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Generalized Related-Key Rectangle Attacks on
Block Ciphers with Linear Key Schedule

Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, Gaoli Wang

Abstract—This paper gives a new generalized key-recovery model of related-key rectangle attacks on block ciphers with linear key
schedules. The model is quite optimized and applicable to various block ciphers with linear key schedule. As a proof of work, we apply
the new model to two very important block ciphers, i.e. SKINNY and GIFT, which are basic modules of many candidates of the

Lightweight Cryptography (LWC) standardization project by NIST.

For SKINNY, we reduce the complexity of the best previous 27-round related-tweakey rectangle attack on SKINNY-128-384 from 2331
to 2251-25_|n addition, the first 28-round related-tweakey rectangle attack on SKINNY-128-384 is given, which gains one more round
than before. For the candidate LWC SKINNY AEAD M1, we conduct a 24-round related-tweakey rectangle attack with a time
complexity of 2123 and a data complexity of 2123 chosen plaintexts. For the case of GIFT-64, we give the first 24-round related-key
rectangle attack with a time complexity 2°1-58 while the best previous attack on GIFT-64 only reaches 23 rounds at most.

Index Terms—Key Recovery, Rectangle Attack, SKINNY, SKINNY AEAD, GIFT, Related-Key

1 INTRODUCTION

The boomerang attack [46], proposed by Wagner, is a
variant of differential cryptanalysis [17]. It combines two
short differentials with high probabilities to get a long dis-
tinguisher. Refinements on the boomerang attack have been
published, namely, the amplified boomerang attack [31],
and thereafter the rectangle attack [7]. At ASTACRYPT 2009,
Biryukov et al. [13] introduced the concept of boomerang
switch to further increase the probability of the boomerang
distinguisher. Another improvement was made by Dunkel-
man et al. [23], which is called sandwich attack. At Eu-
rocrypt 2018, Cid et al. [20] proposed a novel technique
named Boomerang connectivity table (BCT), which solved
the problem of incompatibility in boomerang distinguishers
noted by Murphy [36]. Later, the BCT effect in multiple
rounds of boomerang switch was studied by Wang and
Peyrin [47] and Song et al. [42].

Boomerang and rectangle attacks in a related-key setting
[9] are quite powerful, which break various important block
ciphers, including the key-recovery attacks on KASUMI
[10], [23] and AES [13]. Recently, many (tweakable) block
ciphers adopt linear key schedules, such as MANTIS [11],
LED [25], MIDORI [4], GIFT [16], Simon [18], CRAFT [15],
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and the popular TWEAKEY [29] framwork based ciphers,
including SKINNY [11], Deoxys-BC [30], QARMA [3], and
Joltik-BC [29]. Notably, in the CAESAR competition [21]
for secure authenticated encryption, Deoxys-II [30], which
is based on Deoxys-BC, has been selected as one of the
winners.

With the significant spread of the Internet of Things
(IoT) in recent years, lightweight cryptography is urgently
needed in numerous devices with little computing power.
Therefore, NIST launched the Lightweight Cryptography
(LWC) standardization project [37] to select lightweight
authenticated encryption with associated data (AEAD)
and hashing function. In 2019, about 56 candidates were
included in the Round 1 of the project [37]. Among the
candidates, many are based on block ciphers with linear key
schedule to become lightweight, such as SKINNY-AEAD
and SKINNY-Hash [12], SUNDAE-GIFT [5], TGIF [26],
GIFT-COFB [6], Remus [27], Romulus [28] and Saturnin
[19], etc. The study of boomerang and rectangle attacks on
block ciphers with linear key schedule becomes relevant.
At ToSC 2017, Liu et al. [33] introduced a generalized
key-recovery model for the related-key rectangle attack on
block ciphers with linear key schedule. Then, they applied
their model to the attacks on reduced-round SKINNY [11].

Our Contributions.

In this paper, we find that Liu et al.’s model [33] can be
significantly improved in the phase of generating quartets.
Therefore, we construct a new key-recovery model for the
related-key rectangle attacks on block ciphers with linear
key schedules. In order to show the effectiveness of model,
we apply it to the two important block ciphers, i.e. SKINNY
[11] and GIFT [16]. Note that, in the LWC standardization
project by NIST [37], many candidates such as SKINNY-
AEAD and SKINNY-Hash [12], SUNDAE-GIFT [5], TGIF
[26], GIFT-COFB [6], Remus [27] and Romulus [28] are based
on SKINNY or GIFT. To study SKINNY and GIFT is very
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important for the security evaluation of these candidates.

For the sake of a clear comparison between our model
and the previous one by Liu et al. [33], we utilize the
same 23-round boomerang distinguishers of SKINNY-128-
384 [11] as proposed by Liu et al. [33] and the same 19-round
boomerang distinguishers on GIFT-64 [16] as proposed by
Chen et al. [22] to launch our key-recovery attacks.

o For SKINNY-128-384, we improve the time complex-
ity of the best previous 27-round attack by a factor of
27975 Moreover, we present the first key-recovery
attack on 28-round SKINNY-128-384 with a time
complexity of 231525 and 2122 chosen plaintexts.

o In addition, we give a related-tweakey rectangle at-
tack on 24-round SKINNY-128-384 with time and da-
ta complexities of 2123, which is successfully applied
to the SKINNY AEAD member M1 [12] (one of the
56 candidates in the NIST Lightweight Cryptography
selection process). To our knowledge, this is the first
attack on round-reduced SKINNY AEAD M.

o For GIFT-64, we conduct a 24-round attack, which
gains one more round than the best previous attacks,
and the time complexity is 291-58.

The cryptanalysis results on SKINNY-128-384, SKINNY
AEAD M1 scheme and GIFT-64 are listed in Table 1.

2 THE RELATED-KEY RECTANGLE ATTACK

The boomerang attack, proposed by Wagner [46], is an
extension of the differential attack using adaptive chosen
plaintexts and ciphertexts to analyze block ciphers. It at-
tempts to generate a quartet structure at an intermediate
value halfway through the cipher. When the adversaries can
not find a long differential characteristic with probability
higher than for a random permutation, they can decompose
the cipher in two shorter ciphers as £ = E; o Fy and connect
two short differential trails to conduct the attack. For Ej,
the differential characteristic is « — [ with probability p,
and the differential characteristic for F; is v — J with
probability g.

Then a right quartet can be obtained by a boomerang
distinguisher which is the connection of the two shorter
differential characteristics as in the following steps:

1) Randomly choose a plaintext pair (P, P») with differ-
ence P| @ P, = «, and make queries over E to get
the ciphertext pair (C1,C3), where C; = E(Py),Cy =
E(Py).

2) Generate another ciphertext pair (Cs,Cy) by C3 =
Ci ® 9 and Cy = Cy @ 6, then make queries to the
decryption oracle to obtain their plaintexts (Ps, Py)
with two adaptive chosen-ciphertext queries.

3) Check whether the difference of (P, Py) equals to « or
not.

The adversary can get a right quartet with a probability of
p?q?, thus the probability of the distinguisher has to satisfy
pg > 27"/2,

When the values of « and § are fixed and don’t restrain
the values of 5 and +y as long as 3 # -, the boomerang attack
is developed into the amplified boomerang attack [31] or

Fig. 1. Related-key rectangle distinguisher framework

rectangle attack [7], which are chosen-plaintext attacks. The
probability of getting a right quartet is 27?2, where

p= /ZPTQ(a%ﬂi) and ¢ = /ZPTQ(’yj —9).

If the four plaintexts in a quartet are encrypted under
different master keys K, Ko, K3 and K, respectively, the
attack is developed into a related-key rectangle attack [9],
where Cl = EKl(Pl)/ CQ = EKz(PQ), 03 = EKS(Pg),
and Cy = Ek,(Ps). Assume one has a related-key differ-
ential o« — S over Ej under a key difference AK with a
probability p and another related-key differential v — ¢
over IJ; under a key difference VK with probability ¢, and
K1 @KQ = AK,K3@K4 = AK,Kl@Kg = VK. Then a
right quartet can be obtained as follows:

1) Randomly choose two plaintext pairs (Pj, P») and
(Ps, Py) with difference Py @ P, = cand Ps ® P, = ¢,
and encrypt them with E to get the ciphertext pairs
(C1,C3) and (Cs,Cy) under four master keys, where
KidoKs=AK,Ks® Ky =AKand K; ® K5 = VK.

2) Check whether the differences satify C1 & C3 = § and
Cy @ Cy = § or not. If yes, a right quartet is obtained,
otherwise return to step 1.

In the key recovery process, adversaries only need to
recover one of the four master keys, since the values of AK
and VK are known and the other three master keys can be
computed by the recovered key.

For clarity, the related-key rectangle framework is illus-
trated in Figure 1.

3 NEW MODEL OF RELATED-KEY RECTANGLE AT-
TACK

Under a related-key rectangle distinguisher, our key recov-
ery algorithm is adapted from Biham et al.’s algorithm [8]
which is a single-key rectangle attack and Liu et al.’s [33]
algorithm which is a related-key rectangle attack. In the key
recovery algorithm, we follow the notations in [33].

We decompose the cipher algorithm E into three com-
ponents as E = Ey o E' o Ej,, where E’ is determined by
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TABLE 1

Summary of analysis results of SKINNY-128-384, GIFT-64 and SKINNY AEAD M1. (I)DC stands for (impossible) differential cryptanalysis; IC
stands for integral cryptanalysis; MITM stands for meet-in-the-middle attack; SK stands for single-key; RK stands for related-key.

SKINNY-128-384

Rounds Approach | Setting | Time Data | Memory | Size set up Ref.
22 IDC SK 2373 A8 [ 99222 1 glAT22 k =384 [45]
22 MITM SK 2382.46 1 996 2330.99 k=384 [43]
rectangle RK 2551 2127 2160 k=384 [33]
27 rectangle RK 2337 2128 21°° k=384 [33]
rectangle RK i I P t =128,k = 256 | Sect. 4.4
28 rectangle RK 231535 1 gl22 1 912232 t <68,k >316 | Sect.4.5
GIFT-64
Rounds Approach | Setting Time Data | Memory | Size set up Ref.
14 IC SK 297 203 - k=128 [16]
15 MITM SK 2120 257 - k=128 [16]
15 MITM SK 2112 - - k=128 [38]
19 DC SK 2M12 203 - k=128 [48]
23 boomerang | RK 21266 20633 - k=128 [34]
23 rectangle RK 2107 200 200 k=128 [22]
24 rectangle RK 29158 17960 260-32 k=128 Sect. 5.3
SKINNY AEAD M1
Rounds key size | Time Data | Memory | Approach Ref.
SKINNY M1 24 128 2% 2173 212t rectangle Sect. 4.7
Ep) under the related-key difference AK, we denote the
P, P number of unknown bits in the difference of plaintexts as
<« ~a’ 7. Let my, be the number of involved subkey bits that affect
@\Pz Ea\P“ the plaintext diff hil ting plaintext pairs t
K{E, K| Ey e plaintext difference while encrypting plaintext pairs to
K ZE] K the position of the known difference under F. Similarly,
< o Ep . Ep when extending several rounds for the difference of the
o X distinguisher § under E by the related-key difference VK,

o
- — = — —¥
dr
E
Ci o' Cj
c, ¢ C,

Fig. 2. Related-key rectangle attack framework

the related-key rectangle distinguisher and Fy and E; are
the rounds extended backward from the start and forward
from the end of the distinguisher, respectively. Let ¢ denote
the size of a cell, k£ denote the size of the master key and n
be the size of the state in the block cipher. After extending
the rectangle distinguisher backward for several rounds (i.e.

we define r¢ and mys for E;. The related-key rectangle
framework is illustrated in Figure 2. The algorithm being
composed of data collection and key recovery is as follows:

1) Construct structures including 2™ plaintexts, which
traverse all the possible values for the 7, /c active cells
while assigning suitable constants to the other cells
that hold zero or known differences. If s denotes the
expected number of right quartets, attackers need to
prepare y = +/s - /27 /pq different structures.

2) Query the corresponding ciphertexts for the 2" plain-
texts in each structure under the four related keys
K, Ks, K3 and K, and get four plaintext-ciphertext
sets Ly, Ly, L3 and L4, where K; is the secret key
and Kg = KlEBAK, K3 = Kl@VK and K4 =
K1 & AK @ VK. Insert Ly and L4 into hash tables
H, and H, indexed by the 7y, bits of plaintexts.

3) Guess the 2™ possible my, bits of subkey involved in
Eb:

a) Initialize a list of 2™/ counters, each of which corre-
sponds to a m-bit subkey guess.

b) For each set L; of every structure, partially encrypt
plaintext P, € L; under Ej, by the guessed subkeys
of K1, and partially decrypt it under the subkey of
Ky = K1 @ AK to the plaintext P, after xoring the
known difference o, i.e. P» = Dy, (Ep,, (P1) © @)
where Dy, is the partial decryption process D
using K5. Then check H; to find the corresponding
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plaintext-ciphertext pair indexed by the 7, bits of P,.
Proceed with a similar process for sets L3 and L4 and
obtain two sets as

S1 ={(P1,C1, P2,C2) : (P1,C1) € Ly, (P, Ca) € Lo,
By, (P1) ® B, (P2) = a}

and

Sy ={(P5,C3, Py, Cy) : (P5,C5) € L, (Py,Cy) € Ly,
By, (P3) @ By, (C4) = o).

c) There are M = y - 2™ chosen plaintexts under each
key, and the sizes of S; and S5 are all y - 2" due to y
structures. Denote ¢’ being the truncated form prop-
agated from § under E; with probability 1. There are
n — ry bits whose differences are 0 in ¢, Insert Sy
into hash table H3 indexed by the n — r bits of C
and n — ry bits of Cy that are 0 in ¢’. Then for each
element of S5, we check the hash table H3 to find
(Pl, C, P, 02) so that (Cl, 03) and (02, 04) collide
in the n — r bits. There will be about M? - 272(=7s)
quartets remaining.

d) With the quartets obtained in step (c), we conduct
the key recovery process for the subkeys involved
in Fy. Instead of guessing all the m-bit subkeys
at once, we firstly determine whether a candidate
quartet is useful by guessing only a small fraction
of the unknown involved subkey bits, which is just
a guess and filter procedure. We denote the time
complexity in this step as ¢.

e) Select the top 2™/~ hits in the counter to be the can-
didates, which delivers a h-bit or higher advantage.

f) Guess the remaining k — m; — m; unknown key bits
exploiting the key schedule algorithm, and exhaus-
tively search over them to recover the correct master
key. If the guessed m;-bit keys are not right, go to
step 3 with another guess.

Since the key recovery attack is a related-key attack, the
data complexity is D = 4M = 4y - 2™ chosen plaintexts.

In the quartets collection and key recovery process, we
need 2 - 2M table look-ups in step 3(b) and 2"** - M table
look-ups in step 3(c) resulting in 2™ - 3M to prepare the
quartets. M?2.272("=71) .¢ encryptions in step 3(d) and 2¢~"
encryptions in step 4 are needed to recover the master key.
Thus the total time complexity, which is composed of data
collection and key recovery, is 4M + 2™ . M? . 272(n=7y) .
c+ 2k—h,.

The memory complexity is 4M + M 4 2™+ = 5M + 2™/,
Success Probability. We use the method by Sel¢uk [39] to
compute the success probability:

VsSny — (1371(1 — 27}1)
VSy +1

where Sy is the signal-to-noise ratio and Sy = p?¢?/27".

PSZ(D(

), M

4 APPLICATION TO SKINNY

The SKINNY family [11] provides 64-bit and 128-bit block
versions and denotes n as the block size. Several candidates
of the Lightweight Cryptography (LWC) standardization
project by NIST [37] are based on the SKINNY block cipher,
such as SKINNY-AEAD and SKINNY-Hash [12], Remus [27]

(CShiftRous ) (ixColumns )

v [v) (v
MIMIM
MIMIM
o o) [~

Fig. 3. The SKINNY round function

and Romulus [28]. The family of lightweight block ciphers
SKINNY has three tweakey size versions SKINNY—n — ¢,
where ¢t = n, t = 2n and ¢t = 3n, and denotes the tweakey
state by TK1 when t = n, by TK1 and TK2 when ¢t = 2n,
and finally by TK1, TK2 and TK3 when t = 3n.

Since SKINNY was proposed, there has been a number
of third-party cryptanalysis from all over the world. Tolba
et al. [45] applied impossible differential attacks to 18-, 20-
and 22-round SKINNY-n-n, SKINNY-n-2n and SKINNY-n-
3n, respectively, in the single-key model at AFRICACRYPT
2017. At ToSC 2017, Liu et al. [33] searched related-tweakey
impossible differentials and related-tweakey rectangle dis-
tinguishers and applied them to analyze up to 19-, 23- and
27-round SKINNY-n-n, SKINNY-n-2n and SKINNY-n-3n
respectively. In [2], Abdelkhalek et al. proposed a method to
model the DDT of large Sboxes and verified that no differen-
tial characteristic with probability higher than 27128 for 14-
round SKINNY-128 exists. In [41], Sadeghi et al. presented
zero correlation attacks on SKINNY-64-64/128 and gave a
related-tweakey impossible differential attack on SKINNY-
128-256 up to 23 rounds. At ASIACRYPT 2018, Shi ef al.
[43] analyzed 22-round SKINNY-128-384 by the Demirci-
Selcuk meet-in-the-middle attack. At ToSC 2019, Song et
al. [42] revisited the Boomerang Connectivity Table [20]
and recalculated the probabilities of some related-tweakey
boomerang distinguishers proposed in [33]. Besides, there
are analyses on SKINNY-64 in [1], [40], [40], [44].

4.1 Specification of SKINNY and SKINNY AEAD

The block cipher SKINNY [11] is an SPN cipher that uses
a compact Sbox, a sparse diffusion layer and a light key
schedule. SKINNY follows the TWEAKEY framework [29],
thus except for a plaintext P and a master key K it takes a
tweak T as the third input, and different ciphertexts can be
obtained under the same plaintext and master key due to
the different tweaks. Inspired by the TWEAKEY framework
[29], SKINNY provides a unified view for key and tweak by
tweakey.

For all versions of SKINNY, the tweak size and the key
size can vary according to the users but the key size should
be at least as large as the block size. Both the intermediate
state and tweakey state are viewed as a 4 x 4 square array
of cells indexed by

o 1 2 3
4 5 6 7
§ 9 10 11
12 13 14 15

Note that SKINNY adopts a row-wise form rather than
column-wise fashion as AES [24], as it is more hardware-
friendly as pointed out in [35].
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The Round Function. One encryption round of SKINNY
consists of five operations in the following order: SubCells
(SC), addConstants (AC), AddRoundTweakey (ART),
ShiftRows (SR) and MixColumns (MC), which is
illustrated in Figure 3.

SubCells. Apply a 4-bit Sbox in case of n = 64 and a
8-bit Sbox in case of n = 128 to the 16 cells of the state. It is
the non-linear operation in the round function.

AddConstants. The round constants are generated by a
6-bit affine LFSR. Three round constants are xor’ed to the
first cell of the first three rows respectively.

AddRoundIweakey. Only the first two rows of the round
tweakey are xor’ed to the first two rows of the internal state.
The round tweakey tk; in round i is defined as:

. t= n: tk'l = (TKI)”
o t=3n:th; = (TK1); & (TK2); ® (TK3);,

where (TK1);, (I'K2); and (T'K3); are generated by the
tweakey schedule algorithm that is introduced below.

ShiftRows. Rotate the 4 cells of the j—th row right by
plj] positions, where p = (0, 1,2, 3).

MixColumns. Pre-multiply the internal state by a 4 x 4
binary constant matrix M to update the state. The matrix M
and its inverse matrix M~! are represented as follows:

101 1 0100
|1 00 0 4 o111
M=1o 1 1 0"M |01 01
1010 100 1

Definition of the round tweakey (subtweakey). The
tweakey schedule algorithm of SKINNY is a linear trans-
formation. The t-bit tweakey input is firstly divided into
z = t/n n-bit blocks, and located in TK1 with ¢t = n, or
TK1, TK2witht =2nor TK1, TK2, TK3 with t = 3n.

First, a permutation Pr is applied to the cells of all
tweakey arrays as TK,, < TK ] forall 0 < ¢ < 15
with

ZPrli

Pr=19,15,8,13,10,14,12,11,0,1,2,3,4,5,6, 7],

for z € {1,2} and z € {1,2,3}. This is a position permuta-
tion with the value unchanged.

Then, each cell in the first two rows of TK2 (or TK?2
and T'K3) are updated by one (or two) LFSRs to get
(TKm); (m = 1,2,3). The LFSRs are listed in Table 2, we
only give the LFSRs used for the 8-bit cells.

The SKINNY AEAD modes.

The SKINNY AEAD modes are proposed by Beierle et
al. [12] and included in the Round 1 candidates of the NIST
lightweight cryptography competition. The authenticated
encryption scheme follows the ©CB3 mode [32] and uses
either SKINNY-128-384 or SKINNY-128-256 as its internal
tweakable block cipher. Totally, there are six AEAD modes

Mo | | My | | My, —

0lldo 1||do lm —1||do
Enk Enk ENk

Co | | Cy | | C,—1

Fig. 4. The encryption part of SKINNY AEAD M1

proposed and the SKINNY AEAD M1 based on SKINNY-
128-384 is their primary member. M1 is a nonce-based
AEAD and assumed to be nonce-respecting for the adver-
sary. Here, we give a simple description for the AEAD M1.

The tweakey size of SKINNY AEAD M1 is 384 bits, the
last 256 bits of the tweakey is just the concatenation of the
128-bit nonce N and the 128-bit key K, but the first 128 bits
are different in different blocks in a long message. They can
be updated in a series of blocks in the following way.

The first 128 bits of tweakey store eight bytes that come
from a 64-bit LFSR, followed by seven bytes of zeros and a
single byte for the domain separation (dyp or d; whether the
block is padded). The LFSR is initialized to LFSRy = 053||1
and updated by upde, that is defined as

updes : @esl|wezl| - |[z1]|z0 — wesllyezll - [ly1llyo
with:
yi < x;—1 for i€ {63,62,...,1}\{4,3,1},
Ya < T3 D Tes,
Yz < 22D Tz,
Y1 — To D xes,
Yo < Te3-

Before the bytes of the LFSR are loaded in the tweakey input,
the order of them is reversed, i.e. reves(LFSR)||0°||dg (do
will be replaced by d; for the padded block), where revgy is
defined as

revey : o7 |zg||ws||wa||zs|[we||21||zo —

zol|21||zal|2s||zal|2s||z6| |27 (Vi : |2s] = 8)

In encryption for each block, the 384-bit tweakey is set
to be revgs(LFSR)||0%||do||N|| K. In fact, as described in
[12], the 64-bit LFSR plays the same role as a block counter.
The encryption part of SKINNY AEAD M1 is illustrated in
Figure 4. For more details, we refer to [12].

4.2 Notations and Definitions of SKINNY

In this section, the notations are defined as follows:

X; @ state before SC and AC operation in Round 3,
0<i<r—1

Y; :  state after SC and AC operation in Round ¢,
0<i<r-—1

Z; : state after ART and SR operation in Round 4,
0<i<r—1

The details of the i-th round (0 < ¢ < r — 1) are as follows:

X Sy 25 705 X

AC

i
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TABLE 2
The two LFSRs used in SKINNY tweakey schedule

LESRy  (z7|[zs]|zs]|zal|zs]|z2]]z1

zo) — (z6llzs[|za]lzs][za][z1][[z0][27 ® 25)

LFSR3  (x7]lzs]|zs|zal]zs]z2]]z1

z9) — (z0 @ wsl[z7[[zs][z5][24][23][22][21)

AX difference of the state X

Xilj -k jt" byte, - - -, k'h byte of X,
where 0 < j,k < 15

Yilj-- K] jt" byte, - - -, k" byte of Y,
where 0 < j,k < 15

Zilj -k §'" byte, - - -, k" byte of Z;,

where 0 < 5,k < 15

4.3 Properties of SKINNY

Here, we introduce several properties and a lemma on
SKINNY that will be used in the related-tweakey rectangle
attack.

1) The matrix used in the MixColumns operation is not a
MDS matrix. Therefore, extra values of some cells may
need to be guessed except the active cells in both input
and output of the MC operation, which leads to more
subtweakey bytes that need to be guessed. We use the
same example as in [33] which is illustrated in Figure 5
to explain the property.

T
STKys X1a Y14 i Zy4
H sc H ART ] MC
SRR duseiEds
‘ l
STKys Xi1s Yis Zs5

sc ART e
AC SR
Yie l Z16

sc ]| ART
ac | 1 [ ] sr
%

. Both the difference and the value are needed
Zero difference, but the value is needed

o -

@ Additional key cell that need to be guessed

Fig. 5. Property of MC operation of SKINNY

When we backtrack the trail from AX;7; to round 14
and guarantee that only AX4[8] is active, it is neces-
sary to check whether the differences in AX5[2, 10, 14]
lead to a single active cell in AZ14[8]. Therefore, the
differences of AX;5(2, 10, 14] are needed to indicate the
values as well as differences at Y75[2,10, 14]. To com-
pute the value at Y15[10], the value of X4 is required,
thus an additional cell ST K14[4] needs to be guessed.

2) Since the AddRoundIweakey operation follows
the SubCells operation, and ShiftRows and
MixColumns operations are all linear transformations,
we can xor an equivalent subtweakey to the internal
state after the MC operation, ie. SKT% = MC o
SR(STK) as can be seen in Figure 6.

STK STK®™
0]1(2(3 0[1]2]|3
4[5[6|7] SR [0]1[2]3
Mc |7]4[5]|6
0[1]2]|3

Fig. 6. The equivalent subtweakey after MC operation

Lemma 1. [33] For any non-zero input-output difference
pair (8in, dout) for the SKINNY Sbox S, there is one solution
x satisfying S(x) @ S(z @ 0;y,) = our ON average.

Note that MixColumns operation is not omitted in
the last round of SKINNY, but it is well known that
MixColumns is a linear operation which does not impact
the differential cryptanalysis. To simplify the discussion, we
omit the ShiftRows operation and MixColumns operation
in the last round, and denote SRo M C~1(C) (i.e. state Z,_;
in r-round attack) by C in the last round, where C is the
ciphertext.

4.4 Related-tweakey Rectangle Attack on 27-round
SKINNY-128-384

We use the same related-tweakey differential trail as in
[33] which is listed in Table 3. As described in [33], the
probability of the 11-round related-tweakey differential trail
is 2721, and there are two trails holding with the same
probability with the input and output difference unchanged
leading to p = 272 A 12-round differential trail with a
probability of 2737 can be obtained by extending one round
at the start of the 11-round trail, and connecting the 11-
round and 12-round trails to construct a 23-round rectangle
distinguisher. When using the boomerang switch technique
in [13], four Sboxes can be saved leading to § = 2736, Thus
the probability of the 23-round rectangle distinguisher is
9-n ,p2q2 — 9—240

We prefix two rounds at the beginning of the 23-round
distinguisher and append two rounds at the end to conduct
a related-tweakey rectangle attact on 27-round SKINNY-128-
384, which is illustrated in Figure 7.

In data collection, since AY; = ART ! o SR ! o
MC~!(a), where « is the difference in the start of the
rectangle distinguisher that is known, we only need to guess
the 8 bytes of ST K to construct sets S; and S,. There are
two bytes of 0 differences in the difference of plaintexts,
ry = ldc, my = 8¢, ry = 13c and my = 12c where ¢ = 8.
Totally, there are about y?-227-.272("=71) = ¢2.2176 quartets
as (C1, Cq, Cs5,Cy) remaining. We give the details of the key
recovery process for the my bit subtweakeys involved in E¢
as follows (we restate that we treat Zog to be the ciphertext):

1) In the second column of the ciphertext pair (Cy,Cj3),
the value of Z36[13] is known and the value of X26[13]
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Fig. 7. Key-recovery attack against 27-round SKINNY-128-384

can be deduced since there is no subtweaky involved.
According to the inverse of the MixColumns operation,
AZ25[13] = AXQG[].?)] ® AXQG[l] and AZQ5[].3] = 0.
With AXo6[1] = AXa6[13], AYa6[1] and as the value
as well as the difference at Z4[1] can be obtained from
the ciphertext pair, there is one solution for ST K6[1]
on average. Similarly, AXy6[5] = AXo6[9] ® AX26[13]
since AZs5[5] = 0, and there is one solution for
ST K6[5] on average.

Partially decrypt the second column of ciphertext pair
(C1,C3) for one round to get the values as well as
differences at Zss[1,9]. Since the input difference of
the Sbox at Xo5[1] can be obtained from the rectangle
distinguisher and the output difference is just AZss5[1],
there is one solution for STK35[1] on average. But
the difference AZs5[9] ca be mapped to the known
difference AX55[11] with a probability of 275, There
are about y? - 2176 . 278 = 2. 2168 guartets remaining.
Partially decrypt the second column of ciphertext pair
(Cs,Cy) to compute the values and differences at
Z25[1,5,9,13]. The probability that AZys[5,13] = 0
is 2716, the probability that Zo5[1] of (Cy,Cy4) can be
mapped to the known difference AXs5[1] under the
obtained subtweakey is 278, and the probability that
Za5]9] of (Ca,C4) can be mapped to the known dif-
ference AXo5[1] with no subtweakey involved is 275.
Totally, there are about y?-2168.2732 = ¢2.2136 quartets
remaining.
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4) Similarly, for the first column of ciphertext pair
(01,03), AX26[4] = AXQG[S] D AXQﬁ[lQ] can be d-
educed since AZss5[4] = 0 and AXy4[8,12] can be
computed by the ciphertext pair. We can get one
value of ST Kys[4] on average. Then guess the val-
ue of STKo6[0] and compute the values as well as
the differences at Zs5[0,4,8,12], deduce the value of
ST K5[0], check whether the difference at Xa5[4] is 0
and whether the known differences AXs5[10,13] can
be obtained by the values at Z55[8, 12]. There are about
y? - 2136 .98 . 9716 — 42 . 9128 guartets remaining.
Then partially decrypt (Ca, C4) with the obtained sub-
tweakey involved and check whether AZy5[4] = 0,
There are about y? - 2128 . 2732 = 32 . 29 quartets
remaining.

5) Utilizing a similar process with step 1 to step 3 to
recover ST Ky6[3,7) and ST K»5[3], there are about
y? 2969724 — 2. 972 quartets remaining.

6) ST K6[2,6] and ST K5[5] can be recovered in a similar
process. There are about y? - 272 - 278 = 2. 264 quartets
remaining to count for the 96-bit subtweakeys involved
in B f-

7) Output the top 2™/ =" counters for the candidates and
exhaustively search the other & — m; — m; bit keys to
check whether the guessed key is correct.

When the expected number of right quartets s = 1, y =
V52727 [hG = 28, the data complexity is D = 4M = 4-y-
27 = 2122 chosen plaintexts. And 2™ - 3M = 218558 table
look-ups are needed. In each guessed mj-bit subtweakey,
M?.272("=75) one-round decryptions are conducted which
are equal to M?-272("="1) .1 /27 = 218725 encryptions, thus
the time complexity is 4M + 2™ - M2.272(0=71) . o 4 2k —h ~
2251.25 when the size of the master key is k = 256, and the
success probability is 83.74% when h = 16. The memory
complexity is 5M + 2™m7 ~ 2122:32,

When the expected number of right quartets equals 2, the
data complexity is 2122® chosen plaintexts, time complexity
is 225225 and the memory complexity is 22282, And the
success probability is 91.89% when h = 16.

4.5 Related-tweakey Rectangle Attack on 28-round
SKINNY-128-384

Extending one more round backward from the 27-round
attack in Subsection 4.4, all the bytes of difference in the
plaintext are active. However, the ART operation can be
conducted after the MC operation by xoring an equivalent
subtweakey. Therefore, the 28-round rectangle attack only
needs to guess extra 64-bit subtweakeys compared to the
27-round attack. We have r, = 14c, m;, = 16¢, ry = 13c and
my = 12c where ¢ = 8. The key recovery process is identical
to that in the 27-round attack on SKINNY-128-384.

If the expected number of right quartets s = 1, a 28-
round related-tweakey rectangle attack on SKINNY-128-384
can be conducted with a data complexity of 2'?? chosen
plaintexts, a time complexity of 231525 4 2304 ~ 231525
encryptions when h = 80, a memory complexity of 212232
and a success probability is 83.15%.
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4.6 Related-tweakey Rectangle Attack on 24-round
SKINNY-128-384

We construct a 24-round related-tweakey rectangle attack by
extending the 23-round distinguisher one round forward, i.e.
we delete the first two rounds and the last one round from
the 27-round attack for SKINNY-128-384 which is illustrated
in Figure 7, and we treat the state Zs5 to be the ciphertext.
Since there is no round extended from the start of the
distinguisher, no involved subtweakey needs to be guessed.
There are four active bytes in the start of the distinguisher,
eight active bytes in AZ>5 and four bytes of subtweakey
involved in the last round. Thus r, = 4c, m, = 0, ry = 8¢
and my = 4c where c = 8.

We choose y structures of 232

plaintexts each, and M? -
272(n7rf) — y2 . 964 272(128764)

= y? - 2764 quartets. The
key recovery process can be conducted as follows:

1) Since the difference at X35[0] is known, the difference
at Y25[0] and the value at Z55[0] can be obtained from
the ciphertext pair (C1, C3), one solution of ST K5[0
can be computed on average. Then by verifying the
obtained keys by the ciphertext pair (Cs,C4), about
y?-27 " quartets are remaining. Since no byte of ST K25
is involved in the computation of Z5[8,12], the val-
ues of Z25[8,12] in both(Cy,C3) and (Cs,Cy4) can be
computed to the known differences AX55[10, 13] with
a probability of 2732, and about y? - 27194 quartets are
remaining.

2) Conducting a process similar to that in step 1 to the
other three columns of Zys5, about 32 - 27160 quartets
are remaining to count for the 32-bit subtweakey.

When the expected number of right quartets s = 4
and advantage h = 20, y = /s - 2"/27" /pG = 289, a 24-
round related-tweakey rectangle attack on SKINNY-128-384
can be conducted with a data complexity of 2'?3 chosen
plaintexts, a time complexity of 2123 42114 /24 4 2100 ~ 2123
encryptions, and the success probability is 97.6%. Since no
subtweakey needs to be guessed in the upper part, we
don’t need to store the chosen plaintexts, and the memory
complexity is 2121

4.7 Related-tweakey Rectangle Attack on SKINNY
AEAD

We have analyzed the tweakable block cipher SKINNY-128-
384 by a related-tweakey rectangle attack in Section 4, where
there is no constraint to the value and difference of the
tweak. However, the SKINNY AEAD member M1 adopts
SKINNY-128-384 as its internal primitive, but M1 initializes
the tweakey bytes in a more complex process which leads
to more constraints appearing when the adversary conducts
a related-tweakey attack on it. Here, we summarize the
constraints as follows.

The first and most important, as depicted by the de-
signers, the SKINNY AEAD member M1 employs a 384-bit
tweakey input but a 128-bit master key. And for all versions
of SKINNY AEAD, they claim full 128-bit security for key
recovery, confidentiality and integrity in the nonce-respecting
mode. Moreover, when using the recommended parameters
given in [12], the total size of the message does not exceed
264 blocks and the maximum number of messages that can
be handled under the same key is 22 in SKINNY AEAD
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member M1. Therefore, only the attack on SKINNY-128-384
with time complexity < 2!?8 can be applied to SKINNY
AEAD M1.

Secondly, a restriction to the difference of T K'1 appears
due to the specific initialization of the first 128-bit tweakey.
The first 128-bit tweakey is composed of a 64-bit number
that is updated by a linear transformation revgs and a
LFSR, 7 bytes of zeros and a single byte for the domain
separation that is a constant. The other 256-bit tweakey is
the concatenation of nonce NV and key K. Thus, in a related-
tweakey attack, the last 64 bits of T K1 can not contain any
difference. Fortunately, both AK used in the upper trail and
VK used in the lower trail don’t contain any difference
in the 64 bits in the 23-round related-tweakey rectangle
distinguisher.

Thirdly, for a AEAD scheme, no decryptions are pro-
ceeded when a tag is invalid and only a null character is
returned. This implies that the adversary can only make
queries to the encryption oracle, which prevents any chosen
ciphertext attack. But it is not problematic to the rectangle
attack where only chosen plaintext is needed.

Finally, the nonce input of the AEAD mode may be a
problem in data collection. SKINNY AEAD M1 is a nonce-
respecting scheme, the adversary can only query a nonce
once under the same key, but a nonce can be queried several
times in different keys i.e. in the related-key setting. In
the case of SKINNY AEAD M1, the nonce N is used in
tweakey input together with the master key and some other
string, which implies that the tweakey input is controlled
for the adversary. Thus the adversary can make queries in
advance and conduct a related-tweakey rectangle attack on
its internal primitive SKINNY-128-384.

The related-tweakey rectangle attack on 24-round
SKINNY-128-384 has a data complexity of 2123 chosen plain-
texts and a time complexity 2123, which is applicable to the
SKINNY AEAD M1.

5 APPLICATION TO GIFT-64

The GIFT block cipher, proposed by Banik et al. at CHES
2017 [16], is an improved version of PRESENT [14]. In the
NIST Lightweight Cryptography Standardization process
[37], the candidates SUNDAE-GIFT [5], TGIF [26] and GIFT-
COEFB [6] are based on the GIFT block cipher. GIFT has two
versions, GIFT-64 and GIFT-128, according to the block size,
while both versions support the 128-bit key size. At IWSEC
2018, Sasaki [38] introduced a MitM attack on 15-round
GIFT-64 with a time complexity 2!12. At CT-RSA 2019, Zhu
et al. [48] analyzed the 19-round GIFT-64 with a 12-round
differential characteristic under the single-key mode, and
give a 22-round differential attack for GIFT-128. At ACISP
2019, Liu and Sasaki [34] explored the BCT effect on GIFT-64
and GIFT-128 by a SAT-based method, and gave a 23-round
key-recovery attack on GIFT-64. Concurrently, Chen et al.
[22] also gave a 23-round key-recovery attack based on the
generalized model of related-key rectangle attack by Liu et
al. [33]. In this paper, we use the same distinguisher given
by Chen et al. [22] to launch a new 24-round key-recovery
attack based on our new generalized model of related-key
rectangle attack.
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TABLE 3
11-round trail for SKINNY-128-384 in [33]. The 23-round distinguisher
uses the 11-round trail for the upper part and in the lower part the
12-round trail which is extended backward for one round from the
11-round one where 0z7b is used instead.

0,2a2,0,0,0,0,0,0, 0,0,0,0, 0,0,0,0
0,e6,0,0,0,0,0,0, 0,0,0,0, 0,0,0,0
0,¢£,0,0,0,0,0,0, 0,0,0,0, 0,0,0,0
0,20,0,0, 10(7b),0,0,0, 0,0,0,10, 0,0,10,0
R1 | 0,83,0,0,40,0,0,0, 0,0,0,40, 0,0,40,0
0,83,0,0,0,0,0,0

0,0,0,0, 0,0,0,0, 0,0,0,0, 0,40,0,0
rR2 | 0,0,0,0,0,0,0,0,0,0,0,0, 0,04,0,0
0,0,0,0,0,0,0,0

04,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
R3 | 01,0,0,0,0,0,0,0, 0,0,0,0, 0,0,0,0
01,0,0,0, 0,0,0,0

0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
R4 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0

0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
R5 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0

0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
R6 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0

0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
R7 | 0,0,0,0,0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0,0,0,0,0

0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
R8 | 0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0
0,0,0,0,0,0,0,0

0,0,0,0,0,0,0,0, 0,0,0,0, 0,0,0,0
R9 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0, 0,0,01,0

0,0,0,0, 0,0,0,0, 0,0,0,01, 0,0,0,0

AK

R10 | 0,0,0,0,0,0,0,0, 0,0,0,20, 0,0,0,0
0,0,0,0,0,0,0,0
0,20,0,0, 0,0,0,0, 0,20,0,0, 0,20,0,0
R11 | 0,80,0,0,0,0,0,0, 0,80,0,0, 0,80,0,0

0,0,0,0, 0,83,0,0

5.1 Specification of GIFT

GIFT [16], proposed by Banik et al. in 2017, is a SPN cipher.
There are two versions for GIFT according to the block size
i.e. GIFT-64 and GIFT-128. Both versions have a key length
of 128-bit and the number of rounds is 28 and 40 for GIFT-64
and GIFT-128 respectively.

The round function is composed of three subfunctions
named SubCells, PermBits and AddRoundKey, which
are defined as follows:

1) subCells : Apply the 4-bit Sbox to every nibble of the
internal state, where the Sbox is defined as Table 4.

2) PermBits : Update the internal state by a linear bit
permutation as bp(;) < b, Vi € {0,1,...n — 1}, where
the P(i)s are expressed as

. 7 i mod 16
Poa(i) =412 | +16(3[ "

mod 4) + (i mod 4),

Piag(i) :4tli6j + 32«%%

mod 4) + (i mod 4),
for GIFT-64 and GIFI-128 respectively.

| + (i mod 4)

|+ (imod 4)
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TABLE 4
The Sbox of GIFT
zr 0 1 2 3 4 5 6 7 8 9 a b ¢ d e
GSx) 1 a 4 ¢ 6 f 3 9 2 d b 7 5 0 8 e

3) AddRoundKey : An n/2-bit round key RK is extracted
from the key state and is further partitioned into 2 s-
bit words RK = U||V = us_1...ug||vs—1v0, where s =
n/4.

For GIFT-64, the round key is XORed to the state as

bait1 < byiy1 D uy, by < by B vy, Vi € {0, ey 15}.
For GIFT-128, the round key is XORed to the state as
b4i+2 <~ b4i+2 Du,, b4i+1 — b4i+1 Dv;, Vi € {0, ceey 31}

For both versions, a single bit “1” and a 6-bit constant
C are XORed into the internal state at positions n — 1,
23,19, 15,11, 7 and 3 respectively.

The key schedule for GIFT is very simple. The 128-

bit master key is initialized as K = kr||ks]|...||ko, where
|k;| = 32.
For GIFT-64, the round key RK is RK = U||V = ky]|ko.
For GIFT-128, the round key RK is RK = U|lV =
Es||kal|k1l|ko. And for both versions, the key state is up-
dated as follows,

k7||]€6”||k0 — k1 >>> 2”]60 >>> 12||Hk3||k2,

where >>> i is an i-bit right rotation within a 16-bit word.
For more details of GIFT, we refer to [16].

5.2 Notations and Definitions of GIFT

In this section, the notations are defined as follows:

AP the difference in plaintext

AXE the difference after SubCells operation
inRound 7,0 <i<r—1

AXE the difference after PermBits operation
inRound 7, 0<i<r—1

AXE the difference after AddRoundKey
operation in Round 7,0 <¢ <r —1

e represent an unknown difference

AXL[G k] ji" byte, - - -, k" byte of AX%

5.3 24-Round Attack on GIFT-64

We use the same 19-round related-key rectangle distinguish-
er of GIFT-64 listed in Table 5 by Chen et al. [22] to give the
first 24-round key-recovery attack on GIFT-64. We append
three rounds backward and two rounds forward to the
distinguisher to conduct a 24-round related-key rectangle
attack. The propagation of the differentials is illustrated in
Table 6.

Note that, there is no whitening key xored to the plain-
text, we collect data in A X%, which is similar to the previous
works [22], [34], [48]. There are 46 unknown bits in AX }09
denoted by ”?” which affect 12 Sboxes in Round 1 and four
Sboxes in Round 2, thus 1, = 46 and the number of key bits
needed to be guessed in the upper part is m;, = 24. Similarly,
we have ry = 20 and my = 12 for the lower part. Totally,
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TABLE 6
Related-key Rectangle Attack of 24-round GIFT-64

AP 2277 2272 2772 27927 7720 7220 2200 2202 2072 2727 2020 7200 2202 2002 2002 070
AX?D 0?7?22 20?? 170? 2120 02?2 20?? 220? 2220 0?27 20?? 2?0? 2?20 02?? 20?? 220? 22?20
AX% 22?7?2227 2222 2222 1122 272727 2777 2277 27277 2222 2222 22272 0000 0000 0000 0000
AX?( 22?7 2227 2222 2222 11722 22722 2277 2?77 2277 272727 22?2 222? 0000 0000 0000 0000
AXL 000? 2000 0?00 00?0 0100 00?0 000? 1000 0?0? 2020 0?0? 20?0 0000 0000 0000 0000
AX} 0000 11?? ???? 0000 0000 0000 0000 0000 ???? 0000 ???? 0000 0000 0000 0000 0000
AXE 0000 11?2 22?2 0000 0000 0000 0000 0000 2?22 0000 ?2?? 0000 0000 0000 0000 0000
AX?Z | 0000 0100 0010 0000 0000 0000 0000 0000 0010 0000 1000 0000 0000 0000 0000 0000
AX % 0000 0000 0000 0000 0000 0000 1010 0000 0000 0000 0000 0000 0110 0000 0000 0000
AX?% | 0000 0000 0000 0000 0000 0000 1010 0000 0000 0000 0000 0000 0110 0000 0000 0000
distinguisher of 19-round GIFT-64

AXZL | 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
AXZ? [ 0000 2?11 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
AXI%Q 0010 0000 0000 0000 0001 0000 0000 0000 2000 0000 0000 0000 0?00 0000 0000 0000
AX?2 | 0010 0000 0000 0001 0001 0000 0000 0000 2000 0000 0000 0000 0?00 0000 0000 0000
AXZ 22?22 0000 0000 22?2 22?2 0000 0000 0000 ???? 0000 0000 0000 ???? 0000 0000 0000
AXI%:" 2?00 0?00 0?00 0?00 0?20 00?0 00?0 00?0 00?? 000? 000? 000? 200? 2000 2000 2000
AXZ 2?00 0?00 0?00 0200 0?20 00?0 00?0 0020 00?? 000? 000? 000? 200? 2000 2000 2000

TABLE 5
Differential paths of 19-round GIFT-64 [22], where “*” denotes the
probability of the rounds that are evaluated for the ladder switch.

Round Differentce Ak; Ak Probability
1r 0000 00a0 0000 6000 | (4,0,0,0) | (0,1,0,0) 2-1
2r 0000 0000 0000 0000 | (0,0,0,0) | (0,0,0,0) 1
3r 0000 0000 0000 0000 | (0,0,0,2) | (0,0,0,0) 1
4r 0000 0000 0000 0010 | (0,0,0,0) | (0,0,0,0) 23
5r 0000 0008 0000 0000 | (0,0,0,4) | (0,0,4,0) 272
67 0000 0000 0000 0000 | (0,0,0,0) | (0,0,0,0) 1
r 0000 0000 0000 0000 | (0,0,2,0) | (0,0,0,0) 1
8r 0000 0000 0010 0000 | (0,0,0,0) | (0,0,0,0) 23
9r 0000 0080 0000 0000 | (0,0,4,0) | (0,0,1,0) 2-2
107 0100 0000 0102 0200 | (0,0,0,0) | (0,0,0,0) 1*
11r 00a2 0000 8020 0044 | (0,2,0,0) | (0,0,0,0) 1*
107 0000 0€03 0000 0073 | (0,0,0,1) | (0,0,0,0) 1*
117 0000 050¢ 0a00 0000 | (0,2,0,0) | (0,0,0,0) 1*
127 0a00 0000 0000 0000 | (0,8,0,0) | (0,0,0,0) 2-2
13r 0000 0000 0000 0000 | (0,0,0,0) | (0,0,0,0) 1
147 0000 0000 0000 0000 | (0,0,1,0) | (0,0,0,0) 1
157 0000 0000 0001 0000 | (2,0,0,0) | (0,0,0,0) 2-3
167 0090 0000 0000 0000 | (8,0,0,0) | (0,0,0,0) 2-3
17r 0000 0000 0000 0000 | (0,0,0,0) | (0,0,0,0) 1
187 0000 0000 0000 0000 | (0,1,0,0) | (0,0,0,0) 1
197 0000 0001 0000 0000 | (0,0,2,0) | (0,0,0,0) 2-3

there are y? - 227 . 272(n=75) = 2. 2% quartets remaining
for each guessed m;-bit key. The key recovery part is very
similar to that in Section 4.4, we give the brief description of
it as follows (For generalization, we treat the 71”7 in AX?2?
and AX? as 7 ?"):

1) The difference of AX 2360, 61, 62, 63] can be computed
by the cipertext pair (C1,Cs5) and the difference of
AX?2[60,62,63] = 0 is known. Thus we guess the 22
possible values of involved key bits in this Sbox and
partially decrypt cipertext pairs (C1,C3) and (Cs, Cy)
and check whether the difference of AX?2[60, 62, 63] is
0 or not. If yes, we keep the guessed key and the quar-
tet, otherwise discard it. There are about y2 24.92.9-6 —
y? quartets remaining.

2) Conducting a similar process to all the active Sboxes in
Round 23, there are about y? - 2744 = y2 . 2716 quartets

remaining.

3) Partially decrypt all the remaining quartets with the
obtained key bits in steps 1 and 2. The difference of
AX2[56,57,58, 59] can be obtained from the end of the
distinguisher, thus guess the 22 possible values of the
key bits involved in this Sbox. For each guess, only 278
of the quartets remain i.e. y?-2716.22.278 = ¢2.2722,
Utilize the remaining quartets to count the m; = 12
key bits.

When the expected number of right quartets s = 4, we
need to choose y = /s - 2%/27" /pg = 2'2 structures of 246
plaintexts each, and the data complexity is 4M = 2°° chosen
plaintexts. 2™ - 3M = 29158 table lookups are needed to
prepare quartets. For each guessed my-bit key, y* - 24 - 22
one-round encryptions are conducted which are equal to y?-
24.22 /24 ~ 22542 encryptions. If we choose the advantage
h = 40, 2™ . 225-42 4 212848 ~, 988 encryptions are needed
to recover all the key bits, and the success probability is
97.41%. Thus the time complexity is bounded by the 2™ -

3M = 2°1-%8 table lookups. The memory complexity is 5M +
gmy oy 960.32

6 CONCLUSION

In this paper, we give a new model of the generalized
related-key rectangle attack. Based on the new model, we
give improved attacks on both, round-reduced SKINNY-
128-384 and GIFT-64. We also give the first third party
cryptanalysis on SKINNY AEAD M1, which is a candidate
of the NIST Lightweight Cryptography project. As one open
problem, we could apply our model to more SKINNY-based
or GIFT-based authenticated encryption candidates of the
ongoing NIST Lightweight Cryptography project, such as
SUNDAE-GIFT [5], TGIF [26], GIFT-COFB [6], Remus [27]
and Romulus [28]. Another open problem is to apply our
model to evaluate the security of other block ciphers with
linear key schedules, such as Saturnin [19], Simon [18].
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