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Abstract

Key Exchange (KE) is, undoubtedly, one of the most used crypto-
graphic primitives in practice. Its authenticated version, Authenticated
Key Exchange (AKE), avoids man-in-the-middle-based attacks by pro-
viding authentication for both parties involved. It is widely used on the
Internet, in protocols such as TLS or SSH. In this work, we provide new
constructions for KE and AKE based on ideal lattices in the Random Or-
acle Model (ROM). The contributions of this work can be summarized as
follows:

• It is well-known that RLWE-based KE protocols are not robust for
key reuses since the signal function leaks information about the se-
cret key. We modify the design of previous RLWE-based KE schemes
to allow key reuse in the ROM. Our construction makes use of a new
technique called pasteurization which enforces a supposedly RLWE
sample sent by the other party to be indeed indistinguishable from
a uniform sample and, therefore, ensures no information leakage in
the whole KE process.

• We build a new AKE scheme based on the construction above. The
scheme provides implicit authentication (that is, it does not require
the use of any other authentication mechanism, like a signature
scheme) and it is proven secure in the Bellare-Rogaway model with
weak Perfect Forward Secrecy in the ROM. It improves previous
designs for AKE schemes based on lattices in several aspects. Our
construction just requires sampling from only one discrete Gaus-
sian distribution and avoids rejection sampling and noise flooding
techniques, unlike previous proposals (Zhang et al., EUROCRYPT
2015). Thus, the scheme is much more efficient than previous con-
structions in terms of computational and communication complexity.

Since our constructions are provably secure assuming the hardness of the
RLWE problem, they are considered to be robust against quantum adver-
saries and, thus, suitable for post-quantum applications.
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1 Introduction

Key Exchange (KE) is a cryptographic primitive that allows two parties to agree
on a shared key while a third party eavesdropping the communication gets no
information about the shared key. Subsequently, the shared key can be used to
securely communicate or provide authentication. This cryptographic primitive
was presented in the seminal paper by Diffie and Hellman [22], which marked
the birth of modern cryptography, and is, undoubtedly, one of the most used
primitives in both theoretical and real applications.

However, the standard KE primitive is not robust to man-in-the-middle (or
impersonation) attacks: an adversary controlling the network can easily modify
the communication between two parties, making them believe that they are
privately communicating with each other while, in fact, the conversation is being
controlled by the adversary. Authenticated Key Exchange (AKE) is a flavor of
KE which provides authentication to the parties involved and, thus, it avoids
man-in-the-middle attacks. Due to its robustness to this type of attacks, AKE
is used in a wide range of applications such as SSL [32] and TLS [21].

Authentication for KE can be achieved explicitly (that is, by explicitly using
other primitives that provide authentication, like signature schemes) or implic-
itly (that is, without requiring the explicit use of other primitives). The idea of
using implicit authentication for KE was presented in [48] and has been inten-
sively studied since then. In these protocols, a key is shared by means of static
and ephemeral keys belonging to the parties involved in the protocol; authenti-
cation is guaranteed by the static key while the ephemeral key usually provides
Perfect Forward Secrecy (PFS).1 The efficiency in terms of both communication
and computational complexity achieved by this kind of protocols, as well as its
simplicity and elegance, has led to their massive standardization by institutions
all over the world. Examples of such schemes are the MQV-like protocols (that
is, MQV [49, 43], HMQV [41] and OAKE [55]), which have been extensively
used as standard [38], and NAXOS [42].

All the above schemes are based on the Diffie-Hellman protocol, hence, their
security is based on the discrete logarithm assumption. With the possible advent
of a large-scale quantum computer, these protocols will become obsolete [54].
This fact has led the National Institute of Standards and Technology (NIST)
to announce a call to define the next post-quantum standard protocols for KE
and digital signatures to be used by national institutions in the USA [1]. Hence,
the development of post-quantum KE schemes and its variants (such as AKE
schemes) is of high priority and we should expect these types of protocols to be
used in the near future.

1.1 Lattice-based Key Exchange

One of the first post-quantum KE was presented in [28], where a KE protocol
based on the Ring Learning with Errors (RLWE) assumption [46] was pre-

1Recall that PFS guarantees that in case a static secret key is revealed to an adversary,
previously established session keys are not compromised.
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sented.2 The scheme of [28] is also our starting point. hence, to ease the
presentation of our results, we recall the scheme of [28] which we refer to as
Ding’s KE. Let Rq = Zq[X]/〈Xn + 1〉, for some prime q, and χα be a discrete
Gaussian distribution. Let Pi and Pj be two parties that want to exchange a
key. User Pi (resp. Pj) has a secret key si (resp. sj) sampled from χα and
the public key is a RLWE sample of the form asi + 2ei (resp. asj + 2ej) where
ei (resp. ej) is an error vector sampled from χα. Party Pi starts by sending
xi = asi + 2ei. Party Pj computes yj = asj + 2ej and kj = xisj + 2gj where
gj is sampled from χα. Now, party Pj computes the signal wj of kj , using a
function Sig that just tells if each coefficient of kj is within an interval or not.
Party Pj sends yj and the signal wj of kj to Pi. Both parties can now agree on
a shared key using an extractor function Mod2.

Recent results have noticed that information is leaked by the signal function,
in RLWE-based KE protocols [31, 23, 25]. In particular, if the value xi sent by
party Pi is not computed honestly (that is, if it is not an RLWE sample), then
party Pi can recover information about party Pj ’s secret key. This can be done
by noticing the behavior of the signal sent by Pj after several executions of the
scheme. Hence, one cannot reuse the same keys in several executions of the
protocol, risking itself of having its secret key exposed to someone else.

After the introduction of Ding’s KE [28], several other lattice-based KE [51,
56, 14, 5] were proposed. However, most of these schemes do not provide au-
thentication by themselves. So, authentication is guaranteed by means of an ex-
plicit mechanism (such as signature schemes). As far as we are aware, the only
lattice-based AKE that provides implicit authentication is the scheme of [56].
Unfortunately, the use of techniques such as rejection sampling and noise flood-
ing may raise implementation issues [30]. They also turn the parameters of
the scheme large and it is required the use of more than one discrete Gaussian
distribution.

Another different approach to exchange keys is to use Key Encapsulation
Mechanism (KEM), for which several lattice-based proposals have been made
in recent years [15, 33, 34, 13]. However, KEMs require the use of a decryption
algorithm, which is usually more computationally expensive than using a KE
protocol. Also, KEMs usually do not provide PFS, that is, all the previously
established session secret keys are compromised in case the secret key of a user
is exposed. Recall that, in a nutshell, a KEM is a Public-Key Encryption (PKE)
used as a KE; hence, once the secret key of a party is revealed, every message
that was encrypted using the corresponding public key is also revealed (in the
case of a KEM, this corresponds to established session keys).

1.2 Contributions and techniques

In this work, we present post-quantum solutions for KE and AKE that allow for
key reuse. We base the security of our schemes in the RLWE assumption [46],

2Another prominent line of research in post-quantum Key Exchange adopts the supersin-
gular isogeny-based approach [39].
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a well-established assumption in cryptography that enjoys an average-case re-
duction from worst-case lattice problems. Schemes based on this assumption
usually provide post-quantum security and are asymptotically more efficient
than their discrete log-based counterpart.

1.2.1 Key Exchange with reusable keys

First, we remark that if Pi’s message is an RLWE sample, then the value kj
computed by Pj is indistinguishable from a uniformly chosen value and, thus,
the signal of kj is also indistinguishable from a uniformly chosen value. Hence,
we just have to force each party to behave honestly in the protocol.

We use a technique, which we call pasteurization, to force the parties involved
in the KE scheme to behave honestly. The technique was previously introduced
in [26] in the context of zero-knowledge proofs. The idea of this technique is
the following: after receiving xi from Pi, the party Pj pasteurizes xi, i.e., it
computes

x̄i = xi + aH(xi) + 2fj ,

where H is a random oracle whose outputs are sampled from χα and fj is
sampled from χα. If xi is indeed an RLWE sample, then the pasteurization x̄i
is also an RLWE sample, for which Pi knows the secret. However, when xi is
not an RLWE sample, then x̄i looks pseudorandom to Pi. Thus, the signal of kj
is also pseudorandom and Pi cannot extract information about Pj ’s secret key
from it. We conclude that party Pi gains nothing by not following the protocol.
To guarantee that party Pi can also reuse its key in several executions of the
protocol, we make it pasteurize yj sent from Pj . A scheme of the protocol is
presented in Figure 1.

Party Pi Party Pj

si, ei←$χα
xi = asi + 2ei
c← H1(Pi,Pj , xi)

sj , ej ←$χα
yj = asj + 2ej
c← H1(Pi,Pj , xi)
d← H1(Pi,Pj , xi, yj)
fj , gj ←$χα

d← H1(Pi,Pj , xi, yj)
fi, gi←$χα
ȳj = yj + ad+ 2fi
ki = ȳj(si + c) + 2gi

x̄i = xi + ac+ 2fj
kj = x̄i(sj + d) + 2gj
wj ← Sig(kj)

ski ← Mod2(ki, wj) skj ← Mod2(kj , wj)

xi

yj , wj

Figure 1: Ding’s Ke with reusable keys: χα is a discrete Gaussian distribution
over Rq with standard deviation α, H1 : {0, 1}∗ → χα is a hash function whose
outputs are sampled from χα and Sig and Mod2 are the signal and the extraction
functions (respectively), as defined in [28].
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In the Diffie-Hellman KE [22], exchanged messages from both parties are
supposed to be in a group G. We avoid possible attacks by making the par-
ties verify if all the exchanged values are in G, which can be done in polynomial
time. However, in the RLWE-based KE, since the exchange messages are RLWE
samples, it is impossible to straightforwardly check if they are honestly com-
puted. The pasteurization technique can be seen as the analog of checking if
the exchanged messages are in G, in the Diffie-Hellman KE, since the technique
also enforces good behavior by the parties involved.

1.2.2 New Authenticated Key Exchange scheme

Our major contribution is the design of a new AKE scheme based on the RLWE
assumption. At the heart of our construction is the RLWE-based KE described
above. The scheme can be found in Figure 2.

Party Pi Party Pj

Static spki: pi = asi + 2ei
Static sski: si, ei←$χα

Static spkj : pj = asj + 2ej
Static sskj : sj , ej ←$χα

ri, fi←$χα
xi = ari + 2fi
c← H1(Pi,Pj , xi)

rj , fj ←$χα
yj = arj + 2fj
c← H1(Pi,Pj , xi)
d← H1(Pi,Pj , xi, yj)
gj , hj ←$χα

d← H1(Pi,Pj , xi, yj)
gi, hi←$χα
ȳj = yj + ad+ 2gi
ki = (pj + ȳj)(si+ ri+ c)−pjsi+2hi

x̄i = xi + ac+ 2gj
kj = (pi+ x̄i)(sj+rj+d)−pisj+2hj
wj ← Sig(kj)
σj ← Mod2(kj , wj)

σi ← Mod2(ki, wj)
ski ← H2(Pi,Pj , xi, yj , wj , σi)

skj ← H2(Pi,Pj , xi, yj , wj , σj)

xi

yj , wj

Figure 2: The new AKE protocol: χα is a discrete Gaussian distribution over Rq
with standard deviation α, H1 : {0, 1}∗ → χα is a hash function whose outputs
are sampled from χα, H2 : {0, 1}∗ → {0, 1}κ is a κ-bit key derivation function
and Sig and Mod2 are the signal and the extraction functions (respectively), as
defined in [28].

Protocol idea. Let (spki, sski) (resp. (spkj , sskj)) and (epki, eski) (resp. (epkj , eskj))
be pairs of static and ephemeral public and secret keys of party Pi (resp. Pj).
Symbolically, the key ki that party Pi computes can be viewed as the sum of the
shared keys between (sski, epkj) (static secret key of Pi with ephemeral public
key of Pj), (eski, spkj) (ephemeral secret key of Pi with static public key of
Pj) and (eski, epkj) (ephemeral secret key of Pi with ephemeral public key of
Pj). Similarly, Pj computes the sum of the shared keys between (sskj , epki),
(eskj , spki) and (eskj , epki).
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More precisely, let spki = pi = asi + 2ei and epk = xi = ari + 2fi (resp.
spkj = pj = asj + 2ej and epk = yj = arj + 2fj) be the static and ephemeral
public keys of Pi (resp. Pj). The key ki computed by Pi is equal to (pj+ ȳj)(si+
ri + c) − pjsi, which is the sum of all possible combinations between static
and ephemeral keys of both parties, minus the key resulting of the exchange
between static keys. As in the previous construction, we pasteurize yj to avoid
any leakage of information. Similarly, the key kj computed by Pj is equal to
(pi + x̄i)(sj + rj + d)− pisj . Of course ki and kj are just approximately equal,
hence the functions Sig and Mod2 are used to agree on a shared value.

Similarities with NAXOS protocol. We recall the NAXOS AKE protocol
of [42] which is based on the Diffie-Hellman protocol. Let G be a group and
let (spki, sski) (resp. (spkj , sskj)) and (epki, eski) (resp. (epkj , eskj)) be pairs
of static and ephemeral public and secret keys of party Pi (resp. Pj). Party

Pi computes the shared key as H(epksskij , spkeskij , epkeskij ) where H is a random
oracle.

Our AKE protocol shares similarities with the NAXOS protocol. However,
we compute the shared key in one operation while NAXOS computes three
keys individually. This allows saving a couple of multiplications in the ring Rq,
improving the efficiency.

However, we were not able to prove security in the (extended) Canetti-
Krawczyk (eCK) model [42], as in NAXOS. This is due to the fact that, given
two session transcripts (xi, (yj , wj)) and (xi, (yj , w

′
j)), these two sessions have

the same state (that is, kj) and the eCK model allows the adversary to get the
state of parties in a session.3

Comparison with scheme of Zhang et al. As far as we are aware, the only
RLWE-based AKE scheme with implicit authentication was presented in [56]
(we refer to it as ZZD+ scheme, for convenience). We compare our scheme with
this one.

In terms of computational complexity, the ZZD+ scheme requires ten mul-
tiplications in the ring Rq, five for each party. This is due to the use of the
rejection sampling technique [44, 45], in which each party has to check if the
ephemeral key leaks information.4 Although for a proper choice of parameters,
the rejection happens rarely, the test has to be done in every execution. The
scheme also requires to sample six times from a discrete Gaussian distribution
(three for each user), half the number of samples compared with our proto-
col. However, the ZZD+ scheme requires three distributions χα and χβ with
β >> α and χτ , since the noise flooding technique is used. 5 This turns the

3The scheme of [56] was not analyzed in the Canetti-Krawczyk (CK) model for the same
reason.

4Rejection sampling is needed in the ZZD+ scheme since the scheme (implicitly) resorts
to signatures to provide authentication, just like HMQV which (implicitly) relies on Schnorr
signatures [53]. Our design does not require signatures as authentication is provided by the
shared keys between ephemeral secret keys and static public keys.

5The noise flooding technique is used in ZZD+ in order for the ephemeral secret key to
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implementation of the scheme way more complicated than the implementation
of our scheme, which only needs the distribution χα.

Rounds Multiplications Samples Required Rejection
in Rq distributions Sampling

[56] 2 10 6 χα, χβ (β >> α), χτ 3

Ours 2 6(+2 offline) 8 χα 7

Table 1: Comparison with other AKE schemes with implicit authentication.

The ZZD+ scheme requires two elements of Rq and the signal to be sent
during the execution of the protocol. Hence, it achieves the same communica-
tion complexity as our scheme. However, the use of several discrete Gaussian
distributions (in particular, the use of χβ with β >> α) implies the use of a
larger q than in our scheme for the same security level. This fact leads to much
larger parameters to be used, comparing to our proposal, for the same security
parameter We elaborate more on this in Section 6.

1.3 Other previous work

Prominent work on security models for AKE schemes was presented in [11, 19,
42]. Here, we work on the BR-model, which is the most common model used
and it is believed to be enough for practical purposes since it also provides
composability [18].

The idea of sanitizing the other’s party message in the context of KE with
lattices was already employed in [35]. However, the strategy used in [35] consists
in multiplying the key obtained by Pj by a small value and then revealing it
to Pi, so that Pi can also compute the key. Although the authors of [35] give
arguments on why their construction is robust to the key reuse attacks of [31, 23],
no proofs of security are presented. Contrarily to the construction of [35], we
can prove robustness for key reuse for our scheme.

Identity-based Encryption (IBE) schemes can also be used as KEM that
provide authentication and several constructions for IBE based on lattices have
been proposed before [36, 2, 20, 29]. However, the efficiency of these schemes is
too cumbersome to be used in practice.

Password-authenticated key-exchange is yet another flavor of AKE. Previous
work on RLWE-based PAKE were presented in [40] (via public-key encryption
scheme) and [24] (via KE).

2 Preliminaries

Let D be an algorithm. By y ← D(x) we denote the output y after running D
on input x. If S is a set and ρ a distribution over S we denote by x←$S the

obliterate every information about the static secret key and, thus, to allow for key reuse. Our
approach for the key reuse problem is to pasteurize RLWE samples, as explained previously.
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element x sampled uniformly at random from S (if S is finite) and by x←$ ρ
the element x sampled from S according to ρ.

Let n be a power of 2. For a prime q, let Rq = Zq[X]/(Xn + 1). Notice
that Rq can be embedded into Rn. In this work, we consider the coefficient
embedding where each polynomial a(X) = a0+a1X+· · ·+an−1X

n−1 is mapped
to the vector (a0, . . . , an−1) ∈ Rn. For a ∈ Rq, ‖a‖ denotes the usual `2 norm
of the embedded vector (a0, . . . , an−1) ∈ Rn and ‖a‖∞ denotes its `∞ norm.

We define the statistical distance between two random variables X and Y
by

d(X,Y ) =
1

2

∑
r

|Pr [X = r]− Pr [Y = r]| .

Let X = {Xκ} and Y = {Yκ} two probability distributions. We say that X and
Y are statistically close to uniform if d(Xκ, Yκ) ≤ negl(κ).

2.1 BR security model

We describe the Bellare-Rogaway (BR) model [11] adapted to two-pass AKE
schemes, which was also used in [56]. In this model, the adversary has full
control of the network, which means that it can read, modify, intercept, and
inject messages in the network. It is also allowed to reveal session keys that
have been established, to modeled possible leaks of information in the real-
world use of a protocol, and to reveal the static secret keys of users, in order to
capture PFS. We briefly survey the security model.

In this work, an execution of an AKE scheme Π is performed by two parties,
the initiator I and the responder R. Let N be the number of users using the
AKE protocol. Each user has a pair of static public and secret keys. As usual, we
assume that static public keys of the users are validated either by a Certificate
Authority (CA) or using some other mechanism.

Session. A session sid = (Π, I,Pi,Pj , Xi, Yj) (or sid = (Π, R,Pj ,Pi, Xi, Yj))
is a single execution of Π, where I (or R) denotes the role of the session owner,
Pi and Pj are the parties involved in the session (the first one being the owner
of the session), Xi is the message sent from Pi to Pj and Yj is the message sent
from Pj to Pi. A session has a owner which is the party that activates it. A
session is said to be completed when a party computes a session key. A session

sid = (Π, I,Pi,Pj , Xi, Yj) has a matching session if s̃id = (Π, R,Pj ,Pi, Xi, Yj)
exists (and vice-versa).

A session can be activated by a message of the form (Π, I,Pi,Pj) (when
the session belongs to the initiator) or of the form (Π, R,Pj ,Pi, Xi) (when the
session belongs to the responder). In the first case, we say that Pi is the initiator
and it should output a message Xi. After receiving a message of the form
(Π, R,Pj ,Pi, Xi), Pj takes the role of the responder and should output a message
Yj and computes the shared session key. Finally, upon receiving a message of
the form (Π, I,Pi,Pj , Xi, Yj), Pi computes the shared session key, which will be
the same as the one computed by Pj .
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Oracles. The adversary A has access to the following oracles:

• Initiate(Π, I,Pi,Pj): party Pi is activated as the initiatior. Initiate returns
Xi, a message intended for party Pj .

• Respond(Π, R,Pj ,Pi, Xi): party Pj is activated as the responder. Respond
returns Yj , a message intended for Pi.

• Complete(Π, I,Pi,Pj , Xi, Yj): the message Yj is sent to Pi to complete a
session previously activated by an Initiate query, which outputted Xi.

• skReveal(sid): it returns the session key of session sid, if it exists.

• Corrupt(Pi): it returns the static secret key of party Pi.

• Test(sid): it chooses b←$ {0, 1}. If b = 0, it returns a uniformly chosen
key. Else, it returns the session key of session sid.

A party that has its key revealed (by querying Corrupt) is called dishonest.
We just allow Test to be called once and on a fresh session to avoid trivial

attacks. The definition of fresh session is presented below.

Security of AKE. First, we define the concept of a fresh session.

Definition 1 (Fresh session). Let sid be a completed session and let s̃id be the
matching session (if it exists). We say that sid is fresh if:

1. skReveal was not queried on sid nor on s̃id;

2. Corrupt was not queried on Pi nor on Pj, if s̃id does not exist.

Weak Perfect Forward Secrecy (wPFS) means that it is infeasible for an
adversary to recover a session key that was established without its interven-
tion [41]. This should hold even when the attacker knows the static secret keys
of both parties involved in the key exchange. Restricting the adversary to query
the Test oracle on a fresh session captures the notion of wPFS. Recall that wPFS
is the strongest type of PFS that a two-pass KE protocol can achieve [41].

Let Π be an AKE scheme and κ a security parameter. Consider the following
security game: A can query a polynomial number of times the oracles described
above, except for Test oracle, which is queried only once on a fresh session. Let
b be the bit chosen by the oracle Test. The game ends with A outputting b′, a
guess of b. We define the advantage of A as AdvΠ,A(κ) = Pr[b′ = b]− 1/2.

Definition 2. Let Π be a AKE scheme and κ be the security parameter. We
say that Π is secure if AdvΠ,A(κ) ≤ negl(κ), for any adversary A.
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2.2 Ring-Learning with Errors

In this section, we present the Ring Learning with Errors (RLWE) problem [46],
a famous variant of the Learning with Errors (LWE) problem, firstly presented
by Regev [52].

Let ρnv,α(a) = 1
α
√

2π
exp

(
−‖a−v‖2

2α2

)
be the probability distribution of the

Gaussian distribution over Rn centered at v ∈ Rn and with standard deviation
α. We define the discrete Gaussian distribution over Rq centered at v ∈ Rq and
with standard deviation α by the probability distribution

χv,α(a) =
ρnv,α(a)

ρnv,α(Rq)

for all a ∈ Rq. The subscript v is omitted when it is equal to zero.
We recall some basic facts about the `2 and `∞ norms: for all a, b ∈ Rq,

‖a.b‖ ≤
√
n ‖a‖ . ‖b‖ and ‖a‖∞ ≤ ‖a‖.

Lemma 3 ([50]). For any α = ω(
√

log n), we have

Pr[‖x‖ ≥ α
√
n : x← χα] ≤ 2−n+1.

Let s←$Rq. The RLWE distribution DRLWE
s,χα samples a←$Rq and e←$χα

and outputs (a, as+ e).

Definition 4 (Ring Learning with Errors). The decision version of the RLWE
problem, denoted by RLWEq,χα , asks to distinguish samples (a, as+e)←$DRLWE

s,χα
from samples (a, u)←$ Rq ×Rq.

It was shown that solving the RLWE assumption on average is at least as
hard as solving worst-case lattice problems (namely the Approximate Shortest
Independent Vector Problem), which is assumed to be hard for classical and
quantum computers [46].

It is well-known that the RLWE problem is still hard when the secret s is
sampled from the error distribution χα, instead of being chosen uniformly from
Rq [8, 46, 47]. This is usually called the Hermite Normal Form-RLWE (we will
denote it by HNF-RLWEq,χα) and it is proven to be as hard as RLWEq,χα .

It is also known that the RLWE problem is still hard when we scale the error
of the sample by a constant t (which is co-prime with q), that is, as + te [16].
Moreover, it is straightforward to prove that the RLWE problem is still hard
when s is sampled from χkα for k = 2 or k = 3, instead of being sampled from
χα. We will use this fact to guarantee the security of our scheme.

2.3 Signal Function

We define the signal function which was firstly presented in [28] and has found
numerous applications such as in key exchange (and its variants) [28, 56, 24],
zero-knowledge proof [26] or oblivious transfer [17].
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Let E =
{⌊

q
4

⌋
, ..., b q4e

}
⊂ Zq and E + 1 =

{
−
⌊
q
4

⌋
+ 1, b q4e+ 1

}
. We define

the functions Sig0,Sig1 : Zq → {0, 1} as

Sig0(a) =

{
0, if a ∈ E
1, if a /∈ E

and Sig1(a) =

{
0, if a ∈ E + 1

1, if a /∈ E + 1

The randomized function Sig∗(a) is given by choosing b←$ {0, 1} and outputting
Sigb(a). We extend Sig∗ to a function Sig : Rq → R2 on Rq given by Sig(a) =
(Sig∗(a0), ...,Sig∗(an−1)), where a = a0 + a1X + . . . an−1X

n−1 ∈ Rq.

Lemma 5. Let k←$Rq and w ← Sig(k). Then w follows a uniform distribution
over R2.

Proof. If k is sampled uniformly from Rq, then each of its coefficients is sam-
pled uniformly from Zq. Then, this means that each coefficient of k has a 1/2
probability of being in the set E. Thus, the signal w of k is a uniformly chosen
polynomial from R2.

We also define the extractor function Mod2 : Rq ×R2 → R2 as

Mod2(a,w) =

(
a+ w

q − 1

2
mod q

)
mod 2.

Lemma 6 ([28]). Let q > 8, u, v ∈ Rq such that ‖u− v‖∞ < q/4 and w ←
Sig(v). Then

Mod2(u,w) = Mod2(v, w).

Recall that the min-entropy of a random variable V is defined by

− log

(
max
s∈S

Pr[V = s]

)
and says that it is infeasible for an adversary (even with unlimited computational
power) to guess v chosen uniformly at random from V with probability greater
than 2− log(maxs∈S Pr[V=s]).

Lemma 7 ([56]). Let q be an odd prime and Rq be as above. For any b ∈ R2

and any v′ ∈ Rq, the output distribution of Mod2(v + v′, b) given Sig(v) has
min-entropy of at least

−n log

(
1

2
+

1

|E| − 1

)
where v←$Rq.

By the Lemma above, we have that, when q > 203, then−n log
(

1
2 + 1

|E|−1

)
>

0.97n [56].
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3 Key exchange with reusable keys

Several attacks have been found on RLWE-based key exchanges [31, 23, 25]. All
of these attacks rely on the fact that the signal function leaks information about
the secret key. Hence, we want to show that there is no leakage of information
in our protocol. In particular, we want to show that there is no leakage of
information about the static secret key of each party. This can be proven due
to the fact that, by pasteurizing the message sent by the other party, the signal
function will look completely random.

In this section, we present a variant of the KE of [28] which allows for key
reuse.

3.1 The protocol

Let a←$Rq. Let H1 : {0, 1}∗ → χα be a random oracle whose outputs are
sampled from χα.6

1. Pi does the following:

• It samples si, ei←$χα and computes xi = asi + 2ei.

• It sends xi to Pj .

2. Upon receiving xi from Pi, Pj does the following:

• It samples sj , ej ←$χ and computes yj = asj + 2ej .

• It computes c← H1(Pi,Pj , xi) and d← H1(Pi,Pj , xi, yj).

• It samples fj ←$χα and computes x̄i = xi + ac+ 2fj .

• It samples gj ←$χα and computes kj = x̄i(sj + d) + 2gj .

• It computes wj ← Sig(kj) and sets the session key as

skj ← Mod2(kj , wj).

• It sends (yj , wj) to Pi.

3. Upon receiving (yj , wj) from Pj , Pi does the following:

• It computes c← H1(Pi,Pj , xi) and d← H1(Pi,Pj , xi, yj).

• It samples fi←$χα and computes ȳj = yj + ad+ 2fi.

• It samples gi←$χα and computes ki = ȳj(si + c) + 2gi;

• It sets the the session key as ski ← Mod2(ki, wj).

6Note that such a hash function H1 can be trivially implemented by means of a usual hash
function H̃1 and an algorithm S that samples according to χα, and by using the value H̃(x)
as the seed in S.
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Discussion. The main idea of this new protocol is that an adversary gains
nothing by sending something that it is not an RLWE sample. To see this,
assume that party Pi is dishonest, and controlled by an adversary A, (as in
the setup of the attacks of [31, 23]) and sends xi to Pj . If xi is an HNF-RLWE
sample, then x̄i is also a HNF-RLWE sample for which Pi has the corresponding
secret. However, when xi is not an HNF-RLWE sample, but rather a value that
follows some other arbitrary distribution over Rq, then we prove that x̄i follows
a distribution that is statistically close to the uniform distribution from the
point of view of A. This happens because H is modeled as a random oracle and,
thus, A has no control over it. In particular, it has no control over the value
aH(xi) + e since H(xi) is independent of xi (since H is a random oracle) and e
is sampled by the other party.

Also, we remark that the probability of A finding xi such that x̄i is some
particular value is equal to the probability of honestly sampling HNF-RLWE
samples and getting the same particular value (which should be negligible).

Correctness. We prove that the scheme is correct with overwhelming proba-
bility.

Lemma 8. Suppose that q > 16(4α2n3/2 + α
√
n). Then ski = skj, except with

negligible probability.

Proof. By Lemma 6, we have to show that ‖ki − kj‖∞ < q/4. First, note that

ki = as̃+ 2ẽi and kj = as̃+ 2ẽj

where

s̃ =(si + c)(sj + d)

ẽi =ejsi + ejc+ fjsi + fic+ gi

ẽj =eisj + eid+ fisj + fjd+ gj .

Recall that ‖a.b‖ ≤
√
n ‖a‖ . ‖b‖ for any a, b ∈ Rq. Plugging this fact together

with the triangular inequality and Lemma 3, we have that

‖ki − kj‖∞ < 2(8α2n3/2 + 2α
√
n).

Since, by assumption, we have that

q > 8(8α2n3/2 + 2α
√
n),

then ‖ki − kj‖∞ < q/4 and correctness of the protocol follows.

3.2 Security against passive adversaries

Let A be an adversary. Consider the following security game for KE protocols.
A is given a honestly generated transcript of the KE. Then, a random bit b is
chosen uniformly at random. If b = 0, then A is given a uniformly chosen key

13



and, if b = 1, then A is given the actual session key k. Finally, A must output
a bit b′, which a guess of b. We define the advantage of A to be AdvpasKE,A(κ) =
Pr [b = b′]−1/2 and say that the KE scheme is secure against passive adversaries
if AdvpasKE,A(κ) ≤ negl(κ), for any adversary A.

Theorem 9. The scheme is secure against passive adversary, given that q is a
prime as in Lemma 8 and HNF-RLWEq,χα is hard

Proof. The security proof of the scheme for passive adversaries follows the same
line as the proof in [28]. We omit it here.

3.3 Robustness of the scheme to key reuse

We prove that the scheme is robust to key reuse. That is, it is infeasible for an
adversary to get information about the other party’s secret key s, even when
the same keys are reused in several executions of the protocol.

We say that a KE scheme is robust to key reuse if it is robust to key reuse
for both parties involved in the protocol (we formally define robustness for each
party below).

Lemma 10 ([26]). Let φ be an arbitrary distribution over Rq and let ψ be a
distribution over Rq which is statistically close to the uniform distribution over
Rq. Let x, y ∈ Rq such that x←$φ and y←$ψ. Then, the distribution of
x̄ = x+ y is statistically close to uniform.

Proof. The proof is presented in [26], however we present it here for complete-
ness. For any r ∈ Rq, we have that

Pr [x+ y = r] =
∑
i∈Rq

Pr [x = r − i] Pr [y = i]

=
∑
i∈Rq

(
1

qn
+ negli(κ)

)
Pr [x = r − i]

=
1

qn

∑
i∈Rq

Pr [x = r − i] +
∑
i∈Rq

negli(κ) Pr [x = r − i]

≤ 1

qn
+
∑
i∈Rq

negli(κ)

and the sum
∑
i∈Rq negli(κ) is a negligible value. Hence, the distribution of

x̄ = x+ y is statistically close to the uniform distribution.

Lemma 11. Let s←$χα. Given (a, y = as + e)←$DRLWE
s,χα , the probability

Pr [y = r] for any r ∈ Rq is less or equal to 1/qn.

Proof. First, note that, if a ∈ Rq is uniformly chosen, then the probability that
Pr [as = r] for some r ∈ Rq is 1/qn. To see this, note that the product a0s0 is
uniform in Zq, for a0, s0 ∈ Zq (since q is prime, then Zq forms a field). Hence,
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each coefficient of the product of two polynomials a = a0+a1X+· · ·+an−1X
n−1

and s = s0 + s1X + · · · + sn−1X
n−1 in Rq is nothing but a sum of (some of)

the coefficients of a and s. Since the coefficients of a are uniformly chosen from
Zq, then the product aks` is also uniform in Zq, for any k, ` = 1, . . . , n − 1.
Therefore as is uniform in Rq since its coefficients are sums of uniformly chosen
values from Zq.

Now, using Lemma 10, we conclude that the value as+ e follows a distribu-
tion statistically close to the uniform distribution over Rq. We conclude that
Pr [as+ e = r] = 1/qn + negl(κ).

From the lemma presented above, we immediately get the following corollary.

Corollary 12. The distribution DRLWE
s,χα is statistically close to the uniform

distribution over Rq.

Proof. This is a direct consequence of the previous lemma.

Corollary 13. Let H be a random oracle whose outputs are sampled from χα
and let x←$φ, where φ is a distribution over Rq, different from DRLWE

s,χα , where
s←$χα. Then, the distribution of x̄ = x+ aH(x) + e, where e←$χα, is statis-
tically close to the uniform distribution over Rq, in the ROM.

Proof. The proof follows from Lemma 10, Corollary 12 and by noting that the
distribution of H(x) is independent of the distribution of x (because H is a
random oracle).

Key reuse for party Pj. Let A be an adversary. Consider the following
security game: A is allowed to open as many sessions as it wants with party
Pj (always playing the role of Pi). At some point, a key is exchanged between
Pi and Pj with A passively observing. Observe that A is not given access to
the secret key of Pi. Then, a random bit b is chosen uniformly at random.
If b = 0, then A is given a uniformly chosen key and, if b = 1, then A is
given the actual session key k (computed by Pj) between Pi and Pj . Finally,
A must output a bit b′, which a guess of b. We define the advantage of A to
be AdvkrjKE,A(κ) = Pr [b = b′]− 1/2 and say that the KE scheme is robust to key

reuse for Pj if AdvkrjKE,A(κ) ≤ negl(κ), for any adversary A.

Theorem 14. Let q be as in Lemma 8. The proposed KE scheme is robust to
key reuse for party Pj in the ROM, given that the HNF-RLWEq,χα is hard.

Proof. First, we show that, whatever the strategy used by the adversaryA, it
cannot get any information on the secret key sj of party Pj . When interacting
with Pj , A sends a value x ∈ Rq. There are two cases to consider:

1. (a, x)←$DRLWE
s,χα , where s←$χα.

2. The value x follows some other distribution φ over Rq, different from
DRLWE
s,χα , where s←$χα.
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The case 1 reduces to the case of passive security. Hence, in this case, the
adversary A cannot get information about sj (the secret of Pj).

In the second case, suppose that A sends x sampled from an arbitrary dis-
tribution φ. Then, by Lemma 13, the distribution of x̄ = x+ aH(x) + e, where
e is sampled from χα by Pj , is statistically close to the uniform distribution.
Hence, by the HNF-RLWE assumption, the key kj is indistinguishable from a
uniformly chosen value of Rq from the point-of-view of A. Then, by Lemma 5,
the signal wj is uniform in R2. By a simple hybrid argument, we can replace
the key kj and the signal wj of each of these sessions by random elements of Rq
and R2, by Lemma 5. We conclude that, in this case, it is infeasible for A to
get sj , except with negligible probability.

If it is infeasible for A to get information about sj when interacting with Pj ,
then the case where A passively observes the execution the protocol between Pi
and Pj falls in the case of Theorem 9. Thus, it follows that A has a negligible
advantage in the game and, therefore, the scheme is robust to key reuse for
party Pj .

Key reuse for party Pi. Similarly, we define the concept of robustness to
key reuse for Pi.

Consider the following security game for any adversary A: A is allowed to
open as many sessions as it wants with party Pi (always playing the role of
Pj). At some point, a key is exchanged between Pi and Pj with A watching
passively. Observe that A is not given access to the secret key of Pj . Similarly
to the previous case, a random bit b is chosen uniformly at random. If b = 0,
then A is given a uniformly chosen key and, if b = 1, then A is given the
actual session key k (computed by party Pi) between Pi and Pj . Finally, A
must output a bit b′, which a guess of b. We define the advantage of A to be
AdvkriKE,A(κ) = Pr [b = b′]−1/2 and say that the KE scheme is robust to key reuse

for Pi if AdvkriKE,A(κ) ≤ negl(κ), for any adversary A.

Theorem 15. Let q be as in Lemma 8. The proposed KE scheme is robust to
key reuse for party Pi in the ROM, given that the HNF-RLWEq,χα is hard.

Proof. The analysis is similar to the proof of Theorem 14. We omit it for
briefness.

3.4 Efficiency and comparison

We compare our scheme with Ding’s KE [28] (based on the RLWE assumption)
in terms of computational complexity. The comparison is presented in Table 2.
Our proposal maintains the same communication complexity: The same amount
of information is exchanged in the same number of rounds. As we can see
in Table 2, we obtain a small computational overhead in order to guarantee
robustness to key reuse.
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Rounds Communication Multiplications Samples Key
complexity in Rq reuse

Ding’s KE [28] 2 2n log q + n 4 4 7

Ours 2 2n log q + n 6 8 3

Table 2: Comparison with other KE schemes.

4 The AKE Protocol

Let a←$Rq be a uniformly chosen public element of Rq. The static public
key of party Pi is pi = asi + 2ei where si, ei←$χα. Its static secret key is si.
Similarly for party Pj , its static public key is p = asj + 2ej and its static secret
key is sj . Let H1 : {0, 1}∗ → χα be a hash function whose outputs are sampled
from χα and let H2 : {0, 1}∗ → {0, 1}κ be a key derivation function. Both of
these functions are modeled as random oracles.

The protocol is composed by three algorithms: Initiate, Respond and Complete.
We specify it in full detail:

1. Initiate: Pi does the following:

• It samples ri, fi←$χα and computes xi = ari + 2fi mod q.

• It sends xi to Pj .

2. Respond: Upon receiving xi, Pj does the following:

• It samples rj , fj ←$χα and computes yj = arj + 2fj mod q.

• It computes c← H1(Pi,Pj , xi) and d = H1(Pi,Pj , xi, yj).

• It samples gj ←$χα and computes x̄i = xi + ac+ 2gj .

• It samples hj ←$χα and computes

kj = (pi + x̄i)(sj + rj + d)− pisj + 2hj .

• It computes wj ← Sig(kj) and σj ← Mod2(kj , wj).

• It sets skj ← H2(Pi,Pj , xi, yj , wj , σj) as the shared key.

• It sends (yj , wj) to Pi.

3. Complete: Upon receiving (yj , wj), Pi does the following:

• It sets c← H1(Pi,Pj , xi) and d = H1(Pi,Pj , xi, yj)

• It samples gi←$χα and computes ȳj = yj + ad+ 2gi.

• It samples hi←$χα and computes

ki = (pj + x̄j)(si + ri + c)− pjsi + 2hi.

• It computes σi ← Mod2(ki, wj).

• It sets ski ← H2(Pi,Pj , xi, yj , wj , σi) as the shared key.
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The following lemma proves the correctness of the scheme, that is, parties
Pi and Pj end up with the same key after executing the protocol.

Lemma 16 (Correctness). If q > 8
(
16α2n3/2 + 2α

√
n
)

then ski = skj, except
with negligible probability.

Proof. To prove the correctness of the scheme is it enough to show that σi = σj .
By Lemma 6, we have to show that ‖ki − kj‖∞ < q/4. First, note that

ki = as̃+ 2ẽi and kj = as̃+ 2ẽj

where

s̃ =rjsi + dsi + sjri + rjri + dri + sjc+ rjc+ dc

ẽi =fjsi + gisi + ejri + fjri + giri + ejc+ fjc+ gic+ hi

ẽj =fisj + gjsj + eirj + firj + gjrj + eid+ fid+ gjd+ hj .

Recall that ‖a.b‖ ≤
√
n ‖a‖ . ‖b‖ for any a, b ∈ Rq. Plugging this fact together

with the triangular inequality and Lemma 3, we have that

‖ki − kj‖∞ ≤ 2
(

16α2n3/2 + 2α
√
n
)
.

Since, by assumption, we have that

q > 8
(

16α2n3/2 + 2α
√
n
)
,

then ‖ki − kj‖∞ < q/4 and the correctness of the protocol follows.

5 Security proof for the AKE scheme

Before proving security of the scheme in the BR-model, remark that no infor-
mation about the secret static keys of each party is leaked during the execution
of each session. This is guaranteed by Theorem 14 and Theorem 15.

We present the result that guarantees the security of the proposed scheme
in the BR-model.

Theorem 17. Let κ be the security parameter. Suppose that n is a power of 2
such that 0.97n ≥ 2κ, q is a prime such that q > 203 and q > 8

(
16α2n3/2 + 2α

√
n
)
,

and the HNF-RLWEq,χα is hard. Then, the proposed AKE scheme is secure in
the BR-model in the ROM.

The rest of this section is dedicated to the proof of this Theorem, which
follows from Lemmas 18, 25, 32, 39 and 46.

First, note that the test session may have a matching session or not. When it
has a matching session, then the adversary can corrupt parties and recover their
static secret key, by the definition of fresh session (Definition 1). We enumerate
the several types of adversaries:
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• Adversary chooses a test session that has a matching session:

– Type A1: Let sid =
(
Π, I,P∗i ,P

∗
j , x
∗
i , (y

∗
j , w

∗
j )
)

be the test session

where y∗j was outputted by Respond
(
Π, R,P∗j ,P

∗
i , x
∗
i

)
.

– Type A2: Let sid =
(
Π, R,P∗j ,P

∗
i , x
∗
i , (y

∗
j , w

∗
j )
)

be the test session

where x∗i was outputted by Initiate
(
Π, I,P∗i ,P

∗
j

)
and P∗i either com-

pletes the session with y∗j or it never completes it.

• Adversary chooses a test session that does not have a matching session:

– Type A3: Let sid =
(
Π, R,P∗j ,P

∗
i , x
∗
i , (y

∗
j , w

∗
j )
)

be the test session
where x∗i was not outputted by Initiate(Π, I,P∗i ,P

∗
j ).

– Type A4: Let sid =
(
Π, I,P∗i ,P

∗
j , x
∗
i , (y

∗
j , w

∗
j )
)

be the test session
where (y∗j , w

∗
j ) was not outputted by Respond(Π, R,P∗j ,P

∗
i , x
∗
i ).

– Type A5: Let sid =
(
Π, R,P∗j ,P

∗
i , x
∗
i , (y

∗
j , w

∗
j )
)

be the test session
where x∗i was outputted by Initiate(Π, I,P∗i ,P

∗
j ) but P∗i ’s session is

completed with y′j 6= y∗j .

Weak perfect forward secrecy (wPFS) is obtained from Type A1 and Type
A2 adversaries, since these types of adversaries can corrupt parties involved in
the test session. Observe that Type A3, Type A4 and Type A5 adversaries
cannot query Corrupt on either P∗i or P∗j , since sid∗ has no matching session.

The idea of the proof is very simple. Consider, for example, a session be-
longing to party P∗i , when interacting with P∗j . Either P∗j ’s static public key p∗j
or ephemeral public key y∗j are indistinguishable from a uniformly chosen value
to the adversary: When the test session has a matching session, the adversary
is allowed to get the static secret keys of both parties but it is not allowed to
modify the messages exchanged between them (by the BR-model).Therefore, in
this case the ephemeral public key of P∗j can be replaced by a uniformly cho-
sen value. Thus, the key obtained by P∗i is indistinguishable from a uniformly
chosen value by the HNF-RLWE assumption. When the test session does not
have a matching session, then the adversary is not allowed to get static secret
keys. Thus, the static public key of P∗j is indistinguishable from a uniformly
random value and, by the same reasoning, the shared key obtained by P∗i is also
indistinguishable from a uniformly chosen value. In this case, we just have to
show that the simulator is able to simulate the execution of sessions involving
P∗j which it can since it knows all the static secret keys of all other parties.

5.1 Test session has a matching session

By the definition of freshness, when the test session has a matching session,
then the adversary is allowed to corrupt both parties, get their static secret key
and eavesdrop the communication.

Here, we have two possible types of adversaries: one that uses a test session
belonging to the initiator and other that uses a test session belonging to the
responder.
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5.1.1 Adversary Type A1

Lemma 18. For any adversary A of Type A1, the advantage AdvΠ,A is neg-
ligible in the ROM, given that 0.97n ≥ 2κ, q is a prime such that q > 203 and
q > 8

(
16α2n3/2 + 2α

√
n
)
, and the HNF-RLWEq,χα is hard.

The proof of this lemma follows from the sequence of games G1,0, . . . , G1,4.

Game G1,0 . The simulator chooses a←$Rq and creates static public keys
for each user, following the protocol. The simulator S chooses (Π, I,P∗i ,P

∗
j , x
∗
i ,

(y∗j , wj)) as the test session where P∗i ,P
∗
j ←$ {P1, . . . ,PN}, s∗i , s∗j ←$ {1, . . . ,m},

x∗i is outputted by a query Initiate(Π, I,P∗i ,P
∗
j ) on the s∗i -th session of P∗i and

y∗i is outputted by Respond(Π, R,P∗j ,P
∗
i , x
∗
i ) on the s∗j -th session of P∗j . S runs

internally A and simulates the oracles in the following way:

• H1 and H2: let L1 and L2 be two lists of pairs (q, h) (i.e., query made to
the random oracles and their respective response). As usual, if the query
q is made to H1, S checks if there is a pair (q, h) in L1. If there is, it
returns h, else S samples h←$χα, returns h and keeps (q, h) ∈ L1. If the
query q is made to H2, S checks if there is a pair (q, h) in L2. If there is,
it returns h, else S chooses h←$Rq, returns h and keeps (q, h) ∈ L2.

• Initiate, Respond and Complete are simulated following the AKE protocol.

• skReveal and Corrupt as described in Section 2.1.

• Test(sid) : Let sid = (Π, I,Pi,Pj , xi, (yj , wj)) be the test session queried
by A. If (Pi,Pj) 6= (P∗i ,P

∗
j ) or xi and is not outputted in the s∗i -th session

of P∗i or yj is not outputted in the s∗j session of P∗j , S aborts the execution.

Else, it chooses b←$ {0, 1} and returns either a random key sk′i←$ {0, 1}κ,
if b = 0, or the session key ski of session sid, if b = 1.

Claim 19. The probability that S aborts in G1,0 is 1
m2N2 .

Game G1,1. S simulates the oracles as in G1,0 except for Complete:

• When it is queried on Complete(Π, I,Pi,Pj , xi, (yj , wj)), S does the fol-
lowing: If (Pi,Pj) = (P∗i ,P

∗
j ) and it is the s∗i -th session of Pi and (yj , wj)

was outputted on the s∗j -th session of Pj , then S sets ski = skj .

Else, it simulates the oracles as in game G1,0.

Claim 20. For every adversary A, the probability that A distinguishes between
games G1,0 and G1,1 is negligible.

Proof. Note that completeness of the protocol still holds in game G1,1. Hence,
there is no difference between the games G1,0 and G1,1.
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Game G1,2. S simulates the oracles as in G1,1, except for Initiate:

• When it is queried Initiate(Π, I,Pi,Pj), S does the following: If (Pi,Pj) =
(P∗i ,P

∗
j ) and it is the s∗i -th session of Pi, then S samples xi←$Rq (instead

of computing xi = ari + 2fi).

Claim 21. For every adversary A, the probability that A distinguishes between
games G1,1 and G1,2 is negligible, given that HNF-RLWEq,χα is hard.

Proof. It is straightforward to construct a algorithm that decides the HNF-
RLWE problem, if there is an algorithm that can distinguish both games.

Game G1,3. S simulates the oracles as in G1,1, except for Complete:

• When it is queried Complete(Π, I,Pi,Pj , xi, (yj , wj)), S does the following:
If (Pi,Pj) = (P∗i ,P

∗
j ) and it is the s∗i -th session of Pi and (yj , wj) was not

outputted on the s∗j -th session of B, then S samples ki←$Rq.

Claim 22. For every adversary A, the probability that A distinguishes between
games G1,2 and G1,3 is negligible, given that HNF-RLWEq,χα is hard.

Proof. In this case, we do not know which is the distribution of the value yj
since it was not outputted by the oracle Respond. However, by Corollary 13,
we have that the pasteurization ȳj of yj is statistically close to a uniformly
chosen value, independently of the distribution of yj . Hence, we consider the
key computed by Pi which is

ki = (pj + ȳj)(si + ri + c)− pjsi + 2hi.

Rewriting the expression, we have that

ki = ȳj(si + ri + c) + 2hi + pj(ri + c).

By the HNF-RLWE assumption, we have that ȳj(si + ri + c) + 2hi is indistin-
guishable from a uniformly chosen value in Rq, since ȳj is uniform in Rq, and
(si+ri+c) and hi are discrete Gaussian samples. Observe that the HNF-RLWE
assumption still holds when the secret is chosen from χ√3α and the error from

the distribution χ√2α.7

Hence, consider the following hybrid game G′1,2, where S chooses ri←$Rq
and computes ki = ri + pj(ri + c). From the reasoning above, it is infeasible for
any adversary A to distinguish G1,2 from the hybrid game G′1,2, given that the
HNF-RLWE assumption holds.

Since ri is uniform in Rq then, by Lemma 10 we have that ki is also uniform
in Rq. Hence G′1,2 and G1,3 are indistinguishable from the point of view of the
adversary A.

7It is trivial to build the reduction: Given a HNF-RLWE sample (a, y = as + e) where
s←$χα and e←$χα, just choose s′, s′′ ←$χα and e←$χα, and compute y′ = y + a(s′ +
s′′) + e′.
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Game G1,4. S simulates the oracles as in G1,3, except for Respond:

• When it is queried on Respond(Π, R,Pi,Pj , xi), S does the following: if
(Pi,Pj) = (P∗i ,P

∗
j ) and xi was outputted in the s∗i -th session of P∗i and

it is the s∗j -th session of P∗j , S chooses yj ←$Rq and the key kj ←$Rq. It
sends (yj , wj) where wj ← Sig(kj). Else, it simulates Respond as in G1,3.

Claim 23. For every adversary A, the probability that A distinguishes between
games G1,3 and G1,4 is negligible, given that HNF-RLWEq,χα is hard.

Proof. The key computed by Pj is equal to

kj = (pi + x̄i)(sj + rj + d)− pisj + 2hj .

Using the same argument as in the proof of Claim 22, we conclude that games
G1,3 and G1,4 are indistinguishable from the point of view of the adversary.

Finally, we prove that the advantage of any adversary in the game G1,4 is
negligible.

Claim 24. For any adversary A, the advantage AdvΠ,A in game G1,4 is negli-
gible, given that 0.97n > 2κ.

Proof. Since ki is chosen uniformly from Rq, we have that σi has high min-
entropy, even when wj is given, by Lemma 7. In particular, when 0.97n > 2κ
then the probability that A queries H2 on input (Pi,Pj , xi, yj , wj , σj) is at most
2−0.97n + negl(κ).

5.1.2 Adversary Type A2

Lemma 25. For any adversary A of Type A2, the advantage AdvΠ,A is neg-
ligible in the ROM, given that 0.97n ≥ 2κ, q is a prime such that q > 203 and
q > 8

(
16α2n3/2 + 2α

√
n
)
, and the HNF-RLWEq,χα is hard.

The proof of this lemma follows from the sequence of games G2,0, . . . , G2,4.

Game G2,0 . Similar toG1,0 but now S chooses sid =
(
Π, R,P∗j ,P

∗
i , x
∗
i , (y

∗
j , w

∗
j )
)

as the test session where P∗i ,P
∗
j ←$ {P1, . . . ,PN}, s∗i , s∗j ←$ {1, . . . ,m}, x∗i is out-

putted by a query Initiate(Π, I,P∗i ,P
j
j) on the s∗i -th session of P∗i and y∗i is out-

putted by Respond(Π, R,P∗j ,P
∗
i , x
∗
i ) on the s∗j -th session of P∗j . S runs internally

A and simulates the oracles as in G1,0 except for Test:

• Test(sid) : Let sid = (Π, R,Pj ,Pi, xi, (yj , wj)) be the test session queried
by A. If (Pi,Pj) 6= (P∗i ,P

∗
j ) or xi and is not outputted in the s∗i -th session

of P∗i or yj is not outputted in the s∗j session of P∗j , S aborts the execution.

Else, it chooses b←$ {0, 1} and returns either a random key sk′i←$ {0, 1}κ,
if b = 0, or the session key ski of session sid, if b = 1.

Claim 26. The probability that S aborts in G2,0 is 1
m2N2 .
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Game G2,1. S simulates the oracles as in G2,0, except for Complete:

• When it is queried Complete(Π, I,Pi,Pj , xi, (yj , wj)), S does the following:
if (Pi,Pj) = (P∗i ,P

∗
j ) and it is the s∗i -th session of P∗i and (yj , wj) was

outputted on the s∗j session of Pj , S sets ski = skj . Else, it simulates the
oracles as in G2,0.

Claim 27. For every adversary A, the probability that A distinguishes games
G2.0 and G2,1 is negligible.

Proof. Similar to the proof of Claim 20.

Game G2,2. S simulates the oracles as in G2,1, except for Initiate:

• When it is queried Initiate(Π, I,Pi,Pj), S does the following: if (Pi,Pj) =
(P∗i ,P

∗
j ) and it is the s∗i -th session of P∗i , S samples xi←$Rq, instead of

computing xi = ari + 2fi.

Claim 28. For every adversary A, the probability that A distinguishes games
G2,1 and G2,2 is negligible, given that HNF-RLWEq,χα is hard.

Proof. Similar to the proof of Claim 21.

Game G2,3. S simulates the oracles as in G2,2, except for Complete:

• When it is queried Complete(Π, I,Pi,Pj , xi, (yj , wj)), S does the following:
If (Pi,Pj) = (P∗i ,P

∗
j ) and it is the s∗i -th session of Pi and (yj , wj) was not

outputted on the s∗j -th session of B, then S samples ki←$Rq.

Claim 29. For every adversary A, the probability that A distinguishes between
games G1,2 and G1,3 is negligible, given that HNF-RLWEq,χα is hard.

Proof. Similar to the proof of Claim 22.

Game G2,4. S simulates the oracles as in G2,3, except for Respond:

• When it is queried on Respond(Π, R,Pi,Pj , xi), S does the following: if
(Pi,Pj) = (P∗i ,P

∗
j ) and xi was outputted in the s∗i -th session of P∗i and

it is the s∗j -th session of P∗j , S chooses yj ←$Rq and the key kj ←$Rq. It
sends (yj , wj) where wj ← Sig(kj). Else, it simulates Respond as in G1,3.

Claim 30. For every adversary A, the probability that A distinguishes between
games G1,3 and G1,4 is negligible, given that HNF-RLWEq,χα is hard.

Proof. Similar to the proof of Claim 23.

Claim 31. For any adversary A, the advantage AdvΠ,A in game G2,4 is negli-
gible, given that the HNF-RLWE assumption holds and 0.97n ≥ 2κ.

Proof. Similar to the proof of Claim 24.
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5.2 Test session does not have a matching session

When the test session does not have a matching session, then the adversary is
not allowed to corrupt parties involved in the test session.

However, here we cannot replace the messages sent by the parties by random
values since these messages do not have to be created according to the protocol.
Since the adversary cannot ask Corrupt for none of these parties, then we can
replace their static public key by random values. It should be infeasible for an
adversary to notice that the public key of a party was replaced a random value by
the HNF-RLWE assumption. When the static public key of a party is replaced
by a random value, then the key computed by another party interacting with the
first is also indistinguishable from uniformly random value, by the HNF-RLWE.
So, we may conclude that the advantage of an adversary is negligible.

5.2.1 Adversary Type A3

Lemma 32. For any adversary A of Type A3, the advantage AdvΠ,A is neg-
ligible in the ROM, given that 0.97n ≥ 2κ, q is a prime such that q > 203 and
q > 8

(
16α2n3/2 + 2α

√
n
)
, and the HNF-RLWEq,χα is hard.

The proof of this lemma follows from Claims 33, . . . , 38.

Game G3,0 . Similar toG1,0 but now S chooses sid =
(
Π, R,P∗j ,P

∗
i , x
∗
i , (y

∗
j , w

∗
j )
)

as the test session where P∗i ,P
∗
j ←$ {P1, . . . ,PN}, s∗j ←$ {1, . . . ,m}, y∗i is out-

putted by Respond(Π, R,P∗j ,P
∗
i , x
∗
i ) on the s∗j -th session of P∗j . S runs internally

A and simulates the oracles as in G1,0 except for Test:

• Test(sid) : Let sid = (Π, R,Pj ,Pi, xi, (yj , wj)) be the test session queried
by A. If (Pi,Pj) 6= (P∗i ,P

∗
j ) or yj is not outputted in the s∗j session of P∗j ,

S aborts the execution. Else, it chooses b←$ {0, 1} and returns either a
random key sk′i←$ {0, 1}κ, if b = 0, or the session key ski of session sid, if
b = 1.

Claim 33. The probability that S aborts in G3,0 is 1
mN2 .

Proof. The probability of choosing the right session, out of m possible values,
and the right parties, out of N possibilities is 1/(mN2).

Game G3,1. S simulates the oracles as inG3,0, except for Initiate and Complete:

• When it is queried Complete(Π, I,Pi,Pj , xi, (yj , wj)), S does the following:
If Pi = P∗i and it is the s∗i -th session of P∗i , S computes the key

ki = pj(ri + c) + ȳj(sj + ri + c) + 2hi.

Else, it simulates as in G3,0.

Claim 34. For every adversary A, the probability that A distinguishes games
G3,0 and G3,1 is negligible.
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Proof. Note that S knows all the static secret keys. So, by setting ki = pj(ri +
c) + ȳj(sj + ri + c) + 2hi, we guarantee the correctness of the scheme in the
simulation.

Game G3,2. S simulates the oracles as in G3,1, except for Respond:

• When it is queried Respond(Π, R,Pj ,Pi, xi), S does the following: if Pj =
P∗i and it is the s∗i -th session of P∗i , S computes

kj = pi(rj + d) + x̄i(si + rj + d) + 2hj .

Else it simulates Respond as in G3,1.

Claim 35. For every adversary A, the probability that A distinguishes games
G3,1 and G3,2 is negligible.

Proof. Again, note that S knows all the static secret keys. Hence, by setting
kj = pi(rj+d)+ x̄i(si+rj+d)+2hj , we guarantee the correctness of the scheme
in the simulation.

Game G3,3. S simulates the oracles as in G3,2, except for:

• It replaces p∗i (the static public key of P ∗i ) by ui←$Rq

Claim 36. For every adversary A, the probability that A distinguishes games
G3,2 and G3,3 is negligible, given that HNF-RLWEq,χα is hard.

Proof. Since the value p∗i is a HNF-RLWE sample, then it is indistinguishable
from a uniformly random value given that the HNF-RLWE assumption holds.

Game G3,4. S simulates the oracles as in G3,4, except for:

• When it is queried Respond(Π, R,Pj ,Pi, xi), S does the following: If
(Pi,Pj) = (P∗i ,P

∗
j ) and it is the s∗j -th session of P∗j and xi not was out-

putted by Initiate(Π, I,P∗i ,P
∗
j ), S chooses kj ←$Rq. Else, it simulates

Respond as in G3,3.

Claim 37. For every adversary A, the probability that A distinguishes games
G3,3 and G3,4 is negligible, given that HNF-RLWEq,χα is hard.

Proof. Remark that the key kj is computed as

kj = p∗i (rj + d) + x̄i(si + rj + d) + 2hj .

Remark that the term p∗i (rj + d) + 2hj is a HNF-RLWE sample since p∗i ←$Rq,
rj + d←$χ√2α and hj is an error term sampled from χα.

Therefore, we define a hybrid gameG′3,3, where the simulator chooses tj ←$Rq
and computes kj = tj+x̄i(si+rj+d). Games G3,3 and G′3,3 are indistinguishable
by the HNF-RLWE assumption.

Now, since tj is uniform, kj is also uniform in Rq by Lemma 10. Hence,
games G′3,3 and G3,4 are indistinguishable.
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Claim 38. For any adversary A, the advantage AdvΠ,A in game G3,4 is negli-
gible, given that the HNF-RLWE assumption holds and 0.97n ≥ 2κ.

Proof. Similar to the proof of Claim 24.

5.2.2 Adversary Type A4

Lemma 39. For any adversary A of Type A4, the advantage AdvΠ,A is neg-
ligible in the ROM, given that 0.97n ≥ 2κ, q is a prime such that q > 203 and
q > 8

(
16α2n3/2 + 2α

√
n
)
, and the HNF-RLWEq,χα is hard.

The proof of this lemma follows from Claims 40, . . . , 45.

Game G4,0 . Similar toG1,0 but now S chooses sid =
(
Π, I,P∗i ,P

∗
j , x
∗
i , (y

∗
j , w

∗
j )
)

as the test session where P∗i ,P
∗
j ←$ {P1, . . . ,PN}, s∗i ←$ {1, . . . ,m}, x∗i is out-

putted by Initiate(Π, I,P∗i ,P
∗
j ) on the s∗i -th session of P∗i . S runs internally A

and simulates the oracles as in G1,0 except for Test:

• Test(sid) : Let sid = (Π, I,Pi,Pj , xi, (yj , wj)) be the test session queried
by A. If (Pi,Pj) 6= (P∗i ,P

∗
j ) or xi is not outputted in the s∗i session of P∗i ,

S aborts the execution. Else, it chooses b←$ {0, 1} and returns either a
random key sk′i←$ {0, 1}κ, if b = 0, or the session key ski of session sid, if
b = 1.

Claim 40. The probability that S aborts in G4,0 is 1
mN2 .

Game G4,1. S simulates the oracles as in G4,0, except for Respond:

• When it is queried Respond(Π, R,Pj ,Pi, xi), S does the following: if Pj =
P∗j and it is the s∗j -th session of P∗j , S computes

kj = pi(rj + d) + x̄i(si + rj + d) + 2hj .

Else it simulates Respond as in G3,1.

Claim 41. For every adversary A, the probability that A distinguishes games
G4,0 and G4,1 is negligible.

Proof. The proof is similar to the proof of Claim 35.

Game G4,2. S simulates the oracles as inG4,1, except for Initiate and Complete:

• When it is queried Complete(Π, I,Pi,Pj , xi, (yj , wj)), S does the following:
If Pi = P∗j and it is the s∗j -th session of P∗j , S computes the key

ki = pj(ri + c) + ȳj(sj + ri + c) + 2hi.

Else, it simulates as in G4,1.

Claim 42. For every adversary A, the probability that A distinguishes games
G4,1 and G4,2 is negligible.

Proof. The proof is similar to the proof of Claim 34.
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Game G4,3. S simulates the oracles as in G4,2, except for:

• It replaces p∗j (the static public key of P ∗j ) by vj ←$Rq

Claim 43. For every adversary A, the probability that A distinguishes games
G4,2 and G4,3 is negligible, given that HNF-RLWEq,χα is hard.

Proof. The proof is similar to the proof of Claim 36.

Game G4,4. S simulates the oracles as in G4,4, except for:

• When it is queried Complete(Π, R,Pj ,Pi, xi), S does the following: If
(Pi,Pj) = (P∗i ,P

∗
j ) and it is the s∗i -th session of P∗i and yj not was out-

putted by Respond(Π, R,P∗j ,P
∗
i , xi), S chooses ki←$Rq. Else, it simulates

Complete as in G4,3.

Claim 44. For every adversary A, the probability that A distinguishes games
G4,3 and G4,4 is negligible, given that HNF-RLWEq,χα is hard.

Proof. The proof is similar to the proof of Claim 37

Claim 45. For any adversary A, the advantage AdvΠ,A in game G4,4 is negli-
gible, given that 0.97n ≥ 2κ.

Proof. Similar to the proof of Claim 24.

5.2.3 Adversary Type A5

Lemma 46. For any adversary A of Type A5, the advantage AdvΠ,A is neg-
ligible in the ROM, given that 0.97n ≥ 2κ, q is a prime such that q > 203 and
q > 8

(
16α2n3/2 + 2α

√
n
)
, and the HNF-RLWEq,χα is hard.

The proof of the lemma follows the sequence of games G5,0, . . . , G5,3.

Game G5,0 . Similar toG1,0 but now S chooses sid =
(
Π, R,P∗j ,P

∗
i , x
∗
i , (y

∗
j , w

∗
j )
)

as the test session where P∗i ,P
∗
j ←$ {P1, . . . ,PN}, s∗i , s∗j ←$ {1, . . . ,m}, x∗i is out-

putted by a query Initiate(Π, I,P∗i ,P
∗
j ) on the s∗i -th session of P∗i and y∗i is out-

putted by Respond(Π, R,P∗j ,P
∗
i , x
∗
i ) on the s∗j -th session of P∗j .

Claim 47. The probability that S aborts in G5,0 is 1
m2N2 .

Game G5,1. S simulates the oracles as in G5,0 except for Complete:

• When it is queried on Initiate(Π, I,Pi,Pj), S does the following: If (Pi,Pj) =
(P∗i ,P

∗
j ) and it is the s∗i -th session of Pi, then S samples xi←$Rq.

Else, it simulates the oracles as in game G5,0.

Claim 48. For every adversary A, the probability that A distinguishes games
G5,0 and G5,1 is negligible, given that HNF-RLWEq,χα is hard.

Proof. The proof is the same as the proof of Claim 21.

27



Game G5,2. S simulates the oracles as in G5,1, except for Respond:

• When it is queried Complete(Π, I,Pi,Pj , xi, (yj , wj)), S does the following:
if (Pi,Pj) = (P∗i ,P

∗
j ) and it is the s∗i -th session of P∗i and (yj , wj) was not

outputted on the s∗j -th session of P∗j , S samples ki←$Rq.

Claim 49. For every adversary A, the probability that A distinguishes games
G5,1 and G5,2 is negligible, given that HNF-RLWEq,χα is hard.

Proof. The proof is the same as the proof of Claim 22.

Game G5,3. S simulates the oracles as in G5,2, except for Respond:

• When it is queried Complete(Π, I,Pi,Pj , xi, (yj , wj)), S does the following:
if (Pi,Pj) = (P∗i ,P

∗
j ) and it is the s∗j -th session of P∗j , S samples kj ←$Rq.

Claim 50. For every adversary A, the probability that A distinguishes games
G5,2 and G5,3 is negligible, given that HNF-RLWEq,χα is hard.

Proof. The proof is the same as the proof of Claim 23.

Claim 51. For any adversary A, the advantage AdvΠ,A in game G5,3 is negli-
gible, given that 0.97n ≥ 2κ.

Proof. The proof is the same as the proof of Claim 24.

6 Efficiency of the AKE scheme and comparison

Communication complexity. The messages exchanged are xi, carrying n log q
bits of information, and (yj , wj) carrying n+n log q bits of information. Hence,
the total number of bits exchange during one execution of the protocol is
n+ 2n log q.

Computational complexity. First, note that party Pi can perform the mul-
tiplication pjsi offline and save this value for later use. Hence the scheme
requires 6 multiplication in the ring Rq, 3 for each party. One execution of the
protocol requires to sample 8 times from discrete Gaussian distributions, 4 for
each party.

Proposed parameters. For a security of (at least) 128 bits, the proposed
parameters of [27] are n = 512, α = 4.19 and q = 120 833. These parameters
of [27] were estimated based the attacks of [3, 37, 7, 9]. However, we cannot
use these parameters in our scheme, since correctness is not guaranteed, by
Lemma 16. Hence, we consider q = 26 038 273, which is the minimum prime
that satisfies q ≡ 1 mod 2n and Lemma 16. We require that q ≡ 1 mod 2n
because of efficiency purposes [4, 27]. Note that, by increasing the value of q, the
security can only increase. For a security level of (at least) 256 bits, we propose
the parameters n = 1024, α = 2.6 and q = 28 434 433. These parameters
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were chosen in a similar way as the previous ones. With these parameters, the
probability of failure is negligible, according to Lemma 16.

Table 3 presents a comparison with the ZZD+ scheme of the proposed pa-
rameters. Table 4 presents a comparison with the ZZD+ scheme of the keys
and messages size (expressed in kyloBytes). As we can see, our scheme achieves
smaller keys and smaller exchanged messages. As discuss in the introduction,
this is due to the fact that our scheme avoids the use of the rejection sampling
technique. Since the scheme of ZZD+ requires rejection sampling and several
discrete Gaussian distributions (in particular, it is required to use a discrete
Gaussian distribution χβ with β >> α), the value of q needs to be larger than
usual. This results in larger keys and exchanged messages.

n α τ log β q Sec. level (bits)
ZZD+ [56] 1024 3.397 12 16.1 245 80
Ours (I) 512 4.19 − − 26 038 273 128
Ours (II) 1024 2.6 − − 28 434 433 256

Table 3: Comparison of parameters with other AKE schemes with implicit
authentication.

Size
(Static) pk init. msg resp. msg

ZZD+ [56] 5.625 KB 5.625 KB 5.75 KB
Ours (I) 1.577 KB 1.577 KB 1.641 KB
Ours (II) 3.153 KB 3.153 KB 3.281 KB

Table 4: Comparison of size with other AKE schemes with implicit authentica-
tion.

7 Conclusion and open problems

We propose an efficient technique that allows for key reuse in lattice-based KE
and which we have called pasteurization. We believe that this technique may
be of independent interest, as it can be used to sanitize RLWE samples.

We also present a new AKE scheme using the above technique and that sur-
passes state-of-the-art AKE with implicit authentication in both communication
and computational complexity.

Note that our proofs are in the ROM [10]. We leave as future work to
present a proof of security for the AKE in the Quantum Random Oracle Model
(QROM) [12] as, by now, the lack of proofs techniques makes this problem quite
hard. However, we remark that very few constructions are known to be secure
in the ROM, but insecure in the QROM [6].8 Thus, we strongly believe that the

8We also remark that the attack of [6] is quite impractical in real-life.
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scheme is secure in the QROM since we are not aware of any quantum attack
that breaks the scheme, although we present no proof for this.
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