
A Unified and Composable Take on Ratcheting

Daniel Jost , Ueli Maurer, and Marta Mularczyk?

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland.
{dajost , maurer , mumarta }@inf.ethz.ch

Abstract. Ratcheting, an umbrella term for certain techniques for achiev-
ing secure messaging with strong guarantees, has spurred much interest
in the cryptographic community, with several novel protocols proposed
as of lately. Most of them are composed from several sub-protocols, often
sharing similar ideas across different protocols. Thus, one could hope to
reuse the sub-protocols to build new protocols achieving different security,
efficiency, and usability trade-offs. This is especially desirable in view of
the community’s current aim for group messaging, which has a signif-
icantly larger design space. However, the underlying ideas are usually
not made explicit, but rather implicitly encoded in a (fairly complex)
security game, primarily targeted at the overall security proof. This not
only hinders modular protocol design, but also makes the suitability of a
protocol for a particular application difficult to assess.
In this work we demonstrate that ratcheting components can be modeled
in a composable framework, allowing for their reuse in a modular fashion.
To this end, we first propose an extension of the Constructive Cryptogra-
phy framework by so-called global event histories, to allow for a clean
modularization even if the component modules are not fully independent
but actually subtly intertwined, as in most ratcheting protocols. Second,
we model a unified, flexibly instantiable type of strong security statement
for secure messaging within that framework. Third, we show that one can
phrase strong guarantees for a number of sub-protocols from the existing
literature in this model with only minor modifications, slightly stronger
assumptions, and reasonably intuitive formalizations.
When expressing existing protocols’ guarantees in a simulation-based
framework, one has to address the so-called commitment problem. We
do so by reflecting the removal of access to certain oracles under specific
conditions, appearing in game-based security definitions, in the real world
of our composable statements. We also propose a novel non-committing
protocol for settings where the number of messages a party can send
before receiving a reply is bounded.

1 Introduction

1.1 Secure Messaging and Ratcheting

Secure-messaging (SM) protocols attempt to provide strong security guarantees
to two parties that communicate over an asynchronous network. Apart from
? Research supported by the Zurich Information Security and Privacy Center (ZISC).

https://orcid.org/0000-0002-6562-9665
mailto:dajost@inf.ethz.ch
mailto:maurer@inf.ethz.ch
mailto:mumarta@inf.ethz.ch

protecting confidentiality and integrity of messages, the desired properties include
forward secrecy and healing from a state or randomness exposure. The latter
properties are addressed by the so-called ratcheting protocols, by having the
parties continuously update their secret keys.

The term ratcheting on its own does not carry any formal meaning; rather, it
is an umbrella term for a number of different guarantees, somehow related to the
concept of updating keys. One notable example of ratcheting is the widely-used
Signal protocol [20] with its double-ratchet algorithm, formally analyzed in [7 , 1].
Furthermore, there exist protocols with much stronger guarantees, but that
require the messages to be delivered in order [23 , 9 , 8 , 10]. Protocols with the
stronger guarantee of immediate out-of-order decryption have been proposed in
[1]. While the majority of the literature considers secure communication, some
works view ratcheting as a property of key exchange instead [2 , 23].

A number of proposed protocols pursue similar goals, but each achieves a
slightly different trade-off between security, efficiency and usability. Moreover,
each construction comes with its own—usually fairly complex—security game,
intermediate abstractions, and primitives. This renders them hard to compare
and hinders achieving new trade-offs that would result from combining ideas from
different protocols. This motivates the goal of this work, which is to facilitate a
systematic, modular and composable analysis of secure-messaging protocols.

1.2 Composable Security

While a game-based systematization of secure messaging could certainly address
some of the aforementioned concerns, composable frameworks, such as [4 , 22 , 17 ,
13], provide some distinct advantages.

First, security under (universal) composition is a stronger notion: the guar-
antees are provided even if a protocol is executed in an arbitrary environment,
alongside other protocols. So far, no SM protocol provably achieves this (in
fact, even the weaker notion of security under parallel self composition has not
been analyzed). Moreover, composable frameworks facilitate modularity. One can
define components with clean abstraction boundaries (e.g., a secure channel) and
use their idealized versions in a higher-level protocol (and its proof). The overall
security of the composed protocol follows from the composition theorem. This
stands in contrast with game-based definitions, where security of the components
and the overall protocol is expressed by a number of games, and one has to show
that winning the security game for the overall protocol implies, via reductions,
winning one security game for a component. Finally, guarantees expressed in
a composable framework usually have more evident semantics, obtained from
directly considering how a protocol is used, rather than a hypothetical interaction
of an adversary with a simplified game that encodes excluded attacks.

Unfortunately, secure messaging does not render itself easily to a modular,
composable analysis. One reason for this is the difficulty in drawing the right
abstraction boundaries. Roughly, the guarantees for a channel heavily depend
on other components in the system, for example, we may want to say that the
confidentiality of a message is protected only if some memory contents do not

2

leak. This problem also appears in the analysis of some protocols from different
contexts (e.g. TLS [11]), which often violate the rules of modularity.

Furthermore, we encounter the so-called “commitment problem” of simulation-
based security definitions. Intuitively, the natural composable guarantees are too
strong and provide additional security that seems to carry little significance in
practice, and that can only be achieved with (stronger) setup assumptions and
at an efficiency loss. To address this problem, a number of approaches have been
proposed — none of them, however, being able to fully satisfactorily formalize
the weaker guarantees achieved by regular schemes. First, the notion of non-
information oracles [6] has been proposed that essentially embeds a game-base
definition in a composable abstraction module. Second, a line of work considers
stronger, i.e., super-polynomial, simulators [21 , 24 , 3]. Protocols in those models,
however, still have to rely on additional setup and special primitives.

1.3 Contributions

This paper makes both conceptual and technical contributions. Conceptual contri-
butions to composable security frameworks are the notion of global event histories
as well as a modeling technique for circumventing the so-called commitment prob-
lem. Technical contributions include the modeling of ratcheting (sub-)protocols
in a composable framework as well as a novel protocol that achieves adaptive
security, i.e., the strongest form of composable security, under certain restrictions.

Global event histories. Composable frameworks are based around the idea of inde-
pendent modules (e.g. channels, keys, or memory resources) that are constructed
by one protocol and then used by another protocol in the next construction step.
However, in many settings, in particular as they occur in modeling ratcheting
protocols, these components are subtly correlated which seems to violate mod-
ularity. For example, a channel (one module) can become insecure when a key
(another, apparently independent module) is leaked to the adversary.

We address this problem by two conceptual ideas. First, we parameterize
resources by several (discrete) parameters—which can be thought of as a switch
with two or more positions—which can downgrade the security of a resource,
e.g. switch a channel from non-leakable (i.e. confidential) to leakable. Second,
we introduce the notion of global event histories defined for the entire real (or
ideal) world, where a history is a list of events having happened at a module (e.g.
a message being input by Alice or a message having leaked to the adversary).
A key idea is now that the switch settings of the modules can be defined by
predicates (or, more generally, multi-valued functions) of the global event history.
This allows us to draw meaningful abstraction boundaries for secure messaging,
but we believe that the concept of event histories is of independent interest and
may enable modular analyses for settings where this was previously difficult.

Formally, we use the Constructive Cryptography (CC) framework [17 , 14],
and in particular a slight modification of its standard instantiation to model the
event history. Since the composition theorem of CC is proved on an abstract
level, we do not need to re-prove it.

3

Expressing the guarantees provided by ratcheting. Our goal is to capture the
guarantees provided by ratcheting (sub-)protocols in a general fashion to make
them reusable in different protocols or contexts. This is in contrast to existing
game-based definitions, which usually formalize exactly what is required by the
next sub-protocol for the overall protocol’s security proof to go through.

This goal is achieved by considering parameterized resources as described
above and modeling the goal of a (sub-)protocol as improving a certain parameter
while leaving the other parameters unchanged, independently of what they are.
One can think of a protocol improving certain switch positions (e.g. making a
channel confidential), independently of the other switch positions.

In this paper, we consider three ratcheting sub-protocols. We start with a
simple authentication protocol in the unidirectional setting which constantly
updates keys. As a more involved example, we consider the use of hierarchical
identity-based encryption to provide confidentiality. As a third example, we
analyze continuous key agreement, a notion introduced by Alwen et al. [1] to
abstract the symmetric ratcheting layer of Signal. On the way, we discover cases
where the existing game-based notions are insufficient to prove the stronger, more
modular, statements that don’t fix the properties (i.e., the switch positions) of
the assumed network, but where they can be achieved by simple modifications.

Solutions to the commitment problem. When modeling ratcheting protocols, we
encounter the so-called commitment problem: the simulator would have to output
a simulated value (e.g. a ciphertext) which at a later stage must be compatible
with another value (e.g. a leaked key) not initially known to him. Since this is
generally impossible, we address this problem in two alternative ways.

On one hand, we propose a technique that allows to transform many standard
SM protocols into protocols that achieve full composable security, at the expense
of an efficiency lost, as well as being restricted to only sending a bounded number
of messages before receiving a reply from the other party. We apply this technique
to the HIBE protocol mentioned above and construct its fully composable version.

On the other hand, we can retain composable statements of regular protocols
by restricting the adversary’s capabilities in the real world as a function of the
event history. Roughly, some real-world components become secure by assumption
after certain sequences of events. This is similar to how some oracles (e.g., those
that expose a secret key) are disabled in game-based definitions. We hence give
such special conditions in games a composable semantics.

1.4 Outline

In Section 3 we extend Constructive Cryptography to include the global event
history. Based on this, in Section 4 , we introduce a simple and generic type of
security statement for SM protocols. (In Section 7 we extend it to encompass
ratcheting as a key-exchange primitive.) In Section 5 , we demonstrate how the
security guarantees of ratcheting components can be phrased in this model.
Finally, in Section 6 , we introduce a novel non-committing ratcheting protocol
that achieves full simulation-based security for a bounded number of messages.

4

2 Preliminaries: Constructive Cryptography

2.1 The Real-World / Ideal-World Paradigm

Many security definitions, and in particular most composable security frameworks
[4 , 22 , 17 , 13], are based on the real-world/ideal-world paradigm. The real world
models the use of a protocol, whereas the ideal world formalizes the security
guarantees that this protocol is supposed to achieve.

The security statement then affirms that the real word is “just-as-good” as the
ideal world, meaning that for all parties, no matter whether honest or adversarial,
it does not make a difference whether they live in the real or ideal world. Hence,
if the honest parties are content with the guarantees they get in the ideal world,
they can safely execute the protocol in the real world instead.

2.2 Resources

In each composable framework there is some notion of a module that exports
a well-defined interface in a black-box manner to the rest of the world. In the
UC framework such a module is called a functionality. In the Constructive
Cryptography (CC) framework [17 , 14] such a module is called a resource. One
of the main differences is that in CC a world consists entirely of resources and
the environment (called a distinguisher). So while UC distinguishes between the
real world, where the parties can only send messages to each other, and a hybrid
world, where they additionally access some ideal functionalities, in CC everything,
including communication, is a resource. For example, a security statement about
two parties using authenticated encryption to transmit a message is phrased
as a real world containing two resources—an insecure channel and a shared
key—which are then used by the protocol to construct the ideal world consisting
of a secure channel. See Figure 1 for a description of the real-world resources.

A resource is a reactive system that allows interaction at one or several
interfaces, i.e. upon providing an input at one of the interfaces, the system
provides an output. In this work, we only consider systems where the output
is produced at the same interface the input was given. Formally, resources are
modeled as random systems [15], where the interface address is encoded as part
of the inputs. However, a reader unfamiliar with CC may simply think of a
resource with n interfaces as n oracles that share a joint state. Note that there is
no formal notion of a party in constructive cryptography; they only give meaning
to the construction statements, by thinking of each interface being controlled by
some party. Since in this work we make statements about messaging between two
honest parties, called Alice and Bob, in the presence of a global adversary, called
Eve, we usually label the interfaces accordingly, indicating how the assignment
of interfaces to parties should be understood.

A set of resources can be composed into a single one. The interface set of
the composed resource corresponds to the union of the ones from the composed
resources. Returning to our example of authenticated encryption, in the real world
we have both an insecure channel InsecCh and a key Key, where the former has

5

Resource InsecCh

Initialization
mA,mB ← ⊥

Interface E
Input: leak
output mA

Input: (inject,m)
mB ← m
output ok

Interface A
Input: (send,m)
assume only called once
mA ← m
output ok

Interface B
Input: receive
output mB

Resource Key

Initialization
k � K

Interface i, i ∈ {A, B}
Input: fetch
output k

Fig. 1: The assumed real-world resources of the authenticated-encryption example:
an insecure channel and a shared key. The insecure channel exports three interface
A, B, and E, understood to be controlled by the respective parties Alice, Bob, and
Eve, whereas the key resource only exports two interfaces.

three interfaces and the latter two. The composed resource, denoted [InsecCh,Key],
is a resource with five interfaces, each of them addressed by a tuple consisting of
the resource’s name and the interface’s original name.

We describe our resources using pseudo-code (c.f. Figure 1). The following
conventions are followed: each resource has an initialization procedure initializing
all the persistent variables (all other variables are understood to be volatile).
Formally this initialization is called upon invoking any arbitrary interface for the
first time. Each interface exposes one or more capabilities, each of them described
by a keyword (e.g. send in case of a channel), and the (potential empty) list of
arguments (e.g., m). Furthermore, we use the assume command, which should
be understood as a shortcut for explicitly tracking the respective condition and
returning an error symbol ⊥ in case the condition is violated. In Figure 1 , the
keyword assume is used the specify that the channel is single-use.

2.3 Converters

The protocol execution in CC is modeled by converters, each of which expresses
the local computation executed by one party. (The name converter derives from
the property that a converter attached to a resource converts it into another
“ideal” one.) A converter expects to be connected to a given set of interfaces
at the “inside”, and emulates a certain set of interfaces at the “outside”. Upon
an input at one of the emulated interfaces, the converter is allowed to make a
bounded number of oracle queries to the inside interfaces (recall that a resource
always returns at the same interface it was queried), before returning a value at
the same emulated interface. For a converter prot and a resource R, we denote
by R′ := prot{I1,...,In}R the resource obtained from connecting the converter to
the subset {I1, . . . , In} of the interfaces. The resource R′ no longer exposes those
interfaces to the world, but the ones emulated by prot instead. We usually omit

6

A B

E

F

Rprot1 prot2
A B

E

F

S

sim

Fig. 2: Execution of the protocol in the real world by Alice and Bob (left) and
the ideal world with the simulator attached to Eve’s interface (right). The “free”
interface on the top is accessed directly by the environment in both worlds.

specifying the set {I1, . . . , In} and just write for instance protAR, denoting that
it is connected to all of Alice’s interfaces.

2.4 The Construction Notion

Security is then defined following the real-world/ideal-world paradigm, stating
that in every environment the real world should behave the same way as the ideal
one. The real world, as depicted in Figure 2 , thereby consists of the assumed
resource R to which the converters are attached, each to a subset of the respective
party’s interfaces. The ideal world, on the other hand, consists of the constructed
resource S with a simulator (which is a converter) attached to Eve’s interfaces.

Behaving the same way is formalized using the notion of a distinguisher,
that can make oracle queries to the resource’s interfaces and then outputs a
bit, indicating whether it believes to interact with the real or ideal world. More
formally, in the special case of two honest parties Alice and Bob and a global
adversary Eve, the goal of a distinguisher D is to distinguish the real world
protA

1 protB
2 R from the ideal world simE S. The advantage of D is defined as

∆D(protA
1 protB

2 R, simE S
)

:= Pr
[
D(simE S) = 1

]
− Pr

[
D(protA

1 protB
2 R) = 1

]
.

Let ε denote a function mapping distinguishers to values in [−1, 1]. Then, the
protocol (prot1, prot2), when attached to A and B, is said to construct S from R
within ε, and with respect to sim attached to E, if

∀D : ∆D(protA
1 protB

2 R, simE S
)
≤ ε(D).

Note that we require the sets of interfaces controlled by Alice, Bob, and Eve,
respectively, to be pairwise disjoint. They however do not have to completely
partition the set of interfaces. The remaining interfaces are called free interfaces
to which the distinguisher has direct access in both worlds.

For simplicity, in this work we consider an asymptotic setting only (although
we usually do not make the asymptotics explicit) where all resources and con-
verters are assumed to be efficiently implementable. We then write

protA
1 protB

2 R ≈ simE S,

7

if ∆D(protA
1 protB

2 R, simE S
)
is negligible for every efficient distinguisher D, and

simply say that (prot1, prot2) constructs S from R if there exists an efficient
simulator sim achieving this.

Note that the notion of construction is analogous to the notion of secure
realization in the UC framework. In contrast to UC, however, the set of all
resource instances within a construction statement is fixed. The distinguisher
does not instantiate resources or protocols, or assign session identifiers. Dynamic
availability properties of resources can obviously still be modeled as part of the
resources themselves, though.

2.5 Composition

The notion of construction is composable, which intuitively means that if a
protocol (prot1, prot2) constructs S from R, and another protocol (prot′1, prot′2)
constructs T from S, then the combined protocol constructs T from R. This
is known as sequential composition. Additionally, if (prot1, prot2) constructs
[S1, . . . ,Si] from [R1, . . . ,Rj], for some i and j, then for every set of (efficiently
implementable) resources {T1, . . . ,Tn} it also holds that (prot1, prot2) constructs
[S1, . . . ,Si,T1, . . . ,Tn] from [R1, . . . ,Rj ,T1, . . . ,Tn], where the interfaces of the
additional resources T1, . . . ,Tn are treated as free in the construction. This
property is known as parallel composition.

Both properties are proven in [17 , 18] for a more abstract notion of resources
being “just-as-good”, of which the here introduced indistinguishability notion is
a special case. Together, the two properties form the equivalent to the universal
composability property of the UC framework.

3 Constructive Cryptography with Events

In this section we generalize the Constructive Cryptography framework to allow
for better modularization. More specifically, we introduce another instantiation
of resources and the “just-as-good” notion, thereby inheriting the composition
theorem of CC that is proven on a more abstract level.

Motivation. Recall that SM protocols are difficult to modularize, because the
guarantees for a given message depend on the dynamically changing state of other
components in the system, such as whether the state leaked or the adversary
tampered with a previous message. In traditional CC, where the abstraction
boundary of a resource is just the input-output behavior, properly accounting for
those dependencies would essentially force us to model the whole SM application
as monolithic resource. In this section, we therefore extend the notions of resources
and construction to relax the abstraction boundary in a clean and well-controlled
manner, which will allow for such dependencies between different resources. More
concretely, we introduce a global event history. Each resource is then allowed to
trigger events from a predefined set (e.g. indicating that a party’s state leaked),

8

on which the behavior of other resources can then depend. The event history is
visible to the environment, the resources, and the simulator.1

The global event history. We model events as a generalization of monotone
binary outputs (MBO) introduced by Maurer et al. [16]. Roughly, an MBO of a
resource is an additional output that can change from 0 to 1 but not back. This
can be interpreted as a single event, which happens when the MBO changes to 1.
We generalize this to many events by the means of a global event history.

Definition 1. Let N be a name set. The global event history E is a list of
elements of N without duplicates.

For n ∈ N , we use En as a short-hand notation to denote that n is in the
list E, and say that the event happened. Analogously, we use ¬En to denote the
complementary case. Furthermore, we denote by E +← En, the act of appending n
to the list E, if ¬En, and leaving the list unchanged otherwise.

We also introduce the natural happened-before relation on the events.

Definition 2. For n1, n2 ∈ N , we say that the event n1 precedes the event n2
in the event history E, denoted En1

≺ En2
, if either

– both events happened, i.e, En1
and En2

, and n1 is in the history before n2,
– or only n1 happened so far.

Note that saying that En1
≺ En2

is true if so far only the former one has happened
best matches the type of statement we usually want to make: for instance, if we
express the condition that a message is secure if the key has been securely erased
before the memory was leaked, then we do not need to insist that the memory
actually leaked.

Event-aware systems. We consider resources, converters and distinguishers
that can (1) read the global event history, and (2) append to the event history
from a fixed subset of N . That is, the global event history is an additional
component (of both the real and ideal world) that models event-awareness in
an abstract manner, rather than formalizing them as outputs that need to be
explicitly passed between components.

As a convention, we use as event-name pairs (id, label), where label is a
descriptive keyword (e.g., leaked), and id identifies the resource triggering the
event, and we use the notation E label

id . Simulators and distinguishers can trigger
events with arbitrary id’s (looking forward, e.g. a simulator will have to trigger
real-world events that do not occur in the ideal world). Still, we require that they
do not trigger events that can be triggered by any resources they are connected
to (such that, for example, a memory-leaked event really means that it did leak).
1 From a conceptual point of view, this global event history is somewhat reminiscent
of the “directory” ITI used in the recent version (as of December 2018) of UC [4] to
keep track of which parties are corrupted.

9

Definition 3. A simulator is compatible if it only triggers events that cannot
be triggered by the resource it is attached to. For two resources R and S, a
distinguisher D is compatible if it only triggers events that cannot be triggered
by neither R nor S.

Converters implementing protocols, on the other hand, do not depend on the
event history, since an event is something that might be observable, rather than
something that is guaranteed to be observable by the honest parties.

Construction notion. Intuitively, in the context of events, a real-world resource
R is “just-as-good” as S if these resources look the same to distinguishers DE
with read-and-write access to the global event history E . This implies that the
sequences of events must be the same in the real and in the ideal world. However,
for convenience, we slightly relax this rule and introduce event renaming. For
example, if a memory is used to store a key, then the memory-read event in the
real world would have in the ideal world a better name key-received. Hence, we
use both names to denote the same event (one can think of them as aliases).
Moreover, we also allow for multiple aliases for a more fine-grained consideration
of events in the ideal world, for instance by separating a message-received event
into a successful and unsuccessful one.

We make this renaming explicit in the construction statements by defining a
surjection τ that maps events triggered by the ideal-world resource to their real-
world counterparts. (Note that in the case of duplicates caused by τ , τ(E) only
contains the first occurrence.) When referring to real-world events for specifying
ideal-world guarantees, we will sometimes use Ẽ := τ(E) as a shorthand notation.

We can now define the construction notion for two resources with events.

Definition 4. We say that (prot1, prot2) constructs S from R under the event-
renaming τ , denoted

protA
1 protB

2 R ≈̂τ simE S,
if there exists an efficient simulator sim, such that τ only renames events triggered
by simE S, and for all efficient event-aware distinguishers DE , compatible for
protA

1 protB
2 and simE S the following advantage is negligible.

∆DE (protA
1 protB

2 R, simE S
)

:= Pr
[
Dτ(E)(simE S) = 1

]
− Pr

[
DE(protA

1 protB
2 R) = 1

]
We stress that this construction notion satisfies the axioms of the more

abstract layer on which the composition theorem of CC is proven [17 , 18], and
thus composes as well.

4 Composable Guarantees for Secure Messaging

In this section we introduce the unified type of construction statement—in CC
with events—that we make about SM protocols and components thereof.

10

4.1 The Approach

We opt for the natural choice of an application-centric approach, where the security
of a cryptographic scheme or primitive is defined as the construction it achieves
when used in a particular application. While this approach provides readily
understandable and clean security statements, the resulting definitions often
turn out to be overly specific. For instance, the statement about an encryption
scheme might hard-code a particular assumed authentic communication network,
implying that it cannot be directly combined with an authentication scheme
achieving slightly different guarantees.

Avoiding such overly specific statements is crucial for a modular treatment of
ratcheting protocols, as each sub-protocol of the prior literature achieves slightly
different guarantees. We address this problem by making parameterized con-
struction statements, where the assumed real-world resources are parameterized
by several “switches” determining their security guarantees. Formally, such a
“switch” is represented by a function of the global event history E (among others),
that dynamically defines the behavior of the resource at a given moment in time.
For instance, a leakage function L may specify to which extent a channel leaks
depending on the set of events that happened so far. The goal of a protocol is then
expressed as improving certain parameters while leaving the others unchanged,
independently of what they were in the beginning. That is, our construction
statements will be of the type that a protocol constructs a communication network
with certain (stronger) guarantees, assuming a network with certain (weaker)
guarantees, where the real-world guarantees are treated as a parameter instead
of hard-coding them.

Note that in the context of ratcheting protocols, making such parameterized
statement about components—without a-priori assuming any guarantees about
the real-world—is mostly not an issue. This is due to the fact that the protocols
anyway have to be designed for the setting where the state and randomness could
leak at any time, temporarily nullifying all guarantees that the component might
try to assume from the underlying sub-protocols.

4.2 Our Channel Model

We now introduce our model of two-party communication networks. It allows us
to express flexible security guarantees, but also various usability restrictions or
guarantees, such as whether messages can be received out of order or not.

Many single-message channels. We choose to model the communication network
between Alice and Bob as the parallel composition of many unidirectional single-
message communication channels. Besides being simpler to describe, it allows
to have simpler construction steps which only consider a subset of the channels.
On the flip side, it results in a world with an arbitrary but bounded number
of messages, as the set of resources is static in CC. This is, however, without
loss of generality as long as the protocols do not take advantage of this upper
bound. Finally, observe that this decision results in a network where messages
have implicit (unprotected) sequence numbers, as for instance achieved by TCP.

11

The single-message channel. We model channels with explicit authenticated data.
Since we will use the same type of channel both in the real and ideal world,
the channel must hit the right trade-off between giving enough power to the
simulator but not too much power to the real-world adversary.

On a high level, the channel interfaces and their capabilities are as follows.
See Figure 3 for the formal definition.

– The sender S can issue the command (send,m, ad). Whether she is allowed
to do so is determined by the can-send predicate S. (This predicate will
mainly be used to describe situations in which the sender does not have the
necessary keys yet.) A successful sending operation triggers the event E sent.
The sender can also query whether the channel is available for transmission.

– The adversary E can then potentially learn m through the read command.
Whether she is allowed to do so is determined by the can-leak function L,
which outputs either false (the adversary is not allowed to read m), true
(reading is allowed but triggers a leaked event E leaked), or silent (reading is
allowed). Moreover, she is always allowed to learn the length of m and the
(non-confidential) associated data ad.

– The adversary decides when receiving becomes possible, i.e., the message in
principle is delivered. Once this happens, the receiver R can try to fetch the
message. This has two possible outcomes: either he receives a message and
an according received event is triggered, or he receives ⊥ and an error event
(indexed by an error code from Errors) is triggered. Which case happens is
determined by the delivery function D, which takes into account the event
history and on whether the message that R tries to fetch is the same as the
one input by S (or an injected value from the adversary). The latter condition
is denoted by the flag same. The flag same is also exposed as part of the
received or error event E received(same) or Eerror(err,same), respectively.

– When the adversary decides that receiving is possible, she has two options:
schedule the delivery of (m′, ad′) (command deliver), or force an error
err ∈ Errors to be triggered (command error). In the first case, she can also
request to just forward the sender’s message (if one exists), using m′ = fwd.
Moreover, for technical reasons (often needed by the simulator), she can also
insist that once the receiver fetches the message, same = false is used even
if the messages match. In case the adversary forces an error err and the
outcome of receiving would anyway be a (different) error, the existing error
can either be overwritten or preserved. She can control this by specifying a
set Overw of errors that should be overwritten.

4.3 A Note on Confidentiality

In our channel, the E received(same) and Eerror(err,same) events indicate whether the
message that Eve injected was the same as the sender’s. Since we assume that
those events are in principal observable by everybody, including the adversary,
those events can partially breach confidentiality if the communication is not
properly authenticated.

12

Resource Chid,S→R
L,I,S,R,Errors

Parameters:
– Identity id (optionally), and interfaces S (sender) and R (receiver)
– Set of Errors that can occur
– Functions L(E) ∈ {true, false, silent} (can leak), S(E) ∈ {true, false} (can send),

R(E) ∈ {true, false} (can receive) and D(E, same) ∈ Errors ∪ {msg} (delivery outcome)

Events: Esent, E leaked, E received(same) and Eerror(err,same) for same ∈ {true, false} and err ∈ Errors

Initialization
mS, adS, cmd ← ⊥

Interface S
Input: (send,m, ad) ∈ M×AD
assume cmd = ⊥
if ¬S(E) then output ⊥
(mS, adS)← (m, ad)
E +← Esent

output ok

Input: isAvailable
output S(E)

Interface R
Input: receive
assume only called once
if ¬R(E) ∨ cmd = ⊥ then

output ⊥

// same messages (no injection)?
if same = check then

same ← ((mR, adR) = (mS, adS))

// the outcome: an error or the message
out ← D(E, same)
if cmd = dlv ∧ out = msg then
E +← E received(same)

output (mR, adR)
else if cmd = (err, err,Overw)

∧(out = msg∨out ∈ Overw) then
E +← Eerror(err,same)

output ⊥
else
E +← Eerror(out,same)

output ⊥

Input: isAvailable
output R(E) ∧ cmd 6= ⊥

Interface E
Input: read
if L(E) = false then output ⊥
else if L(E) = true then E +← E leaked

output (mS, adS)

Input: readLength
output (|mS|, adS)

Input: (deliver,m, ad, same′)
∈ (M∪{fwd})×AD×{check, false}

assume cmd = ⊥

// handle forwarding request
if m = fwd then

if mS = ⊥ then output ⊥
else m← mS

// store for receiving
(mR, adR, same)← (m, ad, same′)
cmd ← dlv
output ok

Input: (error, err,Overw,m, ad, same′)
∈ Errors× 2Errors ×M×AD

× {true, false, check}
assume cmd = ⊥

// (m, ad) only to determine same
if same′ = check then

(mR, adR)← (m, ad)

// store for receiving
same ← same′
cmd ← (err, err,Overw)
output ok

Fig. 3: The single-message channel.

However, those events are crucial to phrase the post-impersonation guarantees
of of certain ratcheting protocols. In fact, in those protocols Eve could usually
inject her own message (after exposing the sender’s state), observe whether it
causes the communication to break down, and thereby deducing whether the
sender wanted to send the same message afterwards. Our events simply reflect
this.

13

4.4 Additional Resources: Memory and Randomness

An integral part of secure messaging protocols is the assumption that the parties’
state, and sometimes also randomness, can leak to the adversary. In Constructive
Cryptography everything that can be accessible by multiple parties, here the
honest party and Eve, must be modeled as a resource. As a consequence, all of our
converters will be stateless and deterministic. (Stateless means that the converter
cannot keep state between two separate invocations at the emulated interfaces.)
The statements will contain explicit memory and randomness resources instead.
These resources are formally defined in Figure 4 .

On a high level, we consider two types of memory resources: (1) an insecure
memory IMemid,U, and (2) a potentially secure memory Memid,U. The former is
multiple-use and its current content is always available to the adversary. On the
other hand, a secure memory can be written to at most once. It can also be
securely erased at any later time. Moreover, it is parameterized by a can-leak
predicate L, that specifies whether the content is available to the adversary.
When the adversary successfully reads the contents, a leaked event is triggered.2

Observe that each memory can leak independently, which leads to more fine-
grained statements compared to prior work where it was usually assumed that
either the entire state leaks or not (a state often consists of many secret keys
from different sub-protocols, which we put in different memories). Nevertheless,
it does not appear to incur additional significant complications.

Defining a potentially leakable randomness resource is a bit subtle. In principle,
the idea is that the randomness can leak to the adversary at the moment it
is used (modeling that it is sampled fresh at this point and is not stored) by
the honest party. However, this cannot be directly expressed like this due to
the activation model of the version of Constructive Cryptography used (recall
that the output is given at the same interface the input was given). Hence, we
model randomness resources that can be in one of two states: leakable or not
(as specified by the flag leaks). If the can-leak predicate evaluates to true, the
adversary can switch the state to leakable by sending triggerLeaking, which
also triggers the leaked event. When the resource is used by the honest party,
fresh randomness is sampled. Additionally, if at this time the state is leakable,
then the sampled value is stored and the adversary can read it at any time
afterwards.

5 Unifying Ratcheting: Two Examples

In this section, we get acquainted with how the security guarantees of ratcheting
protocols can be phrased within our model. To this end, we model the guarantees
of two components of actual ratcheting protocols.
2 Rewritable secure memory can then be modeled as the parallel composition of many
write-once memory cells. The memory requirement of a protocol is not determined
by the number of such write-once memories, but rather by the maximal number of
them in use at any time.

14

Resource IMemid,U

Parameters: identity id, interface name U.

Initialization
st← ⊥

Interface E
Input: read
output st

Interface U
Input: read
output st

Input: (write, v) ∈ {0, 1}∗
st← v
output ok

Resource Memid,U

Parameters: identity id, interface name U,
can-leak predicate L.

Events: E leaked

Initialization
st← ⊥

Interface U
Input: read
output st

Input: (write, v) ∈ {0, 1}∗
assume only called once
st← v
output ok

Input: erase
st← ⊥
output ok

Interface E
Input: read
if ¬L(E) then output ⊥
if st 6= ⊥ then E +← E leaked

output st

Resource Randid,U

Parameters: identity id, interface name U,
randomness-space R, can-leak predi-
cate L.

Events: E leaked

Initialization
r ← ⊥
leaks← false

Interface U
Input: sample
assume only called once
r � R
output r

Interface E
Input: triggerLeaking
assume sample not called yet
if ¬L(E) then output ⊥
leaks← true
E +← E leaked

output ok

Input: getLeakage
if leaks then output r
else output ⊥

Fig. 4: Formal definition of the memory and randomness resources.

As a first example, we consider a simple authentication scheme that appears
in [9 , 8 , 10]. Using this example, we demonstrate how our framework allows for
a fine-grained modularization, with the overall security then directly following
from composition. As a second example, we consider the use of hierarchical
identity-based encryption, as in [23 , 9]. In this example, we explore a way to
work around the so-called commitment issue of composable security.

5.1 A Simple Authentication Scheme

We first consider a simple unidirectional authentication protocol, which is designed
with the strong guarantees of secure messaging in mind: the authentication
guarantees should not only be forward secure but also heal after a state or

15

Alice Bob

sk0, vk0 vk0
m1, h1, vk1, σ1

sk1, vk1

vk1(sk2, vk2)← Sig.KeyGen
h2 ← hash(vk1)

σ2 ← Sign(sk1, (m2, h2, vk2))

m2, h2, vk2, σ2 hash(vk1) ?= h2
Verify(vk1, (m2, h2, vk2))

sk2, vk2
vk2

Fig. 5: The simple scheme for unidirectional authentication.

randomness exposure of either party. Slight variations of this protocol have been
used in [10] and [8]. Essentially the same idea also appeared in [9], where, however,
a stronger signature primitive with updatable keys is considered, leading to the
protocol being formalized in the bidirectional setting.

The protocol. In the protocol, whenever the sender wants to send a message,
a fresh signing and verification key pair is sampled. The fresh verification key is
then signed together with the message—using the prior signing key— and the
message, the verification key and the signature are transmitted. Finally, the old
signing key is securely erased and the fresh one stored instead. The receiver, on
the other hand verifies a received message with the previous verification key and
stores the new one. The scheme is depicted in Figure 5 .

Recall that we aim to make a strong construction statement that considers
how the scheme enhances any preexisting security guarantees, including confiden-
tiality. Usually preserving confidentiality is not a goal that is considered for an
authentication protocol, moreover, it is known that the authenticate-then-encrypt
approach used in old versions of TLS is not generally secure [12]. Nevertheless,
we show that the scheme actually achieves this at the cost of assuming unique
signatures instead of unforgeable ones (analogous to [9]), and with a minor
modification: with each message, the sender also transmits a hash of the previous
verification key. Such a hash is also present in the protocol from [9], and allows
the receiver to check whether he is using the correct verification key.

The guarantees. Clearly, the protocol achieves authenticity if neither party’s
state is exposed. Moreover, Bob’s state only consists of public information. If
Alice’s state gets exposed, then Eve obtains her current signing key that she can
use to impersonate Alice towards Bob at this point in time. However, this key is
useless to tamper previous messages, even if they have not been delivered yet
(forward security). More importantly, if, for some reason, Alice’s next message
containing a fresh verification key still is delivered without modification, then
the signing key obtained by the adversary becomes useless thereby achieving the

16

healing property. Hence, the adversary can inject the i-th message if and only if
Alice’s state between the (i− 1)-st and i-th message got exposed, or there has
already been a successful injection before.

Expressing the scheme’s security guarantees in a game-based manner turned
out to be surprisingly involved compared to the scheme’s simplicity and how easy
it seems to intuitively describe its guarantees. Notably, to show its security, in [10]
the abstraction of a key-updating signature scheme, as well as its corresponding
correctness and security games, have been introduced. See Appendix A.1 for
the corresponding definitions. This raises a couple of questions: can’t we do
simpler? What is the right security statement to make about this quite simple
protocol, and what happens if the channel already provides certain authenticity
or confidentiality guarantees? In the following, we try to answer these questions.

The construction statement. First, note that we consider the authentication
of messages directly, and do not introduce an intermediate signature notion.
Secondly, we consider authenticating the i-th message only, and to this end
consider the (i− 1)-st message where the fresh verification key is transmitted (we
do not authenticate this message here) and the i-th message that is then signed
under the corresponding signing key. Authenticating the (i− 1)-st message, and
all others, is then taken care of by iteratively applying the protocol, with the
overall security directly implied by the composition theorem. This leads to the
following real world resources

Rauth
i :=

[
Chi−1,A→B,Chi,A→B,Randkgi,A,Memski,A, IMemvki,B

]
, (1)

where besides the two channels the sender also has a memory to store the new
signing key, and the receiver a (insecure) memory to store the verification key.
Furthermore, the sender also has an explicit randomness resource available (note
that we only need key-generation randomness, since unique signatures are deter-
ministic). The corresponding protocol converters (sigi, vrfi) that are connected to
Alice’s and Bob’s interfaces of Rauth

i , respectively, simply implement the previously
described protocol. A formal description of those protocol converters can be found
in Appendix A.2 .

The goal of the protocol is then phrased as constructing the following ideal-
world resource

Sauth
i :=

[
Chi−1,A→B,Chi,A→B

]
, (2)

in which the channels can also trigger an error sig-err, indicating that the signature
verification failed, in addition to the errors from the real-world counterparts.

The authentication guarantees for the i-th channel can then be expressed
via the following delivery-function, which guarantees that an injection attempt
(¬same) when the key is not known will causes a signature-verification error
sig-err, and preserves preexisting authenticity (recall that Ẽ := τ(E) denotes the

17

real-world’s event history):

D
Sauth

i

Ch(i,A→B)(E , same) :=


err if DRauth

i

Ch(i,A→B)(Ẽ , same) = err ∧ err 6= msg

msg else if same ∨ E sk-known
i

sig-err else
(3)

where in a slight abuse of notation, we define a composed event E sk-known
i , which

is triggered as soon as it is not excluded that the signing key corresponding to
Bob’s verification key is known to Eve:

E sk-known
i := E injected

Ch(i−1,A→B) ∨ E
leaked
Rnd(kgi,A) ∨

(
E sent

Ch(i−1,A→B) ≺ E
leaked
Mem(ski,A) ≺ E

sent
Ch(i,A→B)

)
.

On the flip side, the scheme limits the availability of the channels to be
sequential. While sending messages in order is natural for Alice, the protocol
restricts Bob to receive them in order as well. We can express this using the
following predicates.

S
Sauth

i

Ch(i,A→B)(E) := S
Rauth

i

Ch(i,A→B)(Ẽ) ∧ E sent
Ch(i−1,A→B), (4)

R
Sauth

i

Ch(i,A→B)(E) := R
Rauth

i

Ch(i,A→B)(Ẽ) ∧ E received
Ch(i−1,A→B). (5)

Note that our model simply forces us to make this restriction explicit, whereas
this is often just hard-coded in games.3

All other parameters and predicates are preserved, e.g. L
Sauth

i

Ch(i,A→B)(E) :=

L
Rauth

i

Ch(i,A→B)(Ẽ). The security of the protocol can then be phrased as constructing
the ideal world Sauth

i from the real world Rauth
i , as summarized in the following

theorem.

Theorem 1. Let Rauth
i be as in (1), and let Sauth

i be as in (2), with the guarantees
and restrictions as described in (3), (4), and (5), respectively, and all others
guarantees unchanged from Rauth

i . Moreover, let τ map the event Eerror(sig-err,same)
Ch(i,A→B)

to E received(same)
Ch(i,A→B) . Then there exists an efficient simulator sim such that

sigA
i vrfB

i Rauth
i ≈̂τ simE Sauth

i ,

if the underlying signature scheme is unforgeable with unique signatures, and the
hash function is collision resistant.

Proof. The proof is found in Appendix A.3 . Note that compared to a normal
signature-scheme proof it is quite involved, which is the main price we pay for
our much stronger statement.
3 Actually, many recently proposed secure-messaging protocols do have this restriction,
which might limit their usability as pointed out by [1].

18

Extending to many messages. So far, we only considered a world where Alice
sends two messages, of which the second is authenticated. In a realistic setting,
Alice can of course send many messages where all of them should be authenticated.
In this section, we see how the composition theorem of Constructive Cryptography
can be applied to directly get the desired result.

In particular, we start with a sequence of possibly unauthenticated channels
Chi,A→B for i ∈ [n], where the authentication of Ch0,A→B can be seen as a setup
assumption (it is standard to assume that Alice and Bob initially share a signing-
verification key pair). Then, we iteratively apply the construction for two channels
to Ch0,A→B and Ch1,A→B, then to Ch1,A→B and Ch2,A→B, etc. (c.f. Figure 6). The
composition theorem of CC guarantees that the composed protocol constructs
the ideal world.

Corollary 1. Let Rauth and Sauth denote the following real and ideal worlds

Rauth :=
[{

Chi,A→B}
i∈{0,...,n},

{
Memski,A, IMemvki,B

}
i∈[n]

]
,

and

Sauth :=
[{

Chi,A→B}
i∈{0,...,n}

]
,

respectively. Then, there exists an efficient simulator sim such that

(sig1, . . . , sign)A (vrf1, . . . , vrfn)B Rauth ≈ simESauth,

where for each i ∈ [n], ISauth

Ch(i,A→B), SSauth

Ch(i,A→B), and RSauth

Ch(i,A→B) are defined as in
(3), (4), and (5), respectively.

5.2 Confidentiality from HIBE

In the following we discuss a protocol from [9] that uses hierarchical identity-based
encryption (HIBE) to add confidentiality to a sequence of channels. The protocol
was designed for a challenging setting, where we do not assume authentication
(as is usually done when talking about encryption). The reason is that in secure
messaging authentication cannot be guaranteed when the sender’s state is exposed.
This situation fits perfectly to our framework.

The protocol is described in the so-called sesqui-directional setting, introduced
in [23], meaning that the messages from both directions are considered, but only
the guarantees of one of the directions are under concern—here from Alice to
Bob. The bidirectional guarantees then follow directly from composition.

Hierarchical identity-based encryption. A HIBE scheme consists of the
following four algorithms:

– A setup generation algorithm (mpk,msk)← HIBE.Setup(1κ; r), generating
the root master public and secret keys, i.e. sk() = msk.

19

Ch0,A→B

Memsk1,A Memvk1,B

Ch1,A→B

Memsk2,A Memvk2,B

Ch2,A→B

sig1 vrf1

sig2 vrf2

Fig. 6: The first two steps constructing a sequence of authenticated channels: (1)
The protocol (sig1, vrf1) constructs a hybrid world, where the resources in the
dashed box are replaced by two channels Ch0,A→B and Ch1,A→B, where Ch1,A→B

is authenticated as long as Ch0,A→B is. (2) (sig2, vrf2) constructs the ideal world,
where Ch1,A→B and Ch2,A→B are authenticated as long as Ch0,A→B is.

– A key-generation algorithm skid‖idn
← HIBE.Kgen(skid, idn), where (id ‖

idn) := (id1, . . . , idn−1, idn) for an identity vector id = (id1, . . . , idn−1).
– An encryption algorithm c← HIBE.Enc(mpk, id,m; r).
– A decryption algorithm m← HIBE.Dec(skid, c).

We require the HIBE scheme to be IND-CCA secure with certain additional
properties that are not guaranteed by IND-CCA itself, but that most schemes
do provide (see Appendix B.2 for details).

The protocol overview. On a high level, the protocol proceeds in epochs,
where in each epoch Bob sends one message to Alice, and then Alice sends
a sequence of messages to Bob. In particular, Bob’s message contains a fresh
HIBE public key mpk. For simplicity, consider the first epoch, as depicted in
Figure 7 . When Alice sends her i-th message, she encrypts it with mpk, using
as the identity (the hashes of) all ciphertexts she sent before. Whenever Bob
receives a ciphertext ci, he decrypts it, derives the secret key for the new identity
(with ci appended) and erases the old key.

In the next epoch, Bob sends a new public key mpk′, and we repeat. One
subtle issue is how to run the epochs together. Note that, for example, Bob may
send a number of public keys without receiving a response, in which case he has
to store secret keys from a number of epochs. A fresh secret key is stored for
the empty identity, and when Bob receives a ciphertext, he updates all currently
stored secret keys. This means that Alice uses for encryption of the i-th message
a truncated transcript (cr, . . . , ci−1). In order for her to compute it, Bob sends

20

with each public key the index r of the last message he received. A graphical
depiction of the full protocol can be found in Appendix B.1 .

Security intuition. Intuitively, this use of HIBE allows to achieve three goals.
The first is healing, achieved by exchanging fresh keys, as in most secure-messaging
schemes. The second is forward secrecy: exposing the secret key after the i-th
message is received does not affect the confidentiality of messages m1, . . . ,mi−1.
This holds, since Bob updated all the secret keys with the identity ci in the
meantime. Healing and forward secrecy could also be achieved by a forward-secure
PKE scheme. The last goal is the so-called post-impersonation security: an active
injection destroys the decryption keys, so that its leakage exposes no messages.
For this we need the hierarchy of identities. Roughly, injecting a message c′i
causes Bob to update his key to sk(cr,...,c′i). This key gives no information about
messages encrypted by Alice, since those will be for another identity (cr, . . . , ci).

The construction statement. To formalize these guarantees as a construction
statement, we first have to describe the real world in which the protocol is executed.
It consists of n channels from Alice to Bob (which the protocol protects) and n
channels in the opposite direction on which the master public keys are transmitted.
Moreover, Alice has memories to store the public keys and the transcript, and
randomness resources for the encryption. Bob, on the other hand, has memories
to store the secret keys and randomness resources for the key generation:

Rhibe :=
[{

Chi,A→B}
i∈[n],

{
Chj,B→A}

j∈[n], IMempk,A,
{

Randkgj ,B
}
j∈[n],{

Memtri,A, Randenci,A
}
i∈[n],

{
Memsk(j,i),B

}
j∈[n],i∈[n+1]}

]
, (6)

where the index i indicates that the resource is related to transmitting the i-th
message from Alice to Bob, and the index j indicates the j-th epoch. A formal
description of the pair of converters implementing the protocol (hibe-enc, hibe-dec)
can be found in Appendix B.1 .

Alice Bob

sk()
c1←HIBE.Enc(mpk,(),m1) c1

(c1)
m1←HIBE.Dec(sk(),c1)

sk(c1)←HIBE.Kgen(sk(),c1)

sk(c1)
c2←HIBE.Enc(mpk,(c1),m2) c2

m2←HIBE.Dec(sk(c1),c2)

sk(c1,c2)←HIBE.Kgen(sk(c1),c2)

sk(c1,c2)

(c1, c2)

Fig. 7: The first epoch of the sesquidirectional HIBE protocol.

21

The goal of the protocol is to enhance the confidentiality of the channels.
Thus, the same set of channels is present in the ideal world, while the memory
and randomness resources are used up:

Shibe :=
[{

Chi,A→B}
i∈[n],

{
Chj,B→A}

j∈[n]

]
. (7)

Moreover, the ideal channels can trigger an additional error dec-err, indicating
that decryption failed (this error event corresponds to the real-world delivery
event when the adversary injects an invalid ciphertext).

We now proceed to formalize the confidentiality guarantees of Shibe by defining
in which situations the i-th message might be known to the adversary:

The randomness leaked: If the encryption randomness leaked to the adversary,
i.e., E leaked

Rnd(enci,A), then no PKE scheme can provide (full) confidentiality.
The master public key was set by Eve: If Alice encrypts using a master public

key (potentially) set by Eve, Eve can trivially decrypt. That is, if Alice used
the j-th master public key and E injected

Ch(j,B→A).
The secret key leaked: Assume Alice sent the i-th message during the j-th epoch,

and let sk(j,i) denote the secret key that Bob uses to decrypt that message.
If Eve learned sk(j,i), the message is obviously not confidential, which either
happens if the randomness used to generate the master secret key leaked or
a key that allows to compute sk(j,i) leaked from Bob’s memory:

E sk-leaked
i,j := E leaked

Rnd(kgj ,B)

∨ ∃k ∈ [rj , i] :
(
E leaked

Mem(sk(j,k),B) ∧ ∀` ∈ [rj , k] : ¬E injected
Ch(`,A→B)

)
,

where rj denotes the first message Bob received after sending the j-th public
key (rj is determined by the sent and received events in E). Note that the
last condition explicitly encodes the post-impersonation guarantee, meaning
that sk(j,k) is only useful as long as Eve did not destroy it by injecting her
own ciphertext. Forward-secrecy and healing, on the other hand, are encoded
implicitly by the order in which those events can happen in the real world.
We can make them more explicit by observing

E sk-leaked
i,j ⇐⇒ E sent

Ch(j,B→A) ≺ E
sk-leaked
i,j ≺ E received

Ch(i,A→B),

where the former condition denotes healing and the latter forward-secrecy.

In summary, we can define the following event denoting that the i-th message is
insecure

Eexposed
i := E leaked

Rnd(enci,A) ∨ E
injected
Ch(ji,B→A) ∨ E

sk-leaked
i,ji

,

where ji denotes the epoch in which the i-th message has been sent (which is
computable from the order of events in E), leading to

LShibe

Ch(i,A→B)(E) :=
{

silent if Eexposed
i

false otherwise.
(8)

22

Notice that the above can-leak function fully overwrites any real-world guarantees,
and silences the leaked events. This is because in the protocol Alice stores
the communication transcript. As a consequence, when her memory leaks, the
ciphertext leaks as well, even if the assumed channel was in fact confidential.
Moreover, this leakage does not correspond to the channel leaked event.

Analogous to the authentication scheme of the previous section, the HIBE
scheme also limits the availability of the channels to be sequential, due to the
hash-transcript used as identities. Moreover, Alice can obviously only encrypt
using master public keys she received the public key. This could be made formal
using the can-send and can-receive predicates S and R, respectively, analogous
to the previous section.

Working around the commitment problem. As described so far, the real
and ideal world hibe-encAhibe-decBRhibe and simEShibe, respectively, are easily
distinguishable for any simulator sim. The issue is the so-called commitment
problem of simulation based cryptography: if the distinguisher chooses to first
see a ciphertext and then leak the corresponding decryption key, this cannot
be simulated, since the simulator first has to output a fake ciphertext, before
getting to know the message, and then explain it by outputting a corresponding
decryption key. For normal PKE, and especially HIBE, schemes this is impossible.

One solution would be to consider static memory corruptions, where the set
of states that can be leaked to the adversary is a parameter of the construction
statement. Such a static guarantee is however weaker than the existing game-
based definitions and, thus, thwarts our goal of developing a unified model
to express the guarantees obtained by existing protocols. We thus opt for the
alternative solution to strengthen the real world analogous to how the games
disable certain oracles to prevent trivial impossibilities. To this end, we disallow
the adversary from obtaining the secret key sk(j,i) if this would allow to trivially
identify a fake ciphertext. That is, we assume

LRhibe

Mem(sk(j,i),B)(E) := ¬∃k > i :
(
Ecommitted
k,j ≺ Eexposed

k

)
, (9)

where Ecommitted
i,j denotes the event that the simulator commits on the i-th cipher-

text, and that it was encrypted under mpkj . More concretely, this happens if the
distinguisher
– explicitly asked for the ciphertext;
– requested a hash-transcript that depends on the ciphertext;
– requested a secret key for which the identity depends on the ciphertext;
– actively injected a ciphertext that got decrypted under a secret key whose

identity depends on the ciphertext under consideration,

leading to the following definition

Ecommitted
i,j := (ji = j) ∧

(
E leaked

Ch(i,A→B) ∨ E
leaked
Mem(tri,A) ∨

(
¬E injected

Ch(i,A→B)

∧ ∃k ≥ i :
(
E leaked

Mem(sk(j,k)) ∨ E
injected
Ch(k,A→B)

)))
,

23

where again ji denotes the epoch in which the i-th message has been sent.
While the construction statement loses its evident executional semantics mak-

ing those restrictions of the real world—it is no longer apparent what guarantees
one gets when executing the protocol in the actual world where the memory
leakage is obviously not restricted like this—it is analogous to game-based notions
where the adversary has to chooses beforehand whether a message is a challenge
(and then prevents leaking the corresponding randomness or secret keys), or
is an insecure message just to advance the state. Phrasing it in a composable
framework, however, still has the advantage of modularity and reusability, that
is, each subprotocol can be proven secure independently and the overall security
directly following from the composition theorem.

Summary and analysis. The HIBE-based scheme achieves the so far described
construction, with one exception: to provide more power to the simulator and
make the construction statement provable, we need to silence the real-world
channels’ leaked events after the message is exposed, i.e, LRhibe

Ch(i,A→B) is arbitrary,
except that if Eexposed

i , it no longer evaluates to true.4

Observe that while having to silence the leakage event in the real world limits
reusability, the statement for instance is still generic enough to be composed with
the authentication scheme from the previous section: if the real world is restricted
like this (in the end, those events are just a mean to phrase dependencies and
carry no real semantics), then the signature scheme, which preserves the can-leak
predicate, and afterwards the HIBE scheme can be applied.

Overall, we have the following theorem, proved in Appendix B.2 .

Theorem 2. Let Rhibe be as in (6) with the restrictions to work around the
commitment-problem from (9) and the restriction described above, and let Shibe

be as in (7) with the confidentiality guarantees from (8), and in-order sending
and receiving. Let τ map the event Eerror(dec-err,same)

Ch(i,A→B) to E received(same)
Ch(i,A→B) . Then there

exists an efficient simulator sim, such that

hibe-encA hibe-decB Rhibe ≈̂τ simE Shibe,

if the HIBE scheme is IND-CCA secure with our additional assumptions.

6 Adaptive Security

All protocols considered so far, and most of the ones in the literature, only achieve
a weakened construction statement, where, due to the commitment problem, we
assume that certain sequences of events cannot occur in the real world. Intuitively,
this means that the adversary is somewhat static: for example, when she decides to
see the contents of a channel (the ciphertext, in the real world), at the same time
she decides that she will not look at the contents of certain memory (the secret
4 This doesn’t affect Ecommitted

i,j , that only considers leakage events before Eexposed
i .

24

key). While this is exactly what the standard game-based definitions guarantee,
when expressed in a composable framework, it seems rather unsatisfactory.

Hence, in this section, we consider SM schemes that tolerate a fully adaptive
adversary, i.e, allow to “explain” ciphertexts whenever needed due to leakage
of secret keys. In particular, we present a technique that, given an SM protocol
that suffers from the commitment problem, allows to construct an adaptive
SM (ASM) protocol with almost the same guarantees, but that achieves fully
adaptive security. This comes at the cost of efficiency and being able to send
only a fixed number of messages without interaction. Applied to protocols with
optimal security [9 , 23], our technique enables even stronger guarantees.5 As an
example, we apply it to the HIBE protocol from Section 5.2 .

Note that while the technique we use is essentially a general compiler that
“removes” the commitment problem, formally phrasing such a theorem would be
rather cumbersome for at least two reasons. First, there is not just one game-
based defintion of a SM scheme that could be lifted and, second, we require the
specific simulation technique encoded in most game-based definitions, in contrast
to the existential simulator of our constructive SM statements.

6.1 Overview

Receiver non-committing encryption. The technical tool we use to construct
adaptively-secure secure-messaging (ASM) schemes with optimal security is so-
called receiver non-committing encryption (RNCE), introduced by Canetti et al.
[5]. Intuitively, in RNCE schemes, key generation outputs an additional trapdoor
z, ignored by honest parties and used by the simulator. Then, there are two ways
to generate a ciphertext: (1) an “honest” ciphertext is computed in the standard
way c← RNCE.E(pk,m) (so, as in any encryption scheme, it is a commitment to
the message), (2) a “fake” ciphertext is computed (by the simulator) without the
message, but with the secret key sk and the trapdoor z as c̃← RNCE.F(pk, sk, z).
Given a fake ciphertext c̃ and any message m, one can compute a secret key
s̃k ← RNCE.R(pk, sk, z, c̃,m) that explains the message-ciphertext pair (such
that RNCE.D(s̃k, c̃) = m). Moreover, the distributions (c, sk) (as in the real
world) and (c̃, s̃k) (as in the simulation) are indistinguishable. This allows to
explain a single ciphertext per public key.

The scheme. At a high level, the authors of [5] use RNCE to construct non-
committing forward-secure public-key encryption by encrypting with a standard
forward-secure public-key scheme RNCE ciphertexts instead of messages. We
generalize this idea (and the simulation technique) to SM protocols. In particular,
we can construct an ASM scheme by taking a standard SM scheme that suffers
from the commitment problem and sending, instead of messages, their RNCE
encryptions, where each message is encrypted with a different public key. When
5 In game-based definitions, one can think of the “corrupt” oracle not being silenced even
if the challenge has been issued, but instead outputting the secret state corresponding
to the challenge bit 0.

25

a message is received, the secret key is immediately deleted. (For the moment,
assume that whenever Alice sends a message, an RNCE key pair is “magically”
generated — Alice uses the public key, and the secret key immediately appears
stored in Bob’s state.) This way, the modified scheme inherits all guarantees of
the original SM scheme. Furthermore, it can be simulated in the adaptive setting,
as we will see below.

Let us now address the problem of how the RNCE keys are distributed. One
trivial solution would be to include ` key pairs as part of the setup: the parties
send their ` public keys at the beginning over an authenticated channel. First, this
way we can send only ` messages overall. But even worse, the RNCE keys do not
heal: when the receiver is corrupted for the first time, the simulator can explain
all messages sent so far, but it also has to commit to all RNCE secret keys. Hence,
adaptive security is never restored. To deal with this, we use the technique used
in all SM schemes: we send with each message an update, consisting of ` fresh
RNCE public keys. In particular, Alice (Bob will proceed analogously) stores
some public keys previously received from Bob. When she sends the i-th message,
she RNCE-encrypts it with one of the unused public keys, generates ` new key
pairs, stores the secret keys, and sends the RNCE ciphertext, the ` public keys
and i to Bob over the channel constructed by an SM scheme. Bob stores the
greatest index i he has seen so far. Whenever he sees a messsage with a greater
i, he ignores all RNCE public keys he has and replaces them by the ` newly
received ones. Unlike in the first trivial solution, in the above protocol adaptive
security is restored as fast as possible: with the first new message delivered from
the other party.

Simulation. We give an intuition of how the above protocol can be simulated.
Assume that the SM scheme has the standard simulator, as hard-coded in most
game-based definitions. In particular, he executes the protocol, and when a
memory is exposed, he shows to the distinguisher the real state. For ciphertexts
corresponding to confidential messages it shows encryptions of 0’s, while for
non-confidential ones it shows encryptions of the actual message.

In the adaptive setting, the real and the ideal world are easily distinguishable
for that simulator. This is because when a message is sent as confidential, and later
the memory is exposed, the distinguisher sees in the ideal world the encryption
of 0’s. However, we can fix this with our new scheme: the new simulator encrypts,
instead of 0’s, a fake RNCE ciphertext to generate a ciphertext corresponding to a
confidential message. When a memory is corrupted, he receives the message (which,
of course, can no longer be confidential) and computes the fake RNCE secret key
according to the fake ciphertext. RNCE guarantees that this is indistinguishable
from the real world, where we have honest ciphertext and an honest key.

A note on efficiency. First, observe that using a symmetric non-committing
encryption scheme, such as the one-time pad, instead of RNCE would not work.
This is because in many SM schemes corrupting the sender has no effect on
confidentiality, implying that upon such a corruption, the simulator needs to

26

output a key of the symmetric non-committing scheme without knowing the
messages (which trivially breaks against a distinguisher knowing the message).

Moreover, while our construction of using nested encryption appears to be
redundant, it can be observed that using RNCE only would not suffice. This
is because SM schemes can provide certain advanced confidentiality guarantees
not achieved by RNCE alone. For example, the optimal schemes such as [9 , 23]
provide so-called post-impersonation guarantees: once the adversary injects a
message to Bob (after corrupting Alice) and then corrupts Bob, all messages sent
by Alice afterwards are confidential.

Limitations. Our protocol requires a fixed upper bound on the number of messages
a party can send without interaction (in particular, after ` messages it needs a
new set of public keys from the partner). Unfortunately, overcoming this seems
unlikely with our approach. This is due to the impossibility result by Nielsen [19].
It essentially says that a non-committing non-interactive public-key encryption
scheme requires that the length of a secret key is at least the overall length of all
messages encrypted. This means that we would need non-committing encryption,
where the public and secret keys are updated, in other words, a non-committing
equivalent of HIBE. To the best of our knowledge, this does not exist yet.6

6.2 The Construction: Combining RNCE with HIBE

Recall that the HIBE protocol from Section 5.2 is designed for the sesqui-
directional setting, where it protects the confidentiality of messages sent by Alice.
In the protocol, Bob sends to Alice HIBE master public keys, which results in
epochs. In epoch j, Alice uses the j-th master public key to encrypt her messages
with the transcript as identity. In this section we consider the analogous setting
for the ASM protocol, consisting of RNCE composed with HIBE. That is, Bob
sends ` RNCE keys alongside the HIBE keys, and Alice uses them to additionally
encrypt her messages.

Hence, for the ASM construction we need in the real world the additional
randomness Randrenci,A for RNCE-encrypting the i-th message and Randrkgj ,B

for generating the j-th set of ` keys, compared to the real world from the HIBE
protocol. Moreover, we have memories Memrsk(j,k),B for storing the k-th RNCE
secret key, generated in epoch j, and insecure (rewritable) memories IMemrpk,A

for storing the set of RNCE public keys. Overall, the real-world resources are as
follows.

Rad-hibe :=
[
Rhibe,

{
Randrenci,A

}
i∈[n],

{
Randrkgj ,B

}
j∈[n], IMemrpk,A,{

Memrsk(j,k),B
}
j∈[n],k∈[`]

]
, (10)

6 Note that the impossibility of [19] also rules out a solution where Alice RNCE-
encrypts for Bob a new RNCE secret key, used for the next message — this secret
key would leave no space for the message.

27

where Rhibe should be understood as the same set of resources as in Section 5.2 .
The restrictions on those set of resources are dropped, on the other hand, since we
no longer need work around the commitment problem. This implies, however, that
we have to directly consider security of the overall compiled protocol, instead of
using the construction statement for HIBE and composition.7 A formal description
of the converters rnce-enc and rnce-dec implementing the RNCE protocol on top
of the HIBE protocol is given in Figure 8 .

In the ideal world, we have the same 2n channels: Sad-hibe := Shibe. Most
properties of the constructed channels are the same as in the HIBE construction.
In fact, our adaptive protocol only affects (1) availability — only ` messages can
be sent without interaction, and (2) confidentiality — we need to account for
the additional randomness and memory resources. Recall that the epoch ji in
which message i is sent by Alice is determined by the sent and received events.
With this, the restriction (1) can be expressed with the can-send and can-receive
predicate in a straightforward way.

Let us now focus on confidentiality. Recall that in the HIBE protocol, the
can-leak predicate was defined using the event Eexposed

i , denoting that the i-th
message sent by Alice is inherently insecure. We modify this event to account for
the additional resources used by RNCE. Specifically, the message is exposed if
the RNCE-encryption randomness leaks: E leaked

Rnd(renci,A), or if the RNCE secret key
leaks. The latter happens if Bob’s key-generation randomness leaks: E leaked

Rnd(rkgji
,B),

or if the secret key memory leaks: E leaked
Mem(rsk(ji,ki),B), where the i-th message was

the ki-th one sent in its epoch. Overall, this leads to the following composed
event:

Eexposed-ad
i := Eexposed

i ∨ E leaked
Rnd(renci,A) ∨ E

leaked
Rnd(rkgji

,B) ∨ E
leaked
Mem(rsk(ji,ki),B).

The leakage function LSad-hibe

Ch(A→B) is then defined analogously to that of the HIBE
construction silent in case of Eexposed-ad

i , and false otherwise.
We stress that the need to include these additional cases only arises from our

fine-grained modeling of memory and randomness. In reality, it makes sense to
consider only one memory storing the whole secret state, only one randomness
for RNCE and HIBE encryption, and so on. In such a model, the confidentiality
of our adaptively secure scheme and the non-adaptive one would coincide.

The security of our composed protocol is summarized in the following theorem.

Theorem 3. Let Rad-hibe be as in (10), and let Sad-hibe be as in above with the
described confidentiality guarantees, in-order sending and receiving, and the
restriction to ` messages per epoch. If the HIBE scheme is IND-CCA secure with
our additional assumptions, then there exists an efficient simulator sim, such that

rnce-encAhibe-encA rnce-decBhibe-decB Rad-hibe ≈̂τ simE Sad-hibe,

7 In general, the simulator for the SM scheme simply does not output the secret state
from the commitment-causing memories, and our ASM simulator cannot generate it
himself, since this would be inconsistent with the rest of the SM simulation.

28

Converter rnce-enc

Emulating Interface A of Chi,A→B, i ∈ [n]
Input: (send,m, ad) ∈ M×AD
assume only called once & isAvailable

// Read and update the state
call (j, k, PK)← read at int. A of IMemrpk,A

call (write, (j, k + 1, PK))
at interface A of IMemrpk,A

// Encrypt end send
call r ← sample at int. A of Randrenci,A

c← RNCE.E(PK[k],m; r)
call s← (send, c, (ad, j, k))

at interface A of Chi,A→B

return s

Input: isAvailable
call av ← isAvailable at int. A of Chi,A→B

call (j, k,PK)← read at int. A of IMemrpk,A

return av ∧ (j, k,PK) 6= ⊥ ∧ k ≤ `

Emulating Interface A of Chj,B→A, j ∈ [n]
Input: read
assume only called once
call (m, (ad, PK))← (read)

at interface A of Chj,B→A

call (j′,_,_)← read at int. A of IMemrpk,A

// Update the state if the keys are newer
than the stored ones.
if j = 1 ∨ j′ < j then

call (write, (j, 1, PK))
at interface A of IMemrpk,A

return (m, ad)

Input: isAvailable
call av ← isAvailable at int. A of Chj,B→A

return av

Converter rnce-dec

Emulating Interface B of Chj,B→A, j ∈ [n]
Input: (send,m, ad) ∈ M×AD
assume only called once & isAvailable

// Generate ` new key pairs
call r1, . . . , r` ← (sample)

at interface A of Randrkgj ,B

for k ∈ [`] do
(pkk, skk)← RNCE.G(rk)
call (write, skk)

at interface B of Memrsk(j,k),B

call s← (write,m, (ad, [pk1, . . . , pk`]))
at interface A of Chj,B→A

return s

Input: isAvailable
call av ← isAvailable at int. B of Chj,B→A

return av

Emulating Interface B of Chi,A→B, i ∈ [n]
Input: read

call (c, (ad, j, k))← (read)
at interface A of Chi,A→B

if (c, (ad, j, k)) = ⊥ then return ⊥

// Get the secret key and decrypt
call sk ← read at int. B of Memrsk(j,k),B

if sk 6= ⊥ then
m← RNCE.D(sk, c)
call erase at int. B of Memrsk(j,k),B

if m 6= ⊥ then return (m, ad)
else return ⊥

Input: isAvailable
call av ← isAvailable at int. B of Chi,B→A

return av

Fig. 8: The RNCE part of the adaptively-secure protocol in the sesqui-directional
setting.

29

where τ is the same event mapping as in Theorem 2 .

Proof (sketch). We sketch the simulator and simultaneously also argue why this
simulation strategy makes the two worlds actually indistinguishable. Note that
we focus here only on the RNCE parts, referring to the proof of Theorem 2 , as
to why the HIBE scheme provides proper healing, forward secrecy, and post-
impersonation security.

The simulator essentially executes simhibe (cf. Appendix B.2), except that it
also internally samples all RNCE keys, including the trapdoors, and instead of
encrypting a zero-string, it encrypts a fake RNCE ciphertext.

The randomness and public-key memory for RNCE are trivially simulatable.
Furthermore, all memory and randomness resources of the HIBE construction are
simulated as in simhibe. Clearly, we can also simulate both the read and deliver
for the channels from Bob to Alice, where for instance same is determined
analogous to simhibe just also taking those public keys into account.

More interesting is the simulation of the channels from Alice to Bob (whose
confidentiality the scheme protects) and the memories storing the corresponding
RNCE secret keys. We consider three cases: (1) the parties are in sync (before
an active impersonation) and the adversary simply forwards the message, (2) the
parties are in sync and adversary tries to inject a message, and (3) the parties
are already out of sync.

In sync. Consider one channel and the associated secret key, where the parties
are in sync and the adversary does not carry out a successful impersonation.
On every read input to the channel, the simulator outputs either a proper en-
cryption (if the message is known), or a HIBE-encryption of a fake ciphertext.
For the key leakage, there are the following options:
– The distinguisher did not input the message to be encrypted under that

key yet. The simulator outputs the honest secret key. Later on the read
input to the channel, the message will be known to the simulator due to
our can-leak predicate. Hence, the simulation is perfect.

– The message has been received. The simulator outputs ⊥, since in the
real world Bob would erase the key.

– A message is in transmission. Due to our can-leak predicate, this message
is revealed to the adversary, so the simulator can produce a fake secret key
that explains it. Indistinguishability follows from the security of RNCE.

For the deliver command, we proceed the same way as simhibe: we either
forward the message (if it is the same ciphertext), or trigger an error (by our
additional assumption on the HIBE scheme).

First injection. Consider now a channel, where parties are still in sync, and
the adversary tries to deliver her own message. We proceed the same way
as simhibe and just decrypt the ciphertext and observe the result, where the
following RNCE is used:
– If the simulator already output a fake RCNE secret key, then it uses that

one to decrypt.

30

– Otherwise, it uses the honest RNCE secret key. Here security follows from
the CCA1-security of RNCE: a fake key and ciphertext are indistinguish-
able from the honest ones even given decryptions of adversarially chosen
messages under the honest key before the fake key has been produced.
Hence, even if the simulator later has to provide a fake RNCE key that
explains Alice’s message, this is indistinguishable from the real world.

Out of sync. Once the parties are out of sync, the adversary is allowed to learn
the RNCE-keys without revealing the messages to the simulator (and thus
allowing the simulator to output a fake secret key). The confidentiality of
all channels after an impersonation attack is, however, guaranteed by the
HIBE protocol, even if Bob’s state is fully revealed to the adversary. Thus,
the adversary never actually gets to see the fake RNCE ciphertexts (which
are encrypted with the HIBE-scheme). As a consequence, the real RNCE
keys can be safely revealed. ut

7 Asynchronous Ratcheting as Continuous Key
Agreement

Many secure messaging protocols, including Signal, proceed by combining some
form of continuous key agreement (the asynchronous ratcheting layer) with a
forward-secure symmetric encryption scheme (the synchronous ratcheting layer).
Thus, the continuous key agreement primitive appears to be a natural abstraction
boundary. Indeed, Alwen et al. [1] modularize and abstract Signal in this manner
by formalizing a notion of Continuous Key Agreement (CKA), which they then
combine (with the help of a special PRF) with Forward-Secure AEAD (FS-
AEAD).

In this section, we outline how such a CKA notion can be naturally expressed
within our framework as a protocol that uses a given communication network to
construct a sequence of keys (while preserving the communication network). We
thereby focus on CKA only—the use of FS-AEAD to achieve secure messaging
would then follow along the same lines as in [1].

Continuous key agreement. We first briefly recall the CKA primitive, and
refer to [1] for further details. The setting is that of interlocked (or ’ping-pong’)
communication over authenticated channels, initiated by Alice. This means that
in each odd round (which, following [1], we call an epoch), Alice sends a message
to Bob, and in each even round Bob sends a message to Alice. The goal is to
provide a continuous stream of keys: each sending and receiving operation outputs
a symmetric key (later used in the symmetric ratchet). This means that in each
epoch (when a single message is sent and received) the parties produce a new
key in the key stream (see Figure 9). Formally, a CKA scheme consists of four
algorithms, of which CKA.S is randomized and the others deterministic:

CKA.I-A (CKA.I-B): On input a shared secret k, output the initial state γA of
Alice (the initiator) (γB of Bob (the responder)).

31

Alice Bob

γA
0 = CKA.I-A(k) γB

0 = CKA.I-B(k)

(γA
1, T1, I1)←
CKA.S(γA

0)I1
T1 (γB

1, I1)←
CKA.R(γB

0, T1) I1

γA
1 γB

1

(γA
2, I2)←

CKA.R(γA
1, T2)I2

T2 (γB
2, T2, I2)←

CKA.S(γB
1) I2

Fig. 9: The synchronous execution of CKA, epochs 1 and 2. Alice sends in odd
epochs, while Bob sends in even ones. In epoch 1, the parties produce the key I1,
which is available to Alice (the initiator in this key agreement) immediately, and
to Bob (the responder) only after he receives the message T1.

CKA.S: On input a sending state γA, output a new receiving state, an update
message T (sent to the partner), and the next shared key I.

CKA.R: On input a receiving state γB and an update message T (received from
the partner), output a new sending state and the next shared key I.

For correctness, we want that both parties produce the same key stream. The
standard security properties include indisitnguishability: each key is indistin-
guishable from an (independent) random one, even given a number of other keys.
Moreover, in case of a secret-state compromise, we require (1) forward secrecy:
security of previously generated keys is not affected, and (2) healing: after a
number of epochs since the last compromise, the security is restored. The scheme
is parameterized by ∆, denoting the number of epochs that need to pass since
epoch e until the state contains no information about the e-th key. We refer to
[1] for a formal description of the CKA security game.

The constructed key stream. In contrast of the previously presented con-
structions, the goal of a CKA protocol is not to enhance the guarantees of the
channels (at least not directly). Rather, the goal is to construct a sequence of
keys while preserving the channels and their respective guarantees.

We model this sequence of keys as the parallel composition of many individual
key resources Keye,(A,B) shared between Alice and Bob, where e denotes the epoch
number. A formal definition of the key resource is given in Figure 10 . On a
high level, it essentially behaves like a pair of memory resources that have the
respective key stored. More concretely, the key’s interfaces and their capabilities
are as follows:

– Parties can read the key once it is available to them. The availability is
determined via the respective can-read predicates RI and RR. Moreover, the
parties can each request to securely erase their respective copy of the key.

32

– The adversary E can potentially leak the key from either party, if this is
allowed by the respective can-leak predicate LU, and the key has not been
securely erased yet. Note that the leaked key still looks random.

– Moreover, in certain circumstances the key is no longer random (e.g., if the
secret state used to produce it leaks). This corresponds to the adversary
being able to inject her own key. Specifically, the adversary can inject, for
each party, a function inj, that is invoked when a party fetches their key
and the can-inject predicate evaluates to true. The function computes the
injected key, given the current event history.

Resource Keyid,(I,R)

Parameters:
– Identity id, and interface names I (initiator) and R (responder)
– Predicates RU (can be read by U), LU (U’s copy can leak), and IU (can be injected for U),

for U ∈ {I,R}.

Events: Eset,U, E received,U, E leaked

Initialization
k � K
kR, kI ← uninit
injR, injI ← ⊥

Interface E
Input: (inject, inj, U) ∈ (2E → K)× {I, R}
if kU 6= uninit then output ⊥
injU ← inj
output ok

Input: (read, U) ∈ {I, R}
if ¬LU(E) ∨ kU = erased ∨ injU 6= ⊥ then

output ⊥
E +← E leaked

output k

Interface U ∈ {I, R}
Input: read
if ¬RU(E) ∨ kU = erased then

output ⊥
if kU = uninit then

if IU(E) ∧ injU 6= ⊥ then
kU ← injU(E)
E +← Eset,U

else
kU ← k

E +← E received,U

output kU

Input: erase
kU ← erased
output ok

Fig. 10: A formal description of the key resource. Note that the adversary can not
only learn the key, but (if allowed) also set it individually for both parties. Note
that for setting the key he is allowed to submit a function inj that determines
the key (upon when the party first fetches it) based on the event history. That is,
the party obtains inj(E).

The setting. Although CKA is a primitive that mandates an interlocked
communication pattern, it is still intended to be used on top of asynchronous
communication between Alice and Bob. In particular, a party will attach the
latest synchronous update message T to each asynchronous message it sends.
This way, the CKA protocol proceeds as fast as possible: as soon as at least

33

one of the messages carrying a new, previously unseen update arrives, a party
can move to the next epoch. For this reason, the real world involves the usual
sequence of (insecure) channels between Alice and Bob:

Channels :=
[{

Chi,A→B}
i∈[n],

{
Chj,B→A}

j∈[n]

]
.

In the real world, we have various memory resources: Each user U stores his
current epoch number e in the insecure memory IMemep,U, and he stores his
CKA state corresponding to epoch e in Memste,U. Moreover, he stores the key Ie
produced in epoch e in OMemkeye,U (where OMem denotes an observable memory
that behaves like Mem, except that it triggers an E read event when the honest
reader accesses the content for the first time8). Overall, we have

Mems :=
[{

Memste,U,OMemkeye,U,
}
e∈[2n],U∈{A,B},

{
IMemep,U}

U∈{A,B}

]
,

Furthermore, there are randomness resources Rande,U for the CKA.S operation:

Rand :=
[{

Rande,A
}
odd e∈[2n],

{
Rande,B

}
even e∈[2n]

]
.

Finally, CKA requires setup in the form of a shared key, which is used by
Alice and Bob to derive their initial states via CKA.I-A and CKA.I-B, respectively.
Security of this operation is, however, outside the scope of CKA (in particular,
the shared key is never revealed to the adversary). We model this by a real-world
setup resource CKA-Setup(I,R), formally defined in Figure 11 , that executes the
initialization procedure and provides the initial states γA

0 and γB
0 to the respective

parties. That is, analogous to our key-resource, the setup resource essentially
corresponds to a pair of memories [Memst0,A,Memst0,B], except that instead of
the parties writing to it, their states are “magically” initialized.

Putting it all together, we have the following assumed resources:

RCKA :=
[
CKA-Setup(A,B),Channels,Mems,Rand

]
, (11)

to which the converters implementing the CKA protocol will be attached.

The protocol. As we already hinted before, the protocol works by attaching to
each message sent on one of the channels the next CKA message T . That is, we
execute the protocol sketched on Figure 9 , except each message Te is repeated
with each asynchronous message.

Figure 12 formally describes the protocol executed by Alice. Her state in
epoch e is stored in Memste,A. For an even e, this is a ‘receiving’ state (recall that
Alice can only receive messages in such epochs), that contains simply the CKA
state γ. For an odd e, this is a ‘sending’ state, containing the pair (γ, T), where T
8 We need this to prevent the commitment problem in case an ideal key has been
output.

34

Resource CKA-Setup(I,R)

Parameters: interface names I (initiator) and R (responder), can-leak predicate L.

Events: E leaked
Mem(st0,I), E

leaked
Mem(st0,R)

Initialization
k � K
γA ← CKA.I-A(k); γB ← CKA.I-B(k)

Interface E
Input: (read,U) ∈ {I,R}
if ¬L(E) then output ⊥
if γU 6= ⊥ then E +← E leaked

Mem(st0,U)

output γU

Interface U ∈ {I, R}
Input: read
output γU

Input: erase
γU ← ⊥
output ok

Fig. 11: The resource encoding the setup and initialization of CKA.

is the current update message, attached to all Alice’s messages in this epoch. On
each write input on the outside interface of a channel, the protocol first decides
whether this message initiates a new epoch (if e is even) or not (if e is odd). If
the protocol stays in the same epoch, then it fetches the ’sending’ state (γ, T)
from Memste,A and simply attaches T to the message. Otherwise, the protocol
uses the ’receiving’ state fetched from the memory for the previous (even) epoch
to compute the update T . This latter operation produces, as a byproduct, a new
key I, which is stored in OMemkeye,A. A read input is processed analogously.
First, the message and the update T are read from the real channel. If T has not
been seen before, it is used to initialize Memste,A, for the new epoch e, with a
new receiving state. On input read on the outside interface of a key, the key is
retrieved from Memkeye,A.

Bob’s protocol essentially works analogously—swapping odd and even epochs.
There are some minor differences with respect to initialization that reflect the
fact that overall Alice acts as initiator and Bob as responder, i.e., Bob cannot
send a message before having received one. We omit a formal specification of the
respective converter cka-responder, since the necessary modifications should be
self explanatory.

The construction. As mentioned before, the goal of the CKA protocol is to
construct a sequence of keys while preserving the channels and their respec-
tive guarantees. Thus, the ideal world consist of channels and the (potentially)
constructed key resources:

SCKA :=
[{

Keye,(A,B)}
e∈[2n],Channels

]
, (12)

where 2n is an upper bound of the number of epochs that can be initiated when
the parties send at most n messages each. If fewer epochs occur, then we model

35

Converter cka-initiator

Emulating Interface A of Chi,A→B, i ∈ [n]
Input: (send,m, ad)
assume only called once & isAvailable
call e← read at int. A of IMemep,A

if e = ⊥ ∨ e mod 2 = 0 then
if e = ⊥ then

call γ ← (read)
at interface A of CKA-Setup(A,B)

call erase at int. A of CKA-Setup(A,B)

e← 1
else

call γ ← read at int. A of Memste,A

call erase at int. A of Memste,A

e← e+ 1
call r ← sample at int. A of Rande,A

(γ, T, I)← CKA.S(γ; r)
call (write, e) at int. A of IMemep,A

call (write, γ, T) at int. A of Memste,A

call (write, I) at int. A of OMemkeye,A

else
call (γ, T)← read at int. A of Memste,A

call succ← (send,m, (ad, e, T))
at interface A of Chi,A→B

return succ

Input: isAvailable
call succ← isAvailable at int. A of Chi,A→B

return succ

Emulating Interface A of Chj,B→A, j ∈ [n]
Input: receive
assume only called once & isAvailable
call e← read at int. A of IMemep,A

call (m, (ad, e′, T ′))← (receive)
at interface A of Chj,B→A

if ¬(2 ≤ e′ ≤ e+ 1) ∨ e′ mod 2 = 1 then
return ⊥

else if e′ = e+ 1 then
call (γ, T)← read at int. A of Memste,A

(γ, I)← CKA.R(γ, T ′)
e← e+ 1
call (write, e) at int. A of IMemep,A

call erase at int. A of Memste−1,A

call (write, γ) at int. A of Memste,A

call (write, I) at int. A of OMemkeye,A

return (m, ad)

Input: isAvailable
call e← read at int. A of IMemep,A

call succ← isAvailable at int. A of Chi,A→B

return e 6= ⊥ ∧ succ

Emulating Interface A of Keye,(A,B), e∈ [2n]
Input: read

call k ← read at int. A of OMemkeye,A

return k

Input: erase
call erase at int. A of OMemkeye,A

return ok

Fig. 12: The protocol cka-initiator implementing CKA, executed by the initiator,
Alice. The protocol cka-responder executed by the responder, Bob, is analogous.

this by simply not enabling the corresponding key resources, i.e, the resources
formally exist but are not available to the parties.

Let us now describe the properties of the constructed key sequence, as
determined by the predicates can-read, can-leak, and can-set. Both parties can
read the key Keye,(A,B) as soon as they entered the e-th epoch:

RSCKA
U,Key(e,(A,B))(E) := E in-epoch

e,U , (13)

where E in-epoch
e,U denotes the event that user U entered the e-th epoch. Note that

as long as Eve does not inject a forgery, this can easily be determined from the
event history that contains the sequence of all sent and received messages and
their respective order. Once Eve injects, we can, for the sake of those predicates,
assume that she will always advance the session (cf. the simulator in the proof).
Hence, the event E in-epoch

e,U can easily be made formal.

36

The can-leak predicate of a key corresponds to the can-leak predicate of the
memory storing it, that is it leaks to the adversary if the memory leaks:

LSCKA
U,Key(e,(A,B))(E) := LRCKA

U,Mem(keye,U)(Ẽ), (14)

which captures the situations where key directly leaks.
The stronger corruption, where Eve sets the key, is controlled by the can-set

predicate. This models situations, in which a key is no longer random (and hence
can be set by Eve). Roughly, keys are not random in two situations: First, a key
for epoch e is not random if either the randomness to generate it leaked, or a
user’s state leaks in any epoch e′ ∈ {e− 1, . . . , e+∆− 1}. Note that this is just
a safe approximation. For instance, while the scheme could heal for U between
epoch e − 1 and e (if e is a sending epoch for him) or not (otherwise), it is
guaranteed to heal between epoch e− 2 and e, and analogous for e+∆. Since the
can-set predicate is only defined on past events, for now we only say that it is true
if a user’s state leaked in epochs e− 1 or e. The other epochs e+ 1, . . . , e+∆− 1
are considered when we deal with the commitment problem—we will assume
that the state in these epochs does not leak. As a consequence, we define the
following composed event:

E state-leaked
U,e := E leaked

Mem(ste,U) ∨ E
leaked
Mem(ste−1,U) ∨ E

leaked
Rand(e,U).

Second, all keys for epochs following an active attack are not random either
(we give up on any guarantees in such case; originally, CKA does not consider
injections at all). Specifically, assume that the adversary injects the i-th message.
Clearly, she can influence the receiver’s key of the corresponding epoch ei. In
addition, we allow the adversary to set the keys of all upcoming epochs e, and
thus give up all guarantees for epochs e with ei ≤ e, as expressed by the following
event:

E injected-before
U→Ū,e := ∃i : ∃ei ≤ e :

(
E in-epoch
ei−1,U ≺ E sent

Ch(i,U→Ū) ≺ E
in-epoch
ei+1,U

)
∧ E injected

Ch(i,U→Ū),

where the first condition just asserts that ei is indeed the i-th message’s epoch.
Finally, for the epoch of the first injection, CKA does not guarantee the

randomness of neither the receiver’s nor the sender’s key (by injecting the
modified sender’s message, Eve can cause the keys to be correlated)

Overall, we define the following can-inject predicates, which are fully sym-
metric for both parties:

ISCKA
U,Key(e,(A,B))(E) := Ekey-exposed

A,e ∨ Ekey-exposed
B,e , (15)

where
Ekey-exposed

U,e := E state-leaked
U,e ∨ E injected-before

Ū→U,e .

The commitment problem. The ideal world SCKA with the predicates de-
scribed above is trivially distinguishable from the real world. This is because,

37

as already mentioned, leaking a state in epoch el ∈ {e+ 1, . . . , e+∆− 1} com-
promises the secrecy of the key from a past epoch e. However, in the adaptive
setting, the can-set predicate for this key cannot take into account the future
event of memory leakage.

In order to not have to retreat to a fully static corruption model, we deal
with this in our usual way of making an assumption on the real world. That
is, analogous to the game-based definition of CKA, if the distinguisher decides
to “see” the ideal key in epoch e, then the memory cannot leak in epochs
e+ 1, . . . , e+∆− 1. Overall, we require

LRCKA
Mem(ste,U)(E) := ¬∃U′, e′ :

(
e−∆ < e′ ≤ e

)
∧
(
Ecommitted

U′,e′ ≺ Ekey-exposed
U′,e′

)
, (16)

where
Ecommitted

U,e := E leaked
OMem(keye,U) ∨ E

read
OMem(keye,U)

simply denotes the event that the key has either been output to the user or
leaked to the adversary.

Moreover, the commitment problem also occurs for active injections: if the
adversary chooses to change the value T to T ′ for the first time, then this also
compromises the sender’s key, which at this time might already have been used.
Analogous to the CKA security game of [1], we thus have to prevent injections
if the sender is committed on a uniform key for which the receiver did not yet
receive the message. To this end, we require that the delivery-function is of the
following type:

DRCKA
Ch(i,U→Ū)(E , same) :=

err if
¬same ∧ ∃e : ¬E in-epoch

e,Ū

∧ Ecommitted
U,e ≺ Ekey-exposed

U,e

arbitrary else,
(17)

for an appropriate error err . Note that this only disallows the very first injection,
as this immediately triggers Ekey-exposed

U,ei
for all future epochs.

Summary and analysis. With this workaround for the commitment problem in
place, the CKA scheme now achieves the described construction, as summarized
in the following theorem.

Theorem 4. If the CKA scheme CKA is (∆, ε)-secure for some negligible ε, then
there exists an efficient simulator sim such that

cka-initiatorA cka-responderB RCKA ≈̂τ simE SCKA,

where the resources RCKA and SCKA are as defined in equations (11) and (12) ,
the corresponding predicates are as defined in equations (13) to (17) . Moreover,
each event E received,U

Key(e,(A,B)) corresponds to E read
OMem(keye,U), and each event E leaked,U

Key(e,(A,B))
corresponds to E leaked

OMem(keye,U).

38

Simulator simCKA

Initialization
Sample random values (r1, . . . , r2n)
Execute the CKA scheme for 2n epochs
(with the above randomness), and for each
epoch e store the resulting values in
γA[e], γB[e], I[e] and T [e].
Initialize the empty dictionary Tr, storing all
values e and T delivered in authenticated
data.

Emulating Interface E of Chi,A→B, i ∈ [n]
Input: read

If LRCKA
Chan(i,A→B) = false, return ⊥.

call (m, ad)← read at int. E of Chi,A→B

Determine the epoch e, in which the message
i was sent, using the event history.
return (m, (ad, e, T [e]))

Input: readLength
call (`, ad)← read at int. E of Chi,A→B

Determine the epoch e, in which the message
i was sent, using the event history.
return (`, (ad, e, T [e]))

Input: (deliver,m, (ad′, e′, T ′), same′)
assume only called once
Tr[i, B]← (e′, T ′)
if T [e′] 6= T ′ then

Rerun CKA scheme from e′ on (with
original randomness) and overwrite the
respective values in γA[e], γB[e], I[e] and
T [e].

call (inject, inj(Tr, e, B, ·), B)
at interface E of Keye,(A,B)

Forward the command (without e′ and T ′)
to the ideal channel
return ok

Input: (error, err, O,m, (ad′, e′, T ′), same′)
Forward the input (without e′ and T ′) to
the ideal channel
return ok.

Function inj(Tr, e′, γA, γB, I, B, E)
With the help the event history E, the tran-
script Tr and the values γA, γB, I, run Bob’s
protocol and determine the key k he outputs
in epoch e′ (set k = ⊥ if this key has not
been produced yet). Output k.

Emulating Interface E of Rande,A,
odd e ∈ [2n]

Input: triggerLeaking

if ¬LRhibe
Rand(kgj ,B)(Ẽ) then return ⊥

E +← E leaked
Rand(e,A)

return ok

Input: getLeakage
Using the event history, determine the epoch
eA, such that Alice is currently in eA.
if eA < e ∨ ¬E leaked

Rand(e,A) then
return ⊥

return re

Emulating Interface E of IMemep,A

Input: read
Using the event history, determine the epoch
eA, such that Alice is currently in eA.
return eA

Emulating Interface E of Memste,A,
e ∈ {0, . . . , 2n} (including CKA-Setup)

Input: read
Using the event history, determine the epoch
eA Alice is currently in.
if e 6= eA then return ⊥
E +← E leaked

Mem(ste,A)
if e is even then

return γA[e]
else

return (γA[e], T [e])

Emulating Interface E of OMemkeye,A,
e ∈ [2n]

Input: read
Using the event history, determine the epoch
eA, such that Alice is currently in eA.
if e > eA then return ⊥
call k ← (read, A)

at interface E of Keye,(A,B)

return k

Fig. 13: The simulator for the CKA protocol, depicting the interfaces correspond-
ing to Alice’s resources. The interface for Bob’s resources are analogous.

Proof. The simulator simCKA has to emulate the state memories and randomness
resources. Moreover, it has to adjust the channel interfaces (where the CKA-
values (e, T) are not present in the ideal world) and map the key resources to the
corresponding memory resources in the real world. Observe that the simulator

39

sees all values (e, T) that get delivered to either party as the adversary needs to
specify them as part of the associated data. It stores them in the transcript Tr, i.e,
sets Tr[i, B]← (e, T) when the message on the i-th channel to Bob contains those
values. Given the event history, the simulator moreover knows which messages
have been delivered, and thus can always compute the epoch a party is in.

Consider first the initial “secure” execution where the adversary only forwards
messages. The simulator samples all the randomness and pre-computes the real-
world states, keys and update messages for all epochs upfront. With this and the
knowledge of which epoch the parties are in, he can trivially simulate the insecure
memories storing the epoch number, the randomness resources, the leakage of
the channels (containing (e, T)), and the state memories — at least as long as no
injection has happened.

Upon a key-memory corruption, he leaks the value stored in the corresponding
ideal-world key resource. It remains to show that the parties’ can-inject predicates
permit that (1) the “ideal” key is indistinguishable from the real key Ie if the
key resource does not permit programming, or (2) he can program it consistently.
Moreover, we also still need to argue that an active injection is handled properly.
To this end, we consider the three stages: while the parties are still in sync, the
first injection, and the phase where the parties are out of sync.

In sync. Consider the key for the e-th epoch. The CKA security game ensures
that this is indistinguishable from a uniform random key unless a user’s
state leaks in any epoch e′ ∈ {e− 1, . . . , e+∆− 1}, or the randomness to
generate it leaked. The can-inject predicate of the key resource ensures that
the simulator is allowed to program the key if a user’s state of an epoch
e′ ∈ {e − 1, e}, or the randomness, leaked. The commitment-workaround
moreover ensures that the state of the epochs e′ ∈ {e + 1, . . . , e + ∆ − 1}
does not leak if the key has been exposed in any way.
Hence, it suffices that the simulator always just tried to program the ideal-
world keys to the precomputed ones (which are the same as in the real-world).
In particular, every time a message for epoch e (as determined by the public
associated data) is delivered to Bob by the adversary (via either fwd or dlv),
simCKA updates the injB function of the e-th key. The function is defined as
injB(Tr, e, γA, γB, I, B, ·), where the last argument is the event history, provided
by the key resource at the time the key is fetched, and the other arguments
contain the whole state of the simulation. Given this, the function computes
the key Bob would fetch in the real world.

First injection. Consider now a channel, where parties are still in sync, and
the adversary tries to deliver her own message, including her own value T ′
for epoch e′. First observe that if in the ideal world, the simulator is already
committed on any ideal key, especially the one for epoch e′, then the injection
is not allowed.
In any case, the simulator just reruns the CKA protocol from e′ on. This,
among others, ensures that the leakage of the channels and the state memories
keeps being consistent even once the parties are out of sync. Furthermore,
using the newly obtained key, the simulator programs the receiver’ key as

40

above. Note that he already programmed the sender’ key consistently, which
is after the injection also the one the key resource will output by the definition
of the can-inject predicate.

Out of sync. Once the parties are out of sync, we give up on any guarantee.
Hence, for any delivery attempt (e′, T ′), the simulator can rerun the protocol
from epoch e′ on and consistently program all the keys. ut

References
[1] Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and

modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) Advances
in Cryptology – EUROCRYPT 2019. Springer International Publishing, Berlin,
Heidelberg (2019)

[2] Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: The security of messaging. In: Advances in Cryptology
– CRYPTO 2017. pp. 619–650 (2017)

[3] Broadnax, B., Döttling, N., Hartung, G., Müller-Quade, J., Nagel, M.: Concurrently
composable security with shielded super-polynomial simulators. In: Coron, J.S.,
Nielsen, J.B. (eds.) Advances in Cryptology – EUROCRYPT 2017. pp. 351–381.
Springer International Publishing, Cham (2017)

[4] Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: 42nd IEEE Symposium on Foundations of Computer Science – FOCS
2001. pp. 136–145. IEEE Computer Society (2001)

[5] Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005: 2nd Theory of Cryptography Conference.
Springer, Heidelberg, vol. 3378, pp. 150–168. Springer, Heidelberg (2005)

[6] Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) Advances in Cryptology – EUROCRYPT
2002. pp. 337–351. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

[7] Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A Formal Se-
curity Analysis of the Signal Messaging Protocol. 2nd IEEE European Symposium
on Security and Privacy, EuroS and P 2017 pp. 451–466 (2017)

[8] Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. Cryptology ePrint Archive, Report 2018/889 (2018), https:
//eprint.iacr.org/2018/889

[9] Jaeger, J., Stepanovs, I.: Optimal Channel Security Against Fine-Grained State
Compromise: The Safety of Messaging. In: Shacham, H., Boldyreva, A. (eds.)
Advances in Cryptology – CRYPTO 2018. pp. 33–62. Springer (2018)

[10] Jost, D., Maurer, U., Marta, M.: Efficient ratcheting: Almost-optimal guarantees
for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2019. Springer International Publishing, Berlin, Heidelberg (2019)

[11] Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.: (de-)constructing
tls 1.3. In: Biryukov, A., Goyal, V. (eds.) Progress in Cryptology – INDOCRYPT
2015. pp. 85–102. Springer International Publishing, Cham (2015)

[12] Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: How secure is ssl?). In: Kilian, J. (ed.) Advances in Cryptology —
CRYPTO 2001. pp. 310–331. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

[13] Kuesters, R., Tuengerthal, M., Rausch, D.: The iitm model: a simple and expressive
model for universal composability. Cryptology ePrint Archive, Report 2013/025
(2013), https://eprint.iacr.org/2013/025

41

https://eprint.iacr.org/2018/889
https://eprint.iacr.org/2018/889
https://eprint.iacr.org/2013/025

[14] Maurer, U.: Constructive Cryptography–A New Paradigm for Security Definitions
and Proofs. In: Theory of Security and Applications – TOSCA 2011, pp. 33–56.
Springer Berlin Heidelberg (2011)

[15] Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) Ad-
vances in Cryptology – EUROCRYPT 2002. pp. 110–132. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2002)

[16] Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) Advances in Cryptology – CRYPTO 2007. pp. 130–149. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007)

[17] Maurer, U., Renner, R.: Abstract cryptography. In: In Innovations in Computer
Science – ICS 2011, pp. 1–21. Tsinghua University (2011)

[18] Maurer, U., Renner, R.: From Indifferentiability to Constructive Cryptography
(and Back). In: Theory of Cryptography – TCC 2016, pp. 3–24. Springer Berlin
Heidelberg (2016)

[19] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) Advances in Cryptology –
CRYPTO. Lecture Notes in Computer Science, vol. 2442, pp. 111–126. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_8

[20] Open Whisper Systems. Signal protocol library for java/android. GitHub repos-
itory (2017), https://github.com/WhisperSystems/libsignal-protocol-java ,
accessed: 2018-10-01

[21] Pass, R.: Simulation in quasi-polynomial time, and its application to protocol
composition. In: Biham, E. (ed.) Advances in Cryptology — EUROCRYPT 2003.
pp. 160–176. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

[22] Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and
its application to secure message transmission. In: Proceedings 2001 IEEE
Symposium on Security and Privacy – S&P 2001. pp. 184–200 (May 2001).
https://doi.org/10.1109/SECPRI.2001.924298

[23] Poettering, Bertram and Rösler, Paul: Towards Bidirectional Ratcheted Key Ex-
change. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO
2018. pp. 3–32. Springer International Publishing, Cham (2018)

[24] Prabhakaran, M., Sahai, A.: New notions of security: Achieving universal com-
posability without trusted setup. In: Proceedings of the Thirty-sixth Annual
ACM Symposium on Theory of Computing. pp. 242–251. STOC ’04, ACM,
New York, NY, USA (2004). https://doi.org/10.1145/1007352.1007394, http:
//doi.acm.org/10.1145/1007352.1007394

A Details of Section 5.1

A.1 Key-Updating Signatures

Syntax. A key-updating signature scheme KuSig consists of three polynomial-
time algorithms (KuSig.Gen,KuSig.Sign,KuSig.Verify). The probabilistic algo-
rithm KuSig.Gen generates an initial signing key sk and a corresponding veri-
fication key vk. Given a message m and sk, the signing algorithm outputs an
updated signing key and a signature: (sk′, σ)← KuSig.Sign(sk,m). Similarly, the
verification algorithm outputs an updated verification key and the result v of
verification: (vk′, v)← KuSig.Verify(vk,m, σ).

42

https://github. com/WhisperSystems/libsignal-protocol-java
http://doi.acm.org/10.1145/1007352.1007394
http://doi.acm.org/10.1145/1007352.1007394

Game KuSig-UF

Initialization
(sk, vk)← KuSig.Gen
s, r ← 0
B ← array initialized to ⊥
win← false
lost← false
Exposed← ∅
return vk

Oracle Sign
Input: (m, leak) ∈ M× {true, false}
s← s+ 1
z � R
(sk, σ)← KuSig.Sign(sk,m; z)
B[s]← (m,σ)
if leak then

Exposed← Exposed ∪ {s− 1, s}
return (σ, z)

else
return σ

Oracle Expose

Exposed← Exposed ∪ {s}
return sk

Oracle Verify
Input: (m,σ) ∈ M×Σ

(vk, v)← KuSig.Verify(vk,m, σ)
if v = 0 then

return (0, vk)
r ← r + 1
if B[r] 6= (m,σ) then

if r − 1 ∈ Exposed then
lost← ¬win

else
win← true

return (1, vk)

Finalization

return win ∧ ¬lost

Fig. 14: The strong unforgeability game for key-updating signatures.

Correctness. Let (sk0, vk0) be any output of KuSig.Gen, and let m1, . . . ,mk

be any sequence of messages. Further, let (ski, σi)← KuSig.Sign(ski−1,mi) and
(vki, vi) ← KuSig.Verify(vki−1,mi, σi) for i = 1 . . . (k − 1). For correctness, we
require that vi = 1 for all i = 1 . . . (k − 1).

Security. The security of KuSig is formalized using the game KuSig-UF, de-
scribed in Figure 14 . For simplicity, we define the security in the single-user
setting (security in the multi-user setting can be obtained using the standard
hybrid argument).

A.2 The Authentication Protocol

Recall that in protocol, whenever the sender wants to send a message, a fresh
signing and verification key pair is sampled. The fresh verification key is then
signed together with the message—using the prior signing key— and the message,
the verification key and the signature are transmitted. Finally, the old signing key
is securely erased and the fresh one stored instead. Moreover, with each message,
the sender also transmits a hash of the previous verification key. The receiver, on
the other hand verifies a received message with the previous verification key and
stores the new one. See Figure 15 for a formal definition of the two converters.

43

Converter sigi

Emulating Interface A of Chi−1,A→B

Input: (send,m, ad) ∈ M×AD
assume only called once & isAvailable

// Generate fresh keys
call r ← sample at int. A of Randkgi,A

(sk, vk)← Sig.Gen(r)

// Send the verification key along the msg
call (write,m, (ad, vk))

at interface A of Chi−1,A→B

// Store the keys
call (write, (sk, vk))

at interface A of Memski,A

return ok

Input: isAvailable
call succ← (isAvailable)

at interface A of Chi−1,A→B

return succ

Emulating Interface A of Chi,A→B

Input: (send,m, ad) ∈ M×AD
assume only called once & isAvailable

// Fetch the signing key
call (sk, vk)← read at int. A of Memsk,A

// Sign and send the message
σ ← Sig.Sign(sk, (m, ad))
h← hash(ad, vk)
call (write, (m,h, σ), ad)

at interface A of Chi,A→B

// Erase the signing key
call erase at int. A of Memski,A

return ok

Input: isAvailable
call succ← (isAvailable)

at interface A of Chi,A→B

call (sk, vk)← read at int. A of Memski,A

return succ ∧ ((sk, vk) 6= ⊥)

Converter vrfi

Emulating Interface B of Chi−1,A→B

Input: receive
assume only called once

// Receive the message with the vk
call (m, (ad, vk))← (read)

at interface B of Chi−1,A→B

if (m, (ad, vk)) = ⊥ then return ⊥

// Store the verification key
call write, vk at int. B of Memvki,B

return (m, ad)

Input: isAvailable
call succ← (isAvailable)

at interface B of Chi−1,A→B

return succ

Emulating Interface B of Chi,A→B

Input: receive
assume only called once & isAvailable

// Receive the message
call ((m,h, σ), ad)← (read)

at interface B of Chi,A→B

if ((m,h, σ), ad) = ⊥ then return ⊥

// Fetch the verification key
call vk ← read at int. B of Memvki,B

// Verify the signature and hash
v ← Sig.Verify(vk, (m, ad), σ)
h′ ← hash(vk, ad)
if ¬v ∨ h 6= h′ then return ⊥
return (m, ad)

Input: isAvailable
call succ← (isAvailable)

at interface B of Chi,A→B

call vk ← read at int. A of Memvki,B

return succ ∧ (vk 6= ⊥)

Fig. 15: A formal description of the protocol converters sigi and vrfi implementing
the unidirectional authentication scheme for a single message.

A.3 Proof of Theorem 1

Proof. See Figure 16 for a description of the simulator. Note that the simulator is
parameterized in the real world’s security guarantees, e.g., the can-leak predicate

44

of the memory resources. We now proceed to argue that this simulator actually
makes the two worlds indistinguishable.

The simulator internally samples a signing-verification key pair and remembers
the randomness. Using this, it is easy see to that Alice’s memory and randomness
resources can be perfectly simulated, since the simulator knows when Alice
sent her messages from the corresponding events and the real-world can-leak
predicates. Moreover, Bob’s memory storing the verification key he receives is
also simple to emulate, since the key is transmitted as part of the associated data
the simulator sees.

Next, consider the (i − 1)-st channel. The can-send predicate of the ideal
world enforces that the sent event is triggered if and only if it is triggered in
the real world. The leakage at Eve’s interface is then also simple to simulate:
the simulator just appends the verification key to the associated data. Handling
injections is also straight-forward: in the real-world, if the distinguisher asks for
(m′, (ad′, vk′)) to be injected, then at the point of time Bob fetches this will differ
from (m, (ad, vk)) if and only one of the components differ and the corresponding
injection-function will be evaluated. In the ideal world, the simulator removes
vk′ and asks to inject (m′, ad′), setting the same flag to false if vk′ 6= vk,
leading to the same behavior. If the distinguisher request a specific error to be
triggered, the simulator can simply forward this as well, thereby excluding the
signature-verification error.

The interesting part to simulate is everything with respect to the i-th channel.
First, observe that Alice will only send the message after sending the (i− 1)-st,
which the can-send predicate in the ideal world ensures as well. Simulating
the leakage is also straightforward: the simulator just adds the hash and the
signature himself. Now consider a delivery attempt. First, the simulator only
processes it once there has also been a delivery on the former channel, such that
it knows the verification key Bob will use. Since Bob will not fetch the latter
message out-of-order, as enforced by the protocol and the can-receive predicates,
respectively, this is not observable, however. Recall that

D
Sauth

i

Ch(i,A→B)(E , same) :=


err if DRauth

i

Ch(i,A→B)(Ẽ , same) = err ∧ err 6= msg

sig-err else if ¬(same ∨ E sk-known
i)

msg else

Thus, to show that the two worlds behave identically, we need (1) show that the
same flag is consistent, as otherwise the channels might trigger different error
before it even gets to the signature verification, (2) show that the two worlds
trigger a signature-verification error for the same inputs. We consider two cases:

An explicit delivery ((m′, h′, σ′) 6= fwd):
1. In order for the ideal-world to behave equivalent, the simulator needs

to ensure that the same flag in both worlds agree. In the real-world,
however, this flag takes the signature and the hash into account, which
in the ideal-world are not part of the message but only simulated. The
simulator, thus, needs to detect any modification of the signature and the

45

hash itself, and if necessary enforce same = false. Note that the simulator
might never see Alice’s message, since the channel might be confidential,
and thus cannot trivially check this. It thus proceeds as follows: it verifies
the signature using the original verification key (not necessarily the one
used by Bob). By correctness of the signature scheme, a failure clearly
indicates that something must have been tampered with. By uniqueness
of the signatures, it moreover follows that if (m′, ad′) = (m, ad) and the
verification succeeds, then it must have been the same signature. Hence,
the simulator can enforce same = false whenever the verification fails,
resulting in the channel using same = false iff (m,σ, ad) 6= (m′, σ′, ad′).
For the hash value, the simulator can recompute hash(ad′, vk), and set
same = false whenever it does not match. If ad = ad′, this check ensures
that h′ = h, and otherwise the channel will set same = false anyways.
Thus, we know that in the real-world an error happens before the signature
verification iff the same happens in the idea-world.

2. Now consider the signature verification and the hash check. For the
former, the simulator simply verifies the signature using vk′ (which Bob
uses in the real-world). If the check succeeds, it injects the message.
Otherwise, it triggers a signature-failure event. It remains to see that
whenever the simulator tries to inject the message this is actually allowed
by D

Sauth
i

Ch(i,A→B)(E , same). It is, however, easy to see that this happening
would directly imply an existential forgery, since it means that Eve
injected a different message with a valid signature, with respect to the
correct verification key, and without having any information about the
signing key (neither the key nor its randomness leaked). The simulator
can furthermore easily check that h′ = hash(ad′, vk′), this time using vk′,
which also Bob would use in the real-world.

A forwarding request: Whenever the distinguisher asks to deliver the original
message, but with a potentially different associated data, the same flag is
trivially to decide: its the same iff the associated data match. Since this is
what the channel checks anyways, there is nothing for the simulator to be
taken care of. Now consider the check performed by Bob’s protocol. In the
real world, by collision resistance, the hashes will match iff ad = ad′ and
vk = vk′. In this case, by correctness, moreover the signature verification will
also succeed. Hence, the protocol accepts iff ad = ad′ and vk = vk′, which
can easily be emulated by the simulator.

If the distinguisher asks to trigger an error, this can be handled analogous to
the delivery request. More precisely, the simulator decides same analogously and
then requests an the error to be triggered, thereby excluding the signature error.

46

Simulator simauth

Let `sig and `hash the length of a signature and a hash, respectively.

Initialization
r � R
(sk, vk)← Sig.Gen(r)
vk′ ← ⊥

Emulating Interface E of Memski,A

Input: read

if Esent
Ch(i−1,A→B)∧¬E

sent
Ch(i,A→B)∧L

Rauth
i

Mem(ski,A)(Ẽ)
then
E +← E leaked

Mem(ski,A)
return (sk, vk)

else
return ⊥

Emulating Interface E of IMemvki,B

Input: read
if E received

Ch(i−1,A→B) then
return vk′

else
return ⊥

Emulating Interface E of Randkgi,A

Input: triggerLeaking

if ¬LRauth
Rand(kgi,A)(Ẽ) then return ⊥

E +← E leaked
Rand(kgi,A)

return ok

Input: getLeakage
if ¬Esent

Ch(i,A→B) ∨ ¬E
leaked
Rand(kgi,A) then

return ⊥
return r

Emulating Interface E of Chi−1,A→B

Input: read
call (m, ad)← (read)

at interface E of Chi−1,A→B

if (m, ad) = ⊥ then return ⊥
else return (m, (ad, vk))

Input: readLength
call (`, ad)← (readLength)

at interface E of Chi−1,A→B

if (`, ad) = ⊥ then return ⊥
else return (`, (ad, vk))

Input: (deliver,m′, (ad′, vk′′), same)
vk′ ← vk′′

if same = check ∧ vk′′ 6= vk then
same ← false

call (deliver,m′, ad′, same)
at interface E of Chi−1,A→B

return ok

Input: (error, err,m′, (ad′, vk′′),Overw, same)
if same = check ∧ vk′′ 6= vk then

same ← false
call (error, err,Overw ∪
{sig-err},m′, ad′, same)

at interface E of Chi−1,A→B

return ok

Emulating Interface E of Chi,A→B

Input: (deliver, (m′, h′, σ′), ad′, same)
if (m′, h′, σ′),= fwd ∧ ¬Esent

Chi,A→B then
return ⊥

At this point, if delivery of (i−1)-st channel
not called, then output ok immediately but
delay processing until then.

if (m′, h′, σ′) = fwd then
call (`, ad)← (readLength)

at interface E of Chi,A→B

if ad′ = ad ∧ vk′ = vk then
call (deliver, fwd, ad′, same)

at interface E of Chi,A→B

else
if same = check then

same ← ad′ = ad
call (error, sig-err, ∅,⊥,⊥, same)

at interface E of Chi,A→B

else
vS ← Sig.Verify(vk, (m′, ad′), σ)
vR ← Sig.Verify(vk′, (m′, ad′), σ′)
hS ← hash(ad, vk)
hR ← hash(ad′, vk)
if same = check then

if ¬vS ∨ hS 6= h′ then
same ← false

if vR ∧ hR = h′ then
call (deliver,m′, ad′, same)

at interface E of Chi,A→B

else
call (error, sig-err, ∅,m′, ad′, same)

at interface E of Chi,A→B

return ok

Input: (error, err,Overw, (m′, h′, σ′), ad′,
same)

if same = check then
handle as in deliver by computing vS
and hS

Overw ← Overw ∪ {sig-err}
call (error, err,Overw,m′, ad′, same))

at interface E of Chi,A→B

return ok

Input: read
call (m, ad)← (read,m, ad)

at interface E of Chi−1,A→B

if (m, ad) = ⊥ then return ⊥
σ ← Sig.Sign(sk, (m, ad))
return ((m,h(vk, ad), σ), ad)

Input: readLength
call (`, ad)← (readLength)

at interface E of Chi−1,A→B

if (`, ad) = ⊥ then return ⊥
return (`+ `sig + `hash, ad)

Fig. 16: The simulator for Theorem 1 .

47

B Details of Section 5.2

B.1 The Sesqui-directional HIBE Protocol

Recall that the protocol proceeds in epochs, where each epoch is initiated by
Bob sending a fresh HIBE public key mpk (and indicating how many messages
he received at this moment). Within the epoch, Alice sends then a sequence of
messages to Bob, encrypted under this public key and using as identity (the
hashes of) all ciphertexts she sent since the message indicated by Bob. See
Figure 17 for a schematic depiction of the scheme.

See Figure 18 for a formal definition of the two converters hibe-enc and
hibe-dec, respectively, that implement this protocol when connected to the real-
world resource Rhibe. Note that in the formal definition we allow ourselves to
be a bit sloppy when it comes to determine in which epoch a party is, or how
many messages a party already sent or received. While this in principle can be
decuded from the memory resources the parties have available, a reasonable
implementation would of course just store this (public) information directly.

Alice Bob

(mpk,sk)←HIBE.Setupmpk, 0

mpk sk()
c1←HIBE.Enc(mpk,(),m1) c1, 1

(c1),mpk
m1←HIBE.Dec(sk(),c1)

sk(c1)←HIBE.Kgen(sk(),c1)

sk(c1)

(m̃pk,s̃k)←HIBE.Setupm̃pk, 1

sk(c1), s̃k()

(c2), m̃pk

c2←HIBE.Enc(mpk,(c1),m2) c2 , 1

m2←HIBE.Dec(sk(c1),c2)

sk(c1,c2)←HIBE.Kgen(sk(c1),c2)

s̃k(c2)←HIBE.Kgen(s̃k(),c2)

sk(c1,c2), s̃k(c2)

(c1, c2),mpk

c3←HIBE.Enc(m̃pk,(c2),m3)
c3 , 2

m3←HIBE.Dec(s̃k(c2),c3)

s̃k(c2,c3)←HIBE.Kgen(s̃k(c2),c3)

s̃k(c2,c3)

(c2, c3), m̃pk

Fig. 17: Sesqui-directional confidentiality from HIBE, depicting the first and the
beginning of the second epoch.

48

Converter hibe-enc

Emulating Interface A of Chi,A→B, i ∈ [n]
Input: (send,m, ad) ∈ M×AD
assume only called once & isAvailable

// Fetch the mpk
call (j,mpk, rcv)← (read)

at interface A of IMempk,A

// Compute the identity
tr ← ()
for k = (rcv + 1), . . . , i− 1 do

call hk ← read at int. A of Memtrk,A

tr ← tr ‖ hk

// Encrypt and send
call r ← sample at int. A of Randenci,A

c← HIBE.Enc(mpk, tr,m; r)
call succ← (write, c, (j, ad))

at interface A of Chi,A→B

// Store the hash
call ((write, hash(c, j, ad)))

at interface A of Memtri,A

return ok

Input: isAvailable
call succ← (isAvailable)

at interface A of Chi,A→B

call (j,mpk, rcv)← (read)
at interface A of IMempk,A

succ← succ ∧ ((j,mpk, rcv) 6= ⊥)
if i > 1 then

call tr ← read at int. A of Memtri−1,A

succ← succ ∧ (tr 6= ⊥)
return succ

Emulating Interface A of Chj,B→A, j ∈ [n]
Input: receive
assume only called once

// Read the message
call (m, (mpk, rcv, ad))← (read)

at interface A of Chj,B→A

if (m, (mpk, r, ad)) = ⊥ then
return ⊥

// Store the mpk
call (write, (j,mpk, rcv))

at interface A of IMempk,A

return (m, ad)

Input: isAvailable
call succ← (isAvailable)

at interface A of Chj,B→A

call (j′,mpk, rcv)← (receive)
at interface A of IMempk,A

return succ ∧ (j′,mpk, rcv) 6= ⊥
∧ j = j′ + 1

Converter hibe-dec

Emulating Interface B of Chi,A→B, i ∈ [n]
Input: receive
assume only called once & isAvailable
call (c, (ep, ad))← (read)

at interface A of Chi,A→B

// Valid epoch?
Let emax be max s.t. Memsk(emax ,i),B 6= ⊥
Let emin be min s.t. Memsk(emin ,i),B 6= ⊥
if ep = ⊥ ∨ ¬(emin ≤ ep ≤ emax) then

valid ← false

// Decrypt
call sk ← read at int. B of Memskep,i,B

if sk 6= ⊥ ∧ valid then
m← HIBE.Dec(sk, c)

// Update the keys
if valid ∧m 6= ⊥ then

h← hash(c, ep, ad)
for k = ep, . . . , emax do

call sk ← (read)
at interface B of Memsk(k,i),B

sk′ ← HIBE.Kgen(sk, h)
call (write, sk′) at int. B of
Memsk(k,i+1),B

for k = emin , . . . , emax do
call erase at int. B of Memsk(k,i),B

if valid ∧m 6= ⊥ then return (m, ad)
else return ⊥

Input: isAvailable
call succ← (isAvailable)

at interface B of Chi,A→B

return true iff succ and there exists j
s.t. Memsk(j,i),B 6= ⊥

Emulating Interface B of Chj,B→A, j ∈ [n]
Input: (send,m, ad) ∈ M×AD
assume only called once & isAvailable

// Number of received messages
Let i be max s.t. Memsk(j−1,i+1),B 6= ⊥
if j > 1 and 0 otherwise.

// Generate the (mpk,msk) pair
call r ← sample at int. B of Randkg,B

(mpk,msk)← HIBE.Setup(r)
call (write,m, (mpk, i, ad))

at interface A of Chk,B→A

call (write,msk)
at interface B of Memsk(j,i+1),B

return ok

Input: isAvailable
call succ← (isAvailable)

at interface B of Chj,B→A

return true iff succ and (j − 1)-st sent

Fig. 18: A formal description of the converters hibe-enc and hibe-dec for the sender
and receiver, respectively.

49

B.2 Proof of Theorem 2

We require the HIBE scheme to be IND-CCA secure with the following (non-
standard) additional properties: first, we require that decrypting a honestly
generated ciphertext with an unauthorized decryption key (further down or in a
different path in the hierarchy) not only decrypts to something unrelated, but fails
to decrypts except with negligible probability.9 Second, we require encryption to
be truly randomized, that is, even given the secret key, no adversary can output
a message-ciphertext pair such that a fresh encryption of the message results in
that ciphertext, except with negligible probability.10

Proof. A formal description of the simulator simhibe is given below. The simulator
initially samples all randomness, for the key generation and the encryption,
and generates all the master key pairs. Using this, it is easy to simulate the
randomness resources Randkgj ,B, Randenci,A, as well as the memories storing the
master secret keys. Furthermore, simulating the channels for transporting the
master public keys, and the memory Mempk,A storing them, is trivial as well. The
other memories Memsk(j,i),B and Memtri,A storing the derived secret keys and the
ciphertext hashes, respectively, can be easily simulated once we can consistently
simulate the ciphertexts.

Observe that the simulator needs to generate ciphertexts in the following
situations:

– The distinguisher explicitly queries the i-th ciphertext, or the hash thereof.
– The distinguisher asks for the i-th secret key of the j-th epoch: In this

situation the simulator needs to generate all ciphertexts, up to the first
injection, with which the receiver updated the j-th master secret key. After
altering the keys for the j-th epoch with an injection, we know from our
additional assumption that forwarding the correct ciphertext will cause a
decryption error, so Eve needs to provide her own, which are then used to
compute the secret keys.

– The distinguisher injects the first message in an epoch. At this point, the
secret key is still in sync and the simulator needs to decrypt under that key
to determine the message.

To simulate the ciphertexts we follow the usual strategy: if the message is known
to the simulator at the time of simulating the ciphertext, then he simply encrypts
it. Otherwise, if only the length is known, he encrypts the string of zeros of
the same length instead. By the CCA-security of the HIBE scheme, this is
indistinguishable unless after encrypting the fake message the simulator has to
reveal an earlier secret-key for that epoch (up to an injection) that allows for
trivial decryption. Note that keys after an injection do not reveal anything about
the encryptions, since the identities do not match.
9 This can be achieved by including sufficient redundancy.

10 For instance, IND-CCA allows the public-key to encode a message for which encryption
is deterministic, as long as one cannot devise that message from the public key.

50

Our workaround for the commitment issue, however, prevents fake ciphertexts
to be exposed after each of the situation in which the simulator had to produce
one. In addition, note that whenever the encryption randomness leaked, the
simulator gets the real message immediately, due to our additional assumption in
the real world, the simulator is allowed to fetch the message, without triggering
an event, as soon as the channel becomes insecure. Hence, he can simply encrypt
the correct message and avoid the commitment issue.

Finally, consider how delivering on the channels is handled by the simulator.
First, observe that the simulator can process the channels in order, i.e, delay
handling them until all previous ones have been handled, since Bob will only
fetch them in order. To actually handle the i-th delivery request, the simulator
proceeds as follows: firstly, he determines whether the ciphertext, epoch number,
and associated data that Eve wants to deliver are the same as Alice sent. For the
ciphertext we can use the following strategy:

– If Alice did not send her message yet, then she also did not sample the
corresponding randomness. Hence, by our additional assumption we know
that it won’t be the same ciphertext.

– If Alice sent her message and Eve requests to forward it, it is trivially the
same.

– If Alice sent her message, and either we already simulated the ciphertext—or
the message is not secret and we can simply create the real one now—then
we can simply compare.

– If Alice sent her message but it is still secret (in particular, the randomness
did not leak yet) and Eve did not see the simulated ciphertext yet, then it is
a different one, since again the randomness is unknown to Eve.

If the ciphertext matches, then we can also simply check the epoch number and
associated data.

Once the simulator knows whether Eve’s message matches Alice’s, it knows
whether Bob will update his secret keys with the correct identity. Hence, we
especially known after processing each delivery request whether at the end Bob
will still have the correct decryption key (without having to generate them) or
whether the parties are now out of sync. Based on this information, the simulator
proceeds as follows:

– If it is the same ciphertext, and Bob will use the correct decryption key
(i.e., correct epoch and key of this epoch has been updated in sync), issue
a forward command for the message. By correctness of the scheme, this
simulates decryption correctly.

– If it is the same ciphertext, but Bob uses the wrong secret key, then issue an
decryption error. By our stronger assumption, this simulates the real-world
behavior.

– If it is a different ciphertext, the simulator generates the corresponding
decryption key, performs the decryption, and either injects the message or
triggers the decryption error, depending on the outcome.

51

It remains to argue that the simulator also works correctly if Eve tampered
the transmission of the master public key, or the associated value indicating how
many messages the receiver already obtained when creating that key. In this
situation, all messages sent by Alice are treated as insecure and the simulator,
thus, can simulate the actual ciphertexts. For delivery request, not that modifying
either value will lead to Alice encrypting for the wrong key: either the master
public key or the identity does not match. We can consider two situations: if the
request happens after it is clear that Alice uses a wrong public key or identity,
then the parties are treated as out of sync. If Eve forwards a ciphertext, then by
our assumption, Bob’s decryption will fail, which is what the simulator replicates.
For newly injected ciphertexts, the simulator anyway always replicates the correct
decryption. If Eve request a delivery at which point it is unclear yet whether Alice
uses the correct public key, then the ciphertext will be treated as an injection,
and the simulator just replicates Bob’s behavior of the real world. ut

Simulator simhibe

Let HibeEncLen(`, d) denote the function de-
termining the ciphertext length based on the
message length ` and the hierarchy level d.

Initialization
C,C′,AD′,TR,MPK,MPK ′,MSK,SK,

E′, R′, InSync ← array init. to ⊥
(r1

kg, . . . , r
n
kg) � Rn

(r1
enc, . . . , r

n
enc) � Rn

for j ∈ [n] do
(MSK [j],MPK [j])← HIBE.Kgen(rj

kg
)

Emulating Interface E of IMempk,A

Input: read
Let j max s.t. E received

Ch(j,B→A) and ¬E received
Ch(j+1,B→A)

if no such j exists then
return ⊥

else
return (j,MPK ′[j], R′[j])

Emulating Interface E of Memtri,A, i ∈ [n]
Input: read

if ¬Esent
Ch(i,A→B) ∨ ¬L

Rhibe
Mem(tri,A)(Ẽ) then

return ⊥
if TR[i] = ⊥ then

CreateTranscript(i)
E +← E leaked

Mem(tri,A)
return TR[i]

Emulating Interface E of Memsk(j,i),B,
j ∈ [n], i ∈ [n+ 1]

Input: read
if E received

Ch(i,A→B) ∨ E
error
Ch(i,A→B)

∨ ¬LRhibe
Mem(sk(j,i),B)(Ẽ) then

return ⊥
CreateSK(j, i)
if SK [j, i] 6= ⊥ then
E +← E leaked

Mem(ski,B)
return SK [j, i]

Emulating Interface E of Randkgj ,B, j ∈ [n]
Input: triggerLeaking

if ¬LRhibe
Rand(kgj ,B)(Ẽ) then return ⊥

E +← E leaked
Rand(kgj ,B)

return ok

Input: getLeakage
if ¬Esent

Ch(j,B→A) ∨ ¬E
leaked
Rand(kgj ,B) then

return ⊥
return rj

kg

Emulating Interface E of Randenci,A, i∈ [n]
Input: triggerLeaking

if ¬LRhibe
Rand(enci,A)(Ẽ) then return ⊥

E +← E leaked
Rand(enci,A)

return ok

Input: getLeakage
if ¬Esent

Ch(i,A→B) ∨ ¬E
leaked
Rand(enci,A) then

return ⊥
return ri

enc

52

Emulating Interface E of Chj,B→A, j∈ [n]
Input: read

call (m, ad)← read at int. E of Chk,B→A

if (m, ad) = ⊥ then return ⊥
else

r ← Received(j)
return (m, (MPK [j], r, ad))

Input: readLength
call (`, ad)← (readLength)

at interface E of Chk,B→A

if (`, ad) = ⊥ then return ⊥
else

r ← Received(j)
return (`, (MPK [j], r, ad))

Input: (deliver,m, (mpk′, r′, ad), same)
MPK ′[j]← mpk′

R′[j]← r′

r ← Received(j)
if (mpk′, r′) = (MPK [j], r) then

InSync[j, r]← true
else

same ← false
InSync[j, r]← false

call (deliver,m, ad, same)
at interface E of Chk,B→A

return ok

Input: (error, err,Overw,m, (mpk′, r′, ad),
same)

r ← Received(j)
if same = check∧(mpk′, r′) 6= (MPK [j], r)
then

same ← false
InSync[j, r]← false

call (error, err,Overw,m, ad, same)
at interface E of Chk,B→A

return ok

Emulating Interface E of Chi,A→B, i ∈ [n]
Input: read

if LRhibe
Chan(i,A→B) = false then
return ⊥

else if LRhibe
Chan(i,A→B) = true then

E +← E leaked
Chan(i,A→B)

call (`, ad)← (readLength)
at interface E of Chi,A→B

e← Epoch(i)
if C[i] = ⊥ then

CreateCiphertext(i)
return (C[i], (e, ad))

Input: readLength
call (`, ad)← (readLength)

at interface E of Chi,A→B

if (`, ad) = ⊥ then return ⊥
e← Epoch(i)
return (HibeEncLen(`, i− 1− R′[e]), (e, ad))

Int E of Chi,A→B cont.
Input: (deliver, c′, (e′, ad′), same)
if c′ = fwd ∧ ¬Esent

Chi,A→B then
return ⊥

At this point, if delivery of (i−1)-st channel
not called, then output ok immediately but
delay processing until then.

(E′[i],AD′[i], C′[i])← (e′, ad′, c′)
if ¬ValidEpoch(e′, i) then

call (error, dec-err, ∅, same)
at interface E of Chi,A→B

return ok

// Same ciphertext?
call (`, (e, ad))← (readLength)

at interface E of Chi,A→B

if (`, (e, ad)) = ⊥ then
sameC← false

else if c′ = fwd then
sameC← true

else if C[i] 6= ⊥∨ LShibe
Chan(i,A→B)(E) = silent

then
if C[i] = ⊥ then

CreateCiphertext(i)
sameC← (C[i] = c′)

else
sameC← false

// Overall: injection?
same′ ← sameC ∧ (e′, ad′) = (e, ad)
InSync[e′, i]← InSync[e′, i− 1] ∧ same′
if ¬(same′) then same ← false

// Handle request
if sameC then

if e = e′ ∧ InSync[e′, i− 1] then
call (deliver, fwd, ad′, same)

at interface E of Chi,A→B

else
call (error, dec-err, ∅, same)

at interface E of Chi,A→B

else
if SK[e′, i] = ⊥ then

CreateSK(e′, i)
m′ ← HIBE.Dec(SK [e′, i], c′)
if m′ 6= ⊥ then

call (deliver,m′, ad′, same)
at interface E of Chi,A→B

else
call (error, dec-err, ∅, same)

at interface E of Chi,A→B

return ok

Input: (error, err,Overw, c′, (e′, ad′), same)
if same = check then

determine same′ as in for handling the
deliver command above.
same ← same′ // true or false

Overw ← Overw ∪ {dec-err}
m �M // ignored
call (error, err,Overw,m, ad′, same)

at interface E of Chi,A→B

return ok

53

Function Epoch(i)

e = max{j ∈ [n] | E received
Ch(j,B→A) ≺ E

sent
Ch(i,A→B)}

return e

Procedure ValidEpoch(e, i), e, i ∈ [n]
rcv ← Received(e)
return E received

Ch(i−1,A→B) ∧ E
sent
Ch(e,B→A)

∧ rcv < i ∧ E′[i− 1] ≤ e

Function Received(j)

// Number of msg. Bob received when send-
ing the j-th msg.
r = max

(
{i∈ [n] | E received

Ch(i,A→B) ≺ E
sent
Ch(j,B→A)}

∪ {0}
)

return r

Procedure CreateCiphertext(i), i ∈ [n]
e← Epoch(i)
id← ()
for k = (R′[e] + 1), . . . , (i− 1) do

if TR[k] = ⊥ then
CreateTranscript(k)

id← id ‖ TR[k]
call (m, ad)← read at int. E of Chi,A→B

if (m, ad) = ⊥ then
call (`, ad)← (readLength)

at interface E of Chi,A→B

m← 0`

C[i]← HIBE.Enc(MPK ′[e], id,m; ri
enc)

Procedure CreateTranscript(i), i ∈ [n]
if C[i] = ⊥ then

CreateCiphertext(i)
call (`, ad)← (readLenght)

at interface E of Chi,A→B

TR[i]← hash(C[i],Epoch(i), ad)

Procedure CreateSK(j, i)
rcv ← Received(j)
if SK [j, i] 6= ⊥ ∨ ¬ValidEpoch(j, i) then

return
else if i = rcv + 1 then

SK [j, i]← MSK [j]
else

CreateSK(j, i− 1)
if C′[i− 1] = fwd then

if C[i− 1] = ⊥ then
CreateCiphertext(i− 1)

C′[i− 1]← C[i− 1]
h← hash(C′[i−1], E′[i−1],AD′[i−1])
SK [j, i]← HIBE.Kgen(SK [j, i− 1], h)

54

	A Unified and Composable Take on Ratcheting
	Introduction
	Secure Messaging and Ratcheting
	Composable Security
	Contributions
	Outline

	Preliminaries: Constructive Cryptography
	The Real-World / Ideal-World Paradigm
	Resources
	Converters
	The Construction Notion
	Composition

	Constructive Cryptography with Events
	Composable Guarantees for Secure Messaging
	The Approach
	Our Channel Model
	A Note on Confidentiality
	Additional Resources: Memory and Randomness

	Unifying Ratcheting: Two Examples
	A Simple Authentication Scheme
	Confidentiality from HIBE

	Adaptive Security
	Overview
	The Construction: Combining RNCE with HIBE

	Asynchronous Ratcheting as Continuous Key Agreement
	Details of Section 5.1
	Key-Updating Signatures
	The Authentication Protocol
	Proof of Theorem 1

	Details of Section 5.2
	The Sesqui-directional HIBE Protocol
	Proof of Theorem 2

