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On the Geometric Ergodicity of Metropolis-Hastings
Algorithms for Lattice Gaussian Sampling
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Abstract—Sampling from the lattice Gaussian distribution has
emerged as an important problem in coding, decoding and
cryptography. In this paper, the classic Metropolis-Hastings (MH)
algorithm in Markov chain Monte Carlo (MCMC) methods is
adopted for lattice Gaussian sampling. Two MH-based algorithms
are proposed, which overcome the limitation of Klein’s algorithm.
The first one, referred to as the independent Metropolis-Hastings-
Klein (MHK) algorithm, establishes a Markov chain via an
independent proposal distribution. We show that the Markov
chain arising from this independent MHK algorithm is uniformly
ergodic, namely, it converges to the stationary distribution expo-
nentially fast regardless of the initial state. Moreover, the rate of
convergence is analyzed in terms of the theta series, leading to
predictable mixing time. A symmetric Metropolis-Klein (SMK)
algorithm is also proposed, which is proven to be geometrically
ergodic.

Keywords: Lattice Gaussian distribution, lattice coding,
lattice decoding, MCMC methods.

I. INTRODUCTION

Recently, the lattice Gaussian distribution has emerged as a
common theme in various research domains. In mathematics,
Banaszczyk firstly applied it to prove the transference theo-
rems for lattices [1]. In coding, lattice Gaussian distribution
was employed to obtain the full shaping gain for lattice coding
[2], [3], and to achieve the capacity of the Gaussian channel
[4]. It was also used to achieve information-theoretic security
in the Gaussian wiretap channel [5], [6] and in the bidirectional
relay channel [7], respectively. In cryptography, the lattice
Gaussian distribution has already become a central tool in
the construction of many primitives. Specifically, Micciancio
and Regev used it to propose lattice-based cryptosystems
based on the worst-case hardness assumptions [8]. Meanwhile,
it also has underpinned the fully-homomorphic encryption
for cloud computing [9]. Algorithmically, lattice Gaussian
sampling with a suitable variance allows to solve the shortest
vector problem (SVP) and the closest vector problem (CVP)
[10], [11]; for example, it has led to efficient lattice decoding
for multi-input multi-output (MIMO) systems [12], [13]. In
theory, it has been demonstrated that lattice Gaussian sam-
pling is equivalent to CVP via a polynomial-time dimension-
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preserving reduction [14], and SVP is essentially a special case
of the CVP.

Due to the central role of the lattice Gaussian distribution
playing in these fields, its sampling algorithms become an
important computational problem. In contrast to sampling from
a continuous Gaussian distribution, it is by no means trivial
to perform the sampling even from a low-dimensional discrete
Gaussian distribution. As the default sampling algorithm for
lattices, Klein’s algorithm [15] is capable to sample from
the lattice Gaussian distribution within a negligible statistical
distance only if the standard deviation is large enough [16].
However, such a requirement renders Klein’s algorithm inap-
plicable to many scenarios of interest.

Markov chain Monte Carlo (MCMC) methods attempt to
sample from the target distribution by building a Markov
chain, which randomly generates the next sample conditioned
on previous samples. After a burn-in period, which is normally
measured by the mixing time, the Markov chain will reach
a stationary distribution, and successful sampling from the
complex target distribution can be carried out. To this end,
the Gibbs algorithm was introduced into lattice Gaussian
sampling, which employs univariate conditional sampling to
build a Markov chain [17]. It is able to sample beyond
the range of Klein’s algorithm. In [17], a flexible block-
based Gibbs algorithm was also presented, which performs
sampling over multiple elements within a block. In this way,
the correlation within the block could be exploited, leading
to a faster convergence especially in the case of highly
correlated components. Unfortunately, related analysis of the
convergence rate for the associated Markov chains in these two
algorithms was lacking, resulting in an unpredictable mixing
time.

On the other hand, Gibbs sampling has already been adapted
to signal detection for multi-input multi-output (MIMO) com-
munications [18]–[23]. In particular, the selection of σ (also
referred to as “temperature”) is studied in [18] and it is argued
that σ should grow as fast as the signal-to-noise ratio (SNR)
in general. In [19], a mixed-Gibbs sampler is proposed to
achieve near-optimal performance, which takes the advantages
of an efficient stopping criterion and a multiple restart strategy.
Moreover, Gibbs sampling is also introduced into soft-output
decoding in MIMO systems, where the extrinsic information
calculated by a priori probability (APP) detector is used to
produce soft outputs [20]. In [21], an investigation of Gibbs-
based MCMC receivers in different communication channels
are given. Due to the finite state space formed by a finite
modulation constellation, those Gibbs samplers converge ex-
ponentially fast to the stationary distribution. However, the rate
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of convergence has not yet been determined.
In this paper, another famous MCMC scheme, known as

the Metropolis-Hastings (MH) algorithm [24], is studied in
detail for lattice Gaussian sampling. In particular, it makes
use of a proposal distribution which suggests a possible state
candidate and then employs an acceptance-rejection rule to
decide whether to accept the suggested candidate in the next
Markov move. Obviously, the art of designing an efficient MH
algorithm lies in choosing an appropriate proposal distribution,
and this motivates us to design the target proposal distributions
based on Klein’s algorithm.

In the proposed independent Metropolis-Hastings-Klein
(MHK) algorithm, a candidate at each Markov move is gen-
erated from a Gaussian-like proposal distribution via Klein’s
algorithm. In this case, we show that the Markov chain induced
by the independent MHK algorithm is uniformly ergodic,
which implies it converges exponentially fast to the stationary
distribution irrespective of the starting state. Its convergence
rate is then estimated given the lattice basis B, the query point
c and the standard derivation σ. Thus, the mixing time of
the induced Markov chain becomes predictable. To the best
of our knowledge, this is the first time that the convergence
rate of MCMC in communications and signal processing is
determined analytically since MCMC was introduced into this
field in 1990’s [25].

Different from the algorithms in [10], [11] which have
exponential space and time complexity, the proposed indepen-
dent MHK algorithm has polynomial space complexity, and
its time complexity1 varies with σ, where a larger value of
σ corresponds to smaller mixing time. This is in agreement
with the fact we knew before: if σ is large enough, then
there is no need of MCMC in lattice Gaussian sampling since
Klein’s algorithm can be applied directly with polynomial time
complexity. Likewise, the proposed sampling algorithm can
also be extended to lattice decoding, and more details can be
found in our following work [26].

The second proposed algorithm, namely the symmetric
Metropolis-Klein (SMH) algorithm, establishes a symmetric
proposal distribution between two consecutive Markov states.
We show it also converges to the stationary distribution
exponentially fast but the selection of the initial state also
plays a role. Such a case is referred to as geometric ergodicity
in MCMC literature [27]. Besides the geometric ergodicity,
another advantage of the proposed SMH algorithm lies in its
remarkable elegance and simplicity, which comes from the
usage of a symmetrical proposal distribution.

To summarize, the main contributions of this paper are the
following:

1) The independent MHK algorithm is proposed for
lattice Gaussian sampling, where the Markov chain
arising from it converges exponentially fast to the
stationary distribution.

2) The convergence rate of the independent MHK al-
gorithm is derived explicitly in terms of the theta

1In this paper, the computational complexity is measured by the number of
arithmetic operations (additions, multiplications, comparisons, etc.). The time
complexity of an MCMC sampler can be estimated by the mixing time times
the complexity of each Markov move.

Fig. 1. Illustration of a two-dimensional lattice Gaussian distribution.

series, thereby making the estimation of mixing time
possible.

3) The SMH algorithm is further proposed for lattice
Gaussian sampling, which not only achieves expo-
nential convergence, but also is simpler due to its
symmetry.

The rest of this paper is organized as follows. Section II
introduces the lattice Gaussian distribution and briefly reviews
the basics of MCMC methods. In Section III, we propose
the independent MHK algorithm for lattice Gaussians, where
uniform ergodicity is demonstrated. In Section IV, the conver-
gence rate of the independent MHK algorithm is analyzed and
explicitly calculated in terms of the theta series. In Section V,
the proposed SMH algorithm for lattice Gaussian sampling is
given, followed by the demonstration of geometric ergodicity.
Finally, Section VI concludes the paper.

Notation: Matrices and column vectors are denoted by upper
and lowercase boldface letters, and the transpose, inverse,
pseudoinverse of a matrix B by BT ,B−1, and B†, respec-
tively. We denote by bi the ith column of the matrix B, by
b̂i the ith Gram-Schmidt vector of B, and by bi,j the entry
in the ith row and jth column of B. dxc denotes rounding to
the integer closest to x. If x is a complex number, dxc rounds
the real and imaginary parts separately. In addition, we use
the standard small omega notation ω(·), i.e., f(n) = ω(g(n))
if for any k > 0, the inequality |f(n)| > k · |g(n)| holds for
all sufficiently large n.

II. PRELIMINARIES

In this section, we introduce the background and mathemat-
ical tools needed to describe and analyze the proposed lattice
Gaussian sampling algorithms.

A. Lattice Gaussian Distribution

Let B = [b1, . . . ,bn] ⊂ Rn consist of n linearly indepen-
dent vectors. The n-dimensional lattice Λ generated by B is
defined by

Λ = {Bx : x ∈ Zn}, (1)

where B is called the lattice basis. We define the Gaussian
function centered at c ∈ Rn for standard deviation σ > 0 as

ρσ,c(z) = e−
‖z−c‖2

2σ2 , (2)
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Algorithm 1 Klein’s Algorithm
Input: B, σ, c
Output: Bx ∈ Λ

1: let B = QR and c′ = Q†c
2: for i = n, . . . , 1 do
3: let σi = σ

|ri,i| and x̃i =
c′i−

∑n
j=i+1 ri,jxj

ri,i
4: sample xi from DZ,σi,x̃i
5: end for
6: return Bx

for all z ∈ Rn. When c or σ are not specified, we assume that
they are 0 and 1 respectively. Then, the discrete Gaussian
distribution over Λ is defined as

DΛ,σ,c(x) =
ρσ,c(Bx)

ρσ,c(Λ)
=

e−
1

2σ2 ‖Bx−c‖2∑
x∈Zn e

− 1
2σ2 ‖Bx−c‖2

(3)

for all x ∈ Zn, where ρσ,c(Λ) ,
∑

Bx∈Λ ρσ,c(Bx) is just a
scaling to obtain a probability distribution.

Note that this definition differs slightly from the one in [8],
where σ is scaled by a constant factor

√
2π (i.e., s =

√
2πσ).

Fig. 1 illustrates the discrete Gaussian distribution over Z2.
As can be seen clearly, it resembles a continuous Gaussian
distribution, but is only defined over a lattice. In fact, discrete
and continuous Gaussian distributions share similar properties,
if the flatness factor is small [5].

B. Klein’s Algorithm

Intuitively, the shape of DΛ,σ,c(x) suggests that a lattice
point Bx closer to c will be sampled with a higher probability.
Therefore, sampling from the lattice Gaussian distribution can
be naturally used to solve the CVP (where c is the query point)
and SVP (where c = 0) in lattices. Because of this, Klein’s
algorithm that samples from a Gaussian-like distribution was
originally proposed for lattice decoding [15].

As shown in Algorithm 1, the operation of the Klein’s
algorithm has polynomial complexity O(n2) excluding QR
decomposition (which may be done only once in the begin-
ning). More precisely, by sequentially sampling from the 1-
dimensional conditional Gaussian distribution DZ,σi,x̃i in a
backward order from xn to x1, the Gaussian-like distribution
arising from Klein’s algorithm is given by

PKlein(x) =

n∏
i=1

DZ,σi,x̃i(xi) =
ρσ,c(Bx)∏n
i=1 ρσi,x̃i(Z)

=
e−

1
2σ2 ‖Bx−c‖2∏n

i=1

∑
x̃i∈Z e

− 1

2σ2
i

‖xi−x̃i‖2
, (4)

where x̃i =
c′i−

∑n
j=i+1 ri,jxj

ri,i
, σi = σ

|ri,i| = σ

‖b̂i‖
, c′ = Q†c,

ri,j denotes the element of the upper triangular matrix R from
the QR decomposition B = QR and b̂i’s are the Gram-
Schmidt vectors of B with ‖b̂i‖ = |ri,i|.

Furthermore, it has been demonstrated in [16] that PKlein(x)
is close to DΛ,σ,c(x) within a negligible statistical distance if

σ = ω(
√

log n) · max
1≤i≤n

‖b̂i‖, (5)

However, even with the help of lattice reduction2 (e.g., LLL
reduction), the standard deviation ω(

√
log n) ·max1≤i≤n ‖b̂i‖

can be too large to be useful.

C. MCMC Methods

As for the lattice Gaussian sampling in the range σ 6=
ω(
√

log n)·max1≤i≤n ‖b̂i‖, MCMC methods have become an
alternative solution, where the discrete Gaussian distribution
DΛ,σ,c is viewed as a complex target distribution lacking
direct sampling methods. By establishing a Markov chain
that randomly generates the next state, MCMC is capable
of sampling from the target distribution of interest, thereby
removing the restriction on σ [17].

As an important parameter which measures the time re-
quired by a Markov chain to get close to its stationary
distribution, the mixing time is defined as [29]

tmix(ε) = min{t : max ‖P t(x, ·)− π(·)‖TV ≤ ε}, (6)

where ‖ · ‖TV represents the total variation distance (other
measures of distance also exist, see [30] for more details).
It is well known that the spectral gap γ = 1 − |λ1| > 0
of the transition matrix offers an upper bound on the mixing
time, where λ1 represents the second largest eigenvalue (in
magnitude) of the transition matrix P. A large value of the
spectral gap leads to rapid convergence to stationarity [31].

However, the spectrum of a Markov chain can be hard to
analyze, especially when the state space Ω becomes exponen-
tially large, making it difficult to have a compact mathematical
expression of the adjacency matrix. Thanks to the celebrated
coupling technique, for any Markov chain with finite state
space Ω, exponentially fast convergence can be demonstrated
if the underlying Markov chain is irreducible and aperiodic
with an invariant distribution π [29]. Nevertheless, in the
case of lattice Gaussian sampling, the countably infinite state
space x ∈ Zn naturally becomes a challenge. For this reason,
we perform the convergence analysis from the beginning —
ergodicity [32].

Definition 1. Let P be an irreducible and aperiodic transition
matrix for a Markov chain. If the chain is positive recurrent,
then it is ergodic, namely, there is a unique probability
distribution π on Ω and for all x ∈ Ω,

lim
t→∞
‖P t(x, ·)− π‖TV = 0, (7)

where P t(x; ·) denotes a row of the transition matrix P for t
Markov moves.

Although ergodicity implies asymptotic convergence to sta-
tionarity, it does not say anything about the convergence rate.
To this end, the following definition is given [32].

Definition 2. A Markov chain with stationary distribution π(·)
is uniformly ergodic if there exists 0 < δ < 1 and M < ∞
such that for all x

‖P t(x, ·)− π(·)‖TV ≤M(1− δ)t. (8)

2It is well known that lattice reduction such as the LLL algorithm is able
to significantly improve mini ‖b̂i‖ while reducing maxi ‖b̂i‖ at the same
time [28].
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Obviously, the exponential decay coefficient δ is key to
determine the convergence rate. As M is a constant, the
convergence rate does not depend on the initial state x.
As a weaker version of ergodicity, geometric ergodicity also
converges exponentially, but M is parameterized by the initial
state x.

Definition 3. A Markov chain with stationary distribution π(·)
is geometrically ergodic if there exists 0 < δ < 1 and M(x) <
∞ such that for all x

‖P t(x, ·)− π(·)‖TV ≤M(x)(1− δ)t. (9)

Besides exponential convergence, polynomial convergence
also exists [33], which goes beyond the scope of this paper
due to its slow convergence. Unless stated otherwise, the state
space of the Markov chain we are concerned with throughout
the context is the countably infinite Ω = Zn.

D. Classical MH Algorithms

The origin of the Metropolis algorithm can be traced
back to the celebrated work of [34] in 1950’s. In [24], the
original Metropolis algorithm was successfully extended to
a more general scheme known as the Metropolis-Hastings
(MH) algorithm. In particular, let us consider a target invariant
distribution π together with a proposal distribution q(x,y).
Given the current state x for Markov chain Xt, a state
candidate y for the next Markov move Xt+1 is generated from
the proposal distribution q(x,y). Then the acceptance ratio α
is computed by

α(x,y) = min
{

1,
π(y)q(y,x)

π(x)q(x,y)

}
, (10)

and y will be accepted as the new state by Xt+1 with
probability α. Otherwise, x will be retained by Xt+1. In this
way, a Markov chain {X0,X1, . . .} is established with the
transition probability P (x,y) as follows:

P (x,y) =

{
q(x,y)α(x,y) if y 6= x,

1−
∑

z6=x q(x, z)α(x, z) if y = x.
(11)

It is interesting that in MH algorithms, the proposal dis-
tribution q(x,y) can be any fixed distribution from which
we can conveniently draw samples. Undoubtedly, the fastest
converging proposal distribution would be q(x,y) = π(y)
itself, but in most cases of interest π cannot be sampled
directly. To this end, many variations of MH algorithms with
different configurations of q(x,y) were proposed.

III. INDEPENDENT MHK ALGORITHM

In this section, the independent Metropolis-Hastings-Klein
(MHK) algorithm for lattice Gaussian sampling is firstly
presented. Then, we show that the Markov chain induced by
the proposed algorithm is uniformly ergodic.

A. Independent MHK Algorithm

In the proposed independent MHK algorithm, Klein’s sam-
pling is used to generate the state candidate y for the each

Markov move Xt+1. As shown in Algorithm 2, it consists of
three basic steps:

1) Sample from the independent proposal distribution with
Klein’s algorithm to obtain the candidate state y for Xt+1,

q(x,y) = q(y) = PKlein(y)

=
ρσ,c(By)∏n
i=1 ρσi,ỹi(Z)

=
e−

1
2σ2 ‖By−c‖2∏n

i=1

∑
ỹi∈Z e

− 1

2σ2
i

‖yi−ỹi‖2
(12)

where y ∈ Zn, ỹi =
c′i−

∑n
j=i+1 ri,jyj

ri,i
, σi = σ

|ri,i| = σ

‖b̂i‖
,

c′ = Q†c, B = QR by QR decomposition and b̂i’s are the
Gram-Schmidt vectors of B.

2) Calculate the acceptance ratio α(x,y)

α(x,y) = min
{

1,
π(y)q(y,x)

π(x)q(x,y)

}
= min

{
1,
π(y)q(x)

π(x)q(y)

}
= min

{
1,

∏n
i=1 ρσi,ỹi(Z)∏n
i=1 ρσi,x̃i(Z)

}
, (13)

where π = DΛ,σ,c.
3) With probability α(x,y) accept Xt+1 = y; otherwise,

reject y and let Xt+1 = x.
A salient feature of the independent MHK algorithm is that

the generation of the state candidate y is independent of the
previous one, which is completely accomplished by Klein’s
algorithm. Therefore, the connection between two consecutive
Markov states only lies in the decision part. The complexity of
the MCMC sampler is given by the number of Markov moves
times the complexity of each move, i.e., O(tmix · n2).

It is easy to check that the Markov chain associated with the
independent proposal distribution q shown in (12) is reversible
(by the Metropolis-Hastings construction), from which we
obtain that π is a strictly positive stationary distribution, and
hence, the Markov chain is positive recurrent, namely ergodic.
Then, we have the following well-known result, whose proof
can be found in [29], [32].

Proposition 1. Given the target lattice Gaussian distribution
π = DΛ,σ,c, the Markov chain induced by the independent
MHK algorithm is ergodic:

lim
t→∞
‖P t(x; ·)−DΛ,σ,c(·)‖TV = 0 (14)

for all states x ∈ Zn.

B. Uniform Ergodicity

The independent proposal distribution defined in (12) enjoys
the following property.

Lemma 1. In the independent MHK algorithm for lattice
Gaussian sampling from DΛ,σ,c, there exists δ > 0 such that

q(x)

π(x)
≥ δ (15)

for all x ∈ Zn, where q(x) = PKlein(x).
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Proof: Using (3) and (4), we have

q(x)

π(x)
=

ρσ,c(Bx)∏n
i=1 ρσi,x̃i(Z)

· ρσ,c(Λ)

ρσ,c(Bx)

=
ρσ,c(Λ)∏n

i=1 ρσi,x̃i(Z)
(a)

≥ ρσ,c(Λ)∏n
i=1 ρσi(Z)

= δ (16)

where (a) holds due to the fact that [8]

ρσi,x̃(Z) ≤ ρσi(Z) ,
∑
j∈Z

e
− 1

2σ2
i

j2

. (17)

As can be seen clearly, the right-hand side (RHS) of (16) is
completely independent of x, meaning it can be expressed as
a constant δ determined by the given B, c and σ. Therefore,
the proof is completed.

We then arrive at a main Theorem to show the uniform
ergodicity of the proposed algorithm.

Theorem 1. Given the invariant lattice Gaussian distribution
DΛ,σ,c, the Markov chain established by the independent MHK
algorithm is uniformly ergodic:

‖P t(x, ·)−DΛ,σ,c(·)‖TV ≤ (1− δ)t (18)

for all x ∈ Zn.

Proof: By (12) and (13), the transition probability
P (x,y) of the independent MHK algorithm is given by

P (x,y)=


min

{
q(y), π(y)q(x)

π(x)

}
if y 6= x,

q(x)+
∑
z6=x

max
{

0,q(z)− π(z)q(x)
π(x)

}
if y= x.

(19)
Using Lemma 1, it is straightforward to check that the follow-
ing relationship holds

P (x,y) ≥ δπ(y) (20)

for all x,y ∈ Zn.
Now, consider the following construction of coupling of

two Markov chains Xt and X′t [27]. X′t is supposed to start
from the stationary distribution π, and Xt from a fixed (but
arbitrarily) initial state x0. At each step t > 0, repeat the
following procedure:
• If Xt = X′t, choose Xt+1 = X′t+1 from distribution
P (Xt, ·).

• Else,
– With probability δ, choose Xt+1 = X′t+1 from

distribution π(·);
– With probability 1 − δ, conditionally independently

sample

Xt+1 from distribution
1

1− δ
[P (Xt, ·)− δπ(·)];

X′t+1 from distribution
1

1− δ
[P (X′t, ·)− δπ(·)].

It is easy to check that Xt and X′t marginally update according
to the same transition probability (19).

According to the coupling inequality [29], the total variation

Algorithm 2 Independent Metropolis-Hastings-Klein Algo-
rithm for Lattice Gaussian Sampling
Input: B, σ, c,X0, tmix(ε)
Output: sample from a distribution statistically close to π =

DΛ,σ,c

1: for t =1,2, . . . , do
2: let x denote the state of Xt−1

3: generate y by the proposal distribution q(x,y) in (12)
4: calculate the acceptance ratio α(x,y) in (13)
5: generate a sample u from the uniform density U [0, 1]
6: if u ≤ α(x,y) then
7: let Xt = y
8: else
9: Xt = x

10: end if
11: if t ≥ tmix(ε) then
12: output the state of Xt

13: end if
14: end for

distance between the distributions of Xt and X′t is upper
bounded by

‖P t(x0, ·)− π(·)‖TV ≤ P (Xt 6= X′t). (21)

Note that, by construction, the two chains stay together at all
times once they meet at a same state, namely,

if Xn = X′n, then Xt = X′t for t ≥ n. (22)

Therefore, given the event Xt 6= X′t, there is no coupling in
any of the t consecutive moves, and we have

P (Xt 6= X′t)=P (Xt 6= X′t, . . . ,X0 6= X′0)

=

t∏
i=1

P (Xi 6=X′i|Xi−1 6=X′i−1)·P (X0 6= X′0)

≤
t∏
i=1

P (Xi 6= X′i|Xi−1 6= X′i−1)

=

t∏
i=1

[
1− P (Xi = X′i|Xi−1 6= X′i−1)

]
=

1−
∑

y∈Zn
P (Xi = X′i = y|Xi−1 6= X′i−1)

t

(b)

≤

1−
∑

y∈Zn
δπ(y)

t
=(1− δ)t, (23)

where (b) is because, by construction again, for each move
we have probability at least δ of making Xi and X′i (i =
1, 2, . . . , t) equal.

Then, substituting (23) into (21), we obtain

‖P t(x, ·)− π(·)‖TV ≤ (1− δ)t, (24)

completing the proof.
Obviously, given the value of δ < 1, the mixing time of the
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Markov chain can be calculated by (6) and (24), that is,

tmix(ε) =
lnε

ln(1− δ)
≤ (−lnε) ·

(
1

δ

)
, ε < 1 (25)

where we use the bound ln(1 − δ) < −δ for 0 < δ < 1.
Therefore, the mixing time is proportional to 1/δ, and becomes
O(1) as δ → 1.

Here, we point out that the aforementioned spectral gap
γ of the transition matrix can also be used to bound the
mixing time. Resorting to the conductance of the Markov
chain [29], one obtains a lower bound on the spectral gap
γ of the transition matrix (see Appendix A for its derivation)

γ ≥ δ2

8
. (26)

This yields another upper bound on the mixing time on the
order of 1

δ2 , which is however looser than (25).

C. Convergence in General Cases (σ 6= σ)
In the proposed independent MHK algorithm, by default,

the standard deviation of the proposal distribution q is set the
same as σ, namely, σ = σ. Therefore, a natural question is
whether a flexible standard deviation σ 6= σ still works. For
this reason, in what follows, the relationship between σ and
σ is investigated.

Let the standard deviations of q(x) and π(x) be σ and σ
respectively, then the corresponding ratio of q(x)/π(x) in (16)
can be rewritten as

q(x)

π(x)
≥ ρσ,c(Λ)∏n

i=1 ρσi(Z)
· e−( 1

2σ2− 1
2σ2 )‖Bx−c‖2 . (27)

Unfortunately, in the case of σ < σ, as ‖Bx − c‖ can
be arbitrary, it is impossible to determine a constant lower
bound upon q(x)/π(x) for x ∈ Zn, implying the uniform
ergodicity can not be achieved [35]3. Therefore, σ < σ should
be avoided in practice and the corresponding convergence
analysis is ignored here.

On the other hand, in the case of σ > σ, let d(Λ, c) denote
the Euclidean distance between lattice Λ and c

d(Λ, c) = min
x∈Zn
‖Bx− c‖, (28)

then it follows that
q(x)

π(x)
≥ ρσ,c(Λ)∏n

i=1 ρσi(Z)
· e−( 1

2σ2− 1
2σ2 )d2(Λ,c) (29)

for all x ∈ Zn, which means the underlying Markov chain
is uniformly ergodic by satisfying (15) in Lemma 1. More
precisely, q(x)/π(x) could be expressed as

q(x)

π(x)
≥ ρσ,c(Λ)∏n

i=1 ρσi(Z)
· β (30)

where

β =

∏n
i=1 ρσi(Z)∏n
i=1 ρσi(Z)

· e−( 1
2σ2− 1

2σ2 )d(Λ,c)2

. (31)

Clearly, parameter β becomes the key to govern the con-
vergence performance. Compared to (16), if β > 1, the

3In theory, that q(x)/π(x) is lower bounded by a constant for all x ∈ Zn
is both sufficient and necessary to the uniform ergodicity [35].
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Fig. 2. Coefficient β of E8 lattice in the case of σ > σ when c = 0.

convergence of the Markov chain will be boosted by a larger
value of δ, otherwise the convergence will be slowed down.
However, in the case of σ > σ, it easy to check that the value
of β is monotonically decreasing with the given σ, rendering
β > 1 inapplicable to the most cases of interest.

As can be seen clearly from Fig. 2, the convergence rate can
be enhanced by β > 1 only for a small enough σ (e.g., σ2 <
0.398, e.g., −4 dB), thus making the choice of σ = σ (i.e.,
β = 1) reasonable to maintain the convergence performance.
This essentially explains the reason why the independent MHK
algorithm is proposed with σ = σ as a default configuration
in general.

IV. CONVERGENCE RATE ANALYSIS

In this section, convergence analysis about the exponential
decay coefficient δ in the independent MHK algorithm is
performed, which leads to a quantitative estimate of the mixing
time. For a better understanding, the analysis is carried out in
cases c = 0 and c 6= 0 separately.

A. Convergence Rate (c = 0)

Lemma 1 shows that the ratio q(x)/π(x) in the independent
MHK sampling algorithm is lower bounded by a constant δ.
We further derive an explicit expression of the coefficient δ
due to its significant impact on the convergence rate, for the
case c = 0.

Specifically, we have

q(x)

π(x)
=

ρσ,0(Λ)∏n
i=1 ρσi,x̃i(Z)

(c)

≥
∑

x∈Zn e
− 1

2σ2 ‖Bx‖2∏n
i=1 ρσi(Z)

(d)
=

ΘΛ( 1
2πσ2 )∏n

i=1 ΘZ( 1
2πσ2

i
)

(e)
=

ΘΛ( 1
s2 )∏n

i=1 ϑ3( 1
s2i

)
= δ. (32)

Here, for notational simplicity, s =
√

2πσ and si =
√

2πσi =
s/‖b̂i‖ are applied in the equations. In (c), the inequality
ρσi,x̃(Z) ≤ ρσi(Z) shown in (17) is used again. Theta series
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ΘΛ and Jacobi theta function ϑ3 are applied in (d) and (e)
respectively, where

ΘΛ(τ) =
∑
λ∈Λ

e−πτ‖λ‖
2

, (33)

ϑ3(τ) =

+∞∑
n=−∞

e−πτn
2

(34)

with ΘZ = ϑ3 [36].

Proposition 2. If s = ω(
√

log n) ·max1≤i≤n ‖b̂i‖ or 1/s =

ω(
√

log n) ·
(

min1≤i≤n ‖b̂i‖
)−1

, then the coefficient δ ≈ 1.

Proof: To start with, let us recall the flatness factor [5],
which is defined as

εΛ(σ) =
det(B)

(
√

2πσ)n
ΘΛ

(
1

2πσ2

)
− 1. (35)

and
εΛ(σ) = ε, if σ = ηε(Λ). (36)

Here, ηε(Λ) is known as the smoothing parameter and for any
n-dimensional lattice Λ and positive real ε > 0, ηε(Λ) is de-
fined as the smallest real σ > 0 such that ρ1/

√
2πσ(Λ∗\{0}) ≤

ε, where Λ∗ denotes the dual lattice of Λ [16].

Therefore, the exponential decay coefficient δ given in (32)
can be expressed as

δ =
ΘΛ( 1

2πσ2 )∏n
i=1 ϑ3( 1

2πσ2
i
)

=
|det(B)|−1 · (

√
2πσ)n · [εΛ(σ) + 1]∏n

i=1

√
2πσi · [εZ(σi) + 1]

=
εΛ(σ) + 1∏n

i=1[εZ(σi) + 1]
, (37)

where det(·) denotes the determinant of a matrix.

Meanwhile, from [8, Lemma 3.3], for any n-dimensional
lattice Λ and positive real ε > 0, it follows that

ηε(Λ) ≤
√

log(2n(1 + 1/ε))

π
· max

1≤i≤n
‖b̂i‖ (38)

and for any ω(log n), there is a negligible ε(n) such that

ηε(Λ) 6= ω(
√

log n) · max
1≤i≤n

‖b̂i‖. (39)

According to (35), it is easy to verify that the flatness factor
εΛ(σ) is a monotonically decreasing function of σ, i.e., for
σ1 ≥ σ2, we have εΛ(σ1) ≤ εΛ(σ2). Therefore, letting
ηε(Λ) 6= ω(

√
log n) · max1≤i≤n ‖b̂i‖ be a benchmark of

comparison, we may bound the flatness factor εΛ(σ) by a
negligible ε(n) if σ = ω(

√
log n) · max1≤i≤n ‖b̂i‖. On the

other hand, it is also easy to check that εZ(σi) will become
negligible if σi = ω(

√
log n). Hence, we have

δ =
εΛ(σ) + 1∏n

i=1[εZ(σi) + 1]
≈ 1 (40)

for σ = ω(
√

log n) ·max1≤i≤n ‖b̂i‖.

On the other hand, according to Jacobi’s formula [37]

ΘΛ(τ) = |det(B)|−1

(
1

τ

)n
2

ΘΛ∗

(
1

τ

)
, (41)

the expression of the flatness factor shown in (35) can be
rewritten as

εΛ(σ) = ΘΛ∗(2πσ
2)− 1, (42)

where Λ∗ is the dual lattice of Λ. Then, we have

δ =
ΘΛ( 1

2πσ2 )∏n
i=1 ϑ3( 1

2πσ2
i
)

=
εΛ∗(

1
2πσ ) + 1∏n

i=1[εZ∗(
1

2πσi
) + 1]

, (43)

where Z∗ = Z.
With respect to εΛ∗( 1

2πσ ) and εZ∗( 1
2πσi

) in (43), similarly,
if

1

2πσ
= ω(

√
log n) · max

1≤i≤n
‖b̂∗i ‖, (44)

where b̂∗i ’s are the Gram-Schmidt vectors of the dual lattice
basis B∗ , (B−1)TJ (J is a column-flipping matrix), then
both εΛ∗( 1

2πσ ) and εZ∗( 1
2πσi

) will be bounded by a negligible
ε(n). Thus, we have

δ ≈ 1. (45)

According to (44), it follows that

1

σ
= ω(

√
log n) ·

(
max

1≤i≤n
‖b̂∗i ‖

)
(f)
= ω(

√
log n) ·

[
max

1≤i≤n
(‖b̂n−i+1‖−1)

]
= ω(

√
log n) ·

(
min

1≤i≤n
‖b̂i‖

)−1

, (46)

where (f) comes from the fact that [38]

‖b̂∗i ‖ = ‖b̂n−i+1‖−1. (47)

Therefore, the proof is completed.
Obviously, according to Proposition 1, as s either goes to 0

or ∞, the coefficient δ will converge to 1. This is in line with
the fact that Klein’s algorithm is capable of sampling from the
lattice Gaussian distribution directly when σ = ω(

√
log n) ·

max1≤i≤n ‖b̂i‖.

Proposition 3. If s ≤ min1≤i≤n ‖b̂i‖, then the coefficient δ
is lower bounded by

δ ≥ 1.086−n ·ΘΛ

(
1

s2

)
. (48)

Meanwhile, if s ≥ max1≤i≤n ‖b̂i‖, then the coefficient δ is
lower bounded by

δ ≥ 1.086−n ·ΘΛ∗(s
2). (49)

Proof: By definition, we have

ϑ3(1) =

+∞∑
n=−∞

e−πn
2

=
4
√
π

Γ( 3
4 )

= 1.086, (50)
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TABLE I
LOWER BOUNDS ON δ WITH RESPECT TO s =

√
2πσ IN THE INDEPENDENT

MHK ALGORITHM.

s≤[
√

2πω(log n)]−1· min
1≤i≤n

‖b̂i‖ δ ≈ 1

s ≤ min
1≤i≤n

‖b̂i‖ δ ≥ 1.086−n ·ΘΛ( 1
s2 )

min
1≤i≤n

‖b̂i‖≤s≤ max
1≤i≤n

‖b̂i‖ δ≥1.086−(n−m)·2−m·
∏
i∈I ‖b̂i‖
sm ·ΘΛ( 1

s2)

s ≥ max
1≤i≤n

‖b̂i‖ δ ≥ 1.086−n ·ΘΛ∗(s
2)

s ≥
√

2πω(log n) · max
1≤i≤n

‖b̂i‖ δ ≈ 1

where Γ(·) stands for the Gamma function [39]. It is worth
pointing out that the explicit values of ϑ3(2), ϑ3(3), . . . can
also be calculated [40], where the same derivation in the
following can also be carried out. Here we choose ϑ3(1) as the
benchmark due to its simplicity. As the Jacobi theta function
ϑ3(τ) is monotonically decreasing with τ , let 1/s2

i ≥ 1, i.e.,
s ≤ ‖b̂i‖, then it follows that

ϑ3

(
1

s2
i

)
≤ ϑ3(1) = 1.086. (51)

Assume s ≤ min1≤i≤n ‖b̂i‖, then the following lower bound
for δ can be obtained,

δ =
ΘΛ( 1

s2 )∏n
i=1 ϑ3( 1

s2i
)
≥ 1.086−n ·ΘΛ(

1

s2
). (52)

On the other hand, as Z is a self-dual lattice, i.e., Z = Z∗,
then if s2

i ≥ 1, namely, s ≥ ‖b̂i‖, it follows that

ϑ∗3(s2
i ) = ϑ3(s2

i ) ≤ ϑ3(1) ≤ 1.086. (53)

Therefore, let s ≥ max1≤i≤n ‖b̂i‖, according to Jacobi’s
formula shown in (41), δ can be lower bounded as

δ =
ΘΛ( 1

s2 )∏n
i=1 ϑ3( 1

s2i
)

=
|det(B)|−1(s2)

n
2 ΘΛ∗(s

2)∏n
i=1(s2

i )
n
2 ϑ∗3(s2

i )

=
ΘΛ∗(s

2)∏n
i=1 ϑ

∗
3(s2

i )

≥ 1.086−n ·ΘΛ∗(s
2), (54)

completing the proof.
Remark: We emphasize that the significance of lattice

reduction (e.g., LLL or HKZ) can be seen here, as increasing
min1≤i≤n ‖b̂i‖ and decreasing max1≤i≤n ‖b̂i‖ simultane-
ously will greatly enhance the convergence performance due
to a better lower bound of δ.

Next, with respect to the range of min1≤i≤n ‖b̂i‖ ≤ s ≤
max1≤i≤n ‖b̂i‖, we arrive at the following proposition.

Proposition 4. If min1≤i≤n ‖b̂i‖ ≤ s ≤ max1≤i≤n ‖b̂i‖,
then the coefficient δ is lower bounded by

δ ≥ 1.086−(n−m) · 2−m ·
∏
i∈I ‖b̂i‖
sm

·ΘΛ

(
1

s2

)
, (55)
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Fig. 3. Coefficient 1/δ of the E8 lattice in the case of c = 0.

where I denotes the subset of indexes i with si > 1 (i.e.,
s > ‖b̂i‖), i ∈ {1, 2, . . . , n}, |I| = m.

Proof: From the definition, we have

ϑ3(τ) =

+∞∑
n=−∞

e−πτn
2

= 1 + 2
∑
n≥1

e−πτn
2

≤ 1 + 2

∫ ∞
0

e−πτx
2

dx

(g)
= 1 +

√
1

τ
, (56)

where (g) holds due to the Gaussian integral
∫∞
−∞ e−ax

2

dx =√
π
a .
Hence, for terms ϑ3( 1

s2i
) with 1/s2

i ≤ 1, namely, s ≥ ‖b̂i‖,
we have

ϑ3

(
1

s2
i

)
≤ 1 + |si| ≤ 2si = 2

s

‖b̂i‖
. (57)

Therefore, from (51) and (57), if follows that
n∏
i=1

ϑ3

(
1

s2
i

)
≤ 1.086(n−m) · 2m · sm∏

i∈I ‖b̂i‖
, (58)

completing the proof.
To summarize, the value of δ with respect to the given s =√
2πσ in the independent MHK algorithm is given in Table I.
Now, let us consider some lattices whose theta series are

more understood. We have the following property for an
isodual lattice, which is one that is geometrically similar to
its dual [37].

Proposition 5. The coefficient δ =
ΘΛ( 1

s2
)∏n

i=1 ϑ3( 1

s2
i

)
for an isodual

lattice Λ has a multiplicative symmetry point at s = 1, and
asymptotically converges to 1 on both sides when s either goes
to 0 or ∞.

Proof: Here, we note that the theta series ΘΛ of an isodual
lattice Λ and that of its dual Λ∗ are the same, i.e., ΘΛ(τ) =
ΘΛ∗(τ), and the volume of an isodual lattice |det(B)| naturally
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Fig. 4. Coefficient 1/δ of the Leech lattice in the case of c = 0.

equals 1. Therefore, we have

ΘΛ

(
1

s2

)
= snΘΛ(s2), (59)

ϑ3

(
1

s2
i

)
= siϑ3(s2

i ), (60)

then from (59) and (60), the symmetry with respect to s = 1
can be obtained as follows,

ΘΛ( 1
s2 )∏n

i=1 ϑ3( 1
s2i

)
=

snΘΛ(s2)∏n
i=1 siϑ3(s2

i )

=
ΘΛ(s2)∏n

i=1
1

‖b̂i‖
ϑ3(s2

i )

=
ΘΛ(s2)

1
|det(B)| ·

∏n
i=1 ϑ3(s2

i )

=
ΘΛ(s2)∏n
i=1 ϑ3(s2

i )
. (61)

By definition, it is straightforward to verify that

ΘΛ( 1
s2 )∏n

i=1 ϑ3( 1
s2i

)
→ 1, when s→ 0. (62)

Then because of the symmetry,
ΘΛ( 1

s2
)∏n

i=1 ϑ3( 1

s2
i

)
will also asymp-

totically approach 1 when s→∞, completing the proof.

Examples of the coefficient 1/δ for the isodual E8 and
Leech lattice are shown in Fig. 3 and Fig. 4, respectively. It is
worth pointing out that 1/δ has a maximum at the symmetry
point s = 1, i.e., σ2 = 1

2π . Actually, 1/δ is similar to, but
not exactly the same as the secrecy gain defined in [37]. In
our context, 1/δ roughly estimates the number of the Markov
moves required to reach the stationary distribution. On the
other hand, as for non-isodual lattices, D4 lattice is applied to
give the illustration in Fig. 5, where the symmetry still holds
but centers at s = 0.376. Therefore, with the exact value of δ,
the explicit estimation of the mixing time for the underlying
Markov chain can be obtained.
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Fig. 5. Coefficient 1/δ of the D4 lattice in the case of c = 0.

B. Convergence Rate (c 6= 0)

As for the convergence analysis in the case of c 6= 0, we
firstly define the exponential decay coefficient δ′ as

δ′ =
q(x)

π(x)
=

ρσ,c(Λ)∏n
i=1 ρσi,x̃i(Z)

, (63)

then we have the following proposition.

Proposition 6. For any c ∈ Rn and c 6= 0, one has

δ′ ≥ e−
d2(Λ,c)

2σ2 · δ (64)

where δ is exponential decay coefficient for the case c = 0.

Proof: Let c′ = c mod Λ stand for the modular opera-
tion of c over lattice Λ. Then it follows that

ρσ,c(Λ) =
∑
z∈Λ

e−
1

2σ2 ‖z−c‖2

=
∑
z∈Λ

e−
1

2σ2 ‖z−c′‖2

= e−
‖c′‖2

2σ2 ·
∑
z∈Λ

e−
‖z‖2

2σ2 ·1
2
·
(
e−

1
σ2〈z,c

′〉+e
1
σ2〈z,c

′〉
)

(h)

≥ e−
‖c′‖2

2σ2 ·
∑
z∈Λ

e−
‖z‖
2σ2

= e−
d2(Λ,c)

2σ2 · ρσ(Λ), (65)

where (h) follows from the fact that for any positive real a >
0, a+ 1/a ≥ 2.

Thus, the value of δ′ is reduced by a factor of e−
d2(Λ,c)

2σ2

from δ. Clearly, if c = 0, then δ′ = δ, implying c 6= 0 is a
general case of c = 0 4. Hence, according to (65), as long as
c is not too far from Λ, δ′ has a similar lower bound.

V. SYMMETRIC METROPOLIS-KLEIN ALGORITHM

In this section, we propose the symmetrical Metropolis-
Klein (SMK) algorithm for lattice Gaussian sampling. The

4In fact, as ρσ,c(Λ) is periodic, all c ∈ Λ will lead to d(Λ, c) = 0, thus
corresponding to the case of c = 0.
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underlying Markov chain is proved to be geometrically er-
godic, which not only converges exponentially fast, but also
depends on the selection of the initial state.

A. Symmetric Metropolis-Klein Algorithm

The Metropolis algorithm can be viewed as a special
case of the MH algorithm by utilizing a symmetric proposal
distribution q(x,y) = q(y,x) [34]. In the proposed algorithm,
we again use Klein’s algorithm to generate the symmetric
proposal distribution. Yet, the generation of the state candidate
y depends on the current state x, which is different from
the independent MHK algorithm. Specifically, as shown in
Algorithm 3, its sampling procedure at each Markov move
can be summarized by the following steps:

1) Given the current Markov state Xt = x, sample from
the symmetric proposal distribution through Klein’s algorithm
to obtain the candidate state y for Xt+1,

q(x,y)=
ρσ,Bx(By)∏n
i=1 ρσi,ỹi(Z)

=
e−

1
2σ2 ‖Bx−By‖2∏n
i=1 ρσi,ỹi(Z)

(i)
= q(y,x), (66)

where ỹi =
c′i−

∑n
j=i+1 ri,jyj

ri,i
, c′ = Q†Bx and B = QR.

Note that equality (i) holds due to the inherent symmetry (see
Lemma 2 in the following).

2) Calculate the acceptance ratio α(x,y)

α(x,y) = min
{

1,
π(y)q(y,x)

π(x)q(x,y)

}
= min

{
1,
π(y)

π(x)

}
= min

{
1, e

1
2σ2 (‖Bx−c‖2−‖By−c‖2)

}
, (67)

where π = DΛ,σ,c.
3) With probability α(x,y) accept Xt+1 = y; otherwise,

reject y and let Xt+1 = x.

Lemma 2. The proposal distribution q shown in (66) is
symmetric and only depends on x− y, namely,

q(x,y) = q(y,x) = q(x− y) (68)

for all x,y ∈ Zn.

The proof of Lemma 2 is provided in Appendix B. Such a
special case is called the “random-walk” Metropolis-Hastings
algorithm [27].

At each Markov move, the state candidate y for Xt+1

is sampled from a Gaussian-like distribution centered at the
current state x. Since the chain is symmetric, the calculation
of the acceptance ratio α is greatly simplified. From (67), it is
quite straightforward to see that if By is closer to the given
point c than Bx, then state candidate y must be accepted
by Xt+1 since α = 1; otherwise it will be accepted with
a probability depending on the distance from By to c, thus
forming a Markov chain5.

Again, we recall the following standard result (see, e.g., [29]
for a proof).

5A query about the SMK algorithm is whether a flexible standard deviation
σ in the proposal distribution q works, i.e., σ 6= σ. The answer is yes.
However, since the explicit convergence rate is tedious to analyze, we omit
its analysis here.

Algorithm 3 Symmetric Metropolis-Klein Algorithm for Lat-
tice Gaussian Sampling
Input: B, σ, c,X0, tmix(ε)
Output: sample from a distribution statistically close to π =

DΛ,σ,c

1: for t =1,2, . . . , do
2: let x denote the state of Xt−1

3: generate y by the proposal distribution q(x,y) in (66)
4: calculate the acceptance ratio α(x,y) in (67)
5: generate a sample u from the uniform density U [0, 1]
6: if u ≤ α(x,y) then
7: let Xt = y
8: else
9: Xt = x

10: end if
11: if t ≥ tmix(ε) then
12: output the state of Xt

13: end if
14: end for

Proposition 7. Given the target lattice Gaussian distribution
π = DΛ,σ,c, the Markov chain induced by the proposed
symmetric Metropolis-Klein algorithm is ergodic:

lim
t→∞
‖P t(x; ·)−DΛ,σ,c(·)‖TV = 0 (69)

for all states x ∈ Zn.

B. Geometric Ergodicity

In MCMC, a set C ⊆ Ω is referred to as a small set, if
there exist k > 0, 1 > δ > 0 and a probability measure v on
Ω such that

P k(x,B) ≥ δv(B), ∀x ∈ C (70)

for all measurable subsets B ⊆ Ω. This is also known as
the minorisation condition in literature [32]. Actually, uniform
ergodicity is a special case where the minorisation condition
is satisfied with C = Ω. For a bounded small set C, the drift
condition of discrete state space Markov chains is defined as
follows [27]:

Definition 4. A Markov chain with discrete state space Ω
satisfies the drift condition if there are constants 0 < λ < 1
and b <∞, and a function V : Ω→ [1,∞), such that∑

y∈Ω

P (x,y)V (y) ≤ λV (x) + b1C(x) (71)

for all x ∈ Ω, where C ⊆ Ω is a small set, and the indicator
function 1C(x) = 1 if x ∈ C and 0 otherwise.

It is well-known that the drift condition implies geometric
ergodicity [32]. Equipped with minorisation and drift condi-
tions, we are now in a position to prove the following theorem:

Theorem 2. Given the invariant lattice Gaussian distribu-
tion DΛ,σ,c, the Markov chain established by the symmetric
Metropolis-Klein algorithm is geometrically ergodic.
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Proof: The proof boils down to verifying the drift condi-
tion (71).

First of all, the distribution π(x) = DΛ,σ,c(x) is clearly
bounded between 0 and 1 over any bounded set. Besides, for
any ‖Bx−By‖ ≤ δq , where δq > 0 is a constant, the proposal
distribution q(x,y) can always be lower bounded by a constant
εq > 0 as follows,

q(x,y) ≥ e−
δ2q

2σ2∏n
i=1 ρσi,ỹi(Z)

(j)

≥ e−
δ2q

2σ2∏n
i=1 ρσi(Z)

= εq, (72)

where (j) holds due to (17). Thus, by [41, Theorem 2.1], every
non-empty bounded set C ⊆ Zn in the underlying Markov
chain of the SMK algorithm is a small set. Then we may
define a small set C as

C = {x ∈ Zn : π(x) ≥ ε} (73)

for sufficiently small ε.
Meanwhile, at each Markov move, the acceptance ratio (67)

suggests the acceptance region Ax and the potential rejection
region Rx for current state x as follows:

Ax = {y ∈ Zn|π(y) ≥ π(x)}; (74)
Rx = {y ∈ Zn|π(y) < π(x)}. (75)

Obviously, state candidate y ∈ Ax will surely be accepted by
Xt+1 while state candidate y ∈ Rx has a certain probability
to be rejected. Then, the LHS of the drift condition (71) can
be rewritten as (76), where the second and third terms result
from whether state candidate y ∈ Rx is accepted or rejected,
respectively.

Set the potential function V (x) = π(x)−
1
2 . Dividing (76)

by V (x) on both sides, we then arrive at the results shown in
(77). Furthermore, since the ratios on the RHS of (77) are at
most 1, we obtain6∑

y∈Zn P (x,y)V (y)

V (x)
≤ 5

4
. (78)

Depending on whether x ∈ C or not, the drift condition can
be rewritten as∑

y∈Zn
P (x,y)V (y) ≤ λV (x) for x /∈ C (79)

6Note that 1 ≤ 1− a2 + a ≤ 5
4

for 0 ≤ a ≤ 1.

Fig. 6. Illustration of cases (a) x /∈ C and (b) x ∈ C in the Markov move
induced by SMK. The blue dash circle represents the area of the small set
while the red solid circle denotes the acceptance region Ax.

and ∑
y∈Zn

P (x,y)V (y) ≤ λV (x) + b for x ∈ C. (80)

The two cases are illustrated in Fig. 6. We proceed case by
case.

(i). In the case x ∈ C,

V (x) ≤ 1√
ε
. (81)

By (78) we have∑
y∈Zn

P (x,y)V (y) ≤ 1√
ε
· 5

4
= b for x ∈ C (82)

and thus condition (80) is satisfied.
(ii). In the case x /∈ C, we consider

λ = lim sup
‖x‖→∞

∑
y∈Zn

P (x,y)V (y)

V (x)
. (83)

If λ < 1, then (79) is satisfied for sufficiently small ε.
It is easy to verify that

lim
‖x‖→∞

`(x) · ∇ log π(x) = −∞, (84)

where `(x) denotes the unit vector x/‖x‖ and ∇ represents
the gradient. This condition implies that for any γ > 0, there
exists dγ > 0 such that for ‖x‖ ≥ dγ

π(x + a · `(x))

π(x)
≤ e−a·γ , (85)

where a ≥ 0 represents a constant. In other words, as ‖x‖ goes

∑
y∈Zn

P (x,y)V (y) =
∑

y∈Ax

P (x,y)V (y) +
∑

y∈Rx

P (x,y)V (y)

=
∑

y∈Ax

q(x,y)V (y) +
∑

y∈Rx

q(x,y)
π(y)

π(x)
V (y) +

∑
y∈Rx

q(x,y)

[
1− π(y)

π(x)

]
V (x). (76)

∑
y∈Zn P (x,y)V (y)

V (x)
=

∑
y∈Ax

q(x,y)
π(x)1/2

π(y)1/2
+
∑

y∈Rx

q(x,y)

[
1− π(y)

π(x)
+
π(y)1/2

π(x)1/2

]
. (77)
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Fig. 7. Illustration of the contour Cπ(x) (solid curve), radial µ-zone
Cπ(x)(µ) (area between the two dashed curves) and ball B(Bx,K) in the
case x /∈ C.

to infinity, the above ratio is at least exponentially decaying
with a rate γ tending to infinity.

Let Cζ = {x ∈ Rn | π(x) = ζ}. We define the radial
µ-zone around Cπ(x) as (See Fig. 7)

Cπ(x)(µ) = {z + s · `(z) | z ∈ Cπ(x),−µ ≤ s ≤ µ}.

Denote by B(x,K) a Euclidean ball of radius K, centered at
x. As in [42], for arbitrary but fixed ε1 > 0, choose K > 0
such that ∑

y∈Zn
By/∈B(Bx,K)

q(x,y) ≤ ε1. (86)

This can be assured by noting that

q(x,y) =
e−
‖Bx−By‖2

2σ2∏n
i=1 ρσi,ỹi(Z)

(l)

≤ e−
‖Bx−By‖2

2σ2∏n
i=1 ρσi,1/2(Z)

, (87)

where (l) is because ρσi,ỹi(Z) has a minimum at ỹi = 1/2
and then applying a tail bound of lattice Gaussian distribution
[1, Lemma 1.5].

From the fact that the Euclidean norms {‖Bx‖, x ∈ Zn}
of a lattice are discrete, it follows that for any K > 0 there
exists µ > 0 such that

lim sup
‖x‖→∞

∑
y∈Zn∩Cπ(x)(µ)

By∈B(Bx,K)

q(x,y) = lim sup
‖x‖→∞

∑
y∈Zn,‖By‖=‖Bx‖

By∈B(Bx,K)

q(x,y). (88)

In words, one may choose small enough µ such that only those
lattice points of the same norm ‖x‖ count.

Substitute (83) into (77) and rearrange it as

λ = lim sup
‖x‖→∞

∑
y∈Rx

q(x,y) +
∑

y∈Ax

q(x,y)
π(x)1/2

π(y)1/2

+
∑

y∈Rx

q(x,y)

[
−π(y)

π(x)
+
π(y)1/2

π(x)1/2

]
. (89)

We will keep the first term and bound the sum of the other
two. To do so, we consider three regions:

1) By /∈ B(Bx,K). Since all the ratios in (89) are at most
1 (in fact 0 ≤ −π(y)

π(x) + π(y)1/2

π(x)1/2 ≤ 1
4 for y ∈ Rx), the

sum of the last two terms in (89) is upper bounded by

ε1 by choosing K such that (86) holds;
2) By ∈ B(Bx,K) but y /∈ Cπ(x)(µ). As ‖x‖ → ∞, all

the ratios in (89) tend to 0 outside of any radial µ-zone
for any K (cf. (85)). Thus the sum of the last two terms
in (89) can be bounded by some ε2 in this region;

3) By ∈ B(Bx,K) and y ∈ Cπ(x)(µ). Again, since all
the ratios in (89) are at most 1, the limit of the sum of
the last two terms in (89) is given by (88).

In words, as ‖x‖ → ∞, only those lattice points of the same
norm ‖x‖ in the last region count, when one evaluates the
second and third sums of (89).

For notational convenience, define two regions Ax = {y ∈
Zn|π(y) > π(x)} and Rx = {y ∈ Zn|π(y) ≤ π(x)}, which
are slightly different from (74), (75), i.e., Ax does not include
the boundary but Rx does. Then we arrive at

λ ≤ lim sup
‖x‖→∞

∑
y∈Rx

q(x,y)

= 1− lim inf
‖x‖→∞

∑
y∈Ax

q(x,y)

(k)
< 1 (90)

where inequality (k) holds because

lim inf
‖x‖→∞

∑
y∈Ax

q(x,y) > 0 (91)

due to symmetry of q(x,y). In fact, as shown in Fig. 7, it
follows from the symmetry (i.e., depicted by the blue dash
dot line) that ∑

y∈Ax

q(x,y) <
1

2
<
∑

y∈Rx

q(x,y), (92)

and the two probabilities can approach 1
2 as ‖x‖ → ∞. This

completes the proof in the case x /∈ C.

In essence, the convergence of geometric ergodicity can be
divided into two stages. On one hand, if x /∈ C, the drift
condition guarantees the Markov chain shrinks geometrically
towards the small set C. On the other hand, if x ∈ C, the
minorisation condition shown in (70) implies the Markov chain
will converge to the stationary distribution exponentially fast.
This can be demonstrated by using the coupling technique as
in the previous section and δ is just the exponential decay
coefficient, which depends on C. It was shown in [43] that,
for C = {x : V (x) ≤ d} and d > 2b/(1− λ), Markov chains
satisfying the drift condition will converge exponentially to
the stationary distribution as follows

‖Pn(x0,·)− π(·)‖TV ≤(1−δ)rn+
(
Ur

α1−r

)n(
1+

b

1−λ
+V(x0)

)
,

(93)
where 0 < r < 1,

α =
1 + d

1 + 2b+ λd
and U = 1 + 2(d+ b). (94)

Clearly, there is a trade-off between these two convergence
stages: a larger set C indicates a smaller δ in the minorisation
condition for x ∈ C but a faster shrink speed λ towards C
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for x /∈ C (close to 1/2 when ‖x‖ → ∞). However, the size
of C, measured by d here, is determined artificially, making
both δ and λ sensitive to a slight change of d. Moreover,
a closed-form expression of λ is difficult to get even for a
specific C. Therefore, although geometric ergodicity can be
achieved by the proposed SMK algorithm, it is difficult to
obtain quantitative bounds on δ and λ.

Finally, (93) indicates that the convergence of the Markov
chain arising from the SMK algorithm also highly depends on
the starting state x0, which follows the definition of geometric
ergodicity given in (9). In theory, x0 could be any candidate
from the state space but a poor choice may intensively increase
the required mixing time. To this end, starting the Markov
chain with x0 as close to the center of the distribution as
possible would be a judicious choice. This is actually in
accordance with the result shown in (93), implying the closest
point to c is the optimal choice. As a simple solution, Babai’s
nearest plane algorithm is recommended here to output x0

[44].

VI. CONCLUSIONS

In this paper, two MH-based algorithms were proposed to
sample from lattice Gaussian distributions. As the proposal
distribution in the MH algorithms can be set freely, an inde-
pendent proposal distribution and a symmetric proposal distri-
bution were exploited respectively for geometric convergence.
In addition, it was proven that the Markov chain arising from
the independent MHK algorithm is uniformly ergodic, leading
to exponential convergence regardless of the starting state. We
showed its convergence rate can be explicitly calculated via
theta series, making the mixing time predictable. On the other
hand, the proposed SMK algorithm was demonstrated to be
geometrically ergodic, where the selection of the starting state
matters. Due to its inherent symmetry, it not only converges
exponentially fast, but also is simple to implement.
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APPENDIX A
PROOF OF INEQUALITY IN (26)

Proof: To start with, let us recall the definition of con-
ductance (also known as bottleneck ratio) in Markov chains
[29].

Definition 5. The conductance Φ of a Markov chain is defined
as

Φ(S) = min
S⊆Ω,π(S)≤1/2

Q(S, Sc)

π(S)
, (95)

where subset Sc stands for the complement set of S (i.e.,
S
⋃
Sc = Ω, S

⋂
Sc = ∅), and the edge measure Q is defined

by
Q(x, y) = π(x)P (x, y) (96)

and
Q(S, Sc) =

∑
x∈S,y∈Sc

Q(x, y). (97)

It is this value 0 < Φ ≤ 1 that has been used to bound
the spectral gap γ of Markov chains. More precisely, in the
independent MHK algorithm, we have

Φ = min
S⊆Ω,π(S)≤1/2

∑
x∈S,y∈Sc π(x)P (x,y)

π(S)
(m)

≥ min
S⊆Ω,π(S)≤1/2

∑
x∈S,y∈Sc π(x) · δπ(y)

π(S)

= min
S⊆Ω,π(S)≤1/2

δ ·
∑

x∈S π(x) ·
∑

y∈Sc π(y)

π(S)

= min
S⊆Ω,π(S)≤1/2

δ · π(Sc)

≥ δ

2
, (98)

where inequality (m) holds due to (20).
Next, by invoking the cheeger inequality [45] of Markov

chains
Φ2

2
≤ γ ≤ 2Φ, (99)

we have
γ ≥ δ2

8
, (100)

completing the proof.

APPENDIX B
PROOF OF LEMMA 2

Proof: According to the QR-decomposition B = QR,
we have

q(x,y) =
e−

1
2σ2 ‖Bx−By‖2∏n
i=1 ρσi,ỹi(Z)

=
e−

1
2σ2 ‖Rx−Ry‖2∏n
i=1 ρσi,ỹi(Z)

(101)

by removing the orthogonal matrix Q, where ỹi =
c′i−

∑n
j=i+1 ri,jyj

ri,i
, c′ = Rx.

Specifically, the term ρσi,ỹi(Z) in the denominator of (101)
can be expressed as

ρσi,ỹi(Z) =
∑
zi∈Z

e
− 1

2σ2
i

(zi−
c′i−

∑n
j=i+1 ri,jyj

ri,i
)2

=
∑
zi∈Z

e
− 1

2σ2
i

(zi−
∑n
j=i ri,jxj−

∑n
j=i+1 ri,jyj

ri,i
)2

=
∑
zi∈Z

e
− 1

2σ2
i

(xi−zi+
n∑

j=i+1

ri,j
ri,i

(xj−yj))2

=
∑
z′i∈Z

e
− 1

2σ2
i

(z′i−φ)2

= ρσi,φ(Z), (102)

where z′i = zi − xi and φ =
n∑

j=i+1

ri,j
ri,i

(xj − yj).

Similarly, we can easily get that

ρσi,x̃i(Z) =
∑
zi∈Z

e
− 1

2σ2
i

(yi−zi+
n∑

j=i+1

ri,j
ri,i

(yj−xj))2

=
∑
z′i∈Z

e
− 1

2σ2
i

(z′i−φ)2
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= ρσi,φ(Z) = ρσi,ỹi(Z), (103)

where x̃i =
c′′i −

∑n
j=i+1 ri,jxj

ri,i
, c′′ = Ry. Therefore, we have

q(x,y) = q(y,x).
In fact, (102) shows that q(x,y) is a function of x−y only;

moreover, since ρσi,φ(Z) is even in φ, q(x,y) = q(x− y) =
q(y − x), completing the proof.
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