
A Note on the (Im)possibility of
Verifiable Delay Functions in the Random Oracle Model

Mohammad Mahmoody∗ Caleb Smith∗ David J. Wu∗

Abstract

Boneh, Bonneau, Bünz, and Fisch (CRYPTO 2018) recently introduced the notion of a verifiable
delay function (VDF). VDFs are functions that take a long sequential time T to compute, but whose
outputs y := Eval(x) can be quickly verified (possibly given a proof π that is also computed along
Eval(x)) in time t � T (e.g., t = poly(λ, log T) where λ is the security parameter). The first security
requirement on a VDF asks that no polynomial-time algorithm can find a convincing proof π′ that verifies
for an input x and a different output y′ 6= y. The second security requirement is that that no polynomial-
time algorithm running in sequential time T ′ < T (e.g., T ′ = T 1/10) can compute y. Starting from the
work of Boneh et al., there are now multiple constructions of VDFs from various algebraic assumptions.

In this work, we study whether VDFs can be constructed from ideal hash functions as modeled in
the random oracle model (ROM). In the ROM, we measure the running time by the number of ora-
cle queries and the sequentiality by the number of rounds of oracle queries it makes. We show that
statistically-unique VDFs (i.e., where no algorithm can find a convincing different solution y′ 6= y) can-
not be constructed in the ROM. More formally, we give an attacker that finds the solution y in≈ t rounds
of queries and asking only poly(T) queries in total.

1 Introduction

A verifiable delay function (VDF) [BBBF18] f : X → Y is a function that takes long sequential time T to
compute, but whose output can be efficiently verified in time t � T (e.g., t = poly(λ, log T) where λ is a
security parameter). More precisely, there exists an evaluation algorithm Eval that on input x ∈ X computes
f(x) ∈ Y and a proof π in time T . In addition, there is a verification algorithm Verify that takes as input
a domain element x ∈ X , a value y ∈ Y , and a proof π and either accepts or rejects in time t. In some
cases, a VDF might also have a setup algorithm Setup which generates a set of public parameters pp that is
provided as input to Eval and Verify.1 We can distinguish between VDFs with “slow setup” where Setup can
run in time poly(T) and ones with “fast setup” where Setup runs in time poly(t). The two main security
requirements for a VDF are (1) uniqueness which says that for all inputs x ∈ X , no adversary running in
time poly(λ, T) can find y′ 6= f(x) and a proof π such that Verify(x, y′, π) = 1; and (2) sequentiality which
says that no adversary running in sequential time T ′ < T can compute y = f(x).

Verifiable delay functions have received extensive study in the last year, and have found numerous appli-
cations to building randomness beacons [BBBF18,EFKP19] or cryptographic timestamping schemes [LSS19].
∗University of Virginia. Emails: {mohammad,caleb,dwu4}@virginia.edu

1Ideally, the public parameters can be sampled by a public-coin process [BBBF18, Wes19, Pie19]. Otherwise, we require a trusted
setup to generate the public parameters [FMPS19, Sha19].

1

Driven by these exciting applications, a sequence of recent works have developed constructions of verifi-
able delay functions from various algebraic assumptions [Wes19, Pie19, FMPS19, Sha19]. However, ex-
isting constructions still leave much to be desired in terms of concrete efficiency, and today, there are
significant community-driven initiatives to construct, implement, and optimize more concretely-efficient
VDFs [Chi19]. One of the bottlenecks in existing constructions of VDFs is their reliance on structured
algebraic assumptions (e.g., groups of unknown order [RSA78, BBHM02]).

A natural question to ask is whether we can construct VDFs generically from unstructured primitives,
such as collision-resistant hash functions or one-way functions. In this work, we study whether black-box
constructions of VDFs are possible starting from hash functions or other symmetric primitives. Specifically,
we consider black-box constructions of VDFs from ideal hash functions (modeled as a random oracle).
Similarly to previous work (e.g., see [MMV11,AS15]) in the random oracle model (ROM), we measure the
running time of the adversary by the number of oracle queries the adversary makes and the sequentiality of
the adversary by the number of rounds of oracle queries it makes.

Our results. In this work, we rule out the existence of statistically-sound VDFs (i.e., VDFs where for any
x ∈ X , no algorithm can find (y′, π) such that Verify(x, y′, π) = 1 and y′ 6= f(x)) in the random oracle
model. Specifically, we construct an adversary that breaks the uniqueness of any statistically-sound VDF
that asks O(t) rounds of queries and a total number of poly(T) queries. We also observe that in the tight
regime of sequentiality (e.g., requiring an adversary to need sequential time T ′ � T ·(1−1/t)), even proofs
of sequential work (PoSW) [MMV13] cannot be based on random oracles. PoSW is a relaxation of VDF in
which the uniqueness property is not needed. Therefore, the lower bound also applies to VDFs as well. We
note, however, that since (even publicly verifiable) PoSW with more relaxed sequentially (e.g., T ′ = T/2)
are known [MMV13], it is not clear whether this lower bound for PoSW can be extended to VDFs as well
or not.

At a technical level, the proof of our first lower bound relies on the the techniques of Mahmoody, Moran,
and Vadhan [MMV11] for ruling out time-lock puzzles in the random oracle model. In fact, for a special
case of statistically-unique VDFs where the VDF function is a permutation on its input domain, which we
refer to as permutation-VDF (see also [KJG+16, AKK+19]), we use the proof of [MMV11] as a black-box
by reducing the task of constructing time-lock puzzles in ROM to constructing permutation-VDFs. For the
more general case of statistically-unique VDFs, we still use ideas from [MMV11] that are reminiscent of
similar techniques also used in [Rud88,BKSY11,MM11]. Namely, our attacker will sample full executions
of the evaluation function in its head, while respecting answers to queries that it has already learned from
the oracle, and then it will ask all such queries in one round from the oracle. Using few O(t) rounds of this
form, we can argue that in most of these rounds, the adversary has not hit any “new query” in the verification
process. Consequently, in most of the executions it is consistent with the verification procedure with respect
to some oracle O′, and thus by the statistical-uniqueness property, the answer in those executions should be
the correct one. Finally, by taking the majority, we obtain the correct answer with high probability.

1.1 Related Work

Verifiable delay functions are closely related to the notion of (publicly-verifiable) proofs of sequential work
(PoSW) [MMV13, CP18, AKK+19, DLM19]. The main difference between VDFs and PoSWs is unique-
ness. More specifically, a VDF ensures that for every input x, an adversary running in time poly(λ, T)
can only find at most one output y and proof π that the verifier would accept (and if it does, the verifier is
also convinced that the prover performed T sequential work). In contrast, a PoSW does not provide any

2

guarantees on uniqueness. In particular, every input x, there are many possible pairs (y, π) that the verifier
would accept, and indeed, in this setting, there is no need to distinguish between the output y and the proof
π. Even more generally, proofs of work need not be necessarily publicly-verifiable [DN93]. In this setting,
the verification key is secret, and we only require sequentiality against adversaries who do not know the se-
cret verification key. We emphasize that the uniqueness property in VDFs is important both for applications
as well as constructions. Indeed, publicly-verifiable proofs of sequential work can be constructed in the
random oracle model [CP18, DLM19], while our work rules out a broad class of VDFs in the same model.

Another closely-related primitive is the notion of a time-lock puzzle [RSW96]. In a time-lock puzzle,
a puzzle generator can generate a puzzle x together with a solution y in time t � T , but computing y
from x still requires sequential time T . The main difference between VDFs and time-lock puzzles is that
time-lock puzzles require knowledge of a secret key for efficient verification (in time t). In contrast, VDFs
are publicly-verifiable (in time t). However, similar to VDFs, the output of a time-lock puzzle is unique.
Mahmoody et al. [MMV11] leverage this very uniqueness property and the fact that the solution is known
ahead of the time to the verifier (because it is sampled during the puzzle generation) to show an impossibility
result for time-lock puzzles in the random oracle model. While VDFs also require unique solutions, these
solutions might not be known when we directly sample an input.

Concurrent work. Our second result about the limits of proofs of sequential work in ROM were in-
dependently discovered in a concurrent work by Döttling et al. [DGMV19], where the authors study tight
verifiable delay functions. Indeed, this lower bound is more natural for the tight range of security parameters
in which the sequentiality guarantee T ′ for the adversary is very close to T ′ ≈ (1− o(1)) · T . However, as
we mentioned above, this lower bound also applies to (even privately-verifiable) proofs of sequential work,
while (even publicly-verifiable) proofs of sequential work do exist in the non-tight regime (e.g., T ′ = T/2)
in ROM [MMV13]. Thus, whether or not this lower bound in ROM can be extended to arbitrary VDFs or
not still remains as an intriguing open question.

2 Preliminaries

Throughout this work, we use λ to denote the security parameter. For an integer n ∈ N, we write, [n] to
denote the set {1, 2, . . . , n}. We write poly(λ) to denote a quantity that is bounded by a fixed polynomial
in λ and negl(λ) to denote a function that is o(1/λc) for all c ∈ N. For a distribution D, we write x ← D
to denote that x is a uniform draw from D. For a finite set S, we write x $← S to denote that x is sampled
uniformly at random from S. We say that an algorithm is efficient if it runs in probabilistic polynomial time
in the length of its input. We now review the definition of a verifiable delay function (VDF):

Definition 2.1 (Verifiable Delay Function [BBBF18]). A verifiable delay function with domain X and range
Y is a tuple of algorithms ΠVDF = (Setup,Eval,Verify) with the following properties:

• Setup(1λ, 1T) → pp: On input the the security parameter λ, and the time bound T , the setup algo-
rithm outputs the public parameters pp.

• Eval(pp, x) → (y, π): On input the public parameters pp and an element x ∈ X , the evaluation
algorithm outputs a value y ∈ Y and a (possibly empty) proof π. We will typically refer to y as the
“output” of the VDF on x. When the context is clear, we simply write y ← Eval(pp, x) to denote the
output of the VDF on x.

3

• Verify(pp, x, y, π) → {0, 1}: On input the public parameters pp, an element x ∈ X , a value y ∈ Y ,
and a proof string π ∈ {0, 1}∗, the verification algorithm outputs a bit.

Moreover, the algorithms must satisfy the following efficiency requirements:

• The setup algorithm Setup runs in time poly(λ). (For simplicity, in the following sections, we some-
times write s to denote the running time of Setup.)

• The evaluation algorithm Eval runs in time T .

• The verification algorithm Verify runs in time t = poly(λ, log T).

Correctness. Next, we define the correctness requirement on a VDF:

Definition 2.2 (Completeness). A VDF ΠVDF = (Setup,Eval,Verify) with domain X and range Y is com-
plete if for all λ ∈ N, T ∈ N, x ∈ X and sampling pp← Setup(1λ, 1T), we have that

Pr[Verify(pp, x,Eval(pp, x), π)] = 1.

Security. There are two main security requirements we require on a VDF: uniqueness and sequentiality.
We define these below:

Definition 2.3 (Uniqueness). A VDF ΠVDF = (Setup,Eval,Verify) with domain X and range Y sat-
isfies statistical uniqueness if for all adversaries A, and sampling pp ← Setup(1λ, 1T), (x, y, π) ←
A(1λ, 1T , pp),

Pr[y 6= Eval(ek, x) ∧ Verify(pp, x, y, π) = 1] = 0.

We say that ΠVDF satisfies statistical uniqueness if

Pr[y 6= Eval(ek, x) ∧ Verify(pp, x, y, π) = 1] = negl(λ), (1)

and we say that ΠVDF satisfies computational uniqueness if Eq. (1) holds only for computationally-bounded
adversaries.

Definition 2.4 (Sequentiality). A VDF ΠVDF = (Setup,Eval,Verify) with domain X and range Y is σ-
sequential (where σ may be a function of λ, T and t) if for all adversaries A = (A0,A1), where A0 runs in
time poly(λ, t) and A2 runs in time σ, and sampling pp← Setup(1λ, 1T), stA ← A0(1

λ, 1T , pp), x $←X ,
y ← A1(stA, x),

Pr[y = Eval(pp, x)] = negl(λ).

We can view A0 as a “preprocessing” algorithm that precomputes some initial state stA based on the public
parameters and A1 as the “online” adversarial evaluation algorithm.

Definition 2.5 (Decodable VDF [BBBF18]). Let t be a function of λ and T . A VDF ΠVDF = (Setup,Eval,Verify)
with domain X and range Y is t-decodable if there is no extra proof (i.e., π = ⊥) and there is a decoder
Dec with the following properties:

• Dec runs in time t.

• For all x ∈ X , if y = Eval(pp, x), then Dec(pp, y) = x.

4

Moreover, for decoable VDFs, the verification algorithm Verify(pp, x, y) works as follows: on input (pp, x, y),
compute x′ ← Dec(vk, y) and output 1 only if x = x′. We call a VDF efficiently decodable, if it is
t-decodable for t = poly(λ, log T).

Remark 2.6 (Decodable VDFs and Perfect Uniqueness). By construction, the combination of completeness
and decodability implies statistical uniqueness (Definition 2.3).

Definition 2.7 (Random Oracle Model (ROM)). A random oracle O implements a truly random function
from {0, 1}∗ to rangeR.2 Equivalently, one can use “lazy evaluation” for any such random oracle as follows:

• If the oracle has not been queried on x ∈ {0, 1}∗, uniformly randomly select y ∈ R, remember the
mapping (x, y), and return y.

• If the oracle was previously queried on x ∈ {0, 1}∗, return the previously-chosen value of y (associ-
ated with x).

Remark 2.8 (VDFs in the ROM). We define uniqueness and sequentiality of a VDF in the ROM by ex-
tending the corresponding definitions (Definition 2.3 and 2.4). For uniqueness, we note that the probability
of the adversary succeeding is taken over the random coins of Setup and of the adversary, but not over the
choice of oracle. For sequentiality, we measure the running time of the adversary by the number of rounds
of oracle queries the adversary makes (this is to model the capabilities of a parallel adversary).

3 Lower Bounds for VDFs in the Random Oracle Model

In this section, we show that statistically unique VDFs (Definition 2.3) are impossible in the random oracle
model. In particular, if a VDF in ROM is statistically unique, it means that for every sampled random oracle
O ← O, statistical uniqueness holds.

Theorem 3.1 (Ruling out Perfectly Unique VDFs in ROM). Suppose ΠVDF = (Setup,Eval,Verify) be a
VDF in the ROM with statistical uniqueness in which (for a concrete choice of λ), Setup runs in time s,
Eval runs in time T , and Verify runs in time t. Then, there is an adversary A that breaks sequentiality
(Definition 2.4) with probability 1−negl(λ) and asks a total ofO(T · (t+s)) queries in 2(s+ t)+1 rounds.

Before proving Theorem 3.1, we observe that this result already rules out the possibility of constructing
decodable VDFs (which are statistically unique; see Remark 2.6) in the ROM. In fact, a special case of
this theorem for the class of “permutation VDFs” is implied by the impossibility result of [MMV11] for
time-lock puzzles [RSW96].3 We define this class of special VDFs below:

Permutation-VDFs. As a special case of decodable VDFs, one can further restrict the mapping form
X to Y to be a permutation (instead of just being an injective function). Indeed, the recent construction
of [AKK+19] has this property.

Proposition 3.2. Let ΠVDF be a permutation-VDF in the ROM with a decoder Dec that runs in time t, and a
setup algorithm Setup that runs in time s. Then, there is an adversary that breaks sequentiality (Definition
2.4) in O(s+ t) rounds of queries and a total of O(T · (s+ t)) queries.
2In the literature, there are multiple ways to model the range set: sometimes range R is {0, 1}λ for security parameter λ, sometimes
it is simply {0, 1}, and sometimes it is a “length preserving” by mapping any x to a string of the same length.

3In a time-lock puzzle, there is a puzzle-generation algorithm that runs in time t and samples a puzzle x together with a solution y,
and an evaluation algorithm that runs in sequential time T that takes an input x and outputs the solution y.

5

Proof of Proposition 3.2. The proof follows from the impossibility result of [MMV11] after a reduction
from permutation VDFs to time-lock puzzles. To generate a time-lock puzzle, the generator would first run
the setup algorithm Setup of VDF to get pp. Then, it picks y $←X = Y (note that we needX to be efficiently
samplable). Then, it lets x = Dec(pp, y), and it outputs x as the puzzle (and keeps y as the solution). By
definitions of VDF and time-lock puzzles, it can be shown that this way of generating puzzles would be
T -sequential in the ROM, as long as the original VDF is a permutation-VDF.

Having the reduction above, we can use the result of [MMV11] showing that any time-lock puzzles in
ROM with k queries during the puzzle generation and T queries during the solving of the puzzle, can be
broken by O(k) rounds of queries and a total of O(k · T) queries. We finally note that k = s + t since the
puzzle generation involves running both the setup and the decoding process of the VDF.

We now give the proof of Theorem 3.1. It still follows the ideas from [MMV11] for ruling out time-lock
puzzles in the ROM, but this time, we cannot simply reduce the problem to the setting of time-lock puzzles,
and we need to go into the proof and extend it to our setting.

Proof of Theorem 3.1. Without loss of generality, assume that Eval asks no repeated queries in a single
execution. The attacker’s algorithm A is as follows.

1. Let QA = ∅ (as a set of queries) and PA = ∅ (as a set of query-answer pairs).

2. Let d = 2(s+ t) + 1.

3. For i ∈ [d] do the following:

(a) Let P (i)
A = Q

(i)
A = ∅.

(b) Execute (yi, πi) ← Eval(ek, x) where the random oracle queries (made by Eval) are answered
using the following procedure. On every oracle query q:

• If q ∈ QA, then reply with the value r where (q, r) ∈ PA.

• Otherwise, choose a uniformly random value r $← R and add (q, r) to P (i)
A and add q to

Q
(i)
A .

(c) In one round, for all (q, r) ∈ P
(i)
A , query the real oracle O and get r ← O(q) as the answer.

Then for all such queries, add (q, r) to PA and q to QA.

4. Output majority(y1, ..., yd) where majority denotes the majority operation (that outputs ⊥ if no
majority exists).

We now show that A satisfies the properties needed in Theorem 3.1. Let QS be the queries asked by the
setup algorithm and QV the queries asked by the verifier for the specific challenge x and its true solution y.

For i ∈ [d], we define Hi to be the event where there is a query q ∈ Q(i)
A ∩ (QS ∪ QV) during the ith

round of emulation that was not previously asked by the adversary: q 6∈ QP at that moment. Equivalently,
when q is asked, it holds that q ∈ (Q

(i)
A ∩ (QS ∪QV)) \QP .

The following claim shows that Hi cannot happen for too many i’s.

Claim 3.3. If I = {i | Hi holds}, then |I| ≤ s+ t.

Proof. The reason is that every time that Hi happens for a query q, at the end of round i, A asks q from
the oracle O, A asks a new query that was asked previously by either of Setup or Verify algorithms. Since
Setup and Verify together ask a total of s+ t queries, this cannot happen more than s+ t times.

6

Claim 3.4. If Hi does not happen, then yi = y.

Proof. Let yi 6= y for a round i in which Hi has not happened. This means that the set of oracle query-
answer pairs used during Setup, and the ith emulation of Eval byA are consistent. Namely, there is an oracle
O′, relative to which, we have pp ← SetupO

′
, (y′, π′) ← EvalO

′
(pp, x), and VerifyO

′
(pp, x, y, π) = 1.

However, this shows that the statistical-uniqueness property is violated relative to O′, because for input x,
there is a “wrong” solution y (i.e., y 6= y′ = EvalO

′
(pp, x)) together with some proof π for y such that the

verification passes VerifyO
′
(pp, x, y, π) = 1.

By the above two claims, it holds that yi = y for at least s+ t+ 1 values of i ∈ [2(s+ t) + 1], and thus
the majority gives the right answer y for A.

Lower bound for tight proofs of sequential work. We can apply similar techniques to rule out tight
proofs of sequential work [MMV13] in the random oracle model. At a high level, a (publicly-verifiable)
proof of sequential work is a VDF without uniqueness. Namely, for an input x, there can be many pairs
(y, π) that passes verification. In this setting, there is no need to distinguish y and π. While we have
constructions of (publicly-verifiable) proofs of sequential work in the ROM, our results show that tight
proofs of sequential work are impossible in this setting. In particular, the following barrier applies to settings
where the sequentiality parameter σ is very close to T (e.g., this does not apply to σ = T/2).

Theorem 3.5 (Ruling out Tight Proofs of Sequential Work in ROM). Suppose ΠVDF = (Setup,Eval,Verify)
is a proof of work in the ROM in which (for a concrete choice of λ), Setup runs in time s, Eval runs in time
T , and Verify runs in time t. Then, for any T ′ < T there is an adversary A that asks a total of at most T ′

queries and breaks sequentiality (Definition 2.4) with probability 1− (s+ t) · T ′/T − negl(λ).

Proof. Again, without loss of generality, we assume that Eval asks no repeated queries in a single execution.
The attacker’s algorithm A is as follows.

1. Pick a random set S ⊆ [T] of size T ′.

2. Execute (y, π)← Eval(pp, x) while any oracle query q is answered as follows.

• If q ∈ S, ask q from the true oracle O,

• Otherwise choose a uniformly random value, r ← R for q.

3. Output (y, π).

To analyze the above attack, we compare the attacker’s experiment with an “ideal” experiment. Before doing
so, we first define the following experiment.

• pp← Setup(1λ, 1T)

• x $←X

• Run the adversary A (described above).

• Let b← Verify(pp, x, y, π).

• The output of the experiment is 1 if b = 1 (and 0 otherwise).

7

Real vs ideal experiments. Let the above experiment be the “real” experiment, and let “ideal” experiment
be a similar game in which the true oracle O is used in all the queries. We use the notation Prreal[·] (resp.,
Prideal[·]) to denote a probability of an event E in the Real (resp., Ideal) experiment.

Events. Let W be the event that Verify(pp, x, y, π) = 1 when (y, π) is the output of the adversary (i.e.,
W is the event that the adversary wins and the experiment outputs 1). Also, let QV be the oracle queries
made by Verify, QS be the oracle queries made by Setup, and QA be the adversary’s queries qi during the
emulation of the Eval whose where i 6∈ S (i.e., the adversary chooses the answer to qi at random). Define
the “bad” event B to be the event that (QV ∪ QS) ∩ QA 6= ∅; namely, the event that adversary makes up
an answer to a query that is asked either by the setup algorithm or the verification algorithm. With these
definitions, the following claim trivially holds in the ideal experiment, as there is no attack involved.

Claim 3.6. Prideal[W] = 1− negl(n).

Next, the following lemma states that until event B happens, the two experiments proceed identically.

Lemma 3.7. Prreal[B] = Prideal[B], and conditioned on the event B not happening, the two experiments
have the same distribution. In particular, for any event likeW , it hold that Prreal[W ∨B] = Prideal[W ∨B].

Proof. Here, we make a crucial use of the fact that oracle O is random. To prove the lemma, we run the
two games in parallel using the same randomness for any query that is asked by any party, step by step.
Namely, we start by executing the setup algorithm identically as much as possible until event B happens.
More formally, we run both experiments by using fresh randomness to answer any new query asked during
the execution, and we will stop the execution as soon as event B happens. Since until the event B happens
both games proceed identically (in a statistical sense) and consistently according to their own distribution, it
means that until event B happens, the two games have the same statistical distribution.

We now observe that the probability of B is small in the ideal game.

Claim 3.8. Prideal[B] ≤ (s+ t) · T ′/T .

Proof. In this game, the set S is chosen independently of other components of the experiment. So, we can
choose S at the end. By doing so, any query in in QV ∪QS that is also asked by QA will be chosen by the
adversary with probability at most T ′/T . Thus, the claim follows by a union bound.

The above claims finish the proof of Theorem 3.5, as we now can conclude that the probability of W in both
experiments is “close”: ∣∣ Pr

real
[W]− Pr

ideal
[W]

∣∣ ≤ Pr
ideal

[B].

We already know that Prideal[W] = 1 − negl(n), therefore, we conclude that Prreal[W] ≥ Prideal[W] −
Prideal[B] ≥ 1− (s+ t)T ′/T − negl(λ).

References

[AKK+19] Hamza Abusalah, Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Michael Walter.
Reversible proofs of sequential work. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2019, Part II, volume 11477 of Lecture Notes in Computer Science,
pages 277–291, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany.

8

[AS15] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard func-
tions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on
Theory of Computing, pages 595–603, Portland, OR, USA, June 14–17, 2015. ACM Press.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part I, volume 10991 of Lecture Notes in Computer Science, pages 757–788, Santa Barbara,
CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

[BBHM02] Ingrid Biehl, Johannes A. Buchmann, Safuat Hamdy, and Andreas Meyer. A signature scheme
based on the intractability of computing roots. Des. Codes Cryptography, 25(3):223–236,
2002.

[BKSY11] Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich. Limits on the power
of zero-knowledge proofs in cryptographic constructions. In Yuval Ishai, editor, TCC 2011:
8th Theory of Cryptography Conference, volume 6597 of Lecture Notes in Computer Science,
pages 559–578, Providence, RI, USA, March 28–30, 2011. Springer, Heidelberg, Germany.

[Chi19] Chia. Chia network announces 2nd VDF competition with $100,000
in total prize money. https://www.chia.net/2019/04/04/
chia-network-announces-second-vdf-competition-with-in-total-prize-money.
en.html, 2019.

[CP18] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part II, volume
10821 of Lecture Notes in Computer Science, pages 451–467, Tel Aviv, Israel, April 29 –
May 3, 2018. Springer, Heidelberg, Germany.

[DGMV19] Nico Dttling, Sanjam Garg, Giulio Malavolta, and Prashant Nalini Vasudevan. Tight verifiable
delay functions. Cryptology ePrint Archive, Report 2019/659, 2019. https://eprint.
iacr.org/2019/659.

[DLM19] Nico Döttling, Russell W. F. Lai, and Giulio Malavolta. Incremental proofs of sequential work.
In EUROCRYPT, pages 292–323, 2019.

[DN93] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F.
Brickell, editor, Advances in Cryptology – CRYPTO’92, volume 740 of Lecture Notes in Com-
puter Science, pages 139–147, Santa Barbara, CA, USA, August 16–20, 1993. Springer, Hei-
delberg, Germany.

[EFKP19] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous verifiable
delay functions. IACR Cryptology ePrint Archive, 2019:619, 2019.

[FMPS19] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay functions
from supersingular isogenies and pairings. IACR Cryptology ePrint Archive, 2019:166, 2019.

[KJG+16] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser,
and Bryan Ford. Enhancing bitcoin security and performance with strong consistency via
collective signing. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016:

9

https://www.chia.net/2019/04/04/chia-network-announces-second-vdf-competition-with-in-total-prize-money.en.html
https://www.chia.net/2019/04/04/chia-network-announces-second-vdf-competition-with-in-total-prize-money.en.html
https://www.chia.net/2019/04/04/chia-network-announces-second-vdf-competition-with-in-total-prize-money.en.html
https://eprint.iacr.org/2019/659
https://eprint.iacr.org/2019/659

25th USENIX Security Symposium, pages 279–296, Austin, TX, USA, August 10–12, 2016.
USENIX Association.

[LSS19] Esteban Landerreche, Marc Stevens, and Christian Schaffner. Non-interactive cryptographic
timestamping based on verifiable delay functions. IACR Cryptology ePrint Archive, 2019:197,
2019.

[MM11] Takahiro Matsuda and Kanta Matsuura. On black-box separations among injective one-way
functions. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference, volume
6597 of Lecture Notes in Computer Science, pages 597–614, Providence, RI, USA, March 28–
30, 2011. Springer, Heidelberg, Germany.

[MMV11] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puzzles in the random ora-
cle model. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841
of Lecture Notes in Computer Science, pages 39–50, Santa Barbara, CA, USA, August 14–18,
2011. Springer, Heidelberg, Germany.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable proofs of sequen-
tial work. In Robert D. Kleinberg, editor, ITCS 2013: 4th Innovations in Theoretical Computer
Science, pages 373–388, Berkeley, CA, USA, January 9–12, 2013. Association for Computing
Machinery.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS, pages 60:1–60:15, 2019.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto.
Technical report, 1996.

[Rud88] Steven Rudich. Limits on the Provable Consequences of One-way Functions. PhD thesis,
EECS Department, University of California, Berkeley, Dec 1988.

[Sha19] Barak Shani. A note on isogeny-based hybrid verifiable delay functions. IACR Cryptology
ePrint Archive, 2019:205, 2019.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In EUROCRYPT, pages 379–407,
2019.

10

	Introduction
	Related Work

	Preliminaries
	Lower Bounds for VDFs in the Random Oracle Model

