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Abstract. We propose a decentralized multi-authority anonymous authentication scheme in
which a prover and a verifier are non-interactive. We give two security definitions; resistance
against collusion attacks that cause misauthentication, and anonymity for privacy protection.
Then we give a construction under a principle of “commit-to-ID”. We employ two building blocks;
the structure-preserving signature scheme and the Groth-Sahai non-interactive proof system, the
both of which are based on bilinear groups. We give security proofs in the standard model, which
reduce to the security of the building blocks.
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1 Introduction

Privacy protection in cyber-physical space is a function that should be pursued in authentication. The
growth of companies (such as GAFA) in the areas of the IT infrastructures made protecting privacy
of vital importance for involved users in recent years because we use search engines, digital devices,
social networking services and e-shopping services everyday. Considering the change of our life and
business going the cyber-physical space, one of the critical aspects that our future authentication
framework should attain is anonymous authentication via attributes. For example, connected-to-the-
internet vehicles, bicycles and even human beings with embedded devices will use plural services like
GPS, availability of nearby places, disclosed data of other movable entities, and suitable options of
business strategy. There is no need of identity information of the user, but instead, the user should
be authenticated in anonymous way using her attribute certificates issued beforehand by independent
administration authorities related to the service providers. Another aspect is optimization of a service
based on plural other services. That is, there will be a compound service model which involves the
independent administration authorities at a time. For example, location data from GPS, availability
information of nearby places and disclosed data of other entities can be thrown into the input of smart
computation of optimizing business strategies.

However, there is a threat on such a framework of anonymous authentication using plural inde-
pendent attribute certificates; collusion attack. That is, malicious users of different identities bring
together their attribute certificates. They try to make a verifier accept anonymously using the merged
attribute certificates. Here the very anonymity is a critical potential drawback from the view point of
the collusion attack that causes misauthentication.

1.1 Related Work and Our Contribution

In this paper, we propose a decentralized multi-authority anonymous authentication scheme to resolve
the above problem. Our scheme is a special case of a decentralized multi-authority attribute-based



signature scheme (DMA-ABS). One of the state-of-the-art schemes of DMA-ABS is due to Okamoto-
Takashima [OT13]. Their scheme can treat general non-monotone access structures, while our scheme
treats only the all-AND structure. Nonetheless, a feature of our scheme is that, when a prover wants
the authorities to issue private secret keys as attribute certificates, the authorities simply generate
digital signatures on her global identity group element. This feature is useful when her global identity
group element is easy to be validated in registration phase by the authorities. The second feature
of our scheme is that the authorities are independent each other, while the computational amount
and the proof length of a prover grows linearly to the number of authorities involved There is also
previous work by Anada-Arita [AA18a,AA18b] which shares the above two features. However, their
authentication scheme is interactive between a prover and a verifier in accordance with the Σ-protocol
[Dam10], whereas our scheme is non-interactive based on the Groth-Sahai proof system [GS08] yielding
better availability for applications which need quick authentication.

Theoretically, we note that our scheme is captured as a variant of multi-prover proof system [Gol01].
A novel point is that, in our scheme, the verifier is convinced that the multi-provers are actually a
single prover who knows each witness of each corresponding statement, while anonymity is kept.

1.2 Overview of Our Construction and Security Proofs

In Section 6, we will construct a decentralized multi-authority anonymous authentication scheme with
non-interactive proofs (NI-DMA-A-AUTH). There we employ two building blocks. One is the structure-
preserving signature scheme [AFG+10,AFG+16] (see Section 2.2). Each decentralized authority indexed
by ‘a’ issues a private secret key skagid by signing a global identity group element gid of a prover. Here gid
is a group element of one of the source groups of bilinear groups. As a remark, a realistic constraint is
that the authorities have to refer to a common set of public parameters pp, as is usual in the case of NIST
Standard (like NIST.FIPS.186-4 [NIS13]). The other building block is the non-interactive commit-and-
prove scheme of the fine-tuned Groth-Sahai proof system [GS08,EG14]. We give a description of a
version adopted to the case of proving knowledge of the structure-preserving signatures (see Section
3). Our construction is under a principle of “commit-to-ID”. That is, in the commit-phase the prover
commits to an identity group element gid (“global identity”). She also commits to the components
of the structure-preserving signatures, which are also group elements. In the prove-phase the prover
generates a proof π of knowing a solution of the verification equation system of the structure-preserving
signatures. Here the common single commitment c0 to gid works for proving knowledge of bundled
witnesses (see “bundled product of the language” in Section 4). Thus, the collusion attack becomes
impossible due to the binding property of the commitment c0 because c0 is common in the verification
equation system. In other words, our construction builds on the “plug-in” mechanism of commitments
in generating a proof π in the Groth-Sahai proof system (see [GS08]).

In Section 5, after giving the syntax of our NI-DMA-A-AUTH, we give two security definitions. One
is resistance against collusion attacks that cause misauthentication, and the other is anonymity for
privacy protection. There we capture the requirements described above. In Section 6, security proofs
for the above construction are given in the standard model. The resistance against collusion attacks is
due to knowledge extraction property of the Groth-Sahai proof system and existential unforgeability
of the structure-preserving signature scheme. The anonymity is due to perfectly hiding property of
commitments and perfectly witness indistinguishable property of proofs of the Groth-Sahai proof
system, where the both properties hold in the simulation mode of the dual mode commitment.

2 Preliminaries

The set of natural numbers is denoted by N. We put N0 := N ∪ {0}. The residue class ring of integers
modulo a prime number p is denoted by Zp. The security parameter is denoted by λ, where λ ∈ N. A
probability P is said to be negligible in λ if for any given positive polynomial poly(λ) P < 1/poly(λ)
for sufficiently large λ ∈ N. Two probabilities P and Q are said to be computationally indistinguishable
if |P −Q| is negligible in λ, which is denoted as P ≈c Q. St means the inner state of an algorithm.
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2.1 Bilinear Groups [GPS08,EG14]

Let G be a generation algorithm of bilinear groups [GPS08]: G(1λ)→ (p, Ĝ, Ȟ,T, e, Ĝ, Ȟ). Here p is a

prime number of bit-length λ, Ĝ, Ȟ and T are cyclic groups of order p, and Ĝ and Ȟ are generators of
Ĝ and Ȟ, respectively. We denote operations in Ĝ, Ȟ and T multiplicatively. e is a map e : Ĝ× Ȟ→ T
with the following two properties:

• Non-degeneracy : e(Ĝ, Ȟ) 6= 1T

• Bilinearity : ∀a ∈ Zp,∀b ∈ Zp,∀X̂ ∈ Ĝ,∀Y̌ ∈ Ȟ, e(X̂a, Y̌ a) = e(X̂, Y̌ )ab.

Hereafter we denote an element in Ĝ and Ȟ with hat:‘ ˆ ’ and check:‘ ˇ ’ , respectively.

2.2 Structure-Preserving Signature Scheme [AFG+10,AFG+16]

The structure-preserving signature scheme Sig is a digital signature scheme based on bilinear groups,
in which a message is a vector whose entries belong to one of the two source groups Ĝ and Ȟ, and a
signature is a vector whose entries belong to Ĝ and Ȟ. Based on Abe et al. [AFG+10,AFG+16], we
survey the four ppt algorithms of the structure-preserving signature scheme Sig = (Sig.Setup, Sig.KGpp,
Sig.Signpp, Sig.Vrfpp).

Sig.Setup(1λ) → pp. On input the security parameter 1λ, this ppt algorithm executes the genera-
tion algorithm of bilinear groups, and it puts the output as a set of public parameters: G(1λ) →
(p, Ĝ, Ȟ,T, e, Ĝ, Ȟ) =: pp. It returns pp.

Sig.KGpp()→ (PK,SK). Based on the set of public parameters pp, this ppt algorithm generates a sign-

ing key SK and the corresponding public key PK as follows: Ĝu ∈R Ĝ, γ1, δ1 ∈R Z∗p, Ĝ1 := Ĝγ1 , Ĝu,1 :=

Ĝδ1u . γz, δz ∈R Z∗p, Ĝz := Ĝγz , Ĝu,z := Ĝδzu . α, β ∈R Z∗p, (Âi, Ǎi)
1
i=0 ← Extend(Ĝ, Ȟα), (B̂i, B̌i)

1
i=0 ←

Extend(Ĝu, Ȟ
β) (for Extend, see [AFG+16]). It puts PK := (Ĝz, Ĝu,z, Ĝu, Ĝ1, Ĝu,1, (Âi, Ǎi, B̂i, B̌i)

1
i=0)

and SK := (α, β, γz, δz, γ1, δ1). It returns (PK,SK).

Sig.Signpp(PK,SK,m)→ σ. On input the public key PK, the secret key SK and a message m = M̌ ∈ Ȟ,
this ppt algorithm generates a signature σ as follows.

ζ, ρ, τ, φ, ω ∈R Zp, Ž := Ȟζ , Ř := Ȟα−ρτ−γzζM̌−γ1 , Ŝ := Ĝρ, Ť := Ȟτ ,

Ǔ := Ȟβ−φω−δzζM̌−δ1 , V̂ := Ĝφu, W̌ := Ȟω.

It returns σ := (Ž, Ř, Ŝ, Ť , Ǔ , V̂ , W̌ ).

Sig.Vrfpp(PK,m, σ) → d. On input the public key PK, a message m = M̌ ∈ Ȟ and a signature σ =

(Ž, Ř, Ŝ, Ť , Ǔ , V̂ , W̌ ), this deterministic algorithm checks whether the following verification equation
system holds or not.

e(Ĝz, Ž)e(Ĝ, Ř)e(Ŝ, Ť )e(Ĝ1, M̌)e(Â0, Ǎ0)−1e(Â1, Ǎ1)−1 = 1T, and (1)

e(Ĝu,z, Ž)e(Ĝu, Ǔ)e(V̂ , W̌ )e(Ĝu,1, M̌)e(B̂0, B̌0)−1e(B̂1, B̌1)−1 = 1T. (2)

It returns a boolean decision d.

The correctness should hold for the scheme Sig: For any security parameter 1λ, any set of public
parameters pp← Sig.Setup(1λ) and any message m = M̌ ∈ Ȟ, Pr[d = 1 | (PK,SK)← Sig.KGpp(), σ ←
Sig.Signpp(PK,SK,m), d← Sig.Vrfpp(PK,m, σ)] = 1.
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Adaptive chosen-message attack of an existential forgery on the scheme Sig by a forger algorithm
F is defined by the following algorithm of experiment.

Expeuf-cma
Sig,F (1λ) :

pp← Sig.Setup(1λ), (PK,SK)← Sig.KGpp()

(m∗, σ∗)← FSignOpp(PK,SK,·)(pp,PK)

If m∗ /∈ {mj}1≤j≤qs and Sig.Vrfpp(PK,m∗, σ∗) = 1,

then Return Win else Return Lose

In the experiment, F issues a signing query to its signing oracle SignOpp(PK,SK, ·) by sending a
message mj at most qs times (1 ≤ j ≤ qs). As a reply, F receives a valid signature σj on mj . After
receiving replies, F returns a pair of a message and a signature (m∗, σ∗). A restriction is imposed on
the algorithm F: The set of queried messages {mj}1≤j≤qs should not contain the message m∗. The

advantage of F over Sig is defined as Adveuf-cma
Sig,F (λ) := Pr[Expeuf-cma

Sig,F (1λ) returns Win]. The scheme
Sig is said to be existentially unforgeable against adaptive chosen-message attacks (EUF-CMA) if for
any ppt algorithm F and any qs bounded by a polynomial in λ, the advantage Adveuf-cma

Sig,F (λ) is
negligible in λ. The structure-preserving signature scheme [AFG+10,AFG+16] is known to be EUF-
CMA under the q-SFP assumption.

3 Non-interactive Commit-and-Prove Scheme for Structure-Preserving
Signatures

In this section, we give a description of the non-interactive commit-and-prove scheme of the fine-tuned
Groth-Sahai proof system [EG14] adapted to the case of our specific group-dependent language; that
is, the language of the verification equation system of the structure-preserving signature.

A commit-and-prove scheme CmtPrv consists of six ppt algorithms: CmtPrv =
(CmtPrv.Setup,Cmtpp = (Cmt.KGpp,Cmt.Compp,Cmt.Vrfpp), Πpp = (Ppp,Vpp)).

3.1 Commitment Part

The commitment part (CmtPrv.Setup,Cmtpp) is described as follows.

• CmtPrv.Setup(1λ) → pp. On input the security parameter 1λ, this ppt algorithm executes a
generation algorithm of bilinear groups, and it puts the output as a set of public parameters:
G(1λ)→ (p, Ĝ, Ȟ,T, e, Ĝ, Ȟ) =: pp. It returns pp.

• Cmt.KGpp(mode)→ key. On input a string mode, this ppt algorithm generates a key. If mode = nor,
then key = ck which is a commitment key. If mode = ext, then key = (ck, xk) which is a pair of ck and
an extraction key xk. If mode = sim, then key = (ck, tk) which is a pair of ck and a trapdoor key tk. It
returns key.

We put pp := (pp, ck) because the commitment key ck is treated as a public parameter.

• Cmt.Compp(w; r)→ (c, r). On input a message w which may be a vector, this ppt algorithm generates
a commitment c with a randomness r. It returns (c, r). If w is a vector w = (w0, . . . , wn−1) (for
some n ∈ N bounded by a polynomial in λ), then c and r are also vectors of the same number of
components: c = (c0, . . . , cn−1) and (r0, . . . , rn−1), respectively. Note also that computation is executed
in componentwise way ; ci is generated from wi and ri, i = 0, . . . , n− 1.

• Cmt.Vrfpp(c, w, r) → d. On input a commitment c, a message w and a verification key r, this
deterministic algorithm generates a boolean decision d. It returns d.

The commitment part (CmtPrv.Setup,Cmtpp) of the Groth-Sahai proof system has the following
four properties.
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Definition 1 (Correct [GS08]) A commitment scheme Cmtpp is said to be correct if it satis-
fies the following condition: For any security parameter 1λ, any set of public parameters pp ←
CmtPrv.Setup(1λ), any commitment key ck ← Cmt.KGpp(mode) where mode = nor or ext or sim,
and any message w,

Pr[d = 1 | (c, r)← Cmt.Compp(w), d← Cmt.Vrfpp(c, w, r)] = 1.

Definition 2 (Dual Mode [GS08]) A commitment scheme Cmtpp is said to be dual mode if it sat-
isfies the following condition: For any security parameter 1λ, any set of public parameters pp ←
CmtPrv.Setup(1λ) and any ppt algorithm A,

Pr[A(pp, ck) = 1 | ck← Cmt.KGpp(nor)]

= Pr[A(pp, ck) = 1 | (ck, xk)← Cmt.KGpp(ext)], (3)

Pr[A(pp, ck) = 1 | ck← Cmt.KGpp(nor)]

≈c Pr[A(pp, ck) = 1 | (ck, tk)← Cmt.KGpp(sim)]. (4)

The above computational indistinguishability holds under the SXDH assumption [GS08,EG14].

Definition 3 (Perfectly Binding [GS08]) A commitment scheme Cmtpp is said to be perfectly
binding if it satisfies the following condition for some unbounded algorithm Cmt.Openpp: For any

security parameter 1λ, any set of public parameters pp ← CmtPrv.Setup(1λ), any commitment key
ck← Cmt.KGpp(nor) and any message w,

Pr[w = w′ | (c, r)← Cmt.Compp(w; r), w′ ← Cmt.Openpp(c)] = 1.

Definition 4 (Perfectly Hiding [GS08]) A commitment scheme Cmtpp is said to be perfectly hid-
ing if it satisfies the following condition: For any security parameter 1λ, any set of public parameters
pp← CmtPrv.Setup(1λ), any commitment key ck s.t. (ck, tk)← Cmt.KGpp(sim) and any ppt algorithm
A,

Pr[A(St, c) = 1 | (w,w′, St)← A(pp, ck, tk)(c, r)← Cmt.Compp(w)]

= Pr[A(St, c′) = 1 | (w,w′, St)← A(pp, ck, tk)(c′, r′)← Cmt.Compp(w′)]. (5)

3.2 Proof Part

The proof-part (CmtPrv.Setup, Πpp) is described as follows. Let CKpp denote the set of commitment
keys, Xpp denote the set of coefficients of the verification equation system (1) and (2), andWpp denote
the set of the pairs of messages and signatures for some x ∈ Xpp:

CKpp = {ck | ck← Cmt.KGpp(mode) for mode = nor or ext or sim},
Xpp = {x | (PK,SK)← Sig.KGpp(), x = PK},

Wpp = {w | w = (w0, w1, . . . , w7) ∈ Ȟ3 × Ĝ× Ȟ× Ĝ× Ȟ
s.t. (1) and (2) hold for ∃x ∈ X ,
w0 = m = M̌, (w1, . . . , w7) = σ = (Ž, Ř, Ŝ, Ť , Ǔ , V̂ , W̌ )}.

Then we define the following ternary relation Rpp.

Rpp
def
= {(ck, x, w) ∈ CKpp ×Xpp ×Wpp | w can be committed by Cmt.Compp under ck

and (1) and (2) hold for (x,w)}.

A group-dependent language Lpp,ck parametrized by ck ∈ CK is defined as follows.

Lpp,ck
def
= {x ∈ Xpp | ∃w ∈ Wpp s.t. (ck, x, w) ∈ Rpp}.
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We put pp := (pp, ck) because the commitment key ck is treated as a public parameter.
• Ppp(x, c, w, r)→ π. On input a statement x, a commitment c, a witness w and a randomness r which
was used to generate a commitment c, this ppt algorithm executes the proof-generation algorithm of
the Groth-Sahai proof system to obtain a proof π (see [EG14] for the details). It returns π.
• Vpp(x, c, π)→ d. On input a statement x, a commitment c and a proof π, this deterministic algorithm
executes the verification algorithm of the Groth-Sahai proof system to obtain a boolean decision d (see
[EG14] for the details). It returns d.

The proof-part (CmtPrv.Setup, Πpp) of the Groth-Sahai proof system have the following four prop-
erties.

Definition 5 (Perfectly Correct [GS08]) A commit-and-prove scheme CmtPrv is said to be per-
fectly correct if it satisfies the following condition: For any security parameter 1λ, any set of public
parameters pp← CmtPrv.Setup(1λ), any commitment key ck← Cmt.KGpp(mode) where mode = nor or
ext or sim, and any ppt algorithm A,

Pr[Vpp(x, c, π) = 1 if (ck, x, w) ∈ Rpp |
(x,w)← A(pp), (c, r)← Cmt.Compp(w),

π ← Ppp(x, c, w, r)] = 1.

Definition 6 (Perfectly Sound [GS08]) A commit-and-prove scheme CmtPrv is said to be per-
fectly sound if it satisfies the following condition for some unbounded algorithm Cmt.Openpp: For

any security parameter 1λ, any set of public parameters pp← CmtPrv.Setup(1λ), any commitment key
ck← Cmt.KGpp(nor) and any ppt algorithm A,

Pr[Vpp(x, c, π) = 0 or (ck, x, w) ∈ Rpp |
(x, c, π)← A(pp), w ← Cmt.Openpp(c)] = 1.

Let Cck be the set of commitments under ck to some message w.

Definition 7 (Perfectly Knowledge Extractable [GS08]) A commit-and-prove scheme CmtPrv
is said to be perfectly knowledge extractable if it satisfies the following condition for some ppt algorithm
Cmt.Extpp: For any security parameter 1λ, any set of public parameters pp ← CmtPrv.Setup(1λ), any
commitment key (ck, xk)← Cmt.KGpp(ext) and any ppt algorithm A,

Pr[c /∈ Cck or Cmt.Extpp(xk, c) = Cmt.Openpp(c) | c← A(pp, ck, xk)] = 1.

Definition 8 (Composably Witness-Indistinguishable [GS08]) A commit-and-prove scheme
CmtPrv is said to be composably witness-indistinguishable if it satisfies the following condition: For
any security parameter 1λ, any set of public parameters pp ← CmtPrv.Setup(1λ) and any ppt algo-
rithm A,

Pr[A(pp, ck) = 1 | ck← Cmt.KGpp(nor)]

≈c Pr[A(pp, ck) = 1 | (ck, tk)← Cmt.KGpp(sim)], and

Pr[(ck, x, w), (ck, x, w′) ∈ Rpp and A(St, π) = 1 | (ck, tk)← Cmt.KGpp(sim), pp := (pp, ck),

(x,w,w′, St)← ACmt.Compp(·)(pp, ck, tk), (c, r)← Cmt.Compp(w), π ← Ppp(x, c, w, r)]

= Pr[(ck, x, w), (ck, x, w′) ∈ Rpp and A(St, π′) = 1 | (ck, tk)← Cmt.KGpp(sim), pp := (pp, ck),

(x,w,w′, St)← ACmt.Compp(·)(pp, ck, tk), (c′, r′)← Cmt.Compp(w′), π′ ← Ppp(x, c′, w′, r′)]. (6)

4 Bundled Product of Language

In this section, we define a general notion of a bundled product of a language for the case of the
group-dependent language [GS08]. Intuitively, the notion determines a subset of the Cartesian product
of a language by the condition that the corresponding witnesses have a fixed number of common
components in the former part.
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Definition 9 (k-bundled product of a language) Let pp be a given set of public parameters in-
cluding a commitment key ck. Let k ∈ N0. For a ∈ A, put Lapp := Lpp. Suppose that, for pp, a witness

wa consists of n components: wa = (wa0 , . . . , w
a
n−1). The k-bundled product

∏k-bnd
a∈A Lapp of a language

Lpp is defined as follows.

k-bnd∏
a∈A

Lapp
def
= {(xa)a∈A ∈

∏
a∈A

Lapp | ∃w0, . . . , wk−1,∀a ∈ A,∃wak , . . . , wan−1,

wa = (w0, . . . , wk−1, w
a
k , . . . , w

a
n−1), (ck, xa, wa) ∈ R}. (7)

Claim 1 The 0-bundled product of a language
∏0-bnd
a∈A Lapp is the Cartesian product of the language∏

a∈A L
a
pp.

Claim 2 The k-bundled product of a language
∏k-bnd
a∈A Lapp is a subset of the Cartesian product of the

language
∏
a∈A L

a
pp.

The both claims are deduced from (7).

5 Decentralized Multi-authority Anonymous Authentication with
Non-interactive Proofs

In this section, we give a syntax and security definitions of a decentralized multi-authority anonymous
authentication scheme with non-interactive proofs, which we call NI-DMA-A-AUTH for short. In the
security definitions we capture the requirements described in Section 1: One is resistance against
collusion attacks that cause misauthentication, and the other is anonymity for privacy protection.

5.1 Syntax

Our scheme a-auth consists of five ppt algorithms, (Setup, AuthKGpp, SKGpp, Proverpp, Verifierpp).
• Setup(1λ) → pp. This ppt algorithm is needed to generate a set of public parameters pp. On input
the security parameter 1λ, it generates the set pp. It returns pp.
• AuthKGpp(a) → (PKa,MSKa). This ppt algorithm is executed by a key-issuing authority indexed
by a positive integer a. On input the authority index a, it generates the a-th public key PKa of the
authority and the corresponding a-th master secret key MSKa. It returns (PKa,MSKa).
• SKGpp(PKa,MSKa, gid) → skagid. This ppt algorithm is executed by the a-th key-issuing authority.

On input the a-th public and master secret keys (PKa,MSKa) and an element gid ∈ Ǧ of a prover, it
generates a private secret key skagid of a prover. It returns skagid.

• Proverpp((PKa, skagid)
a∈A′) → π. This ppt algorithm is executed by a prover who is to be authenti-

cated, where A′ denotes a subset of all indices at which the prover is issued her private secret keys by
authorities. On input the public keys (PKa)a∈A

′
and the corresponding private secret keys (skagid)

a∈A′ ,
it returns a proof π.
• Verifierpp((PKa)a∈A

′
, π)→ d. This deterministic polynomial-time algorithm is executed by a verifier

who confirms that the prover certainly knows the secret keys for indices a ∈ A′. On input the public
keys (PKa)a∈A

′
and the proof π, it returns d := 1 (“accept”) or d := 0 (“reject”).

5.2 Security Definitions

We discuss two security notions for our authentication scheme a-auth; security against collusion attacks
that yield misauthentication, and anonymity for privacy of provers’ global identities.
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Resistance against Concurrent and Collusion Attack of Misauthentication. One of the strongest attacks
to cause misauthentication is the concurrent and collusion attack on our a-auth. For a formal treatment
we define the following experiment on a-auth and an adversary algorithm A.

Exprconc-colla-auth,A (1λ) :

(qA, St)← A(1λ), A := {1, . . . , qA}, pp← Setup(1λ)

For a ∈ A : (PKa,MSKa)← AuthKGpp(a)

((gidi)
qI
i=1, St)← A(St, pp, (PKa)a∈A), I := {1, . . . , qI}

For a ∈ A : For i ∈ I : skagidi ← SKGpp(PKa,MSKa, gidi)

(A∗, π∗)← AProverpp((PKa,ska
gidi

)a∈A)|i∈I ,SKOpp(PK·,MSK·,·)(St)

Verifierpp((PKa)a∈A
∗
, π∗)→ d

If d = 1 then return Win else return Lose

Intuitively, the above experiment describes the attack as follows. The adversary algorithm A, on input
the security parameter 1λ, first outputs the number qA of key-issuing authorities. Then, on input the
set of public parameters pp and the issued public keys (PKa)a∈A, A outputs global identity element
gidi ∈ Ǧ, i = 1, . . . , qI . A invokes prover algorithm Proverpp with gidi, i = 1, . . . , qI to obtain proofs.
In addition, A collects at most qsk private secret keys by issuing queries to the private secret key
oracle SKOpp(PK·,MSK·, ·) with an authority index a ∈ A and a global identity element gidj ∈ Ǧ for
j = qI + 1, . . . , qI + qsk. We denote by Aj the set of authority indices for which the queries with gidj
were issued. That is,

Aj := {a ∈ A | A receives skagidj}, j = qI + 1, . . . , qI + qsk.

We here require that the numbers qA, qI and qsk are bounded by a polynomial in λ. At the end A
returns a target set of authority indices and a forgery proof (A∗, π∗). If the decision d on π∗ by Verifierpp
is 1 under (PKa)a∈A

∗
, then the experiment returns Win; otherwise it returns Lose.

A restriction is imposed on the adversary A: The target set of authority indices A∗ should not be
a subset of any single set Aj :

A∗ * Aj , j = qI + 1, . . . , qI + qsk. (8)

This restriction is because otherwise, A is given private secret keys for A∗ on a single gidj∗ for some
j∗, qI < j∗ ≤ qI + qsk, and then A can trivially succeed in causing misauthentication.

The advantage of an adversary A over an authentication scheme a-auth in the experiment is defined

as: Advconc-coll
a-auth,A (λ)

def
= Pr[Exprconc-colla-auth,A (1λ) = Win]. A scheme a-auth is called secure against concur-

rent and collusion attacks that cause misauthentication. if, for any ppt algorithm A, the advantage
Advconc-coll

a-auth,A (λ) is negligible in λ.
Anonymity. As is explained in Section 1, a critical feature to be attained is provers’ anonymity on
global identities when the provers are authenticated. Formally we define the following experiment on
a-auth and an adversary algorithm A.

Expranoa-auth,A(1λ) :

(qA, St)← A(1λ), A := {1, . . . , qA}, pp← Setup(1λ)

For a ∈ A : (PKa,MSKa)← AuthKGpp(1λ, a)

(gid0, gid1, St)← A(St, pp, (PKa)a∈A)

For a ∈ A : For i = 0, 1 : skagidi ← SKGpp(PKa,MSKa, gidi)

b ∈R {0, 1}, b∗ ← AProverpp((PKa,ska
gidb

)a∈A)(St, (skagid0 , sk
a
gid1

)a∈A)

If b = b∗, then return Win, else return Lose

8



Intuitively, the above experiment describes the attack as follows. The adversary algorithm A, on input
the security parameter 1λ, first outputs the number qA of key-issuing authorities. Then, on input the
set of public parameters pp and the issued public keys (PKa)a∈A, A designates two identity elements
gid0 and gid1. Next, A interacts with a prover Proverpp on input the private secret keys (skagidb)a∈A,
where the index b is chosen uniformly at random and hidden from A. If the decision b∗ of A is equal
to b, then the experiment returns Win; otherwise it returns Lose.

The advantage of an adversary A over an authentication scheme a-auth in the experiment is defined

as: Advano
a-auth,A(λ)

def
=
∣∣Pr[Expranoa-auth,A(1λ) = Win]− (1/2)

∣∣. An authentication scheme a-auth is called
to have anonymity if, for any ppt algorithm A, the advantage Advano

a-auth,A(λ) is negligible in λ.

6 Construction and Security Proofs of NI-DMA-A-AUTH

In this section, we construct a scheme of NI-DMA-A-AUTH. We employ two building blocks. One
is the structure-preserving signature scheme [AFG+10,AFG+16] (see Section 2.2). Each decentralized
authority indexed by ‘a’ issues a private secret key skagid for a global identity element gid. The other
building block is the non-interactive commit-and-prove scheme of the fine-tuned Groth-Sahai proof
system [GS08,EG14] adapted to the case of the structure-preserving signature (see Section 3). In the
commit-phase a prover generates commitments to the global identity element gid and the components
of the structure-preserving signatures (σa1 , . . . , σ

a
7 )a∈A

′
. In the prove-phase the prover generates a proof

π using the bundled witnesses. That is, w0 = gid is the common component, and for (wa1 , . . . , w
a
7) =

(σa1 , . . . , σ
a
7 ), (w0, w

a
1 , . . . , w

a
7) is a whole witness of the a-th component. The proof π is a proof for the

bundled product of the language (see Section 4).

6.1 Construction

According to the syntax in Section 5, the scheme a-auth consists of five ppt algorithms: a-auth =
(Setup, AuthKGpp, SKGpp, Proverpp, Verifierpp).
• Setup(1λ) → pp. On input the security parameter 1λ, it runs the generation algorithm of bilinear

groups, and it puts the output as a set of public parameters: G(1λ)→ (p, Ĝ, Ȟ,T, e, Ĝ, Ȟ) =: pp. Note
that pp is a common for both the structure-preserving signature scheme Sig and the commit-and-prove
scheme CmtPrv. Besides, it runs the generation algorithm of commitment key: Cmt.KGpp(nor) → ck.
It returns pp := (pp, ck).
• AuthKGpp(a) → (PKa,MSKa). On input an authority index a, it executes the key-generation algo-
rithm Sig.KGpp() to obtain (PK,SK). It puts PKa := PK and MSKa := SK. It returns (PKa,MSKa).

• SKGpp(PKa,MSKa, gid)→ skagid. On input PKa, MSKa and an element gid ∈ Ȟ, it puts PKa := PKa

and SKa := MSKa and m := M̌ := gid. It executes the signing algorithm Sig.Signpp(PKa,SKa,m) to
obtain a signature σa. It puts skagid := (gid, σa). It returns skagid.

• Proverpp((PKa, skagid)
a∈A′)→ π. On input (PKa, skagid)

a∈A′ , first, it commits to gid:

c0 ← Cmt.Compp(gid; r0).

Second, for each a ∈ A′, it commits to the components σa1 , . . . , σ
a
7 of the signature σa in the compo-

nentwise way.

(ca1 , . . . , c
a
7)← Cmt.Compp((σa1 , . . . , σ

a
7 ); (ra1 , . . . , r

a
7)).

Then, for each a ∈ A′, it puts xa := (Ĝaz , Ĝ
a
u,z, Ĝ

a
u, Ĝ

a
1 , Ĝ

a
u,1, (Âai , (Ǎ

a
i )−1, B̂ai , (B̌

a
i )−1)1i=0) by us-

ing PKa. It also puts ca := (c0, c
a
1 , . . . , c

a
7), wa := (w0, w

a
1 , . . . , w

a
7) := (gid, σa1 , . . . , σ

a
7 ) and ra :=

(r0, r
a
1 , . . . , r

a
7). It executes the prove-algorithm to obtain a proof:

πa ← Ppp(xa, ca, wa, ra), a ∈ A′.
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It puts π̄a := ((ca1 , . . . , c
a
7), πa) for each a ∈ A′, and it merges all the π̄as and the single commitment

c0 to gid: π := (c0, (π̄
a)a∈A

′
). It returns π.

• Verifierpp((PKa)a∈A
′
, π) → d. On input ((PKa)a∈A

′
, π), it converts PKa into xa and it puts ca :=

(c0, c
a
1 , . . . , c

a
7) for each a ∈ A′. Then it executes the verify-algorithm for each a ∈ A′ to obtain the

decisions:

da ← Vpp(xa, ca, πa), a ∈ A′.

If all the decisions das are 1, then it returns d := 1; otherwise it returns d := 0.

6.2 Security Proofs

Theorem 1 (Resistance against Concurrent and Collusion Attacks) For any ppt algorithm
A that is in accordance with the experiment Exprconc-colla-auth,A (1λ), there exists a ppt algorithm F that is

in accordance with the experiment Expeuf-cma
Sig,F (1λ) and the following inequality holds.

Advconc-coll
a-auth,A (λ) ≤ p

p− qI − qsk
· qA ·Adveuf-cma

Sig,F (λ).

This theorem means that, if the structure-preserving signature scheme Sig is existentially unforgeable
against adaptive chosen-message attacks, then our a-auth is secure against concurrent and collusion
attacks.

Proof. Given any ppt algorithm A that is in accordance with the experiment Exprconc-colla-auth,A (1λ), we
construct a ppt algorithm F that generates an existential forgery of Sig in accordance with the ex-
periment Expeuf-cma

Sig,F (1λ). F is given as input the set of public parameters pp and a public key PK. F
executes Cmt.KGpp(ext) to obtain a pair (ck, xk). F puts pp := (pp, ck). F invokes the algorithm A with
1λ to obtain the number qA of authorities. F chooses a target index a∗ from the set A := {1, . . . , qA}
uniformly at random. F runs the authority key generation algorithm honestly for a ∈ A except the
target index a∗. As for a∗, F uses the input public key:

For a ∈ A s.t. a 6= a∗ : (PKa,MSKa)← AuthKGpp(a),

For a = a∗ : PKa∗ := PK.

F inputs pp and (PKa)a∈A into A to obtain the number qI of concurrent provers. F puts I :=
{1, . . . , qI}.
Simulation of Concurrent Provers. When A invokes a prover with gidi ∈ Ǧ, i = 1, . . . , qI , F runs the
generation algorithm of a private secret key with gidi honestly for a ∈ A except the target index a∗.
As for a∗, F issues a signing query with gidi to its oracle:

For a ∈ A s.t. a 6= a∗ : skagidi ← SKGpp(PKa,MSKa, gidi),

For a = a∗, ska
∗

gidi
← SignOpp(PK,SK, gidi).

In the simulation of concurrent provers Proverpp((PKa, skagidi)
a∈A)|i∈I , F uses the private secret keys

(skagidi)
a∈A, i ∈ I. Note that this is a perfect simulation.

Simulation of Private Secret Key Oracle. When A issues a private secret key query with Aj ⊂ A and
gidj ∈ Ǧ, j = qI + 1, . . . , qI + qsk, F runs the generation algorithm of private secret key with gidj
honestly for a ∈ A except the target index a∗. As for a∗, F issues a signing query with gidj to its
oracle:

For a ∈ A s.t. a 6= a∗ : skagidj ← SKGpp(PKa,MSKa, gidj),

For a = a∗ : ska
∗

gidj
← SignOpp(PK,SK, gidj).
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F replies to A with the secret key skagidj . This is also a perfect simulation.
At the end A returns a target set of authority indices and a forgery proof (A∗, π∗).

Generating Existential Forgery. Next, F runs a verifier Verifierpp with input ((PKa)a∈A
∗
, π∗). If the

decision d of Verifierpp is 1, then F executes for each a ∈ A∗ the extraction algorithm Cmt.Extpp(xk, ca)
to obtain a committed message (wa)∗ = ((wa0)∗, (wa1)∗, . . . , (wa7)∗). Note here that, for all a ∈ A∗, (wa0)∗

is equal to a single element (w0)∗ in Ǧ. This is because of the perfectly binding property of Cmtpp.
Then F puts gid∗ := (w0)∗. The restriction (8) of the experiment assures that there exists at least
one authority index â such that â ∈ A∗ and â /∈ Aj for j = qI + 1, . . . , qI + qsk. F chooses such an â
at random and puts σ∗ := (σâ)∗ := ((wâ1)∗, . . . , (wâ7)∗). F returns a forgery pair of a message and a
signature (gid∗, σ∗). This completes the description of F.
Probability Evaluation. The probability that the returned value (gid∗, σ∗) is actually an existential
forgery is evaluated as follows. We name the events in the above F as:

Acc : Verifierpp accepts A,

TgtIdx : â = a∗,

Ext : Cmt.Extpp returns a witness (wa)∗

NewID : gid∗ /∈ {gidi}qI+qski=1 ,

Forge : (gid∗, σ∗) is an existential forgery on Sig.

We have the following equalities.

Advconc-coll
a-auth,A (λ) = Pr[Acc], (9)

Pr[Acc,Ext,TgtIdx,NewID] = Pr[Forge], (10)

Pr[Forge] = Adveuf-cma
Sig,F (λ). (11)

The left-hand side of the equality (10) is expanded as follows.

Pr[Acc,Ext,TgtIdx,NewID]

= Pr[TgtIdx] · Pr[Acc,Ext,NewID]

= Pr[TgtIdx] · Pr[Acc,Ext] · Pr[NewID | Acc,Ext]

= Pr[TgtIdx] · Pr[Acc] · Pr[Ext | Acc]

· Pr[NewID | Acc,Ext]. (12)

Claim 3

Pr[TgtIdx] = 1/qA. (13)

Proof. The restriction (8) assures that there exists an authority index â such that â ∈ A∗ and â /∈
Aj , qI + 1 ≤ ∀j ≤ qI + qsk. â coincides with a∗ with probability 1/qA. �

Claim 4

Pr[NewID | Acc,Ext] ≥ p− qI − qsk
p

. (14)

Proof. gid∗ is not in {gidi}qI+qski=1 with probability at least p−qI−qsk
p . �

Claim 5

Pr[Ext | Acc] = 1. (15)

Proof. This is because of the perfect knowledge extraction of Πpp. �
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Combining (9), (10), (11), (12), (13), (14) and (15) we have:

Advconc-coll
a-auth,A (λ) ≤ p

p− qI − qsk
· qA ·Adveuf-cma

Sig,F (λ).

�

Theorem 2 (Anonymity) Assuming the computational indistinguishability between commitment
keys {ck} of the mode nor and commitment keys {ck} of the mode sim, the following equality holds for
any ppt algorithm A that is in accordance with the experiment Expranoa-auth,A(1λ).

Advano
a-auth,A(λ) = 0.

Proof. Suppose that any ppt algorithm A that is in accordance with the experiment Expranoa-auth,A(1λ)
is given. When a set of public parameters pp = (pp′, ck) is given to A, where pp′ is for bilinear
groups, the commitment key ck can be chosen as a commitment key ck of the mode sim under the
assumption of the computational indistinguishability (4). Then the rest of values in Expranoa-auth,A(1λ)
distribute identically for both gid0 and gid1 due to the perfectly hiding property (5) and the witness-
indistinguishability (6). Therefore, Advano

a-auth,A(λ) = 0 holds. �

7 Conclusion

We gave a NI-DMA-A-AUTH scheme, in which a prover is able to convince a verifier that a single
anonymous prover has the knowledge of plural attribute certificates issued by independent authorities.
Perfect binding property of the commitment to gid works as a proof of simultaneous satisfiability of
the verification equations of structure-preserving signatures. Hence the collusion attacks are prevented.
On the other hand, perfectly hiding property of commitments and perfect witness-indistinguishable
property of proofs of the Groth-Sahai proof system yields anonymity, and hence, assures privacy.
Other structure-preserving signature schemes such as [AHN+17] can be employed instead of that of
[AFG+10,AFG+16].
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