [DSZ15; Büs+18]
directly compute optimal assignment for three protocols (this is done by manual
assignment in [DSZ15], and exhaustive search in [Büs+18]). However, with the
exception of Modular Exponentiation in the LAN setting, all resulting optimal
assignments use one protocol or a mixing of only two protocols. This state of
practice indicates that our solver can be used to compute optimal assignments
for three protocols.

More concretely, our contributions can be summarized as follows:

As our main result, we prove that the Optimal Protocol Assignment (OPA)
problem for two protocols is, in fact, tractable. To this direction, we put forth a
framework combining methods from program analysis and MPC, and establish-
ing a common language between the two disciplines. This framework allows us to
formally specify the OPA and describe all the relevant parameters of an integer
program (IP), such that given MPC code, it computes the optimal assignment
of the two given protocols (and their share conversions). We use our model to
show that the linear-programming (LP) relaxation of our IP has an integral so-
lution, and therefore OPA is polynomial-time solvable.4 In addition to offering
the language for stating and proving our results, we set forth problems for the
programming languages/compilers community, that can lead to improvement in
MPC compilers.

The running time of our OPA solver is polynomial on the size of its input
(i.e., the MPC code). To provide a more practical implementation, we propose
MPC-source as an abstraction of MPC code. MPC-source is a representation
of the original MPC code which enables static analysis, while it is substantially
more compact than standard linearized MPC code—i.e., the straight-line ver-
sion of MPC code. In particular, MPC source has significantly fewer variables
and statements than linearized MPC, thereby reducing the search space for the
optimal protocol combination. We show how to apply OPA on MPC-source, and
prove that under natural assumptions on the optimal assignment computed by

4 Unlike integer programming which is known to be NP-hard, linear programming is
solvable in polynomial time [Kar84; 80].

Efficient Optimal Protocol Mixing 5

IPLinear(S), an OPA solutions for MPC-source is optimal for the linearized MPC.
We note in passing that although making the treatment more involved, devising
such a faster and more scalable solver is useful for deriving a practical solution to
the problem. Notwithstanding, our entire treatment can be applied on linearized
MPC code as well.

Finally, to demonstrate the practicality of our solver, we provide a toolchain
that takes high-level unannotated source—Java source code in our case—, trans-
lates it to MPC-source, and outputs optimal protocol assignments. We compare
our solver with publicly available benchmarks from [DSZ15; Büs+18]. We remark
that the concrete assignment from [DSZ15; Büs+18] is known for only a subset
of the related benchmarks; for all those we confirm the same assignment. For
the remainder, we provide the first publicly released assignments, and compare
our resulting protocol combinations with the ones reported in [DSZ15; Büs+18].
Our solver is available on GitHub (https://github.com/ishaq/OPA).

We believe that our work opens possibilities for future work. Program syn-
thesis, program analysis of MPC-source, e.g., program equivalence and paral-
lelization, as well as integration of OPA into MPC compilers, are some of the
possibilities. Throughout this paper, we pose conjectures and outline future di-
rections.

1.2 Comparison to Related Work

A number of works have demonstrated the advantages of mixed proto-
cols [KSS13; Hen+10; BLW08; SKM11; Cho+13]. The ABY framework [DSZ15]
by Demmler et.al. provided easy to use framework for writing mixed-protocol
2-party computations. Mohassel and Rindal [MR18] improved it into ABY3 and
extended it to 3 parties. However, all these works require the programmer to
manually choose protocol assignment. In contrast, our tool yields automatic so-
lution to optimal protocol assignment in polynomial time. We note, however,
that previous works compute an optimal assignment among all three protocols
whereas our tool can, so far, handle only two protocols. In fact, our analysis
does not directly extend to three protocols. Thus, the question of whether or
not OPA for three or more protocol is NP-hard remains open.

Yet, by using our tool three times, once with each pair of the three proto-
cols from [DSZ15], and keeping the overall optimal solution we obtain a tool for
finding, in polynomial time, the best two-out-of-three protocol combination. In-
terestingly, for the overwhelming majority of existing benchmarks this extension
yields assignments consistent to the original exhaustive search method—the rea-
son is that the existing assignment among three protocols for these benchmarks
ends up using at most two of them. This allows us to handle arbitrary long code
for which exhaustive search might be infeasible.

The work by Kerschbaum et.al. [KSS14] was the first to discuss the problem of
automatic protocol selection. They require the source program to be expressed in
straight-line three-address representation and formulate a 0-1 integer program
for the two-protocol case. The integer program computes the optimal assign-
ment. Since 0-1 integer programming is NP-hard, this lead to the conjecture

6 Ishaq M., Milanova A. and Zikas V.

that the optimal protocol assignment problem is NP hard. In fact, Kerschbaum
et.al. [KSS14] proposes the first heuristics for solving the above problem. We
note that despite some similarities, e.g., some common inequalities, of the IP
from [KSS14] to the one underlying our OPA problem, we were unable to find a
way to prove that the LP relaxation of their IP has an integral solution. Instead,
here we provide our new IP which leverages our model to allow us to prove
existence of an efficient solver.

EzPC [Cha+17] is a recent work that takes a high-level imperative language
as input and compiles it to mixed-protocols ABY source code. It is also based on
heuristics. Moreover its heuristics do not take into account dependencies between
different parts of the code (i.e., they only rely on local information) and are,
therefore, too weak. For example, they state that their compiler never compiles a
multiplication into a Boolean/Yao representation. On a high bandwidth network
with low latency (typical case of 10Gbps LAN), it is actually inefficient to do so
if the number of multiplications is small and un-amortized.

Most recently, a mixed protocol compiler, called HyCC [Büs+18], was intro-
duced that uses a combination of exhaustive search and heuristics to optimize
and automate mixing. The unit of optimization in HyCC is a module, which
can be as little as one instruction but the sheer number of choices for exhaustive
search or heuristics make it prohibitive to have such fine granularity. In contrast,
we provide provably optimal mixing conditioned on a fixed schedule and access
to the SSA-representation of the input program.

2 Preliminaries

We review the basic notions from the related MPC literature and establish some
necessary terminology and notation. Our work combines and extends techniques
from cryptography, in particular MPC, with program analysis, and combinatorial
optimization. Since this might require a combination of expertise, in the full
version of this work we review basic program analysis concepts that are useful
for evaluating our results.

We will consider the optimal protocol assignment (OPA) problem for deriving
hybrid (i.e., mixed) protocols against semi-honest, aka passive, adversaries—who
follow their protocol instructions but attempt to acquire more information than
the specified output by analyzing their (joint) view of the computation. We note
in passing that although, consistent with existing literature, our experiments
are for semi-honest two-party protocols only, our theory, and in particular our
feasibility result for solving OPA, directly applies to malicious and or multi-party
protocols.

In our experiments we focus on protocols that combine the same three types
of semi-honest MPC protocols as in [DSZ15] as it will allow us to use the
primitive-MPC cost estimators introduced there. In the following we give the
high level description of these protocols and the associated sharing, and refer
to [DSZ15] for a detailed description of the optimization thereof. We stress that

Efficient Optimal Protocol Mixing 7

our program analysis technique can be applied to any version of these protocols
(with or without such optimizations.)

Secret Sharing A t-out-of-n secret sharing scheme allows a dealer (or a protocol)
to share a value s among n parties, such that the shares of any t− 1 parties leak
no information on s, but the shares of any t parties uniquely define s. In this
work we focus on two-party computation—although our theory applies to the
three-party case along the lines of [MR18]. More concretely, a value is shared
among the two parties {p1, p2} if every party pi holds a share 〈s〉i such that
there exist a reconstruction algorithm which given both 〈s〉1 and 〈s〉2 outputs s,
but each 〈s〉i by itself contains no information on s. We will denote the vector
of shares by 〈s〉 = (〈s〉1, 〈s〉2) and refer to it as a sharing of s.

The MPC modules: The three (types of) MPC protocols, also referred to as
MPC modules, that will be considered here (and their associated secret sharing
schemes) are as follows (cf. [DSZ15] for more details on the specific optimiza-
tions):

A: πA is a protocol for computing arithmetic circuits over the finite field Z2k .
Such a protocol uses the BGW gate-by-gate evaluation paradigm, where so-
called Beaver multiplication triples [Bea92]—which can be pre-computed—
are used to make the online phase linear.5 Concretely, the protocol stores
each value s in its state as an arithmetic secret sharing, denoted by 〈s〉A:
Each pi holds a share 〈s〉i ∈ Z2k such that 〈s〉A1 + 〈s〉A2 ≡ s (mod 2`). (Con-
sistently with [DSZ15], for clarity we will denote the type of the sharing by
a letter A the exponent.) As demonstrated in [DSZ15], with the appropri-
ate optimizations πA is the best known protocol for arithmetic operations,
primarily in WAN setting but also in LAN setting if sufficiently amortized.

B: πB is a protocol for computing Boolean circuits based on GMW. It uses
the XOR sharing which is the same as the arithmetic sharing but for Z2,
i.e., a bit s is shared by bits 〈s〉B1 and 〈s〉B2, s.t., 〈s〉B1 ⊕ 〈s〉B2 = s. As demon-
strated in [DSZ15], with the appropriate optimizations πB is the best known
protocol for comparisons and logical operations in LAN setting, provided
the operations are amortized.

Y: Finally, we will denote by πY the (optimized) version of Yao’s protocol
used in [DSZ15]. For brevity, we refer to πY as the Yao-based protocol. Note
that although the original Yao protocol does not operate on secret shared
value, one can interpret the state, i.e., for each wire of the Boolean circuit,
the corresponding value sw of the wire w, as being shared among the to
parties as follows: P1, the circuit creator, holds the two keys Kw

0 and Kw
1

corresponding to wire inputs 0 and 1 respectively, and P2 holding Kw
sw , i.e.,

〈sw〉Y1 = (Kw
0 ,K

w
1) and 〈sw〉Y2 = Kw

sw . Clearly, in 〈sw〉Y = (〈sw〉Y1, 〈sw〉Y2), p1
does not know sw and p2 does not known which value Kw

sw corresponds to.
Hence, none of the parties knows sw but by pooling their shares together

5 Looking ahead, the costs used in our empirical study will be be sum of the setup
and online costs.

8 Ishaq M., Milanova A. and Zikas V.

1 int gcd(int a, int b) {
2 int x = a;
3 int y = b;
4 for (int i = 0; i < 2*LEN; i++)
5 {
6 if (y != 0)
7 {
8 int r = rem(x,y);
9 x = y;

10 y = r;
11 }
12 }
13 return x;
14 }
15

16 // returns val%mod
17 int rem(int val, int mod) {
18 int rem = 0;
19 for (int j = LEN-1; j ≥ 0; j--)
20 {
21 rem = rem << 1;
22 // rem[0] = val[j]
23 rem = rem + ((val>>j)&1);
24 if (rem ≥ mod)
25 {
26 rem = rem - mod;
27 }
28 }
29 return rem;
30 }

1 int gcd(int a, int b) {
2 int x0 = a;
3 int y0 = b;
4 for (int i = 0; i < 2*LEN; i++)
5 {
6 x1 = (i == 0) ? x0 : x3;
7 y1 = (i == 0) ? y0 : y3;
8

9 if (y1 != 0)
10 {
11 // begin inlined rem
12 int rem0 = 0;
13 for (int j = LEN-1; j ≥ 0; j--)
14 {
15 rem1 = (j==LEN-1) ? rem0 : rem5;
16 rem2 = rem1 << 1;
17 rem3 = rem2 + (x1>>j)&1;
18 if (rem3 ≥ y1)
19 {
20 rem4 = rem3 - y1;
21 }
22 rem5 = φ(rem4,rem3);
23 }
24 // end inline rem
25 int r = rem5;
26 x2 = y1;
27 y2 = r;
28 }
29 x3 = φ(x2,x1);
30 y3 = φ(y2,y1);
31 }
32 return x3;
33 }

1 int gcd(int a, int b) {
2 int x0 = a;
3 int y0 = b;
4 for(int i = 0; i < 2*LEN; i++) {
5 x1 = (i == 0) ? x0 : x3;
6 y1 = (i == 0) ? y0 : y3;
7

8 // begin inlined rem
9 int rem0 = 0;

10 for (int j = LEN-1; j >= 0; j--)
11 {
12 rem1 = (j==LEN-1) ? rem0 : rem5;
13 rem2 = rem1 << 1;
14 rem3 = rem2 + (x1>>j)&1;
15 rem4 = rem3 - y1;
16 cnd1 = CMP(rem3 >= y1);
17 rem5 = MUX(rem3,rem4,cnd1);
18 }
19 // end inline rem
20

21 int r = rem5;
22 x2 = y1;
23 y2 = r;
24 cnd2 = CMP(y1 != 0);
25 x3 = MUX(x1,x2,cnd2);
26 y3 = MUX(y1,y2,cnd2);
27 }
28 return x3;
29 }

(a) IMP Source (b) IMP-SSA (c) MPC-source

Figure 1. (a) shows the IMP source for the GCD algorithm, (b) shows GCD translated into
IMP-SSA after inlining rem. (c) shows the IMP-SSA program translated into MPC-source. Our
integer program works on MPC-source.

they can easily reconstruct by checking if Kw
sw equals Kw

1 . We refer to this
secret sharing scheme as Yao sharing. As demonstrated in [DSZ15], with the
appropriate optimizations πY is the best known protocol for comparisons and
logical operations, especially in LAN setting.

Share conversion As discussed above, in order to stitch different modules in a
single protocol we need to transform the (output) sharing of one module to the
(input) sharing of the following module. There are several such share conversion
protocols. In our benchmarks we use the ones from [DSZ15] but our OPA solver
can be instantiated with any such protocol. We refer to the share conversion
protocol that converts sharing of type X to sharing of type Y as X2Y, where X

and Y take the value A for arithmetic, B for Boolean, and Y for Yao sharing.
E.g., a share conversion protocol from arithmetic to Yao sharing is denoted by
A2Y.

3 Program Analysis of MPC Source

Efficient Optimal Protocol Mixing 9

In this section, we describe our program analysis process, that will yield the
basis for our optimization problem defined in the next section. §3.1 presents a
running example. §3.2 outlines the syntax of the source language, as well as the
translation process into our representation, MPC-source. §3.3, and §3.4 describe
the control-flow structure of MPC-source and reaching definition analysis on top
of it. §3.5 and §3.6 define other analyses on MPC-source necessary to build the
optimization problem.

3.1 Running Example

Our running example in Fig. 1(a) is an implementation of the Greatest Com-
mon Divisor (GCD) algorithm using integer division. The gcd program makes
calls to function rem, due to [DSZ15], which computes the remainder of an
integer division. Note that the structure is significantly different and more in-
volved than the standard—non-MPC targeted—integer division. Such difference
between non-MPC and MPC programs is typical due to inherent restrictions
in the latter (to preserve privacy). For example, in Fig. 1(a) the value of both
val and mod will need to be secret shared, so they remain unknown until the
corresponding output-gates of the induced MPC circuit are computed (and re-
constructed). Thus, in order to generate a circuit that can be processed by MPC,
the while-loop cannot use the values of these variables. The rewrite by Demler et
al. [DSZ15] rectifies this by carrying long division in binary, with a loop bounded
by statically known LEN, which is either 32 or 64 bits. Fig. 1(a) presents our
rewrite of the standard GCD loop, where we are using the observation that the
number of iterations in GCD is bounded by 2LEN = 2 log(max(a, b)).

3.2 Translation into MPC-source

s ::= s1; s2 ⇒ s.MPC = s1.MPC + s2.MPC
s ::= if (x bop y) { s1 } else { s2 } z = φ(z1, z2) ⇒ s.MPC = s1.MPC + s2.MPC + “cnd = CMP(x bop y); z = MUX(z1, z2, cnd)”

Figure 2. Translation of IMP-SSA into MPC-source. Attribute MPC contains the MPC-
source code. Translation of a sequence entails appending s2’s MPC-source code onto s1’s.
The MPC-source for an if-statement is constructed by adding the code for branch s2 onto
the code for branch s1 thus linearizing the if-statement; at the end, the translation adds the
conditional operation and the multiplexer, which selects values. We do not include for other
kinds of statements as it is trivial.

We assume an IMP-like syntax [NK14] for our source language. The IMP
syntax models an imperative language, such as FORTRAN, C, or Java, and
our results apply to any of these languages. We impose the following standard
restrictions necessary to accommodate MPC: there is no recursion, and all loop-
bounds are statically known. The IMP source is translated into Static Single

10 Ishaq M., Milanova A. and Zikas V.

Assignment (SSA) using standard techniques [Cyt+91]. This is standard SSA,
however, to make it explicit that it corresponds to IMP-source, in the following
we will refer to it as IMP-SSA. This is the syntax of our intermediate represen-
tation. Due to space constraints, we defer detailed discussion of the syntax to
the the full version of this work.

The next step is to translate IMP-SSA into MPC-source, the representation
that we use for defining our compact integer program. Fig. ?? defines an attribute
grammar (also known as syntax directed translation) over IMP-SSA. The most
interesting case arises at if-statements which are dealt with using standard MPC
techniques: the MPC-source code for an if-statement is produced by appending
the straight-line (MPC) code for the else-arm onto the straight-line (MPC) code
for the then-arm, then adding the conditional, and the multiplexer to select the
correct values. Due to single assignment, variables used at the if-statement test
are unmodified, and are referenced in the comparison expression (CMP) that
precedes MUX, where the φ nodes capture exactly the arguments of MUX. 6 For
example, consider the if-statement in lines 9-31 in Fig. 1(b). The φ nodes capture
the values of x and y; if control took the then-arm, then x and y would be x2
and y2 respectively, otherwise x and y would be x1 and y1.

In our example, the resulting MPC-source program is shown in Fig. 1(c).
We point out that MPC-source can be mapped one-to-one to standard straight-
line MPC; the only difference is that when a block is repeated multiple times in
straight-line MPC, it is replaced by a for-loop in MPC-source. Following standard
MPC compilers methodology, e.g., [BNP08; Fra+14], the actual MPC program
unrolls all loops, and loop induction variables become constants.

To make the above mapping explicit, we use pseudo φ-nodes. To better un-
derstand the use of these nodes, let’s focus on lines 5, 6 and 12 in Fig. 1(c) at the
beginning of each one of the loops; these lines do not encapsulate an if-then-else
construct. Instead, they select variable values—at the first iteration, the value
comes from outside the loop, and at every subsequent iteration the value comes
from the previous iteration of the loop. When translated into straight-line code,
these lines disappear because corresponding values are directly used as inputs to
the gates. To highlight that these lines are only here to enable loops, and, that
these do not get translated into a MUX, we refer to them as pseudo φ-nodes in
text and denote them with ? : instead of φ.

Looking ahead (cf. §4) the benefit of doing the analysis over MPC-source
rather than straight-line code will be that there are significantly fewer variables
in the resulting integer/linear program.

3.3 Control-flow Structure of MPC-source

The main reason why most, if not all, MPC compilers use straight-line code as
their (intermediate) source representation is that it exhibits a very simple control

6 MUX is the multiplexer gate that is common in MPC compilers: on input of values
(v0, v1) and a selection bit b ∈ {0, 1}, it returns vb. In our case b is result of the CMP
and (v0, v1) are arguments of φ node.

Efficient Optimal Protocol Mixing 11

flow structure. Despite having loops for more compact representation, MPC-
source also exhibits simple control-flow structure, which, as we show, facilitates
program analysis. Specifically, the program consists of straight-line blocks nested
within each other. Fig. 3(a) illustrates the block structure of MPC-source.

Each block B, except for the outermost one, is a for-loop block:

n0 → n2 → . . . nk −→ n0

Here n0, n1, . . . denote statements in B, short arrows (i.e., →) denote forward
control-flow edges in B, and long arrows (i.e., −→) denote the back edge from
the last node nk ∈ B to the entry node n0 ∈ B. The node n0 is special in MPC-
source, because it is a control merge node. There are two incoming edges into
n0: a forward edge n′ → n0 where n′ is the node in B’s enclosing block B′ that
immediately precedes B, and the back edge nk −→ n0.

For example, consider the statement “rem1 = (j == LEN-1) ? rem0 : rem5;”
in Fig. 1(c). In the first iteration of the loop, it chooses the value of rem1—this
is the value of rem0 in our case, and at every subsequent iteration it chooses the
values resulting from the previous iteration—which is the value of rem5 in our
case. Node nk is special as well because it is a control split node —there are
two outgoing control-flow edges from nk, a forward edge nk → n′′, where n′′ is
the node in B′ that immediately succeeds B, and the back edge nk −→ n0. The
graph below shows the nested structure (it omits the back edge for clarity):

. . . n′ →
B︷ ︸︸ ︷

n0 → n2 → . . . nk → n′′ . . .︸ ︷︷ ︸
B′

3.4 Reaching Definitions over MPC-source

We are interested in Reaching Definitions over MPC-source, because the sim-
ple control-flow structure of MPC-source discussed above, as opposed to general
IMP-style code, makes Reaching Definitions a very powerful tool. In partic-
ular, unlike general IMP programs, in MPC-source programs a def-use chain
(d, u) entails that d always reaches u due to the simpler control-flow structure of
MPC-source programs. Examples of def-use chains in the MPC-source program
in Fig. 1(c) are (5,14) (the definition of x1 at line 5 reaches the use at line 14),
and similarly (13,14). As another example, the MUX statement at line 25 is a
definition of x3 and the statement at line 5 is a use of x3. We will be using def-use
chains to calculate the total cost of running an MPC-source program and rea-
son about conversions (see also discussion about optimal conversion placement
below).

3.5 Statement Weights

Since MPC-source has loops, in order to accurately capture execution cost, we
must assign weights to statement in the MPC-source control-flow graph. (As dis-
cussed in the following section, certain edges that are necessary for the definition

12 Ishaq M., Milanova A. and Zikas V.

of our IP are also assigned weights.) The weights correspond to the number of
times a statement/edge executes. Once again, the simple structure of our MPC-
source representation gives the solution: unlike general IMP-style source-code, in
MPC-source it is straight-forward to assign those weights because there are no
if-then-else statements, and therefore no need to estimate the number of times
control may go through one branch relative to the other (the standard approach
is to assume equal probability of execution of each branch). The weight wn of
statement n is the product of the bounds of all loops “around” n: b1 · b2 · ... · bk
where b1 stands for the bound of the outermost loop, and bk for the bound of the
innermost loop enclosing n. For example, w13 in Fig. 1(c) is 2LEN·LEN = 2LEN2.

3.6 Optimal Conversion Placement

Different protocols use different sharings. To stitch such protocols together, we
need share conversion. In linearized MPC (where all loops are unrolled) placing
such conversions is straight-forward: always convert to what the next protocol
needs (if the protocol is the same do not convert). However a challenge in using
MPC-source, where loops are present, is when a node is part of a loop whose
output needs to be converted. For example, consider a definition that is computed
before a loop and is used inside the loop. It is most beneficial to place the
conversion before the loop. In this section we describe how to identify the optimal
such conversion point to minimize the total cost. This allows us to use the
benefits of working with the condensed MPC-source without sacrificing cost
efficiency due to suboptimal conversion placement.

Consider a def-use chain (d, u). If d computes a value in one share (e.g.,
Arithmetic) but u uses a different share (e.g., πY), then the value computed at d
must be converted to the share required at u. We must place conversions in such
a way that: (1) each execution path from d to u executes the required conversion,
and (2) the total cost of executing the required conversion(s) is minimal; we note
that the cost of a single conversion operation is fixed, however, the total cost
depends on where, i.e., on what CFG edge, we place the conversion operation.
We define min cut(d, u)7 where it is least costly to place a conversion of the value
computed at d on the way to u. Next, we describe how to find min cut(d, u).

We begin with the definition of necessary terms. Let the closest enclosing
block of ni and nj be the innermost block B such that ni ∈ Bi and nj ∈ Bj and
both Bi and Bj are nested, immediately or transitively, in B. Trivially, a block
is nested in itself. An edge e = n1 → n2 is said to be in block B, denoted as
e ∈ B, if: either 1) n1 ∈ B, or 2) n2 ∈ B, or n1 ∈ B1, n2 ∈ B2 and B1 and B2

are immediately enclosed in B.
To compute the min cut(d, u), there are two cases. Case 1 is when d precedes

u, i.e., there is a sequence of forward edges from d to u. We call these forward
def-use chains. In this case, min cut(d, u) is the first edge e in the sequence of
forward edges from d to u such that e is in the closest enclosing block B of d and

7 Note that here min cut is slightly different from classical max-flow/min-cut. We
want to find min cut on the graph of a single def-use chain.

Efficient Optimal Protocol Mixing 13

u. Clearly, the cost of such edge e, we, is the number of times B executes. For
example, consider def-use chain (14,17) in the MPC-source program in Fig. 1(c).
The closest enclosing block of lines 14 and 17 is the inner for-loop; the min-cut
edge is edge 14→ 15, the first in the forward sequence from 14 to 15. As another
example, consider def-use chain (17,21). The closest enclosing block of both lines
17 and 21 is the outer for-loop. The min-cut edge is the edge from 17 to 21, which
executes LEN number of times, and as we mentioned earlier, this entails that it
is least costly to place a conversion at 21 rather than at 17.

Case 2 arises when u precedes d, i.e., there is a sequence of forward edges from
u to d and the path from d to u goes through a back edge (see also Remark 1.)
We call these chains backward def-use chains. In this case, it follows directly
from the Reaching Definitions analysis and the structure of MPC-source that
min cut(d, u) is precisely the back edge of the closest enclosing block B of d
and u. The cost of such edge e, we is N − 1 where N is the number of times B
executes. In our running example, min cut(25, 5) is precisely the back edge of the
outer for-loop. This edge executes 2LEN− 1 times, which is exactly the minimal
number of conversions one would need if the MUX at Line 25 of Figure 1.(c)
computed x using πY but it used πA for processing Line 5.

One intuition to the min cut(d , u) is as follows: its weight captures the num-
ber of distinct statements st in the linearized MPC that map to d, such that st
is used by a use that maps to u.

Remark 1. Note that in any execution uses always succeed def (It doesn’t make
sense to use something that isn’t defined yet). Our notion of u preceding d and
backward def-use chains to refer to backward edge in MPC-source CFG is a
feature of the MPC-source representation. This backward edge always occurs
because of a pseudo-φ node and disappears in translation to linearized code.

Remark 2. We conclude this section with an observation on backward chains,
which will play a role in defining and solving the optimal protocol assignment
problem. Backward chains exhibit the following property: each (d, u) is such
that d’s block is nested in u’s block, and u is precisely the pseudo φ-node at the
beginning of the block. (Let x be the variable defined at d. Suppose u was a use
of x other than the pseudo φ-node. Since the use of x at u precedes the definition
at d, at the first iteration of u’s loop, x would come from outer scope. Therefore,
SSA would have to merge the two definitions of x into the pseudo φ-node, thus
creating an earlier definition of x. A subsequent use would refer to the definition
at the φ-node.)

4 The Optimal Protocol Assignment Problem

In this section we provide formal definitions of the optimal protocol assignment
problem (OPA) and in §5 we present our efficient solver. Before defining the
problem, we first establish some useful notation and terminology that we will
use throughout the section.
Notation and terminology:

14 Ishaq M., Milanova A. and Zikas V.

(IMP-)source code: This is the starting point of our compiler. It is standard
programming language code for an imperative language such as IMP. We
denote it by S. All loops have a known upper bound on their iterations.

MPC-source code: The output of our compiler on some source code S. We denote
the compiler by CMPC(·). The compiler removes if-statements and φ-nodes,
and adds MUX-statements in their place. MPC-source contains for-loops
with known bounds.

Block B of MPC-source: Sequence of assignment statements or blocks (in case
of for-loop nesting) enclosed in a for-loop.

(IMP-)SSA-code: this is the output of SSA on some source-code S. We will
denote it as CSSA(S). This is an intermediate representation between (IMP-
)source and MPC-source.

Linearized-code : Linear(S): This is the linearization of some MPC-source
CMPC(·). It contains no loops, only straight-line code of assignment stat-
ments. The corresponding CFG of this would be simply a straight line. We
refer to statement in Linear(S) as simple statements and denote them as st.
Since the corresponding CFG is a line we often refer to simple statements
as nodes in (the CFG of) Linear(S).

Informally, OPA seeks, given source code for the task the parties wish to securely
perform, the best possible combination of MPC modules, i.e., the combination
that minimizes a well defined cost function. We stress that existing works attack
OPA in a heuristic fashion; to our knowledge, ours is the first work that devises
a systematic model and uses it to provide provably optimal solutions—under
mild and natural assumptions—to OPA via an automated efficient solver.

There are several parameters that affect the quality of a protocol assign-
ment, and therefore the performance of the resulting hybrid MPC protocol. One
of the most important is the cost model, which, informally, specifies the cost
of each MPC protocol for computing each statement of the IMP-MPC pro-
gram. A second important parameter is scheduling. In particular, some proto-
cols are more friendly to amortization/parallelization than other protocols which
means that even though protocol X might be preferable to protocol Y for a sin-
gle statement st—e.g., a multiplication gate—when multiple copies of st are
computed in parallel—Y might be overall preferable to X. For example, on a
high-bandwidth/low-latency network (e.g., a LAN), Yao’s protocol is faster when
computing an (individual) equality-check gates, but when multiple equality gates
are computed in parallel, the optimized GMW protocol πB overtakes πY (this was
demonstrated in [DSZ15] and is confirmed in our experiments in §7.3.) We defer
the treatment of scheduling to §6.

4.1 The cost model

Coming up with a good measure of the cost is an interesting problem in itself.
There is no universally applicable optimal metric and such choice is usually
influenced by a program’s execution environment. For example, in a data center
with high speed connectivity between the servers, minimizing run time would

Efficient Optimal Protocol Mixing 15

take priority and, therefore, run time is a good cost metric. However, in a data
constrained setting e.g. mobile phones, minimizing the size of network traffic
may be more desirable. In this case, communication size would be a good cost
metric.

In this section we devise a generic user-parameterizable cost model for pro-
grams that will be used in the definition of OPA. Informally, the cost model
consists of assigning weights, i.e., costs, to different protocols and to conver-
sions of sharings. This is similar to the cost model devised in [KSS14; Cha+17;
Büs+18]; however, as we discuss in Section 5, our utilization and application of
the cost model is qualitatively different than that of [KSS14] and this will allow
us to compute optimal assignments in polynomial time

Let St = {st1, . . . , st`} be the ordered sequence of statements in Linear(S),
and let Π = {π1, . . . , πm} be (a set of) multi-party protocols and let Σ =
{σ1, . . . , σq} be (a set) of secret sharing schemes (in typical scenarios such
as [DSZ15; MR18; Cha+17; Büs+18] q = m.) Note that sharings and protocols
are very different objects: A protocol is a collection of interactive algorithms to
be executed among multiple parties, whereas a sharing scheme is a way to en-
code/distribute messages (typically protocol inputs and outputs) among those
parties. Additionally, although in the literature, protocols are assigned a unique
sharing scheme, this does not need to be the case. Therefore, for most general-
ity, in the following we give the definition of the cost model for arbitrary sets of
protocols and sharings.

The cost model C takes into account running each node/simple-statement,
plus the cost of conversions between sharings. Formally a cost model C for a
given (St , Π,Σ) is a set containing the following ` ·m+ q2 elements:

For each (i, j) ∈ [`] × [m]: the triple (sti, πj , c
πj
sti) ∈ B × Π × Z≥0, where

intuitively, c
πj
sti corresponds to the cost of emulating in a flow statement sti

with protocol πj .

For each (i, j) ∈ Σ2: the triple (σi, σj , c
σi2σj) ∈ Σ × Σ × Z≥0, where intu-

itively, cσi2σj is the cost of securely converting a sharing according to scheme
σi into a sharing according to σj .

For brevity, and without loss of generality, whenever the sequence St , and
set Π are clear from the context we might use c

πj
sti and cσi2σj instead of the

setup of triples. Note that those costs are generic, in the sense that they may
be instantiated towards minimization of run time, or towards minimization of
data transfer. Furthermore, in all existing works on protocol mixing—including
ours—each protocol πi is associated with a single sharing scheme σi; in such
cases, in slight abuse of notation, we will denote the conversion cost from σi
to σj as cπi2πj (instead of cσi2σj). In fact, to further simplify our notation and
consistently with the ABY notation, for the three ABY protocol πA, πB, and πY,

and for X,Z ∈ {A, B, Y} we will use cX2Z to denote the conversion cost cπ
X2πZ

from the sharing corresponding to πX (which we will refer to as Sharing X) to
the sharing corresponding πZ (which we will refer to as Sharing Z).

16 Ishaq M., Milanova A. and Zikas V.

Generalized Cost Model: Amortization and Parallelization The above cost model
does not account for the benefits of amortization and parallelization, and it
therefore applies only to linearized code. Therefore, in the following we refer to
as the simple (or linearized) cost model. The OPA definition and solver from
Sections 4.2 and 5, respectively, are actually for linearized MPC. However, in
Section 6 we extend our treatment to natural schedulers and show how to (prov-
ably) optimally take advantage of amortization for such schedulers. In fact, our
implementation and benchmarks do use this scheduler. For completeness, we
discuss below how to generalize the cost model to account also for amortization.

To derive a generalized cost model we modify the simple cost model as follows:
every tripple of the type (sti, πj , c

πj
sti) is generalized to a tripple (sti, πj , fcπjsti

(·)),
where f

c
πj
sti

: N→ Z≥0 is the amortized execution cost function, which on input

` ∈ N outputs the amortized cost f
c
πj
sti

(`) of computing ` parallel copies of sti

with protocol πj . Similarly, every triple of the type (σi, σj , c
σi2σj) is replaced by

a triple of the type (σi, σj , fcσi2σj (·)), where fcσi2σj : N→ Z≥0 is the amortized
conversion cost function, which on input ` ∈ N outputs the amortized cost
fcσi2σj (`) of converting ` sharings according to σi into sharings according to
σj . Using the same simplified notation as above, for X,Z ∈ {A, B, Y} we will
use fcX2Z to denote the function fcπX2πZ from the sharing corresponding to
πX to the sharing corresponding πZ . Naturally the costs of the simple model
corresponds to the output of the above functions on input ` = 1.

4.2 OPA for Linearized MPC

Having specified the (simple) cost model C we can now give a formal definition of
the OPA problem. Here we discuss the OPA problem for linearized MPC, which
we term linearized OPA8 for which we give an efficient solver in the following
section. The more general (non-linearized) case is then treated in §6.

To define linearized OPA we first need to introduce the notion of a protocol
assignment. Informally, a protocol assignment is defined on the sequence St =
{st1, . . . , st`} which is the CFG of Linear(S); it specifies what protocol should be
assigned to each statement (node) sti. More concretely, a protocol assignment PA
is a sequence of pairs of the type (st1, π1), . . . , (st|St|, π|St|), where (sti, πj) ∈ PA
means that statement sti is assigned protocol πj .

Clearly, the execution cost includes the sum of the costs of individual state-
ments sti ∈ Linear(S). However, we must take into account conversion cost —
if PA assigns protocol πX to sti, which defines variable x, and it assigns pro-
tocol πZ to stj which uses x, then PA entails conversion of x from Sharing X
to Sharing Z. Formalizing the above is somewhat tricky as we need to know
usage dependencies between the statements to place conversion points. Recall
that def-use chains are pairs of the form (d, u) where d and u are nodes in the
control-flow graph and u uses d. We need to place share conversion of definition

8 Wherever clear from the context we might drop the adjective linearized and refer to
the problem as OPA.

Efficient Optimal Protocol Mixing 17

d if there is at least one use u that requires it. Importantly, since we consider
Linear(S), each d executes exactly once and therefore, a conversion can be placed
immediately after d is executed. Informally, the execution cost is∑

st c
π
st +

∑
d c

πi2πj

where the first summation term accounts for the execution cost of all program
statements, per the protocol π assigned by PA to st, and the second term ac-
counts for necessary conversions: as stated earlier, a conversion at d is necessary
if at least one use of d is assigned a different protocol. Below, we formally define
the cost function that captures execution and conversion costs.

Let integer variables a(sti,πj) ∈ {0, 1} denote whether sti ∈ Linear(S) is
assigned protocol πj : a

(sti,πj) = 1 if (sti, πj) ∈ PA; a(sti,πj) = 0 otherwise.

Let integer variables x(sti,πj ,πk) ∈ {0, 1} denote whether protocol assign-
ment PA entails conversion of the definition at node sti from (the sharing
associated with) protocol πj into protocol πk. x(sti,πj ,πk) = 1 if it entails
conversion, that is, there is at least one use of the variable defined at sti
that requires πk. x(sti,πj ,πk) = 0 otherwise.

More precisely, let statement sti define variable x. Protocol assignment
PA entails conversion of the definition at node sti from πj into πk if and
only if there exist node stl that uses x and

(a(stl,πk) − a(sti,πk)) · a(sti,πj) = 1

The above equation (which is linear if and only if m = 2) states that the use
statement stl is assigned πk by PA (we have a(stl,πk) = 1), while the defini-
tion at statement sti is assigned πj (we have a(sti,πk) = 0 and a(sti,πj) = 1)
.

Therefore, the OPA problem becomes: find protocol assignment PA and val-
ues of variables a(sti,πj) ∈ {0, 1} and x(sti,πj ,πk) ∈ {0, 1} that minimize the
objective function:∑

sti,πj
a(sti,πj) · cπjsti +

∑
sti,πj ,πk

x(sti,πj ,πk) · cπj2πk(1)

subject to constraints∑
πj∈Π

a(sti,πj) = 1 for each node i (2)

and
x(sti,πj ,πk) ≥ (a(stl,πk) − a(sti,πk)) · a(sti,πj) (3)

for each def-use chain (sti, stl).

The first term in the summation captures statement execution cost, and the
second term captures conversion cost. Note also, that we simplify the problem by
assuming that each statement is assigned exactly one protocol. 9 The assumption

9 In some cases, it may be beneficial to assign more than one protocol, e.g., πY and πA

to the same statement, and perform the computation with each protocol.

18 Ishaq M., Milanova A. and Zikas V.

renders the problem cleaner. Specifically, a(stl,πk) − a(sti,πk) = 1 implies conver-
sion from πi at the definition to a πk at the use. If we allowed that a statement
is assigned more than one protocols, i.e.,

∑
πj∈Π a

(sti,πj) ≥ 1, then it would
not be straightforward to capture conversion at the definition: as more than one
protocol at the definition can be used to convert to the protocol required at the
use, we would need to take the convert from the available protocol with minimal
conversion cost to πk. In the case of 2 protocols, which is our goal in this paper,
we can relax this assumption.

We say that protocol assignment PA induces variable assignments a and x
when those assignments satisfy constraints (2) and (3).

The above integer program is non-linear if we allow for arbitrary protocols,
but becomes linear if we restrict it to two protocols, i.e., m = 2. For notational
simplicity, we give the definition of the problem for πi = πY and πi = πA, i.e.,
the (optimized) Yao and Arithmetic protocol from the ABY framework. This
is wlog, and our treatment can be trivially applied to any combination of two
protocols. We further simplify notation by using asti to denote (the indicator
variable) that PA assigns πA to sti, and ysti to denote that it assigns πY to sti.
We use xsti to denote that the definition at sti requires Y2A conversion, and
zsti to denote that sti requires A2Y conversion.

The (2-protocol, linearized) OPA problem becomes: find a protocol assign-
ment PA that minimizes∑

sti∈St (asti · cAsti + ysti · cYsti)
+∑

sti∈St (xsti · cA2Y + zsti · cY 2A)

where
asti + ysti ≥ 1 for each node sti

and
xsti ≥ astl − asti for each def-use (sti, stl)
zsti ≥ ystl − ysti for each def-use (sti, stl)

From now on, we will denote this problem as IPLinear(S).
For our purposes constraint xsti ≥ astl − asti is equivalent to xsti ≥ (astl −

asti) · ysti .
In §5 we show how to efficiently solve the above linear integer program, as

well as a related more efficient one defined directly on MPC-source programs.
Then in §6 we extend our treatement to a natural class of non-linearized (i.e.,
parallelized) MPC-source programs. The extension to m > 2 is an interesting
direction for future research.

5 Solving the Linearized OPA

We now describe our efficient linearized-OPA solver for two protocols (m =
2). Recall a solution to linearized OPA is a solution to IPLinear(S) defined in
the previous section, which in turn describes an optimal protocol (and share

Efficient Optimal Protocol Mixing 19

conversion) assignment for the linearized (straight-line) code. Formally, in this
section we prove the following theorem:

Theorem 1. Let IPLinear(S) be the integer program corresponding to the lin-
earized OPA problem defined above, and let LPLinear(S) be its LP relaxation. The
optimal solution to LPLinear(S) is integral, and therefore also the optimal solution
to IPLinear(S).

In a nutshell, the above theorem is proved by showing that the constraint matrix
of LPLinear(S) satisfies a property known as total unimodularity (cf. Definition 2);
a theorem from combinatorial optimization implies then that its solution is in
fact integral [Sch03].

We remark that although theoretically interesting, and against what was
previously conjectured, having an efficient (polynomial) solver for IPLinear(S) does
not necessarily yield a practical MPC protocol mixer. Indeed, since in linearized
MPC loops are entirely unrolled, the corresponding representation might end
up having millions of statements and therefore millions of constraints, hindering
scalability of the LPLinear(S) solver.

Therefore, we devise a solver that solves a smaller integer program over MPC-
source, denoted by IPCMPC(S). We stress that existing frameworks compute pro-
tocol assignments, at most as optimal as a solution to IPCMPC(S); indeed, in
ABY, the manual protocol assignment is made on the source code, which is
essentially MPC-source. In fact, in Theorem 3 we prove that this is always the
case under natural conditions on the optimal assignment computed by IPLinear(S).
Since st nodes in Linear(S) that map to the same n in CMPC(S) appear in iden-
tical contexts of execution in different iterations of the loop, we conjecture that
the above statement holds even unconditionally, i.e., if a protocol assignment
is optimal in one context, the same assignment will be optimal in the other.
We note in passing that although making the treatment more involved, devising
such a scalable solver is essential for deriving a practical solution to the problem.
Additionally, following the same structure of the proof of unimodularity of the
constraint matrix of IPCMPC(S), we can directly devise a proof of unimodularity
of the constraint matrix of IPLinear(S), thereby proving the result above.

The remainder of this section is organized as follows: In §5.1 we describe
IPCMPC(S), where §5.1 describes the parameters of the IPCMPC(S) integer pro-
gram, and §5.1 and §5.1 describe the constraints and objective function. As in the
previous section, to keep notation simple we focus on the two protocols, namely
arithmetic (πA) and Yao-based (πY) In §5.2 we prove our main result that due
to the structure of IPCMPC(S) its LP relaxation yields an integral solution; This
means that we can use standard efficient LP solvers to solve IPCMPC(S); finally,
in §5.3 we prove that the solution to IPCMPC(S), under natural conditions, is also
a solution to IPLinear(S). Due to limited space, the proofs have been moved to
the full version of this work.

5.1 Defining IPCMPC(S)

IPCMPC(S) is an integer program over MPC-source. It entails a significantly
smaller number of variables and constraints, and therefore accepts a more scal-

20 Ishaq M., Milanova A. and Zikas V.

able solver. (There are O(N) nodes in MPC-source compared to O(bDN) nodes
in Linear(S), where b is the maximum loop bound and D is the loop nesting
depth.) When no amortization is considered, the costs of executing and convert-
ing all st ∈ Linear(S) that map to the same n ∈ CMPC(S) is the same. As we
show in §5.3, if we constrain IPLinear(S) to the same ast and yst for all st that
map to the same n ∈ CMPC(S), the optimal solution of IPCMPC(S) is the optimal
solution of IPLinear(S) as well.

The Cost Model for IPCMPC(S)

Since we do not have parallelization/amortization, IPCMPC(S) has a simple cost
model as defined in the previous section. Concretely,

(1) cAn denotes the cost to run node n ∈ CMPC(S) using πA.

(2) cYn denotes the cost to run node n using πY.

(3) cA2Y denotes the cost to run A2Y conversion.

(4) cY 2A denotes the cost to run Y2A conversion.

Variables and Constraints We follow [Cho+07] to define variables and con-
straints. Let variables an and yn be integers in the interval {0, 1}, as in IPLinear(S)

we defined in §4.2. They denote whether node n executes with πA (using Arith-
metic sharing) or with πY (using Yao sharing). an = 1 if n runs using Arithmetic
sharing, and an = 0 if n runs using πY sharing. To enforce that each node must
execute at least once, we introduce constraint

an + yn ≥ 1 (1)

Let integer program variable x(d,u) ∈ {0, 1} denote whether (d, u) requires
Y2A conversion of x, that is, d computes x using πY sharing only, but u, which
uses x, computes using Arithmetic sharing, and thus requires conversion of x to
Arithmetic. Analogously, let z(d,u) ∈ {0, 1} denote whether (d, u) requires A2Y
conversion. z(d,u) = 1 if it does, and z(d,u) = 0 if it does not. Intuitively, the
following constraints would account for this:

x(d,u) ≥ au − ad z(d,u) ≥ yu − yd

That is, if au is 1 but ad is 0, or in other words d computes using πY, variable
x(d,u) is forced to 1. Later, when we minimize the total cost, we multiply x(d,u)
by the weight of (d, u), which is the number of times the min-cut edge of (d, u)
executes. Note that if au− ad (or yu− yd) is −1, then x(d,u) (or z(d,u)) would be
0 because of the interval restriction: x(d,u), z(d,u) ∈ {0, 1}.

However, a wrinkle arises here. Since there are multiple def-use chains that
start at d, the min-cut edge of (d, u) may already cover a different def-use (d, u′)
yielding constraints

x(d,u) ≥ au − ad x(d,u′) ≥ au
′
− ad

Efficient Optimal Protocol Mixing 21

too strong: since x(d,u) already covers (d, u′), if both (d, u) and (d, u′) require
conversion, it is sufficient to perform conversion along the min-cut edge of (d, u);
conversion along the min-cut edge of (d, u′) would be redundant. (Clearly, there
may be more than one uses for each def, but there is only a single def per use,
due to the SSA property.) We therefore introduce the notion of subsumption.

Definition 1. Def-use chain (d, u) subsumes def-use chain (d, u′), denoted
(d, u) ⊇ (d, u′), if and only if min cut(d, u) dominates u′, or in other words,
all paths from d to u′ go through min cut(d, u).

Intuitively, subsumption means that conversion of d at the min-cut edge of
(d, u) covers (d, u′) as well, and there is no need to introduce conversion at the
min-cut edge of (d, u′). There is no natural case for subsumption in our running
example. For the sake of argument, assume there is a use of rem3 defined at
line 14, in the outer loop at line 20. Then there are def-use chains (14,15) and
(14,20). min cut(14, 15) is edge 14 → 15, and min cut(14, 20) is edge 17 → 20.
However, (14,15) subsumes (14,20). Assuming that both uses, 15 and 20, require
conversion, then placing a conversion at 14 → 15 covers (14,15) and (14,20). If
15 does not require conversion but 20 does, then placing a conversion at the less
costly edge 17→ 20 suffices.

The above definition gives rise to a directed graph with nodes for all def-
use chains (d, u) for d, and edges due to subsumption: there is an edge from
(d, u) to (d, u′) if and only if (d, u) ⊇ (d, u′). Strongly connected components
(SCCs) in this graph imply several (d, u)’s with the same min-cut edge. We
therefore collapse SCCs into equivalence classes with a representative e—each
equivalence class is covered by a min-cut edge e—and extend the ordering to the
representative edges e. For example, suppose we have a chain d→ u1 → u2 → n
in one block, where u1 and u2 are uses of d. Suppose we have n→ u3 where u3
is a use in the immediately enclosing block. (d, u1) and (d, u2) are in the same
equivalence class with representative edge d→ u1, and (d, u3) is in another class,
with representative edge n→ u3. We have d→ u1 ⊇ n→ u3.

We now introduce a new set of constraint variables, xde and zde , similar to
variables x(d,u) and z(d,u) we introduced earlier. In the integer program we use

only variables xde and zde . xde ∈ {0, 1} denotes whether there is an Y2A conversion
of the variable defined at d on edge e.

Therefore, our constraints become:

xde1 + · · ·+ xdek ≥ a
u − ad

where ek is the representative of (d, u)’s equivalence class, and ei ⊇ ei+1 for
1 ≤ i ≤ k − 1. These constraints state that if (d, u) requires conversion from
Arithmetic to Yao’s protocol, it is sufficient to execute that conversion along a
min-cut edge for some (d, u′) that subsumes (d, u), even when that edge is not
the min-cut edge for (d, u) itself.

In the above constraint, edge ek is the representative edge for the equivalence
class of (d, u). If (d, u) is a backward chain, then ek is the back edge in u’s
block, and e1, . . . ek−1 are forward edges totally ordered by subsumption. If (d, u)

22 Ishaq M., Milanova A. and Zikas V.

is a forward chain, then all edges are forward edges and totally ordered by
subsumption: e1 ⊇ e2 · · · ⊇ ek−1. This structure of constraints that account for
conversion helps establish total unimodularity of the constraint matrix, as we
detail in the following section.

To summarize, we have constraints that account for conversion from πY to
πA:

xde1 + · · ·+ xdek ≥ a
u − ad (2)

and parallel constraints that account for conversion A2Y:

zde1 + · · ·+ zdek ≥ y
u − yd (3)

Objective Function The integer programming problem must find an assign-
ment for variables an, yn, xde and zde that satisfies the above constraints, and
minimizes the cost of running the program. The total cost is the sum of execu-
tion cost and conversion cost:∑

n (an · cAn · wn + yn · cYn · wn)
+∑

d,e (xde · cY 2A · we + zde · cA2Y · we)

The first summation term models the cost of execution of program statements
and is straight-forward. E.g., if n runs using πA then its cost would be cAn . The
cost of a single run of n is multiplied by wn, the number of times n executes.
In MPC-source wn is always statically known. The second term models conver-
sion cost and is less straight-forward. It iterates over all d, e pairs where d is
a definition and e is a min-cut edge representing some (d, u) (more precisely,
an equivalence class of (d, u)’s). we is the number of times the min-cut edge e
executes. Again, in MPC-source we is always statically known. To see the intu-
ition behind the second term, suppose we have two forward def-use chains (d, u)
and (d, u′) where (d, u) subsumes (d, u′) but not the other way around. (d, u)’s
representative is min-cut edge e and (d, u′)’s representative is e′. The term that
accounts for conversions of d (just Y2A), is xde · cY 2A · we + xde′ · cY 2A · we′ . If

the assignments to ad and au entail conversion, then xe is 1, and therefore, xe
′

is 0, thus nullifying term xde′ · cY 2A ·we′ , just as expected, since (d, u) subsumes
(d, u′). Conversely, if ad and au do not entail conversion, then xe is 0. If (d, u′)
does require conversion, we will have xe

′
= 1, thus converting definition d we′

times only, where we′ < we since e′ lies in an outer loop, and e lies in an inner
loop.

Therefore, IPCMPC(S) is as follows:
Minimize ∑

n (an · cAn · wn + yn · cYn · wn)
+∑

d,e (xde · cY 2A · we + zde · cA2Y · we)

subject to
Ax ≥ b

Efficient Optimal Protocol Mixing 23

where vector x = an1 , yn1 , an2 , yn2 , . . . , xde , z
d
e , . . . , and constraint matrix A con-

sists of rows corresponding to constraints (1), (2) and (3). All entries of A are 0
or ±1.

5.2 Solving IPCMPC(S) (and IPLinear(S)) via LP

We next prove that the LP relaxation LPCMPC(S) of IPCMPC(S) has a totally
unimodular constraint matrix and therefore an integral solution (as classical
combinatorial optimization results imply, cf. [Sch03]). First, let us recall the
definition of total unimodularity.

Definition 2. A matrix M is totally unimodular if every square submatrix of
M has determinant 0, +1, or −1. This implies that all entries of M are 0, or
±1 [Sch03].

Fortunately, the constraint matrix A in the integer program from §5.1
and §5.1 is totally unimodular. We show this by way of a characterization given
by Camion [Cam65] (cf. the full version of this work.)

Theorem 2. (Total unimodularity of constraint matrix A.) Let A be the con-
straint matrix of IPCMPC(S). For every square Eulerian submatrix of A, AIJ :∑
i∈I,j∈J A

j
i ≡ 0 (mod 4).

Remark 3. [On applying our method to three protocols simultaneously] Our ap-
proach does not generically extend to 3 or more protocols. The reason is that
the direct extension of our IP to m > 2 protocols changes the structure of the
underlying constraint matrix, in a way that total unimodularity no longer holds.
A way to see this is the following: we used constraints of the type au−ad to cap-
ture conversions to arithmetic from a different protocol. In the binary (m = 2)
case, ad = 0 implies that node d was computed in πY, and therefore, au−ad = 1
induces a Y2A conversion. When m = 3, au − ad = 1 would induce a Y2A
or a B2A conversion. As in general, πi2πj and πi′2πj conversions have differ-
ent costs, devising the corresponding constraints to capture conversions becomes
non-trivial, and the matrix is no longer totally unimodular.

5.3 From IPCMPC(S) to IPLinear(S)

In this section we show that under the assumption that all st ∈ Linear(S) that
map to the same n ∈ CMPC(S) are assigned the same share, the protocol assign-
ment that minimizes the objective function of IPCMPC(S) minimizes the objective
function of IPLinear(S) as well.

We define “abstraction” function α : Linear(S) → CMPC(S) and “concretiza-
tion” function γ : (CMPC(S) × CMPC(S)) → 2Linear(S) that will help us formalize
and establish equivalence (cf. the full version of this work.) Function α(st) re-
turns the node n in CMPC(S) that st maps to. Function γ((d, u)) takes a def-use
chain in CMPC(S), and returns the set of definitions std such that (std, stu) is a

24 Ishaq M., Milanova A. and Zikas V.

def-use chain in Linear(S), and α(std) = d, and α(stu) = u. Intuitively, γ((d, u))
returns all distinct std, such that there are distinct constraints in IPLinear(S)

xstd ≥ astu − astd s.t. α(std) = d, α(stu) = u

and thus

xstd ≥ aα(stu) − aα(std) equiv. xstd ≥ au − ad

We note that we abuse notation slightly, by using a and y interchangeably in
IPLinear(S) and in IPCMPC(S).

Theorem 3. Consider a protocol assignment PA = (an, yn) that minimizes
IPCMPC(S). If for every pair st, st′ ∈ Linear(S), α(st) = α(st′) ⇒ ast =

ast
′ ∧ yst = yst

′
, then aα(st) = an, yα(st) = yn minimizes IPLinear(S).

6 Scheduling and Parallelization

Scheduling specifies the order in which different instructions should be executed
and, in particular, which instructions should be executed in parallel. Scheduling
and parallelization have been extensively studied in the compilers and paral-
lel programming literature. However, the applicability to MPC of known algo-
rithms and results on loop parallelization, is not well-understood. We conjec-
ture (and leave for future work) that MPC-structure can be exploited to build
provably optimal schedules. In this section, we describe a natural schedule that
targets common patterns occurring in MPC applications. We believe that ex-
isting work [Büs+18; BK15], uses essentially the same approach to scheduling,
however, we are the first to formally and explicitly describe the schedules.

The original ABY framework takes a greedy parallelization approach: when-
ever something is parallelizable, assign to the parallel operation the protocol
which, when amortized is optimal. Clearly this does not always yield the optimal
assignment. More recent versions of the framework [Büs+18] employ heuristics
from parallel programming to detect parallelization [Wil+94; IJT91]. Although
this might, at times yield a faster execution, there are no guarantees, in general,
that the heuristically discovered scheduling is better than no parallelization or
full parallelization. In fact, one can construct examples in which the cost of con-
version after the parallelized node supersedes the benefits of amortization. For
example, a single EQ (equality check) is processed faster with πY but allows for
better amortization when processed with πB.

To avoid the ambiguity introduced by scheduling and parallelization, OPA
can be parameterized by an explicit scheduler. In the following we describe how
we define such a scheduler (§6.1). We describe a natural parallelization schedule
(§6.2), and what restriction we impose on a given schedule (§6.3). The restriction
guarantees that the solution of IPCMPC(S) is a solution to the IPLinear(S), and
natural parallelization schedules meet the restriction.

Efficient Optimal Protocol Mixing 25

n5	

n3	

n1	

n2	

n6	

n4	

B3	

B1	

B2	

n2(B11)				n2(B12)	

n1(B11)				n1(B12)	
n2(B11)(B21)				n2(B12)(B21)	

n1(B11)(B21)				n1(B12)(B21)	

n2(B11)(B22)				n2(B12)(B22)	

n1(B11)(B22)				n1(B12)(B22)	

n4(B22)	

n3(B21)	

n3(B22)	

n4(B22)	

MPC-source:	Dashed	arrow	is		
a	backward	def-use.	thus,		
B1	can	be	parallelized,		
B2	cannot,		
and	B3	can	be	parallelized.	
LinearizaGon	starts	from	innermost		
to	outermost	loop.	

Linearizing	B1.	

Linearizing	B2	(cannot	parallelize)	

n5	

n3	

n1	

n2	

n6	

n4	

B3	

B1	

B2	

n2(B11)				n2(B12)	

n1(B11)				n1(B12)	
n2(B11)(B21)				n2(B12)(B21)	

n1(B11)(B21)				n1(B12)(B21)	

n2(B11)(B22)				n2(B12)(B22)	

n1(B11)(B22)				n1(B12)(B22)	

n4(B22)	

n3(B21)	

n3(B22)	

n4(B22)	

MPC-source:	Dashed	arrow	is		
a	backward	def-use.	thus,		
B1	can	be	parallelized,		
B2	cannot,		
and	B3	can	be	parallelized.	
LinearizaGon	starts	from	innermost		
to	outermost	loop.	

Linearizing	B1.	

Linearizing	B2	(cannot	parallelize)	

n5	

n3	

n1	

n2	

n6	

n4	

B3	

B1	

B2	

n2(B11)				n2(B12)	

n1(B11)				n1(B12)	
n2(B11)(B21)				n2(B12)(B21)	

n1(B11)(B21)				n1(B12)(B21)	

n2(B11)(B22)				n2(B12)(B22)	

n1(B11)(B22)				n1(B12)(B22)	

n4(B22)	

n3(B21)	

n3(B22)	

n4(B22)	

MPC-source:	Dashed	arrow	is		
a	backward	def-use.	thus,		
B1	can	be	parallelized,		
B2	cannot,		
and	B3	can	be	parallelized.	
LinearizaGon	starts	from	innermost		
to	outermost	loop.	

Linearizing	B1.	

Linearizing	B2	(cannot	parallelize)	

n2(B11)(B21)(B31)				n2(B12)(B21)(B31)	

n1(B11)(B21)(B31)				n1(B12)(B21)(B31)	

n2(B11)(B22)(B31)				n2(B12)(B22)(B31)	

n1(B11)(B22)(B31)				n1(B12)(B22)(B31)	

n4(B22)(B31)	

n3(B21)(B31)	

n3(B22)(B31)	

n4(B22)(B31)	

n5(B31)	

n6(B31)	

n2(B11)(B21)(B31)				n2(B12)(B21)(B31)	

n1(B11)(B21)(B31)				n1(B12)(B21)(B31)	

n2(B11)(B22)(B31)				n2(B12)(B22)(B31)	

n1(B11)(B22)(B31)				n1(B12)(B22)(B31)	

n4(B22)(B31)	

n3(B21)(B31)	

n3(B22)(B31)	

n4(B22)(B31)	

n5(B31)	

n6(B31)	

(a) MPC-source with def-use chains (b) Linearization of B1 and B2 (c) Linearization of B3: Parallel(S)

Figure 3. Natural Schedule. There are no backward def-use chains in B1, and therefore
B1 is parallelized, executing n1(B11) and n1(B12) in parallel, as shown at the top of
Fig. (b). (We assume each loop has bound 2. n1(B11) denotes the execution of n1
in the first iteration of B1, and n1(B12) in the second.) There is a backward def-use
chain in B2, (n2, n3) and therefore B2 cannot be parallelized. The two iterations of B2
happen sequentially. There is no backward def-use chain in B3, therefore B3 can be
parallelized too, resulting in the final schedule shown in (c). Fig. 3(c) shows concrete
def-use chains. There are 8 concrete def-use chains, shown with dashed arrows, that
correspond to (n1, n2), and there are 2 def-use chains that correspond to (n1, n6).
Conversion due to (n1, n2) is amortized over 4 parallel executions, however conversion
due to (n1, n6) is amortized over 2.

6.1 Scheduler

We define schedulers over Linear(S)—recall, these are the linear CFGs corre-
sponding to the linearized MPC. Linear(S) can be extended to capture parallel
execution of the program, by grouping multiple statements into one hyper-node
(aka parallel node). All st’s grouped into a parallel node can execute in paral-
lel. Parallel(S) is the sequence of parallel nodes P1 → P2 → · · · → Pn, where P1

executes before P2, P2 executes before P3, etc. We say that Parallel(S) is a paral-
lelization of Linear(S) if and only if for every def-use chain (std, stu) ∈ Linear(S),
std is in hyper-node Pi, stu is in hyper-node Pj , and Pi executes before Pj . The
restriction is necessary to preserve program correctness—a definition must exe-
cute before all its uses.

Definition 3 (OPA-scheduler). An OPA scheduler S for Linear(S) is a map-
ping from Linear(S) to a parallelization (schedule) Parallel(S).

26 Ishaq M., Milanova A. and Zikas V.

6.2 A Natural Schedule

A natural schedule arises as follows. Assume MPC-source, as shown in Fig. 3(a).
If a loop B is such that there is a backward def-use chain in B—and thus,
there are no data dependencies from iteration k to iteration (k + 1) of B—then
we schedule B’s iterations in parallel by grouping corresponding nodes into a
hyper-node; otherwise, we schedule the iterations sequentially, as in Linear(S).
We call the former case a parallel loop, and the latter case a sequential loop. For
example, the innermost loop B1 in Fig. 3(a) is a parallel loop. The schedule of
B1 is shown at the top of Fig. 3(b). n1(B11) and n1(B12) are scheduled in the
same hyper-node, say P1, and n2(B11) and n2(B12) are scheduled in P2, and P1

executes before P2. Loop B2 is a sequential loop. The schedule of B2 is shown
in Fig. 3(b) as well. Since there is a backward def-use chain B2’s iterations are
scheduled sequentially.

We construct a natural schedule inductively, from the innermost (depth level
0) towards the outermost (depth level D) loop. Assume a schedule Sk : P1 →
P2 . . . Pl at level k, enclosed in a loop block B with bound b at level (k + 1).
If B is a parallel loop, then the new schedule Sk+1 is constructed by grouping
together all Pi(B1), Pi(B2), . . . , Pi(Bl). S(k+1) is

P1(B1) . . . P1(Bb)→ P2(B1) . . . P2(Bb)→ · · · → Pl(B1) . . . Pl(Bb)

Conversely, if B is a sequential loop, S(k+1) is constructed by sequencing Sk b
times:

P1(B1)→ · · · → Pl(B1)→ P1(B2)→ · · · → Pl(B2)→ · · · → Pl(Bb)

The final schedule constructed from the MPC-source abstraction in Fig. 3(a) is
shown in Fig. 3(c).

We stress that the natural schedule, which we construct in the implemen-
tation, is only a step towards a solution. We believe that one can exploit the
well-behaved MPC-source representation, and data dependences on MPC-source,
to construct provably optimal schedules. We will explore this direction in future
work.

6.3 Uniformly Parallel Schedule

In this section, we describe a restriction on parallelization—namely, we consider
schedules that have a property we call uniformly parallelization. This restriction
captures natural schedules, and it also enables computing an optimal protocol
assignment that takes advantage of amortized costs. Similarly to §5.3, if we
constrain IPParallel(S) to the same ast and yst for all st that map to the same
n ∈ CMPC(S), then the optimal solution of IPCMPC(S) is the optimal solution of
IPParallel(S). Below we formalize the uniform parallelization restriction. In the full
version of this work we argue that a natural schedule as described in §6.2, meets
the uniform parallelization restriction, and therefore, the protocol assignment
that minimizes IPLinear(S) minimizes IPParallel(S) for a natural schedule.

Efficient Optimal Protocol Mixing 27

First, we extend the concretization function γ, to work on n ∈ CMPC(S):
γ(n) = { st ∈ Linear(S) | α(st) = n }. We note that we abuse notation by
allowing an ill-formed domain of γ. The restriction has two components:

1. All γ(n) are uniformly allocated across N hyper-nodes (parallel nodes) in

Parallel(S). That is, each one of the N hyper-nodes contains |γ(n)|N st nodes.

As a result, we can amortize execution costs of the st nodes based on |γ(n)|N ,
and associate the same (potentially amortized) costs cAn and cYn with each
st ∈ γ(n). These costs can be extracted from a generalized cost model.

2. All γ((d, u)) are uniformly allocated acrossM hyper-nodes. Again, each one of

the M hyper-nodes contains |γ((d,u))|M std nodes. As a result, we can amortize

conversion costs of the std ∈ γ((d, u)) nodes based on |γ((d,u))|M , and associate
the same (potentially amortized) conversion costs cY 2A

d(e) and cA2Y
d(e) —also ex-

tracted from the generalized cost model—with each std ∈ γ((d, u)), where
e = min cut(d, u). Notably, the cost of converting d depends on what the
min-cut edge e happens to be.

By Lemma 4 (see the full version of this work), if (d, u) subsumes (d, u′),
then γ((d, u′)) ⊆ γ((d, u)), i.e., only a subset of the definitions std are part
of def-use chains that end at u′’s. Thus, γ((d, u′)) is amortized over a smaller
number of parallel executions, and therefore, individual conversion cost cY 2A

d(e′)

may be higher than individual conversion cost cY 2A
d(e) . If conversions are not

required at (d, u), but they are required at (d, u′), those conversions contribute
higher cost, namely cY 2A

d(e′), than (d, u).

Linear(S) is an extreme case of a uniformly parallel schedule: all parallel
nodes are of size 1, and all costs are the sequential costs.

Theorem 4. The protocol assignment that minimizes∑
n (an · cAn · wn + yn · cYn · wn)

+∑
d,e (xde · we · cY 2A

d(e) + zde · we · cA2Y
d(e))

also minimizes∑
st (ast · cAst + yst · cYst) +

∑
st(x

st · cY 2A
st + zst · cA2Y

st)

This is argued exactly as in §5.3.

7 Implementation and Benchmarks

In this section we discuss our implementation and experimental results. The
section is organized as follows: §7.1 presents an overview of our implementation—
the analysis and OPA solver, and §7.2 describes our experiments. §7.3 details
how we calculated costs for the cost model and discusses the implications of
our method. §7.4 concludes with a detailed examination of our results, and a
comparison with existing works. For brevity, we may refer, collectively, to our
implementation of the analysis and OPA solver as the toolchain or the tool.

28 Ishaq M., Milanova A. and Zikas V.

prog.java Analysis Linear Programanalysis
(json)

assignments
(text)

costs
(json) costs-script

Figure 4. Implementation Overview: The analysis takes a Java program as input and
outputs a def-use graph (along with related information). The linear program takes as
input analysis information and costs, and outputs the optimal assignment.

7.1 The Toolchain

Our techniques are generically applicable to MPC-source, which can be defined
on any high-level language, i.e., any language that can be transformed into IMP-
SSA form is a candidate for our analysis. In our experiments we chose Java as
the high level language for our system. Following the methodology introduced
in the previous sections, we restrict our benchmarks to an IMP-style subset of
Java that can be translated to MPC-source. This yields the following restrictions
which are standard in MPC compilers [BNP08; SR18; Fra+14]: 1) function calls
are statically resolvable, i.e. no polymorphism, 2) there is no recursion, 3) loops
have statically known bounds, and 4) arrays have statically known sizes.

Additionally, we restrict data types to unsigned integers (for both scalars
and arrays). We note that this restriction does not entail loss of generality. If
the underlying compiler supports additional data types, the analysis can easily
be extended to handle those data types. The OPA solver itself will remain un-
changed. However, costs for operations on the additional data types will have to
be collected (the OPA solver needs costs for all operations). In fact, one future
research direction is to integrate our toolchain into a feature-rich hybrid protocol
compiler such as CGMC-GC [Fra+14].

We used Soot [Val+99] for performing our program analysis. Soot is a popular
program analysis framework for Java and Android. It provides an SSA form
called Shimple. It also provides out-of-the-box support for function inlining, loop
detection and basic def-use analysis, which facilitate translation of Java to IMP-
SSA, and subsequently to MPC-source.

We used MATLAB’s Optimization Toolbox to write a linear program that
takes analysis information as input (along with costs) and outputs an optimal
mixed protocol assignment for the specified two protocols.

Figure 4 presents an overview of our system. The analysis takes a Java pro-
gram as input. Using Soot, it transforms the input program into SSA form
(Shimple), then inlines the function calls. The program is now transformed into
MPC-source. (A mapping from Shimple operations to MPC gates is defined
inside the analysis, and there is no need to explicitly perform this transforma-

Efficient Optimal Protocol Mixing 29

Table 1. Running Times of Analysis and Integer Program (rounded to nearest integer,
median of 10 executions).

Lines of Code Time (secs)

Benchmark Java MPC- MPC Analysis Integer
Source Nodes† Program

GCD 36 55 10 18 1
Biometric Matching 55 112 7 19 1
Modular Exponentiation 43 112 19 18 1
Private Set Intersection (PSI) 40 75 2 18 1
Histogram 102 160 24 18 1
MiniONN (MNIST) 196 696 114 23 4
k-means 121 331 36 19 2
DB-Merge (500 + 500) 77 192 26 19 1
DB-Join (50 x 50) 83 189 33 19 1
DB-Join (25 x 200) 103 225 43 19 1
Cryptonets (Square) 103 331 39 19 1

† MPC-Source nodes may translate to several gates, e.g. in the running GCD example,
the MUX on line 25 is translates to 2 * LEN gates.

tion.) We analyze MPC-source and generate the linear program. We then pass
the linear program to MATLAB and solve it using its built-in LP solver.

7.2 Our Experiments

OPA is parameterized by the cost model and its optimality is with respect to
the underlying costs. We detail how we obtained cost for our experiments in Sec-
tion §7.3. Using our toolchain with these costs we run the following experiments
on a Core i6-6500 3.2 GHz computer with 16GB of RAM: For each benchmark,
and each pair of protocols from {πA, πB, πY} (i.e. for each of {πA, πB }, {πA, πY
} and {πB, πY }), we plugged in our corresponding costs to derive the linear
program. We used the solutions of the corresponding linear programs to obtain
the optimal 2-out-of-3 protocol assignment by keeping the one with the overall
minimum value for the objective function. The results of the experiment are
summarized in Table 1.

7.3 Calculating Costs

Calculating accurate costs is of high importance for the usability of any protocol
assignment tool. As discussed in §3.5, one can instantiate the cost model with
different cost values depending on the setting. Following the trend in the hybrid
MPC literature [DSZ15; MR18; Büs+18] we focused on running time in our
experiments. Ideally, we would reuse cost tables from existing works for the most
accurate comparison. Unfortunately, not all costs are reported, and the actual

30 Ishaq M., Milanova A. and Zikas V.

Table 2. Instruction cost, in micro-seconds. Averaged over 100 executions except when
n = 1 where it is averaged over 1000 executions. (32bit)

Inst n (Simulated LAN) n (Simulated WAN)

1 100 500 1 100 500

ADD B 2083 151 134 2088 1706 1484
Y 1476 77 66 1473 468 801
A 908 9 3 897 10 3

AND B 1372 34 30 1369 43 276
Y 1462 50 50 1461 504 937

EQ B 1838 37 33 1863 50 249
Y 1457 52 49 1454 394 772

GE B 2134 92 87 2145 907 999
Y 1487 74 71 1485 642 1111

GT B 2026 69 67 2020 577 855
Y 1463 54 51 1466 649 990

LE B 2018 72 67 2016 512 709
Y 1468 54 52 1467 405 739

LT B 2136 93 88 2141 1094 1020
Y 1479 74 72 1470 1094 1083

MUL B 5831 1992 1963 5811 12212 12117
Y 2812 1139 1114 2118 13553 11867
A 3057 20 17 3136 40 197

MUX B 1405 26 24 1409 37 24
Y 1474 61 59 1459 433 763

NE B 1855 38 32 1851 51 271
Y 1452 52 49 1465 482 718

OR B 1381 44 41 1393 53 259
Y 1463 61 58 1459 526 776

SHL B 2511 370 369 2493 3235 3336
Y 1797 260 249 1776 4413 3807

SHR B 2521 379 375 2492 3762 3517
Y 1775 258 253 1785 3811 3680

SUB B 4449 72 63 4513 101 330
Y 1490 70 67 1477 635 766
A 910 4 3 915 10 3

XOR B 925 17 17 923 23 16
Y 1398 40 39 1394 214 537

A2B 1772 138 130 1758 1815 1520

A2Y 1690 134 129 1705 1250 1753

B2A 1439 39 37 1444 85 440

B2Y 1536 65 60 1519 527 893

Y2A 1967 56 52 1977 342 710

Y2B 1463 44 42 1460 221 583

Efficient Optimal Protocol Mixing 31

code that runs the experiment is not released at the time of writing. Therefore, we
use the following methodology to calculate runtime costs of different instructions
and share conversions.

To compute costs for an operation OP in the unamortized setting, we use a
circuit with two inputs a, b from Alice and Bob, a gate OP that operates on a,

b and a reconstruction gate that reconstructs to both parties. To facilitate com-
parison with ABY [DSZ15], we obtain the circuits by use of the public interface
of ABY [DSZ15] without modifying the internal code, i.e., we use ABY’s cir-
cuit creation mechanism in a black-box manner. We run this circuit 1000 times
and average the total time reported by ABY [DSZ15]. For n parallel/amortized
operations, we have a circuit with n copies of each gate (as described above, in
the unamortized setting), making n OP gates execute in parallel. Observe that
the unamortized setting is exactly n = 1. We create and run experiments for
n = {1, 2, 5, 10, 25, 50, 100, 200, 300, 500, 800}.

An important factor that affects the run time of MPC is the communication
network. Therefore, one usually investigates two common scenarios: execution
over a Local Area Network (LAN) vs. over Wide Area Network (WAN). There
are two types of experiments one can do to estimate the effect of the network,
namely execute the protocol over a real LAN or WAN [DSZ15], or use a network
simulator [MR18; Büs+18]. As our goal is mainly to demonstrate our toolbox
and compare to existing results, we used the latter method. We note that in
either case, existing benchmarks demonstrate that although the network type
affects the absolute running time of the protocols, in almost all cases it does not
affect the actual optimal assignment. This trend is confirmed in our simulation
experiments.

Following the methodology used in [MR18; Büs+18] we used Linux’s Traffic
Control tc to simulate the network. We used the same parameters as in [MR18]:
LAN (i.e., bandwidth=10gbps, burst=250mbps, latency=500us) vs. WAN (i.e.,
bandwidth=40mbps, burst=1mbps, latency=40ms). The target machine for cost
calculation is a virtual machine with a single 3.2GHz core with 4GB of RAM.
The collected results are shown in Table 2.

The above cost table demonstrates the standard cost trends reported in the
literature: Amortized operations are less costly (per operation) than unamortized
one, the Yao-based protocol performs better than Boolean (GMW) in most cases,
and Arithmetic performs better when amortized. However, a closer look reveals a
cacophony which calls for a re-examination of how cost are computed throughout
the mixed protocol selection literature: The costs for unamortized, or slightly-
amortized operations are similar in (simulated) LAN and WAN. This is not
surprising if one takes into account that: (1) the simulated WAN is effectively a
more powerful LAN (i.e., issues resulting from using different routing protocols
do not appear in such simulations); and (2) since there is no other traffic flowing
thought the simulated network, the two networks perform very similarly in low-
load scenarios.

The first issue can be mitigated by running the experiments over actual net-
works, but solving the second issue is tricky: One might be tempted to decrease

32 Ishaq M., Milanova A. and Zikas V.

the capacity (or, equivalently, increase the flow) of the simulated network. This
will indeed make saturation take effect even with low traffic and create a cost
difference in WAN vs LAN. However, this may still not capture the actual cost
of operations, since this cost depends on what protocol traffic is circulated, e.g.,
if an operation OP2 follows a parallel batch of a communication-intensive op-
eration OP1, then it might be better to compute OP2 with a protocol which is
more computation-intensive but less-communication intensive. Although it does
not affect our theory, we view cost measurement as an important open problem
for this line of work.

Importantly, the trends observed in [DSZ15; Büs+18] that dominate pro-
tocol assignment, are present in our cost measurements as well. As a result,
our toolchain computes consistent protocol assignments with previous works, as
discussed in the following section.

7.4 Evaluation of the Implementation

In this section we describe the results of running our OPA solver. We
run the solver on benchmarks from HyCC[Büs+18] (https://gitlab.com/
securityengineering/HyCC) 10 and ABY[DSZ15], as well as on several new
ones that we constructed for these experiments. We compare the outcome of our
solver to the assignments proposed in HyCC[Büs+18] and ABY[DSZ15]. The
results are summarized in Table 1.

In the following, we discuss the outcome of each of the benchmarks in Table 3
and, wherever feasible, confirm that our OPA solver demonstrates the expected
behavior.

1) GCD This is the running example from this paper. Alice and Bob compute
the GCD of their inputs. This protocol entails no parallelization (i.e., no amor-
tization). Since cost of sequential operations in πY is the least, the IP outputs
that assignment.

2) Biometric Matching A server holds a database S containing m n-dimensional
tuples, and the client holds an n-dimensional query C. The parties compute the
tuple in the database with the minimal euclidean distance to the query C (here
m = 512, n = 4). This is a standard MPC benchmark whose assignment is well
known. It has a two pass structure. In the first pass, arithmetic operations are
highly parallelized. Therefore, the first pass is assigned the arithmetic protocol
πA. The second pass computes the minimum and uses (unamortized) comparison
(GE) and multiplexing (MUX) operations. Both of these cost less in πY than in πB.
Therefore, the second pass is assigned πY. There is a single array that contains
the output of the first pass, therefore, a single conversion happens before the
second pass. Our assignment is the same as the well known assignment.

10 We have translated all HyCC’s publicly available benchmarks, except, due to time
constraints, Gauss.

Efficient Optimal Protocol Mixing 33

Table 3. Assignments Comparison with HyCC[Büs+18] and ABY[DSZ15]. For easier
notation, we use A, B, and Y instead of πA, πB, and πY.

Simulated LAN Simulated WAN

Benchmark OPA Solver HyCC ABY OPA Solver HyCC‡ ABY

GCD Y — — Y — —
Biometric Matching A+Y(4,3,1)* A+Y A+Y A+Y(4,3,1)* A+Y A+Y
Modular Exponentiation Y — A+B+Y Y — Y
Private Set Intersection (PSI) B — B† B — B+Y†
Histogram A+Y(3,21,1)* — — A+Y(3,21,1)* — –
MiniONN (MNIST) A+Y(65,49,7)* A+Y — A+Y(65,49,7)* A+Y –
k-means B+Y(2,34,2)* A+Y — B+Y(2,34,2)* A+Y –
DB-Merge (500 + 500) A+Y(5,21,4)* A+Y — A+Y(5,21,4)* A+Y –
DB-Join (50 x 50) A+Y(6,27,2)* A+Y — A+Y(6,27,2)* A+Y –
DB-Join (25 x 200) A+Y(6,37,3)* A+Y — A+Y(6,37,3)* A+Y –
Cryptonets (Square) A+Y(24,15,1)* A — A+Y(24,15,1)* A –

— Assignment not provided.
† ABY[DSZ15] does not specify which implementation of PSI it uses, therefore com-

parison is not meaningful.
‡ We use the assignment in HyCC[Büs+18] that yields minimum total time (setup +

online).
* The first value in the triplet is # of operations in A or B depending on the assign-

ment, A+Y or B+Y respectively. The second value is # of operations in Y, the
third value is # of conversions.

34 Ishaq M., Milanova A. and Zikas V.

3) Modular Exponentiation Two parties come together to compute baseexp

mod m (base, exp and mod are all 32 bit unsigned integers) where one party
holds base and the other party holds exp. This protocol accepts no paralleliza-
tion either and is assigned πY for the same reason as GCD. In the (simulated)
WAN setting, our assignment is the same as ABY’s [DSZ15]. In the (simulated)
LAN seting, ABY [DSZ15] assigns a combination of all three protocols using a
faster MUX—whose implementation is not publicly available. Our assignment,
πY, which we computed using the standard implementation of MUX is their sec-
ond best.

4) Private Set Intersection (PSI) A server holds set S1, a client holds set S2
(here sizes of S1 and S2 are 1024 and 32 respectively, elements are 32-bit un-
signed integers). We use the straighftorward O(n2) protocol. It is completely
parallelizable and relies on NE and MUX operations. Looking at the cost tables,
the amortized NE and MUX are cheaper with πB, therefore the πB assignment.

5) Histogram This is a benchmark that we adapted from the PUMA benchmark
suite of MapReduce programs. Parties jointly hold a movie ratings database of n
reviewers and m movies (here n = 100,m = 100, and all elements are unsigned
integers). Together, they compute a histogram of average ratings of the reviewers.
It has one loop with enough parallelization to justify a πA assignment, hence the
optimal assignment mixes πA and πY.

6) MiniONN [Liu+17] (MNIST) and Cryptonets [Gil+16] These are Machine
Learning benchmarks. We translated them from HyCC [Büs+18]’s public code
and ran them through our toolchain. MNIST is the largest benchmark in terms
of lines of code, and the most complex one. Several loops with arithmetic opera-
tions are parallelizable, and those loops are assigned πA; all other operations are
assigned πY. This makes the summary assignment mixing πA and πY, the same as
reported by HyCC [Büs+18]. In Cryptonets (RELU function being square), al-
though there are only arithmetic operations, some of them are inside non-parallel
loops. Because our unamortized πY-costs are less than unamortized πA (which is
standard in the WAN setting), arithmetic operations in the non-parallel loops are
assigned πY. This makes the full assignment a mix of πA and πY. By comparison,
HyCC [Büs+18]’s assignment uses πA only; this is because costs for arithmetic
operations in πA are less than in πY in the LAN setting (HyCC does not report
the assugnment in the WAN setting but we believe it’s also a mix of πA and πY).

7) k-means This is a clustering algorithm and a data mining benchmark. We
took it from HyCC [Büs+18]’s public code and ran it through our toolchain.
We did not detect parallelizable loops, which explains the lack of assignments to
πA. There is an OR operation (in the implementation of integer division) whose
result is accumulated for subsequent operations. This gets an assignment of πB.
Our overall assignment is then a mix of πB and πY. HyCC’s assignment is a mix
of πA and πY. The reason we do not detect any πA assignments is that we analyze
the standard version, and we do not detect parallelization. HyCC analyzes a
parallelizable version, hence the πA assignment to arithmetic operations.

Efficient Optimal Protocol Mixing 35

8) DB-Merge (500 + 500), DB-Join (50x50) and DB-Join (25 x 200) These
are data analytics benchmarks, also taken from HyCC [Büs+18]. All of these
contain some arithmetic operations inside parallelizable loops. Therefore those
operations are assigned πA. The overall assignment that optimizes total time in
all three cases is a mix of πA and πY, just as in HyCC.

8 Conclusions

We revisit the problem of optimal protocol assignment (OPA) for hybrid MPC
which was conjectured to be NP-hard. We prove that, modulo scheduling/paral-
lelization, for the special case of two protocols, the problem can in fact be solved
in polynomial time. Our analysis is based on a framework we propose which com-
bines ideas and techniques from program analysis and MPC. We implemented
our OPA solver and tested it using simulated costs in a wide set of known bench-
marks demonstrating its efficiency and quality. Our treatment points to several
open problems in programming language, MPC, and networks.

References

[80] “A Polynomial-Time Algorithm for Solving Linear Programs.” In:
Math. Oper. Res. 5.1 (Feb. 1980), pp. iv–iv. issn: 0364-765X. doi:
10.1287/moor.5.1.iv. url: http://dx.doi.org/10.1287/moor.
5.1.iv.

[88] 20th ACM STOC. Chicago, IL, USA: ACM Press, May 1988.
[Aho+06] Alfred V. Aho et al. Compilers: Principles, Techniques, and Tools

(2Nd Edition). Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 2006. isbn: 0321486811.

[Bea92] Donald Beaver. “Efficient Multiparty Protocols Using Circuit Ran-
domization.” In: CRYPTO’91. Ed. by Joan Feigenbaum. Vol. 576.
LNCS. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
Aug. 1992, pp. 420–432. doi: 10.1007/3-540-46766-1_34.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Complete-
ness Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation (Extended Abstract).” In: 20th ACM STOC. Chicago,
IL, USA: ACM Press, May 1988, pp. 1–10. doi: 10.1145/62212.
62213.

[BK15] Niklas Büscher and Stefan Katzenbeisser. “Faster Secure Compu-
tation through Automatic Parallelization.” In: 24th USENIX Se-
curity Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015. 2015, pp. 531–546. url: https://www.usenix.
org / conference / usenixsecurity15 / technical - sessions /

presentation/buescher.

36 Ishaq M., Milanova A. and Zikas V.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. “Sharemind: A
Framework for Fast Privacy-Preserving Computations.” In: ES-
ORICS 2008. Ed. by Sushil Jajodia and Javier López. Vol. 5283.
LNCS. Málaga, Spain: Springer, Heidelberg, Germany, Oct. 2008,
pp. 192–206. doi: 10.1007/978-3-540-88313-5_13.

[BNP08] A. Ben-David, N. Nisan, and B. Pinkas. “FairplayMP: a system for
secure multi-party computation.” In: Proc. 15th ACM Conf. Com-
put. and Commun. Security (CCS). Alexandria, VA, USA: ACM,
2008, pp. 257–266.

[Büs+18] Niklas Büscher et al. “HyCC: Compilation of Hybrid Protocols for
Practical Secure Computation.” In: ACM CCS 18. Ed. by David Lie
et al. Toronto, ON, Canada: ACM Press, Oct. 2018, pp. 847–861.
doi: 10.1145/3243734.3243786.

[Cam65] Paul Camion. “Characterization of Totally Unimodular Matrices.”
In: Proceedings of the American Mathematical Society 16.5 (1965),
pp. 1068–1073.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. “Multiparty
Unconditionally Secure Protocols (Extended Abstract).” In: 20th
ACM STOC. Chicago, IL, USA: ACM Press, May 1988, pp. 11–19.
doi: 10.1145/62212.62214.

[Cha+17] Nishanth Chandran et al. “EzPC: Programmable, Efficient, and
Scalable Secure Two-Party Computation.” In: IACR Cryptology
ePrint Archive 2017 (2017), p. 1109.

[Cho+07] Stephen Chong et al. “Secure Web Applications via Automatic Par-
titioning.” In: Proceedings of Twenty-first ACM SIGOPS Sympo-
sium on Operating Systems Principles. SOSP ’07. Stevenson, Wash-
ington, USA: ACM, 2007, pp. 31–44. isbn: 978-1-59593-591-5. doi:
10.1145/1294261.1294265. url: http://doi.acm.org/10.1145/
1294261.1294265.

[Cho+13] Ashish Choudhury et al. “Between a Rock and a Hard Place: Inter-
polating between MPC and FHE.” In: ASIACRYPT 2013, Part II.
Ed. by Kazue Sako and Palash Sarkar. Vol. 8270. LNCS. Bengalore,
India: Springer, Heidelberg, Germany, Dec. 2013, pp. 221–240. doi:
10.1007/978-3-642-42045-0_12.

[Cyt+91] Ron Cytron et al. “Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph.” In: ACM Trans. Pro-
gram. Lang. Syst. 13.4 (Oct. 1991), pp. 451–490. issn: 0164-0925.
doi: 10.1145/115372.115320. url: http://doi.acm.org/10.
1145/115372.115320.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. “ABY - A
Framework for Efficient Mixed-Protocol Secure Two-Party Compu-
tation.” In: NDSS 2015. San Diego, CA, USA: The Internet Society,
Feb. 2015.

[Fra+14] Martin Franz et al. “CBMC-GC: An ANSI C Compiler for Secure
Two-Party Computations.” In: Compiler Construction - 23rd Inter-

Efficient Optimal Protocol Mixing 37

national Conference, CC 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014. Proceedings. 2014, pp. 244–249.
doi: 10.1007/978-3-642-54807-9_15. url: https://doi.org/
10.1007/978-3-642-54807-9%5C_15.

[Gil+16] Ran Gilad-Bachrach et al. “CryptoNets: Applying Neural Networks
to Encrypted Data with High Throughput and Accuracy.” In: Pro-
ceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016. 2016,
pp. 201–210. url: http://jmlr.org/proceedings/papers/v48/
gilad-bachrach16.html.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play
any Mental Game or A Completeness Theorem for Protocols with
Honest Majority.” In: 19th ACM STOC. Ed. by Alfred Aho. New
York City, NY, USA: ACM Press, May 1987, pp. 218–229. doi:
10.1145/28395.28420.

[Hen+10] Wilko Henecka et al. “TASTY: tool for automating secure two-party
computations.” In: ACM CCS 10. Ed. by Ehab Al-Shaer, Angelos
D. Keromytis, and Vitaly Shmatikov. Chicago, Illinois, USA: ACM
Press, Oct. 2010, pp. 451–462. doi: 10.1145/1866307.1866358.

[IJT91] François Irigoin, Pierre Jouvelot, and Rémi Triolet. “Semantical in-
terprocedural parallelization: an overview of the PIPS project.” In:
Proceedings of the 5th international conference on Supercomputing,
ICS 1991, Cologne, Germany, June 17-21, 1991. 1991, pp. 244–251.
doi: 10.1145/109025.109086. url: https://doi.org/10.1145/
109025.109086.

[Kar84] N. Karmarkar. “A New Polynomial-time Algorithm for Linear Pro-
gramming.” In: Proceedings of the Sixteenth Annual ACM Sympo-
sium on Theory of Computing. STOC ’84. New York, NY, USA:
ACM, 1984, pp. 302–311. isbn: 0-89791-133-4. doi: 10 . 1145 /

800057.808695. url: http://doi.acm.org/10.1145/800057.
808695.

[KSS13] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schnei-
der. “A systematic approach to practically efficient general two-
party secure function evaluation protocols and their modular de-
sign.” In: Journal of Computer Security 21.2 (2013), pp. 283–315.
url: http://dblp.uni- trier.de/db/journals/jcs/jcs21.

html#KolesnikovS013.
[KSS14] Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer. “Au-

tomatic Protocol Selection in Secure Two-Party Computations.” In:
ACNS 14. Ed. by Ioana Boureanu, Philippe Owesarski, and Serge
Vaudenay. Vol. 8479. LNCS. Lausanne, Switzerland: Springer, Hei-
delberg, Germany, June 2014, pp. 566–584. doi: 10.1007/978-3-
319-07536-5_33.

38 Ishaq M., Milanova A. and Zikas V.

[Lie+18] David Lie et al., eds. ACM CCS 18. Toronto, ON, Canada: ACM
Press, Oct. 2018.

[Liu+17] Jian Liu et al. “Oblivious Neural Network Predictions via MiniONN
Transformations.” In: ACM CCS 17. Ed. by Bhavani M. Thurais-
ingham et al. Dallas, TX, USA: ACM Press, Oct. 2017, pp. 619–631.
doi: 10.1145/3133956.3134056.

[MR18] Payman Mohassel and Peter Rindal. “ABY3: A Mixed Protocol
Framework for Machine Learning.” In: ACM CCS 18. Ed. by David
Lie et al. Toronto, ON, Canada: ACM Press, Oct. 2018, pp. 35–52.
doi: 10.1145/3243734.3243760.

[NK14] Tobias Nipkow and Gerwin Klein. Concrete Semantics: With Is-
abelle/HOL. Springer International Publishing, Inc., 2014. isbn:
3319105418 9783319105413.

[NNH10] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles
of Program Analysis. Springer Publishing Company, Incorporated,
2010. isbn: 3642084745, 9783642084744.

[Pat+16] Erman Pattuk et al. “CheapSMC: A Framework to Minimize SMC
Cost in Cloud.” In: CoRR abs/1605.00300 (2016). arXiv: 1605 .

00300. url: http://arxiv.org/abs/1605.00300.
[Sch03] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Ef-

ficiency. 1st. Springer-Verlag Berlin Heidlberg, 2003. isbn: 978-3-
540-44389-6, 0937-5511.

[Sco15] Michael L. Scott. Programming Language Pragmatics (2Nd Edition).
Morgan Kaufmann, 2015. isbn: 0124104096.

[SK11] Axel Schröpfer and Florian Kerschbaum. “Forecasting Run-Times of
Secure Two-Party Computation.” In: Eighth International Confer-
ence on Quantitative Evaluation of Systems, QEST 2011, Aachen,
Germany, 5-8 September, 2011. 2011, pp. 181–190. doi: 10.1109/
QEST.2011.33. url: https://doi.org/10.1109/QEST.2011.33.

[SKM11] Axel Schröpfer, Florian Kerschbaum, and Günter Müller. “L1 - An
Intermediate Language for Mixed-Protocol Secure Computation.”
In: COMPSAC. IEEE Computer Society, 2011, pp. 298–307. isbn:
978-0-7695-4439-7. url: http://dblp.uni-trier.de/db/conf/
compsac/compsac2011.html#SchropferKM11.

[SR18] Nigel Smart and Dragos Rotaru. SCALE-MAMBA. 2018. url:
https://github.com/KULeuven- COSIC/SCALE- MAMBA (visited
on 11/22/2018).

[Val+99] Raja Vallée-Rai et al. “Soot - a Java Bytecode Optimization Frame-
work.” In: Proceedings of the 1999 Conference of the Centre for
Advanced Studies on Collaborative Research. CASCON ’99. Mis-
sissauga, Ontario, Canada: IBM Press, 1999, pp. 13–. url: http:
//dl.acm.org/citation.cfm?id=781995.782008.

[Wil+94] Robert P. Wilson et al. “SUIF: An Infrastructure for Research
on Parallelizing and Optimizing Compilers.” In: SIGPLAN Notices

Efficient Optimal Protocol Mixing 39

29.12 (1994), pp. 31–37. doi: 10.1145/193209.193217. url: https:
//doi.org/10.1145/193209.193217.

[Yao82] Andrew Chi-Chih Yao. “Protocols for Secure Computations (Ex-
tended Abstract).” In: 23rd FOCS. Chicago, Illinois: IEEE Com-
puter Society Press, Nov. 1982, pp. 160–164. doi: 10.1109/SFCS.
1982.38.

A Notation

In this appendix we cover notation and terminology that is used through out
the paper.

A.1 General Terminology

– (IMP-)source code: This is the starting point of our compiler. It is standard
programming language code for an imperative language such as IMP. We
denote it by S. All loops have a known upper bound on their iterations.

– MPC-source code: The output of our compiler on some source code S. We
denote the compiler by CMPC(·). The compiler removes if-statements and
φ-nodes, and adds MUX-statements in their place. MPC-source contains for-
loops with known bounds.

– Block B of MPC-source: Sequence of assignment statements or blocks (in
case of for-loop nesting) enclosed in a for-loop.

– (IMP-)SSA-code: this is the output of SSA on some source-code S. We will
denote it as CSSA(S). This is an intermediate representation between (IMP-
)source and MPC-source.

– Linearized-code : Linear(S): This is the linearization of some MPC-source
CMPC(·). It contains no loops, only straight-line code of assignment stat-
ments. The corresponding CFG of this would be simply a straight line.

– We refer to statement in Linear(S) as simple statements and denote them as
st. Since the corresponding CFG is a line we often refer to simple statements
as nodes in (the CFG of) Linear(S).

A.2 Costs Model

Simple Model

– St = {st1, . . . , st`} denotes the ordered set of statements in Linear(S)
– Π = {π1, . . . , πm} denotes (a set of) multi-party protocols and Σ =
{σ1, . . . , σq} denotes (a set) of secret sharing schemes (in typical scenarios
such as [DSZ15; MR18; Cha+17; Büs+18] q = m.)

– For each (i, j) ∈ [`] × [m], the triple (sti, πj , c
πj
sti) ∈ B × Π × Z≥0, where

intuitively, c
πj
sti corresponds to the cost of emulating in a flow statement sti

with protocol πj .

40 Ishaq M., Milanova A. and Zikas V.

– For each (i, j) ∈ Σ2: the triple (σi, σj , c
σi2σj) ∈ Σ × Σ × Z≥0, where intu-

itively, cσi2σj is the cost of securely converting a sharing according to scheme
σi into a sharing according to σj .

– Whenever the sequence St , and set Π are clear from the context we use
c
πj
sti ’s and cσi2σj instead of the setup of triples. Furthermore, in all existing

works on protocol mixing—including ours—each protocol πi is associated
with a single sharing scheme σi; in such cases, in slight abuse of notation, we
denote the conversion cost from σi to σj as cπi2πj (instead of cσi2σj). In fact,
to further simplify our notation and consistently with the ABY notation, for
the three ABY protocols πA, πB, and πY, and for X,Z ∈ {A, B, Y} we use cX2Z

to denote the conversion cost cπ
X2πZ from the sharing corresponding to πX

(which we refer to as Sharing X) to the sharing corresponding πZ (which we
refer to as Sharing Z).

Amortized Model

– The triplet (sti, πj , fcπjsti
(·)), where f

c
πj
sti

: N → Z≥0 denotes the amortized

execution cost function, which on input ` ∈ N outputs the amortized cost
f
c
πj
sti

(`) of computing ` parallel copies of sti with protocol πj .

– The triplet (σi, σj , fcσi2σj (·)), where fcσi2σj : N→ Z≥0 denotes the amortized
conversion cost function, which on input ` ∈ N outputs the amortized cost
fcσi2σj (`) of converting ` sharings according to σi into sharings according to
σj .

– For brevity, for X,Z ∈ {A, B, Y} we use fcX2Z to denote the function fcπX2πZ

from the sharing corresponding to πX to the sharing corresponding πZ . The
costs of the simple model corresponds to the output of the above functions
on input ` = 1.

OPA for Linearized MPC

– PA is a sequence of pairs of the type (st1, π1), . . . , (st|St|, π|St|) where
(sti, πj) ∈ PA means that statement sti is assigned protocol πj .

A.3 Solving The Linearized OPA

– cAn is the cost to run node n ∈ CMPC(S)
– cYn is the cost to run node n using πY.
– cA2Y is the cost to run A2Y conversion.
– cY 2A is the cost to run Y2A conversion.

Variables and Constraints

– (d, u) ⊇ (d, u′) denotes that (d, u) subsumes (d, u′) i.e. all paths from d to u′

go through min cut(d, u).

Efficient Optimal Protocol Mixing 41

From IPLinear(S) to IPCMPC(S)

– α : Linear(S) → CMPC(S) denotes the “abstraction” function i.e. provides
mapping from Linear(S) to CMPC(S).

– γ : (CMPC(S) × CMPC(S)) → 2Linear(S) denotes the “concretization” function
i.e. provides mapping from CMPC(S) to Linear(S).

B Preliminaries

B.1 Program Analysis

We next discuss concepts that are standard building blocks of static analysis and
are necessary background for our results. We assume minimal familiarity with
program analysis, and refer an interested reader to [Aho+06].

Basic Block (BB) A basic block (BB) is a straight-line sequence of instructions,
defined by the compiler. The set of basic blocks that may execute before a given
basic block are called its predecessors. Similarly, the set of blocks that may
execute after a given block are called its successors.

Control Flow Graph (CFG) A control flow graph (CFG) is a directed graph
that represents all possible control flow paths in a program. The nodes in the
CFG are basic blocks, and the edges model flow of control between basic blocks.
There is an edge from a basic block to each of its successors. It is also common
to consider each statement in a basic block as a separate node with an outgoing
edge to the statement/node immediately following within the basic block.

Reaching Definitions (RDs) Reaching definitions is a classical data-flow analysis
technique [Aho+06; NNH10]. It computes def-use chains (d, u), where d is a
definition of a variable x: e.g., x = y + z, and u is a use of x: e.g., z = x ∗ y, or
x > y. In the classical sense, reaching definitions is defined over a CFG, where
d and u are statements/nodes in the graph. A def-use chain (d, u) entails that
there is a path from d to u in the CFG that is free of a definition of x, or in
other words, the definition of x at d may reach the use of x at u.

Reasoning about dependencies like def-use chains can be greatly simplified
by an appropriate intermediate representation (IR). Now, we describe an inter-
mediate representation (IR) called Static Single Assignment (SSA) form. This is
a standard IR in compilers and benefits static analysis by immediately exposing
def-use dependencies. The standard algorithm to translate a program into SSA
form is due to Cytron et al. [Cyt+91].

Static Single Assignment (SSA) form SSA form entails that each variable in the
program is assigned exactly once. If the source code has multiple definitions of
the same variable, the variable is split into multiple versions for each definition.
Consider, for instance, the code fragment in Figure 5(a). Without SSA, a com-
piler needs to construct def-use chains to reason that the first definition of x is

42 Ishaq M., Milanova A. and Zikas V.

not used and is, therefore, dead code. Now consider the same code fragment in
SSA form in Figure 5(b). It is immediately obvious that variable x1 has no uses.
Moreover, it is also obvious—because all variables are assigned only once—that
y is only a copy of x2. Therefore, in any uses of y, y can be replaced with x2 with-
out changing the input program behavior. Furthermore, x2 is a constant with
value 2, and consequently z is a constant too, with value 200. The final SSA-
program will just use the constant value 200 and will eliminate the variables in
the original program in Figure 5(a).

1 x = 1;

2 x = 2;

3 y = x;

4 z = y * 100;

1 x1 = 1;

2 x2 = 2;

3 y = x2;

4 z = y * 100;

(a) (b)

Figure 5. A simple source program and its SSA form. x 1 = 1 is dead code and also,
y is just a copy of x 2. y is a constant, and z is a constant with value of 200.

A natural question is, if SSA form allows variable assignment only once, how
does it determine which variable to use when multiple control flow paths merge
into a single node e.g. the if-else in figure 6(a). This is taken care of in SSA by
so-called phi (φ) nodes.

1 if (flag) {

2 x1 = 1;

3 }

4 else {

5 x2 = 2;

6 }

7 x3 = x?; // Is x3 x1 or x2?

1 if (flag) {

2 x1 = 1;

3 }

4 else {

5 x2 = 2;

6 }

7 x3 = φ(x1, x2);

(a) (b)

Figure 6. A program and its SSA form. We assume that the first argument of a φ
node (x1 in our case) carries the value along the then-arm of the if-statement, and the
second argument (x2 in our case) carries the value along the else-arm.

Phi (φ) Nodes φ-nodes follow immediately after control-flow from two or more
paths joins (merges) into a single node. They have the form x3 = φ(x1, x2), where
x3, is a new version of the variable, and φ(x1, x2), contains the versions of the
variable along the different paths. The φ-node entails that x’s value at this point
comes from either the then-arm (x1) or the else-arm (x2) depending on what
path control flow took to arrive at the merge node. Figure 6(b) shows the SSA
form (including a φ-node) corresponding to code in Figure 6(a).

Efficient Optimal Protocol Mixing 43

IMP Imperative Language Recall that one of our goals in this work is to de-
fine MPC-source, the input IR for MPC compilers/optimizers. Towards this
goal, we start from a standard representation of program syntax. The standard
representation in the functional programming languages literature uses lambda
calculus. However, MPC programs live in the imperative world. Therefore, we
choose a standard minimal representation of an imperative language, IMP. IMP
(cf. [NK14, ch. 7]) is a simple programming language in which a statement can
either be an 1) assignment to an expression where expression can be a constant,
a variable or an operation between two variables, 2) an if-then-else conditional
or 3) a while loop.

C Program Analysis of MPC Source

C.1 Program Syntax

1 // Computes val%mod

2 int rem = val;

3 while (rem ≥ mod)

4 rem = rem - mod;

5 return rem;

1 int x = a;

2 int y = b;

3 while (y != 0) {

4 r = rem(x,y);

5 x = y;

6 y = r;

7 }

8 return x;

(a) Remainder (b) GCD

Figure 7. Standard algorithms for Remainder and GCD

We assume an IMP-like source syntax [NK14]. The IMP syntax models an
imperative language, such as FORTRAN, C, or Java, and our results apply to
any of these languages. We impose the following standard restrictions necessary
to accommodate MPC: there is no recursion, and all loop-bounds are statically
known. The IMP source is translated into Static Single Assignment (SSA) using
standard techniques [Cyt+91]. Fig. 8 abstracts the SSA syntax corresponding
to IMP-like sourecode. Note that this is standard SSA, however, to make it
explicit that it corresponds to IMP-source, in the following we will refer to it
as IMP-SSA. This is the syntax of our intermediate representation. (Note that
this is also the representation that Shimple [Val+99] produces when executed
on IMP-source code.)

For readers unfamiliar with SSA we discuss the basic features of the IMP-
SSA representations. The IMP-SSA program is a sequence of statements, where
each statement is either (1) a copy propagation assignment, e.g., x = y, (2) a
three-address assignment, e.g., x = y+z (3) a for-loop statement, or (4) an if-then-
else statement. An if-statement is immediately followed by one or more φ-nodes,
as is standard SSA form. (One may need more than one φ nodes when more

44 Ishaq M., Milanova A. and Zikas V.

than one variables are assigned along one or both branches of the if-then-else.)
In the running example in Fig. 1(b) lines 11-24 show the IMP-SSA translation
of method rem, where rem is inlined into gcd. As it is standard in SSA, each
assignment yields a new version of the variable on the left-hand-side, e.g., we
have rem2, rem3, rem4. Control flow merge at the end of the if-statement entails
φ-nodes. In our running example, rem5 = φ(rem4,rem3) at line 22 in Fig. 1(b)
entails that if control took the then-arm of the if-statement, rem has the value of
rem4, otherwise, rem has the value of rem3. We assume that the first argument
of a φ node carries the value along the then-arm of the if-statement, and the
second argument carries the value along the else-arm.

C.2 Translation to MPC-source

We next discuss how our intermediate representation of IMP-SSA is translated
to the representation that we use for defining our compact integer program,
which we call MPC-source.

s ::= s; s
| x = y
| x = y aop z
| a[i] = x
| x = a[i]
| for (i = 0; i ≤ n; i++) { s }
| if (x bop y) { s } else { s } z = φ(z1, z2) statement

aop ::= + | − | ∗ | / arithmetic operator
bop ::= == | ! = | < | ≤ comparison operator

Figure 8. IMP-SSA syntax. s represents a sequence of statements. x, y, and z denote
variables, including constants, local variables, and parameters that hold shares. i and
n denote variables in plain text. Note that each if-then-else statement is immediately
followed by a φ-node, as is customary in SSA.

Fig. 2 defines an attribute grammar (also known as syntax directed transla-
tion) over the syntax in Fig. 8 that translates the IMP-SSA program into an
MPC-source program. (An attribute grammar is a standard static analysis tech-
nique [Aho+06, Chapter 5], [Sco15, Chapter 4]; an attribute grammar is defined
over the syntax of the program and performs semantic analysis or transforma-
tion.) In our case, this is a standard attribute grammar. The only interesting
case arises at if-statements which are dealt with using standard MPC techniques:
the MPC-source code for an if-statement is produced by appending the straight-
line (MPC) code for the else-arm onto the straight-line (MPC) code for the
then-arm, then adding the conditional, and the multiplexer to select the correct
values. This is straight-forward given SSA: due to single assignment, variables
used at the if-statement test are unmodified, and are referenced in the compar-
ison expression (CMP) that precedes MUX, where the φ nodes capture exactly

Efficient Optimal Protocol Mixing 45

the arguments of MUX. 11 For example, consider the if-statement in lines 9-31
in Fig. 1(b). The φ nodes capture the values of x and y; if control took the then-
arm, then x and y would be x2 and y2 respectively, otherwise x and y would be
x1 and y1.

In our example, the resulting MPC-source program is shown in Fig. 1(c).
We point out that MPC-source can be mapped one-to-one to standard straight-
line MPC; the only difference is that when a block is repeated multiple times in
straight-line MPC, it is replaced by a for-loop in MPC-source. Following standard
MPC compilers methodology, e.g., [BNP08; Fra+14], the actual MPC program
unrolls all loops, and loop induction variables become constants.

To make the above mapping explicit, we use pseudo φ-nodes. To better un-
derstand the use of these notes, let’s focus on lines 5, 6 and 12 in Fig. 1(c) at the
beginning of each one of the loops; these lines do not encapsulate an if-then-else
construct. Instead, they select variable values—at the first iteration, the value
comes from outside the loop, and at every subsequent iteration the value comes
from the previous iteration of the loop. When translated into straight-line code,
these lines disappear because corresponding values are directly used as inputs to
the gates. To highlight that these lines are only here to enable loops, and, that
these do not get translated into a MUX, we refer to them as pseudo φ-nodes in
text and denote them with ? : instead of φ.

Looking ahead (cf. Section 4) the benefit of doing the analysis over MPC-
source rather than straight-line code will be that there are significantly fewer
variables in the resulting integer/linear program.

D Proofs for §5

D.1 Proof for Theorem 2

Before proving the theorem, let us first recall a results by Camion [Cam65] which
we are using.

Definition 4. A matrix M is said to be Eulerian, if the sum of the elements
in each row of M is even, and the sum of the elements in each column of M is
even.

Theorem 5. (Camion [Cam65]) Matrix M is totally unimodular if and only if
for every square Eulerian submatrix of M M I

J :
∑
i∈I,j∈JM

j
i ≡ 0 (mod 4).

In words, the above theorem states that a matrix is totally unimodular if and
only if the sum of the elements of every square Eulerian submatrix is divisible
by 4.

We return to our constraint matrix A. There are two kinds of rows in A:

11 MUX is the multiplexer gate that is common in MPC compilers: on input of values
(v0, v1) and a selection bit b ∈ {0, 1}, it returns vb. In our case b is result of the CMP
and (v0, v1) are arguments of φ node.

46 Ishaq M., Milanova A. and Zikas V.

1. Rows
1 1 0 0 0 0 . . .
0 0 1 1 0 0 . . .
0 0 0 0 1 1 . . .

. . .

that reflect constraints an + yn ≥ 1. We use the term first-kind rows in the
remainder of this section to describe these rows.

2. Rows
−1 0 . . . 1 0 . . . 1 . . .
0 −1 . . . 0 1 . . . 0 1 . . .

. . .

reflect constraints xde1 + · · ·+xdek ≥ a
u−ad ≡ −ad+au+xde1 + · · ·+xdek ≥ 0.

The first two non-zero entries in a row, a −1 and 1, reflect −au and ad; the
remaining 1 entries reflect the xde ’s. For each row of a and xde-constraints
(formula (2)), there is analogous row of y and zde -constraints (formula (3)).
We use the term second-kind rows in the remainder of this section.

We are now ready to prove the theorem. We first prove the following useful
lemmas:

Lemma 1. The representative edges of forward def-use chains are totally or-
dered by subsumption: e1 ⊇ e2 ⊇ · · · ⊇ ek.

Proof. Suppose there exist two forward def-use chains (d, u) and (d, u′) with
representatives e and e′, such that neither subsumes the other. Without loss
of generality, we say that u precedes u′. By definition, e lies on the chain of
forward edges from d to u and therefore, it dominates u′ as well, meaning that
e subsumes e′.

Lemma 2. Let (d, u) be a backward def-use chain. We have

1. (d, u) does not subsume any other def-use chain

2. A forward chain (d, u′) may subsume (d, u)

Proof. As stated by Remark 2 in §3.6, each definition d gives rise to at most one
backward def-use chain, where u is a pseudo-φ node in u’s enclosing block. Also,
as established in §3.6 (d, u)’s representative edge e is the backward edge of u’s
enclosing block. Assume then that (d, u) subsumes some forward chain (d, u′).
There is an immediate contradiction because the chain of forward edges from u
through d to u′ does not pass through e. Therefore, (d, u) subsumes no other
chain.

On the other hand, if e′ = min cut(d, u′) is in d’s enclosing loop block, then
execution always passes through e′, then e to reach u. Therefore, a forward (d, u′)
may subsume (d, u).

Efficient Optimal Protocol Mixing 47

Proof. Suppose there exists an Eulerian submatrix of A, M , such that the sum
of its elements is not divisible by 4. We prove the theorem for all Eulerian
submatrices, and it follows for each square Eulerian submatrix.

Matrix M can be broken into two parts, submatrix M ′ which consists entirely
of first-kind rows, and submatrix M ′′ which consists of second-kind rows. We
have M ≡ 2 mod 4 only if one of the following is true: (1) M ′ ≡ 2 mod 4 and
M ′′ ≡ 0 mod 4, or (2) M ′ ≡ 0 mod 4 and M ′′ ≡ 2 mod 4. (Here shortcut notation
M ≡ 2 mod 4 denotes that the sum of the elements of M gives remainder 2
modulo 4.)

Consider case (1). If M ′ ≡ 2 mod 4, we must have an odd number of first-kind
rows inM (Since each first-kind row has two 1 entries and an even number of rows
would have given M ′ ≡ 0 mod 4). Consider the part consisting of an-entry 1’s in
M ′. There is an odd number of these 1’s. Since M is a Eulerian submatrix this
means that each one of these 1’s must be matched (i.e., evened out) in columns
by entries from M ′′. Let aM ′′ be the submatrix which consists of a-rows, i.e.,
rows due to constraints: −au + ad + xde + · · · ≥ 0. The remainder of M ′′, which
we denote by yM ′′ consists of rows due to constraints: −yu + yd + xde + · · · ≥ 0.
There is an odd number of columns in aM ′′ with odd sum each. (These must
match the anentries.) However, the remaining columns of aM ′′ must have even
sum each, since those columns are matched only within aM ′′. This implies that
the sum of all elements of aM ′′ is odd (odd*odd + even). However, since M ′′ is
Eulerian, meaning that each row in aM ′′ has even sum, it follows that the sum
of all elements of aM ′′ is even, which leads to a contradiction. Therefore case
(1) is impossible.

Consider case (2). We show that there is even number of rows in M ′′ with
non-zero entries at xde positions. If this is the case, then since each row has an
even sum, the total sum of these rows is divisible by 4. There may be additional
rows in M ′′ with entries at ad and au positions, however since the ad entry is
1 and the au entry is −1, these rows contribute 0 to the total sum of M ′′. By
the same argument the sum of y (Yao) rows is divisible by 4, which entails that
the sum of entries in M ′′ is divisible by 4, which contradicts the statement that
M ′′ ≡ 2 mod 4.

We now argue that there is even number of rows in M ′′ with non-zero entries
at xde positions. Consider all xde in M ′′. As argued earlier, the forward def-use
chains are ordered by subsumption: xde1 ⊇ · · · ⊇ x

d
ek

. There is an even number of

rows with 1 at position xdek (since M ′′ must have columns with even sum). Each

of these rows has 1 at each position xdej , j < k as well, since each xdej subsumes

xdek , therefore contributing an even number to each xdej column. Therefore, there

must be an additional even number of rows with 1 at position xdek−1
(but 0 at

position xdek), and so on, each xdej contributing an even number of rows. Now
consider a backward chain with representative back edge en. There must be even
number of rows with 1’s at position xden , and these rows do not contain 1’s at
any other backward edge position xden′ . Each backward def-use chain contributes
an even number of rows as well.

48 Ishaq M., Milanova A. and Zikas V.

The proof of unimodularity of the constraint matrix of LPLinear(S) follows by
analogous arguments and is therefore omitted.

D.2 Proof for Theorem 3

Without loss of generality we consider the assignment of variables x and show
correspondence between the x-assignment in IPLinear(S) and the x-assignments
in IPCMPC(S).

Also without loss of generality, we focus on a single definition in d ∈ CMPC(S)
and the constraints associated with d in both IPLinear(S) and IPCMPC(S). We
assume that the problem presents the following constraints, grouped by (d, u)
chains in categories (I) to (IV). Lemmas 1 and 2 in §5.1 entail that categories
(I) to (IV) abstract away the structure of the system, and one can trivially
generalize to an arbitrary number of (d, u) chains, i.e., categories.

Here (d, u) ⊇ (d, u′) ⊇ (d, u′′) (also written as e ⊇ e′ ⊇ e′′, where e, e′, and e′′

are the corresponding representative edges), are forward def-use chains. (d, ub)
is a backward def-use chain, and we have that e′ subsumes eb, but e′′ does not
subsume eb.

IPLinear(S) IPCMPC(S)

(I) xstd ≥ au − ad xde ≥ au − ad
(II) xstd ≥ au′ − ad xde + xde′ ≥ au

′ − ad
(III) xstd ≥ au′′ − ad xde + xde′ + xde′′ ≥ au

′′ − ad

(IV) xstd ≥ aub − ad xde + xde′ + xdeb ≥ a
ub − ad

Note that each category contains multiple constraints in the IPLinear(S), where the
xstd ’s are distinct. Each category contains a single constraint in the IPCMPC(S),
as shown.

Again, we prove the following useful lemmas before proof of the theorem. We
give proofs sketches by considering a single illustrative case. The full proof is
established by case-by-case analysis.

Lemma 3. For each (d, u) ∈ IPCMPC(S), there are exactly we distinct xstd ≥
au − ad constraints in IPLinear(S), where e = min cut(d, u).

Proof. The above lemma states that for each def-use (d, u) there are exactly we
constraints, where we is the weight of the min-cut edge of (d, u). Clearly, the
number of constraints is given by min(|{ std | α(std) = d }|, |{ stu | α(stu) =
u }|). and the min-cut edge measures exactly that.

Lemma 4. (d, u) ⊇ (d, u′)⇒ γ((d, u)) ⊇ γ((d, u′)).

Proof. The second lemma states that when (d, u) subsumes (d, u′) the set of std’s
associated with (d, u) includes all std’s associated with (d, u′). As an informal
argument, consider block B1 immediately enclosed in block B2, and let d, u ∈ B1,
and u′ ∈ B2 appear after B1. Then only the std of the last iteration of B1 is
needed in constraints xstd ≥ astu′ − astd ; intuitively the definition in the last
iteration “kills” all previous definitions, and is outwardly exposed to u′ ∈ B2.

Efficient Optimal Protocol Mixing 49

Lemma 5. Let (d, u) be a forward def-use chain, and (d, ub) be a backward one.
(d, u) + (d, ub)⇒ γ((d, u)) ∩ γ((d, ub)) = ∅.

Proof. Again, consider block B1 immediately enclosed in block B2, and let
d, ub ∈ B1, and u ∈ B2. Since (d, u) does not subsume (d, ub), u must ap-
pear in B2, after B1. The std’s that are needed in backward def-use constraints
xstd ≥ astub − astd ; are all but the std’s in the last iteration of B1. (Since the
last iteration cannot be used in ub ∈ B1.) In contrast, only the std of the last
iteration of B1 is needed in constraints xstd ≥ astu − astd and we have that
γ((d, u)) and γ((d, ub)) are disjoint.

Proof. Let PA induce x such that for a fixed d,
∑
e x

d
e ·we is minimal. We show

that for the same fixed d,
∑
xstd ≥

∑
e x

d
e · we and then find values xstd that

satisfy all constraints and
∑
xstd =

∑
e x

d
e · we.

Recall categories (I)-(IV) above. We consider 3 cases.
Case (1) is when xde′ is the “highest” def-use chain that requires conversion:

au
′ − ad = 1 (i.e., au − ad ≥ 0). Thus, xde′ = 1 and all xde , x

d
e′′ , and xdeb are 0, or

the sum will not be minimal. Therefore,
∑
e x

d
e ·we = we′ since all other terms in

the sum are 0. Since au
′ − ad = 1 we need all xstd in constraints xstd ≥ au′ − ad

(category (II)) to be set to 1. By Lemma 3, there are exactly we′ such constraints,
and therefore,

∑
xstd ≥ we′ . By Lemma 4, γ((d, u)) ⊇ γ((d, u′) ⊇ γ((d, u′′) ⊇

γ((d, ub)), and therefore category (III) and (IV) constraints are satisfied. We
may set all γ((d, u))− γ((d, u′) to 0, achieving

∑
xstd ≥ we′ .

Case (2) arises when xde′′ , which does not subsume the backward chain, is
the highest def-use chain that requires conversion, however, the backward chain

au
b − ad ≤ 0. Then we have that all xde , x

d
e′ , and xdeb are 0, and by Lemma 3,∑

xstd = we′′ .
Case (3) arises when xde′′ is the highest def-use chain that requires conversion,

and the backward chain requires conversion as well, i.e., au
b − ad = 1. Then

one can easily see that the assignment that minimizes
∑
e x

d
e · we is xde and

xde′ to 0, and xde′′ and xdeb to 1. Therefore,
∑
e x

d
e · we = we′′ + web . There are

exactly we′′ constraints xstd ≥ au
′′ − ad (category (III)) and web constraints

xstd ≥ au
b − ad (category (IV)), and by Lemma 5, γ((d, u′′)) ∩ γ((d, ub) = ∅.

Therefore,
∑
xstd = we′′ + web .

Although we consider only four categories, the system and proof can be
trivially generalized to an arbitrary number of categories.

E Scheduling and Parallelization (Cont’d)

We next argue that a natural schedule meets the restrictions stated in §6.3,
and therefore, the protocol assignment that minimizes IPLinear(S) minimizes
IPParallel(S) for a natural schedule.

First, we show that restriction (1) holds. Let n ∈ CMPC(S) be nested in D
loops, k of which are parallel. Let bi1 , bi2 , . . . bik be the bounds of the paral-
lel loops, and let bj1 . . . bjD−k be the bounds of the sequential loops. Then by

50 Ishaq M., Milanova A. and Zikas V.

construction, st nodes that map to n are grouped into bj1 × · · · × bjN−k each
group of size bi1 × bi2 × · · · × bik . Therefore, the cost of n can be amortized over
bi1 · bi2 × · · · × bik executions. For example, nodes that map to n1 in Fig. 3 are
grouped in 2 groups each group of size 4.

Next, we sketch the argument that Restriction (2) also holds. The argument
is by induction on the depth level of the def-use chain. Consider a def-use (d, u)
and let B with bound b be the closest enclosing block of d and u; for simplicity,
consider the case when both d, u ∈ B. If B is parallel, d’s are grouped in 1
parallel node of size b; otherwise, d’s are grouped in b nodes of size 1. Assume
that after constructing the schedule at level k, d’s are grouped in M parallel
nodes, each of size SM . If the (k + 1)’st loop block, with bound b′, is parallel,
then d’s remain grouped in M parallel nodes, each of size b′ × SM this time.
Otherwise, i.e., if it is sequential, d’s are grouped in b′ ×M nodes, each of size
SM . For example, consider the def-use (n1, n6) in Fig. 3, whose closest enclosing
block is B3. Before the linearization of B3, the definition n1(B12)(B22) is in a
single parallel node (it also contains other nodes that map to n1, however, those
definitions are not exposed to n6). Since B3 is parallel, n1(B12)(B22)(B31) and
n1(B12)(B22)(B32) are grouped in the same parallel node. The two definitions
are shown in red in Fig. 3.

F Implementation and Benchmarks

This appendix goes into details of the implementation.

F.1 Analysis

As mentioned earlier, analysis phase takes a Java program as input and trans-
forms it into MPC-source for analysis. The output of the analysis is a def-use
graph that includes necessary information about nodes i.e. node types, their
weight and their parallelizability.

Before we can build our def-use graph (and gather related information), we
need to translate the input program into MPC-source. We use Soot to translate
the input to Shimple, then we inline function calls (using wjop.si – an optimiza-
tion pass built in to Soot –). Notice that inlining all calls can blow up the size
of the entry routine (in our case main function) of the program. This makes
heuristics or exhaustive-search based optimizations prohibitive because of the
sheer number of choices in the analysis. This is not a problem in our case, as our
optimization is the solution of a linear program. In fact, we benefit from inlining
because it makes the analysis context sensitive.

Concretely, we perfrom the following analysis/transformations on the input
program:

def-use chains We augment Soot’s def-use analysis to handle arrays correctly.
Soot’s builtin def-use analysis works for scalars only. We cannot use it for arrays
(vectors) because it treats array writes as a use. This is wrong in our context.

Efficient Optimal Protocol Mixing 51

For example, consider that the statement v[i] = x + y is later followed by the
statement z = v[j] + w. The first statement is an array write (it writes to v).
The second statement is an array read (reads from v). In our context, the former
is a def and the later is a use. Similar reasoning applies to multi-dimensional
arrays (vectors), see figure 9 for an example. We treat each array write as a new
definition.

1 r2 = newmultiarray (int)[100][4];

2 //... snip ...

3 $r8 = r2[i9_1];

4 $i6 = $r8[i11_2];

5 //... snip ...

6 $r8[i9_1] = i1;

7 //... snip ...

8 $r10 = r2[i13];

9 $i18 = $r10[i5_1];

Figure 9. Example Array Def-use Chains: the def-use chains for r2 are (1, 4) and (6, 9).

Mark Copies Given a statement like x = y, we tag x as a copy of y. This means
marking all uses of x as uses of y and getting rid of x. This reduces the number
of variables in the analysis, thereby simplifying it. As mentioned in §2, we can
mark copies before collecting def-use chains since our IR is an SSA form. There
is no particular reason to do it afterwards.

At this point, we have def-use chains (with no copies) and can start collecting
additional information – node types, weights and conversion points – needed by
the linear program. Node types, weights and conversion points are presented
below.

Node Types As mentioned previously, the analysis maintains a mapping from
Shimple operations to MPC gate types. In this step, it uses this mapping to
assign a type to each node. For example node x = y + z is an ADD type, or
x = y > z is a GT type.

Node Weights are computed exactly as described in §3.5.

Conversion Points Conversions are needed if def-use (d, u) nodes are assigned
different sharings. This entails computing min-cute on def-use chain as described
in §3.6. In the implementation, this needs finding a node on the min-cute edge
to use as location marker for conversion node.

We find optimal conversion point (min-cut) as follows. First, we construct a
tree describing loop nesting. Then we find common ancestor of (d, u), say, L′,
which is the closest enclosing block as described in §3. Finally, for our conversion
point, we find the closest edge e with target w to d in L′. Since this is a straight

52 Ishaq M., Milanova A. and Zikas V.

d

u

w

L2

L1

L3

L4

Figure 10. Conversion Point (min-cut): The conversion point (min-cut) for d (in L3)
and u (in L4) is in their closest enclosing block L1. w is one node where we can place
conversion.

line program, we know that all paths from d to u pass through e and w. Fig. 10
illustrates this discussion visually.

At this point we have described def use chains, node types and weights, and
conversion points, which is sufficient for protocol assignment in the sequential
execution setting (we have established optimality in this setting). To make our
analysis richer, we go one step further and compute parallelizability of nodes
(i.e., a natural schedule as described in §6.2). This enables optimal protocol
assignment in the parallel execution setting.

Node Parallelizability We use the following rule to determine if a loop L is
parallelizable, essentially computing a schedule as described in §6.2. We compute
def-use set S of all def-uses (d, u) that are immediately enclosed in L i.e. there
exists no loop L′ s.t. L′ encloses S and L′ is enclosed by L. Then we remove the
def-use (d, u) chains corresponding to loop counter variables. Finally, for each
def-use (d, u) chain in S, if transitive closure of any of d’s uses contains d itself
(i.e. d is used in the definition of itself in subsequent iteration), then L is not
parallelizable. Fig. 11 illustrates an example with both a parallelizable and a
non-parallelizable loop.

We exclude loop counter variables’ def-use (d, u) chains from the above analy-
sis. This is because such variables always depend on previous iterations of L and,
therefore, transitive closure of such a d will always contain d. Thereby marking
all loops (even the ones that are parallelizable), non-parallelizable.

If the above analysis yields that L is parallelizable, we mark all def-uses (d, u)
in S as parallelizable assigning weights as described in §6.2.

Efficient Optimal Protocol Mixing 53

1 for (int i=0; i<100; i++) {

2 int sum = 0;

3 for (int j=0; j<4; j++) {

4 int diff = S[i][j] - C[j];

5 int square = diff*diff;

6 sum = sum + square;

7 }

8 D[i] = sum;

9 }

Figure 11. Checking Loop Parallelizablity: The outer loop is parallelizable but the
inner is not (uses of sum include its definition).

Calculate Subsumption To compute subsumption (§5.1), we start at def d and
create an empty ordered list. We now start processing d’s successors with this
list. If we find a use u, it is added to this list. Whenever control splits, we
keep processing the fall-through successors as above. For branched successors we
create a new list and recursively add any uses u′ in the branch to this new list.
At the end of it, we have collected one or more lists in which ordering indicates
subsumption i.e. index(u) ≤ index(u′) =⇒ (d, u) ⊇ (d, u′).

