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Abstract. Private Simultaneous Messages (PSM) is a minimal model
for information-theoretic non-interactive multi-party computation. In the
2-party case, Beimel et al. showed every function f : [N ]× [N ]→ {0, 1}
admits a 2-party PSM with communication complexity O(

√
N). Re-

cently, Beimel, Kushilevitz and Nissim studied the multi-party case,
showed every function f : [N ]3 → {0, 1} admits a 3-party PSM with
communication complexity O(N).
We provide new upper bounds for general k-party case. The new upper
bounds match previous best results when k = 2 or 3, and improve the
communication complexity for infinitely many k > 3. The technique
also implies 2-party PSM with unbalanced communication complexity.
Concretely, we show

– For infinitely many k — in particular, including all k ≤ 19 — we
construct k-party PSM protocols for arbitrary function f : [N ]k →
{0, 1}, whose communication complexity is Ok(N

k−1
2 ). We also pro-

vide evidence suggesting the existence of such protocol for all k.
– For many 0 < η < 1 — including all rational η = d/k such that
k ≤ 12 — we construct 2-party PSM protocols for arbitrary function
f : [N ]× [N ]→ {0, 1}, whose communication complexity is Oη(Nη)
for one party, Oη(N1−η) for the other. We also provide evidence
suggesting the existence of such protocol for all rational η.

1 Introduction

Private Simultaneous Messages (PSM) is a minimal model of secure multi-party
computation. The 2-party version was introduced by Feige, Kilian and Naor
in [FKN94], and was extended to multi-party by Ishai and Kushilevitz [IK97].
In a PSM protocol for function f , there are k parties, the i-th party holding a
private input xi and all having access to a common random string (CRS). There
is also another special party, called the referee. The referee receives one message
from each party and is able to compute f(x1, . . . , xk), but should learn no other
information about x1, . . . , xk.

PSM is studied as an information-theoretic primitive. The parties and the
referee are allowed to perform arbitrarily expensive local computation. The only
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complexity measure that matters is communication complexity. The CRS is hid-
den from the referee and is crucial for this model, as there is no other mean to
protect privacy against unbounded adversarial referee when the parties cannot
talk to each other.

We have good understanding on the complexity of PSM if the function is
in certain complexity classes. For example, all functions in NC1 has relatively
efficient PSM protocols [IK00, IK02]. Unfortunately, even as such a simple and
natural model, we knew little about the complexity of PSM for general functions.
Assuming every party holds a input in [N ], the best known lower bound of 2-
party PSM is 3 logN−O(log logN) [AHMS18]. In k-party PSM where each party
holds a 1-bit input, Ball et al. recently shows anΩ(k2/ log k) lower bound [BHI+].
Though the lower bounds are at most polynomial in the total input length, all
known upper bounds are exponential, leaving an exponential gap between upper
and lower bounds. For any function f : [N ]k → {0, 1}, a näıve k-party PSM need
O(Nk−1) communication (the 2-party version was presented in [FKN94]). The
first non-trivial upper bound is O(

√
N) for 2-party PSM [BIKK14], and it can

be extended to an Ok(Nk/2) upper bound for k-party PSM [BKN18]. Beimel,
Kushilevitz and Nissim recently improved the upper bound when k = 3, 4, 5. In
particular, they show an O(N) upper bound for 3-party PSM [BKN18].

Until recently, similar exponential gap between upper and lower bounds ex-
isted in Conditional Disclosure of Secrets (CDS). CDS can be viewed as a variant
of PSM that only 1 input bit is hidden from the referee. Consider the 2-party
case and let [N ] be the input domain for both parties. The upper bounds of
O(
√
N) preserve [BIKK14, GKW15]. And a similar lower bound of Ω(logN)

was known [GKW15, AARV17]. Recently, Liu, Vaikuntanathan and Wee im-

proved the CDS upper bound for arbitrary function to 2Õ
√

logN [LVW17]. In
a slightly different setting, the per party amortized CDS upper bound is im-
proved to Θ(1) [AARV17, AA18]. We are inspired by recent improvement on
CDS upper bounds, and this work belongs to an ongoing attempt to transplant
the technique of [LVW17] from CDS to PSM.

Gay, Kerenidis and Wee constructed 2-party CDS with smooth communi-
cation communication trade-off between the two party [GKW15]. In partic-
ular, for any η ∈ [0, 1], they constructed a 2-party CDS protocol where one
party sends O(Nη) bits and the other sends O(N1−η) bits. Similar results are
known for PSM. Besides the 2-party PSM with balanced communication com-
plexity O(

√
N) [BIKK14], there also exists a 2-party PSM where one party sends

O(logN) bits and the other sends N bits [FKN94].

1.1 Our Contributions

We improve the multi-party PSM communication complexity upper bounds for
infinitely many k. Section 3 presents a framework for constructing multi-party
PSM. We conjecture that the framework yields a k-party PSM with communi-

cation complexity Ok(N
k−1
2 ) for every integer k, and prove the conjecture for

all k ≤ 19 and for all k such that k + 1 is a prime.
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Number of parties [BIKK14] [BKN18] This work

2 O(N1/2) O(N1/2) O(N1/2)

3 O(N) O(N)

4 O(N5/3) O(N3/2)

5 O(N7/3) O(N2)

k ≥ 6 Ok(Nk/2) Ok(N
k−1
2 )

for infinitely many k

Table 1. Comparison between our results and previous works

Our technique is powerful enough to improve the state-of-the-art of another
PSM problem — 2-party PSM with unbalanced communication complexity. We
show that in 2-party PSM, it’s possible to reduce the message length of one
party at the cost of increasing the message length of the other party. Section 4
presents a framework for constructing 2-party PSM protocols with unbalanced
communication. We conjecture that for every rational η ∈ (0, 1), our framework
yields a 2-party PSM where one party sends Oη(Nη) bits and the other sends
Oη(N1−η). We verify the conjecture for some η — including all rational η whose
denominator is no more than 12.

2 Preliminaries

Let N := {0, 1, . . .} denote the set of all nature numbers, and let [n] := {1, . . . , n}.
Let F denote a field,R denote a ring. For prime power p, let Fp denote the unique
finite field of size p. A vector will be denoted by a bold face lowercase letter. For
a vector v, let v[i] denote its i-th entry.

2.1 Tensor

A tensor refers to the generalization of vector and matrix which have multi-
ple indices. Roughly speaking, a tensor is a multi-dimensional array. A ten-
sor will be denoted by a bold face capital letter. For a k-dimensional tensor
T ∈ Fn1×n2×...×nk , let T[i1, . . . , ik] denote its entry whose index is (i1, . . . , ik).
A tensor can also be viewed as a representation of a multi-linear function: any

multi-linear function f : Fn1 × Fn2 × . . .× Fnk → F can be uniquely determined
by its coefficient tensor F ∈ Fn1×...×nk such that

f(v1, . . . ,vk) =
∑

i1∈[n1]

· · ·
∑

ik∈[nk]

F[i1, . . . , ik] · v1[i1] · . . . · vk[ik]. (1)

The inner product of two tensors S,T ∈ Fn1×n2×...×nk is defined as

〈S,T〉 :=
∑

i1∈[n1]

· · ·
∑

ik∈[nk]

S[i1, . . . , ik] ·T[i1, . . . , ik].
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Given tensors S ∈ Fn1×...×nk and T ∈ Fm1×...×m` , their tensor product,
denoted by S⊗T, is a tensor in Fn1×...×nk×m1×...×m` such that

(S⊗T)[i1, . . . , ik, j1, . . . , j`] = S[i1, . . . , ik] ·T[j1, . . . , j`].

Using tensor product, equation (1) can be written as f(v1, . . . ,vk) = 〈F,v1 ⊗
. . .⊗ vk〉.

2.2 Private Simultaneous Messages

Definition 2.1 (private simultaneous message (PSM)). A k-party PSM
functionality is specified by its input spaces X1, . . . ,Xk, output space Y, and a
mapping f : X1 × . . .×Xk → Y.

A PSM protocol for functionality f consists of a randomness space W and a
tuple of deterministic functions (M1, . . . ,Mk,R)

Mi : Xi ×W → {0, 1}cci , for all i ∈ [k],

R : {0, 1}cc1 × . . . {0, 1}cck → {0, 1},

where cci is the communication complexity of the i-th party, cc := cc1 + . . .+ cck
is the total communication complexity.

A PSM protocol for f satisfies the following properties:

(prefect correctness.) For all input (x1, . . . , xk) ∈ X1× . . .×Xk and random-
ness w ∈ W,

R(M1(x1, w), . . . ,Mk(xk, w)) = f(x1, . . . , xk)

(information-theoretic privacy.) There exists a randomized simulator S, such
that for any input (x1, . . . , xk) ∈ X1 × . . . × Xk, the joint distribution of
M1(x1, w), . . . ,Mk(xk, w) is perfectly indistinguishable from S(f(x1, . . . , xk)),
where the distributions are taken over w ←W and the coin tosses of S.

3 New Construction of Multi-party PSM

Conjecture 3.1 For any functionality f : [N ]× · · · × [N ]︸ ︷︷ ︸
k inputs

→ {0, 1}, there is

k-party PSM protocol for f with communication complexity Ok(N
k−1
2 ).

There are strong evidences supporting Conjecture 3.1: We found a frame-

work for constructing k-party PSM with communication complexity Ok(N
k−1
2 ).

Unfortunately, our framework requires solving a system of linear equations, and
we are unable to prove that the system has a solution for all integer k. Despite
the lack of proof, our framework still looks plausible because

– The framework works for all small k we’ve verified;
– There is a proof when k + 1 is a prime power.
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The second reason can be stated as the following theorem.

Theorem 3.2. Conjecture 3.1 holds for infinitely many k.

Section 3.1 presents our framework for construction multi-party PSM, in-
troduces new notations, and gives a 4-party PSM as a concrete example. The
following Section 3.2, 3.3, 3.4 are independent. Section 3.2 provides more tech-
nical detail of the PSM protocol yielded by our framework. Section 3.3 shows
how the framework works for small k, and Section 3.4 shows how the framework
works for any integer k that k + 1 is a prime power.

3.1 A Framework for Multi-party PSM

Let R be a finite commutative ring that we will fix later, all the operations are
within ring R unless otherwise specified.

Split each party’s input into two pieces evenly. Denote these pieces by x1, . . . , x2k ∈
[
√
N ]. The j-th party has input (x2j−1, x2j).

Let xi := exi for every i ∈ [2k], i.e., xi ∈ R
√
N is the unit vector consist of

0 in every coordinate except the xi-th coordinate. Write the truth-table of the
functionality as a 2k-dimensional tensor F, then

f(x1, . . . , x2k) = 〈F,x1 ⊗ . . .⊗ x2k〉.

For each non-empty Ω ⊆ [2k], sample a random |Ω|-dimensional tensor RΩ ∈
R(
√
N)|Ω| from CRS. Let X̄Ω := RΩ +

⊗
i∈Ω xi. E.g., X̄{2} := R{2} + x2,

X̄{3,4} := R{3,4} + x3 ⊗ x4.

As we are pursuing a PSM protocol with communication complexityOk(N
k−1
2 ),

parties can “send” X̄Ω to the referee for all Ω such that |Ω| ≤ k−1 (more details
in Section 3.2). E.g. when k = 4, parties can “send” tensors X̄{1}, X̄{2}, . . . , X̄{8},
X̄{1,2}, X̄{1,3}, . . . , X̄{7,8}, X̄{1,2,3}, X̄{1,2,4}, . . . , X̄{6,7,8} to the referee. Once re-
ceived those tensors, the referee can compute many terms including 〈F, X̄{1,2,3}⊗
X̄{4,5,6} ⊗ X̄{7,8}〉, which equals to the sum of the following 8 terms,

〈F, X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗R{7,8}〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗R{4,5,6} ⊗ x7 ⊗ x8〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗R{4,5,6} ⊗R{7,8}〉
+ 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8〉
+ 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗R{7,8}〉
+ 〈F,R{1,2,3} ⊗R{4,5,6} ⊗ x7 ⊗ x8〉
+ 〈F,R{1,2,3} ⊗R{4,5,6} ⊗R{7,8}〉.

(2)

Before we continue, let’s introduce a few notations for these terms. The inter
product on the left is called an X̄-term. The tensor X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8}
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is called an X̄-tensor. Formally, an X̄-tensor is a tensor product X̄Ω1
⊗ . . .⊗ X̄Ωt

that Ω1 + . . . + Ωt = [2k]; and an X̄-term is the inner product of F and an
X̄-tensor.3

Similarly, the inter products on the right side are called R-terms, and the
involved tensors are called R-tensors. More formally, an R-tensor is a tensor
product RΩ1

⊗ . . .⊗RΩt⊗xi1⊗ . . .⊗xiw that Ω1 + . . .+Ωt+{i1, . . . , iw} = [2k];
and a R-term is the inner product of F and an R-tensor.

The R-terms, and the corresponding R-tensors, can classified into 3 cate-
gories:

– Target term (target tensor): 〈F,x1 ⊗ . . .⊗ x2k〉 is called the target term as
it equals the functionality output we are looking for.

– Easy terms (easy tensors): A R-tensor RΩ1⊗. . .⊗RΩt⊗xi1⊗. . .⊗xiw is called
an easy tensor if at most k + 1 out of the 2k dimensions are contributed by
vector xi’s (i.e., w ≤ k + 1). The corresponding term is called a easy term,

because its PSM complexity is no more than Ok(N
k−1
2 ) (more details in

Section 3.2).
– Hard terms (hard tensors): the rest.

As shown by equation (2), every X̄-term is the sum of a few R-terms. There
are many X̄-terms that the referee can compute. Ideally, the referee may combines
some computable X̄-terms, so that all the hard R-terms cancel out, resulting a
linear combination of the target term and easy terms. In such ideal case, it’s easy
to remove the easy terms using standard techniques. The question is whether
the real world is in such ideal case, or formalized as a linear algebra problem: is
the target term (resp. tensor) spanned by the referee-computable X̄-terms (resp.
tensors) and easy R terms (resp. tensors)? 4

For such linear algebra problem, terms of the same “shape” typically have
the same role. Thus it’s worth introducing a notation for symmetric sum.

Define the shape of an X̄-tensor x̄Ω1
⊗ . . . ⊗ x̄Ωt (and the corresponding

X̄-term) as the multiset {|Ω1|, . . . , |Ωt|}. Let
∑

X̄(P ) denote the sum of all X̄-
tensors whose shape is P . Let

∑
〈F, X̄(P )〉 denote the sum of all X̄-terms whose

shape is P . Then obviously
∑
〈F, X̄(P )〉 = 〈F,

∑
X̄(P )〉. E.g., when k = 4,

define
∑

X̄(3, 3, 2) as the sum of all X̄-tensors x̄Ω1 ⊗ x̄Ω2 ⊗ x̄Ω3 that the multiset
{|Ω1|, |Ω2|, |Ω3|} = {3, 3, 2}. I.e.∑

X̄(3, 3, 2) := X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8} + X̄{1,2,3} ⊗ X̄{4,5,7} ⊗ X̄{6,8}

+ X̄{1,2,3} ⊗ X̄{4,5,8} ⊗ X̄{5,6} + X̄{1,2,3} ⊗ X̄{4,6,7} ⊗ X̄{5,8}

+ . . .+ X̄{3,4,5} ⊗ X̄{6,7,8} ⊗ X̄{1,2}.

3 We implicitly exchange the order of indeces in tensor product. E.g. when k = 2,
the 4-dimensional tensor R1,4 ⊗ R2,3 is defined by (R1,4 ⊗ R2,3)[j1, j2, j3, j4] =
R1,4[x1, x4] ·R2,3[x2, x3].

4 For any concrete input tuple (x1, . . . , x2k), the target term — either zero or one —
is very likely to be spanned by the referee-computable X̄-terms and easy R terms.
The question is meaningful only if the target term, X̄-terms and R terms are all
considered as linear functions whose input are xi for i ∈ [2k] and RΩ for Ω ⊆ [2k].
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Similarly, the shape of an R-tensor RΩ1
⊗ . . .⊗RΩt ⊗xi1 ⊗ . . .⊗xiw (and its

corresponding R-term) is defined as the multiset {|Ω1|, . . . , |Ωt|}. Let
∑

R(P )
denote the sum of all R-tensors whose shape is P . Let

∑
〈F,R(P )〉 denote the

sum of all R-terms whose shape is P . Note that
∑
〈F,R()〉 is the target term.

Let’s revisit the equation (2),

〈F, X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8}〉︸ ︷︷ ︸
an X̄-term of shape {3, 3, 2}

= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8〉︸ ︷︷ ︸
a R-term of shape {}

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗R{7,8}〉︸ ︷︷ ︸
a R-term of shape {2}

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗R{4,5,6} ⊗ x7 ⊗ x8〉+ 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8〉︸ ︷︷ ︸
R-terms of shape {3}

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗R{4,5,6} ⊗R{7,8}〉+ 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗R{7,8}〉︸ ︷︷ ︸
R-terms of shape {3, 2}

+ 〈F,R{1,2,3} ⊗R{4,5,6} ⊗ x7 ⊗ x8〉︸ ︷︷ ︸
a R-term of shape {3, 3}

+ 〈F,R{1,2,3} ⊗R{4,5,6} ⊗R{7,8}〉︸ ︷︷ ︸
a R-term of shape {3, 3, 2}

.

By summing over all the symmetric equations, we get∑
〈F, X̄(3, 3, 2)〉 = 280 ·

∑
〈F,R()〉︸ ︷︷ ︸

target term

+ 10 ·
∑
〈F,R(2)〉︸ ︷︷ ︸

hard R-terms

+ 10 ·
∑
〈F,R(3)〉+

∑
〈F,R(3, 2)〉+

∑
〈F,R(3, 3)〉+

∑
〈F,R(3, 3, 2)〉︸ ︷︷ ︸

easy R-terms

.

Here is another example of symmetric F-term sum that the referee can compute,∑
〈F, X̄(2, 2, 2, 2)〉 = 105 ·

∑
〈F,R()〉︸ ︷︷ ︸

target term

+ 15 ·
∑
〈F,R(2)〉︸ ︷︷ ︸

hard R-terms

+ 3 ·
∑
〈F,R(2, 2)〉+

∑
〈F,R(2, 2, 2)〉+

∑
〈F,R(2, 2, 2, 2)〉︸ ︷︷ ︸

easy R-terms

.

By combining the above two equations, we got

3 ·
∑
〈F, X̄(3, 3, 2)〉− 2 ·

∑
〈F, X̄(2, 2, 2, 2)〉 = 630 ·

∑
〈F,R()〉+ easy terms, (3)

which immediately induces a 4-party PSM whose communication complexity is
O(N3/2), if we choose R to any ring where 630 is non-zero.

In general k-party case, for each multiset P consisting of positive integers s.t.
sum(P ) = 2k, ∑

〈F, X̄(P )〉 =
∑
Q⊆P

α(Q) ·
∑
〈F,R(P \Q)〉, (4)
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where

α(Q) :=
(sum(Q))!∏

i∈Q i! ·
∏
m∈Z+(number of m’s in Q)!

(5)

is the following combinatoric number: α(Q) is the number of ways to partition
sum(Q) distinct elements into some unordered subsets such that Q is the multiset
of the subsets’ sizes.

3.2 The Induced PSM Protocol

In order to develop the previous section smoothly, we skipped a few technique
details that might look trivial to experienced audience. In this section, we’ll
show how the construct a k-party PSM protocol assuming that the target term
is spanned by the so-called “referee-computable” X̄-terms and easy R terms.

Under the assumption, there exists referee-computable X̄-terms, denoted by
X̄(1), . . . , X̄(t), and easy R terms, denoted by R(1), . . . ,R(s), and coefficients
a1, . . . at, b1, . . . , bs ∈ R such that

f(x1, . . . , x2k) =

t∑
j=1

ajX̄
(j) +

s∑
j=1

bjR
(j). (6)

Here X̄(j),R(j) denote functions of x1, . . . , x2k and (RΩ)Ω .

A k-party PSM for f , together with its correctness and security, is yielded
by the following facts:

– Fact I:
∑s
j=1 bjR

(j) and X̄Ω for all 0 < |Ω| ≤ k − 1 form a randomized
encoding of f(x1, . . . , x2k).

– Fact II: For every Ω ⊆ [2k] such that 0 < |Ω| ≤ k − 1, there is a PSM

protocol for X̄Ω with c.c. Ok(N
k−1
2 ).

– Fact III: There is a PSM protocol for
∑s
j=1 bjR

(j) with c.c. Ok(N
k−1
2 ).

Proof of Fact I. Equation 6 shows that f(x1, . . . , x2k) can be computed from
the encoding. Moreover, the distribution of the encoding is perfectly simulatable:
The joint distribution of tensors X̄Ω for 0 < |Ω| ≤ k− 1 is uniform distribution.
Then the value of

∑s
j=1 bjR

(j) is uniquely determined by equation 6.

Proof of Fact II. Each coordinate of XΩ is defined as

X̄{j1,...,jt}[i1, . . . , it] = R{j1,...,jt}[i1, . . . , it] + xj1 [i1] · . . . · xjt [it],

which depends on Ok(1) bits that are jointly known by the parties. Thus each
coordinate has a PSM with communication complexity Ok(1).
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Proof of Fact III. Sample random c1, . . . , cs ∈ R such that c1 + . . . + cs = 0.
Then it’s sufficient to construct a PSM protocol for functionality

(xi)i∈[2k], (RΩ)Ω 7→ bjR
j + cj

for each j. Say this easy R-term R(j) is RΩ1 ⊗ . . . ⊗ xi1 ⊗ . . . ⊗ xiw . By our
definition of a easy term, w ≤ k + 1. There exists a special party, such that
the other parties holds at most k − 1 of xi1 , . . . , xiw . When w = k + 1, the
special party is the one who holds two of xi1 , . . . , xiw (its existence guaranteed
by pigeonhole principle). W.o.l.g. assume the other parties hold xi1 , . . . , xiw′ such
that w′ ≤ k − 1. Then the special party know a function g (that is determined
by his input and R(j)) such that

g(xi1 , . . . , xiw′ ) = bjR
j + cj ,

which has a PSM protocol with communication complexity Ok(N
k−1
2 ).

3.3 When k is Small

The case when k = 4 is solved in section 3.1.
The case when k = 2 was solved by [BIKK14]. Their solution can also be

captured by our framework as∑
〈F, X̄(1, 1, 1, 1)〉 =

∑
〈F,R()〉+ easy terms.

The case when k = 3 was solved by [BKN18]. Our framework yields a similar
solution from ∑

〈F, X̄(2, 2, 2)〉 =
∑
〈F,R()〉+ easy terms.

For k = 5, consider the following two X̄-terms,∑
〈F, X̄(4, 4, 2)〉 = 1575 ·

∑
〈F,R()〉+ 35 ·

∑
〈F,R(2)〉+ easy terms∑

〈F, X̄(4, 2, 2, 2)〉 = 3150 ·
∑
〈F,R()〉+ 210 ·

∑
〈F,R(2)〉+ easy terms

Therefore, 6·
∑
〈F, X̄(4, 4, 2)〉−

∑
〈F, X̄(4, 2, 2, 2)〉 = 6300·

∑
〈F,R()〉+easy terms,

which induces a 5-party PSM with communication complexity O(N2).
For k = 6, consider the following X̄-terms ∑〈F, X̄(5, 4, 3)〉∑

〈F, X̄(4, 4, 4)〉∑
〈F, X̄(3, 3, 3, 3)〉

 =

27720 126 56
5775 35
15400 280

∑〈F,R()〉∑
〈F,R(3)〉∑
〈F,R(4)〉

+ easy terms

Therefore, 100·
∑
〈F, X̄(5, 4, 3)〉−160·

∑
〈F, X̄(4, 4, 4)〉−45·

∑
〈F, X̄(3, 3, 3, 3)〉 =

1155000 ·
∑
〈F,R()〉 + easy terms, which induces a 6-party PSM with commu-

nication complexity O(N2.5).
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For k = 7, consider the following X̄-terms∑〈F, X̄(4, 4, 4, 2)〉∑
〈F, X̄(6, 6, 2)〉∑
〈F, X̄(6, 4, 4)〉

 =

525525 5775 1575
42042 462
105105 210

∑〈F,R()〉∑
〈F,R(2)〉∑
〈F,R(4)〉

+ easy terms

Therefore, 14·
∑
〈F, X̄(4, 4, 4, 2)〉−175·

∑
〈F, X̄(6, 6, 2)〉−105·

∑
〈F, X̄(6, 4, 4)〉 =

−11036025 ·
∑
〈F,R()〉 + easy terms, which induces a 7-party PSM with com-

munication complexity O(N3).

We wrote a simple program to verified if the target term can be spanned by
referee-computable X̄-terms and easy R-terms. Our program requires specifying
a prime field in advance, and it found

– For k = 8, a PSM protocol with c.c. O(N3.5) is induced by∑
〈F,R()〉 =

∑
〈F, X̄(7, 3, 3, 3)〉+ easy terms mod 3

– For k = 9, a PSM protocol with c.c. O(N4) is induced by∑
〈F,R()〉 = 18 ·

∑
〈F, X̄(8, 8, 2)〉+ 4 ·

∑
〈F, X̄(8, 6, 4)〉+ 5 ·

∑
〈F, X̄(8, 6, 2, 2)〉

+ 11 ·
∑
〈F, X̄(8, 4, 4, 2)〉+ 9 ·

∑
〈F, X̄(8, 4, 2, 2, 2)〉

+ 16 ·
∑
〈F, X̄(8, 2, 2, 2, 2, 2)〉+ easy terms mod 19

– For k = 10, a PSM protocol with c.c. O(N4.5) is induced by∑
〈F,R()〉 =

∑
〈F, X̄(9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)〉+ easy terms mod 11

– For k = 11, a PSM protocol with c.c. O(N5) is induced by∑
〈F,R()〉 = 13 ·

∑
〈F, X̄(10, 10, 2)〉+ 13 ·

∑
〈F, X̄(10, 8, 4)〉

+ 11 ·
∑
〈F, X̄(10, 8, 2, 2)〉+ 4 ·

∑
〈F, X̄(10, 6, 6)〉

+ 18 ·
∑
〈F, X̄(10, 6, 4, 2)〉+ 17 ·

∑
〈F, X̄(10, 6, 2, 2, 2)〉

+ 10 ·
∑
〈F, X̄(10, 4, 4, 4)〉+ 12 ·

∑
〈F, X̄(10, 4, 4, 2, 2)〉

+ 19 ·
∑
〈F, X̄(10, 4, 2, 2, 2, 2)〉+ 9 ·

∑
〈F, X̄(10, 2, 2, 2, 2, 2, 2)〉

+ easy terms mod 23

– For k = 12, a PSM protocol with c.c. O(N5.5) is induced by∑
〈F,R()〉 =

∑
〈F, X̄(11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)〉+easy terms mod 13

– For k = 13, a PSM protocol with c.c. O(N6) is induced by an equation which
is too long for the remaining of this page.

– For k ≤ 19, we verify using a program that our framework yields a k-party

PSM with c.c. O(N
k−1
2 ).



Multi-Party PSM, Revisited 11

3.4 When k + 1 is a Prime Power

When k+ 1 is a prime p or a prime power pe, there is a simple k-party PSM by
working in prime field Fp. This was already hinted in Section 3.3.

Consider the X̄-term∑
〈F, X̄(k − 1, 1, 1, . . . , 1︸ ︷︷ ︸

k+1 1’s

)〉

=

k+1∑
i=0

α(k − 1, 1, 1, . . . , 1︸ ︷︷ ︸
k+1−i 1’s

) ·
∑
〈F,R(1, 1, . . . , 1︸ ︷︷ ︸

i 1’s

)〉

+

k+1∑
i=0

α(1, 1, . . . , 1︸ ︷︷ ︸
k+1−i 1’s

) ·
∑
〈F,R(k − 1, 1, 1, . . . , 1︸ ︷︷ ︸

i 1’s

)〉

= α(k − 1, 1, 1, . . . , 1︸ ︷︷ ︸
k+1 1’s

) ·
∑
〈F,R()〉

+

k−2∑
i=1

α(k − 1, 1, 1, . . . , 1︸ ︷︷ ︸
k+1−i 1’s

) ·
∑
〈F,R(1, 1, . . . , 1︸ ︷︷ ︸

i 1’s

)〉+ easy terms.

(7)

(Recall that easy R-terms includes ones of shape {k − 1}, {1, . . . , 1︸ ︷︷ ︸
k−1 1’s

}.)

By definition, α(k−1, 1, . . . , 1︸ ︷︷ ︸
t 1’s

) =
(
k−1+t
k−1

)
. Lemma 3.4 shows that α(k − 1, 1, 1, . . . , 1︸ ︷︷ ︸

k+1 1’s

) =

(
2k
k−1

)
≡ 1 mod p, while α(k − 1, 1, 1, . . . , 1︸ ︷︷ ︸

k+1−i 1’s

) =
(

2k−i
k−1

)
is a multiple of p for all

1 ≤ i ≤ k − 2. Therefore,∑
〈F, X̄(k − 1, 1, . . . , 1︸ ︷︷ ︸

k+1 1’s

)〉 =
∑
〈F,R()〉+ easy terms mod p,

which induces a k-party PSM with c.c. N
k−1
2 .

Lemma 3.3. For any prime p and positive integer e,
(
pe

t

)
is a multiple of p for

all 0 < t < pe.

Proof. (
pe

t

)
=
pe

t
·
(
pe − 1

t− 1

)
.

Lemma 3.4. For any prime p and positive integer e, binomial coefficient
(
pe+t
pe−2

)
is a multiple of p for all 0 ≤ t ≤ pe − 3, while binomial coefficient

(
2pe−2
pe−2

)
≡ 1

mod p.
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Proof. For every 0 ≤ t ≤ pe − 3,(
pe + t

pe − 2

)
=

t∑
j=0

(
t

j

)(
pe

pe − 2− j

)
︸ ︷︷ ︸

multiple of p

is a multiple of p. While(
2pe − 2

pe − 2

)
=

pe−3∑
j=0

(
pe − 2

j

)(
pe

pe − 2− j

)
︸ ︷︷ ︸

multiple of p

+

(
pe − 2

pe − 2

)(
pe

0

)
≡ 1 mod p.

4 New Construction of 2-party PSM

As there are two parties, name them as Alice and Bob. Let x denotes Alice’s
n-bit input and y for Bob’s n-bit input.

For any functionality f : [N ] × [N ] → {0, 1}, [BIKK14] construct a 2-party
PSM protocol for f with communication complexity O(

√
N). There are folklore

PSM protocol with unbalanced communication communication such that one
sends N bits and the other sends logN bits. It seems that the product of Alice
and Bob’s communication complexity is roughly N . Which can be formalized by
the following conjecture.

Conjecture 4.1 For any functionality f : [N ]× [N ]→ {0, 1}, and any 0 < η <
1, there is 2-party PSM protocol for f with unbalanced communication complexity
Oη(Nη), Oη(N1−η).

Once again, we show strong evidences supporting Conjecture 4.1. We present
a framework for constructing 2-party PSM in Section 4.1. Our framework seem-
ingly yields PSM protocols supporting Conjecture 4.1 for all rational η. Although
one step of our framework requires solving a system of linear equations, and we
cannot prove it always have a solution. Alternatively, we verify if the system
has a solution for many concrete η = d

k with small denominator, which can be
formalized as the following theorem.

Theorem 4.2. For any functionality f : [N ] × [N ] → {0, 1}, and any η = d/k
such that 0 < d < k ≤ 12, there is 2-party PSM protocol for f with unbalanced
communication complexity Oη(Nη), Oη(N1−η).

4.1 A Framework for 2-party PSM

Consider rational η = d
k that 0 < d < k. Let R be a finite commutative ring that

we will fix later, all the operations are within ring R unless otherwise specified.
Split each party’s input k pieces evenly. I.e., Alice holds x1, . . . , xk ∈ [ k

√
n]

and Bob holds y1, . . . , yk ∈ [ k
√
n].
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Define xi := exi ∈ R
k
√
n for every i ∈ [k], i.e., xi is the unit vector consist of

0 in every coordinate except the xi-th coordinate. Symmetrically, define yi :=
eyi ∈ R

k
√
n for every i ∈ [k]. Write the truth-table of the functionality as a

2k-dimensional tensor F, then

f(x1, . . . , xk, y1, . . . , yk) = 〈F,x1 ⊗ . . .⊗ xk ⊗ y1 ⊗ . . .⊗ yk〉.

For every non-empty Ω ⊆ [k], sample random RΩ ,SΩ ∈ R( k
√
n)|Ω| from

CRS. Let X̄Ω := RΩ +
⊗

i∈Ω xi and ȲΩ := SΩ +
⊗

i∈Ω yi. E.g., X̄{3,4} :=
R{3,4} + x3 ⊗ x4.

As we are pursuing a PSM protocol with communication complexity Oη(N
d
k ),

Oη(N1− dk ), Alice can send X̄Ω for every Ω that |Ω| ≤ d and Bob can send ȲΩ

for every Ω that |Ω| ≤ k − d.
There are many meaningful terms that the referee can compute once he

receives (X̄Ω)|Ω|≤d and (ȲΩ)|Ω|≤k−d. For example, when η = d/k = 1/3, the
referee can compute 〈F, X̄{1} ⊗ X̄{2} ⊗ X̄{3} ⊗ Ȳ{1,2} ⊗ Ȳ{3}〉, which equals

〈F, X̄{1} ⊗ X̄{2} ⊗ X̄{3} ⊗ Ȳ{1,2} ⊗ Ȳ{3}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ S{3}〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ S{1,2} ⊗ y3〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ S{1,2} ⊗ S{3}〉
+ . . . (27 other terms)

+ 〈F,R{1} ⊗R{2} ⊗R{3} ⊗ S{1,2} ⊗ S{3}〉.

(8)

Before we continue, let’s introduce a few notations — we will define shape, X̄-
tensor, Ȳ-tensor, (easy/hard) R-tensor, (easy/hard) S-tensor, symmetric sum,
etc., in the same fashion as Section 3.1.

An X̄-tensor is a tensor product X̄Ω1
⊗ . . .⊗ X̄Ωt that Ω1 + . . .+Ωt = [k], its

shape is the multiset {|Ω1|, . . . , |Ωt|}. An X̄-tensor of shape P is called referee-
computable if max(P ) ≤ d. Define

∑
X̄(P ) as the sum of every X̄-tensor whose

shape is P . Symmetrically, define Ȳ-tensor and
∑

Ȳ(P ).
The tensor product of an X̄-tensor and a Ȳ-tensor is called an X̄Ȳ-tensor.

The inner product of F and an X̄Ȳ-tensor is called an X̄Ȳ-term. An X̄Ȳ-tensor
(and its corresponding X̄Ȳ-term) is called referee-computable if it’s the tensor
product of a referee-computable X̄-tensor and a referee-computable Ȳ-tensor.

An R-tensor is a tensor product RΩ1 ⊗ . . . ⊗ RΩt ⊗ xi1 ⊗ . . . ⊗ xiw that
Ω1 + . . . + Ωt + {i1, . . . , iw} = [k], its shape is the multiset {|Ω1|, . . . , |Ωt|}.
Define

∑
R(P ) as the sum of every R-tensor whose shape is P . Symmetrically,

define S-tensor and
∑

S(P ).
The tensor product of an R-tensor and an S-tensor is called an RS-tensor.

The inner product of F and an RS-tensor is called an RS-term.
Let’s continue the example when η = 1/3, examine every RS-term on the

right side of equation (8), and check whether it has a 2-party PSM with com-

munication complexity O(N
1
3 ), O(N

2
3 ).
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– Term 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉 is the target.
– Term 〈F,x1⊗x2⊗x3⊗y1⊗y2⊗S{3}〉 doesn’t seem to have a desired PSM.
– Term 〈F,x1⊗x2⊗x3⊗S{1,2}⊗y3〉 has a PSM protocol with communication

complexity O(N
1
3 ). Because Alice knows a function g (which is determined

by F, Alice’s input and randomness (RΩ)Ω , (SΩ)Ω) such that 〈F,x1⊗x2⊗
x3 ⊗ S{1,2} ⊗ y3〉 = g(y3).

– Term 〈F,S{1}⊗x2⊗x3⊗y1⊗y2⊗y3〉 has a PSM protocol with unbalanced

communication complexity O(N
1
3 ), O(N

2
3 ). Because Bob knows a function

g such that 〈F,S{1} ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉 = g(x2, x3).

The discussion above hints how to classifies R-terms, S-terms and RS-terms.
An R-term of shape P is called easy if sum(P ) ≥ d. An S-term of shape P

is called easy if sum(P ) ≥ k − d. An RS-term R ⊗ S is called easy if either R
or S is easy.

Then equation (8) can be rewritten by grouping the easy terms,

〈F, X̄{1} ⊗ X̄{2} ⊗ X̄{3} ⊗ Ȳ{1,2} ⊗ Ȳ{3}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ S{3}〉+ easy terms

.

By summing all the symmetric equations, we get

〈F,
∑

X̄(1, 1, 1)⊗
∑

Ȳ(2, 1)〉
= 3 · 〈F,

∑
R()⊗

∑
S()〉︸ ︷︷ ︸

target

+〈F,
∑

R()⊗
∑

S(1)〉+ easy terms.

Similarly, we have

〈F,
∑

X̄(1, 1, 1)⊗
∑

Ȳ(1, 1, 1)〉
= 〈F,

∑
R()⊗

∑
S()〉︸ ︷︷ ︸

target

+〈F,
∑

R()⊗
∑

S(1)〉+ easy terms.

Add them up to cancel out the hard terms,

2 · 〈F,
∑

R()⊗
∑

S()〉
= 〈F,

∑
X̄(1, 1, 1)⊗

∑
Ȳ(2, 1)〉 − 〈F,

∑
X̄(1, 1, 1)⊗

∑
Ȳ(1, 1, 1)〉+ easy terms.

Thus by settingR to be any field or ring where 2 6= 0, the above equation induces
a 2-party PSM with communication complexity O(N

1
3 ), O(N

2
3 ).

In general, the symmetric sum of X̄Ȳ-terms 〈F,
∑

X̄(P ) ⊗
∑

Ȳ(Q)〉 can be
decomposed as

〈F,
∑

X̄(P )⊗
∑

Ȳ(Q)〉 =
∑
P ′⊆P

∑
Q′⊆Q

α(P )α(Q)〈F,
∑

X̄(P \ P ′)⊗
∑

Ȳ(Q \Q′)〉

where the combinatoric number α is defined by equation (5) in Section 3.1.
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4.2 When η = d/k has a Small Denominator

Section 4.1 shows that if 〈F,
∑

R() ⊗
∑

S()〉 is spanned by referee-computable
X̄Ȳ-terms and easy RS-terms, there is a 2-party PSM with unbalanced com-
plexity complexity Oη(Nη), Oη(N1−η). But this criterion is hard to use, as there
are too many distinct X̄Ȳ-terms and RS-terms, especially when k is larger.

Therefore, it worth finding a simpler criterion. We claim that there is a 2-
party PSM with unbalanced complexity complexity Oη(Nη), Oη(N1−η) when
both of the following hold

–
∑

R() is spanned by referee-computable X̄-tensors and easy R-tensors;
–
∑

S() is spanned by referee-computable Ȳ-tensors and easy S-tensors.

The proof is quite straight-forward: Assume the new criterion is satisfied,
then

referee-computable X̄-tensors =
∑

R() + easy R-tensors,

referee-computable Ȳ-tensors =
∑

S() + easy S-tensors.

The tensor product of the above two equations is

referee-computable X̄Ȳ-tensors =
∑

R()⊗
∑

S() + easy RS-tensors.

Then taking the inner product with F yields the previous criterion.
For η = 1/3, a desired 2-party PSM with communication complexityO(N

1
3 ), O(N

2
3 )

is induced by ∑
X̄(1, 1, 1) =

∑
R() + easy R-tensors,∑

Ȳ(2, 1)−
∑

Ȳ(1, 1, 1) = 2 ·
∑

S() + easy S-tensors.

For η = 1/4, a desired 2-party PSM is induced by∑
X̄(1, 1, 1, 1) =

∑
R() + easy R-tensors,∑

Ȳ(1, 1, 1, 1) + 2 ·
∑

Ȳ(3, 1)

+
∑

Ȳ(2, 2)−
∑

Ȳ(2, 1, 1) = 6 ·
∑

S() + easy S-tensors.

For η = 1/5, a desired 2-party PSM is induced by∑
X̄(1, 1, 1, 1, 1) =

∑
R() + easy R-tensors,

6 ·
∑

Ȳ(4, 1) + 2 ·
∑

Ȳ(3, 2)

− 2 ·
∑

Ȳ(3, 1, 1)−
∑

Ȳ(2, 2, 1)

+
∑

Ȳ(2, 1, 1, 1)−
∑

Ȳ(1, 1, 1, 1, 1) = 24 ·
∑

S() + easy S-tensors.

For η = 2/5, a desired 2-party PSM is induced by

2 ·
∑

X̄(2, 2, 1)−
∑

X̄(2, 1, 1, 1) = 20 ·
∑

R() + easy R-tensors,

3 ·
∑

Ȳ(3, 2) +
∑

Ȳ(3, 1, 1)

−
∑

Ȳ(2, 2, 1)−
∑

Ȳ(1, 1, 1, 1, 1) = 24 ·
∑

S() + easy S-tensors.

For every rational η = d/k such that k ≤ 12, we verify that our frame-
work yields a 2-party PSM with unbalanced communication complexity O(Nη),
O(N1−η) using a computer program.
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