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Abstract

We show the applicability of Simon’s period finding quantum algorithm to the cryptanalysis
of several tweakable enciphering schemes (TESs), namely, CMC, EME, XCB, TET and FAST.
For all of the five TESs, we show distinguishing attacks, while for XCB, TET and FAST, the
attacks reveal portions of the secret keys.
Keywords: tweakable enciphering scheme, Simon’s algorithm.

1 Introduction

The eventual availability of large-scale quantum computers appears to be a certainty. This will
have major impact on cryptography. Public key cryptography based on factoring and the discrete
logarithm problem will be completely broken by Shor’s algorithm [17].

For symmetric key ciphers, exhaustive key search will be speeded up by a quadratic factor using
Grover’s algorithm [7]. Symmetric key primitives such as block and stream ciphers are often used in
modes of operation to build versatile cryptographic functionalities. A series of works [13, 14, 12, 2, 5]
have shown how to apply Simon’s period finding quantum algorithm [18] to break the security of
certain modes of operation. These attacks require quantum access to the cryptographic algorithm.
More recently, there has been work [3] on developing attacks based on offline Simon’s algorithm
which do not need to make quantum queries.

In the present work, we continue the line of work on using Simon’s algorithm to attack modes
of operation. Our target modes of operation are tweakable enciphering schemes (TESs) [10]. These
provide several important cryptographic functionalities including that of full disk encryption. We
refer to [10] for a description of how a TES can be used for disk encryption and to [4] for more
general functionalities. Some TESs have also been standardised [1].

We consider five TESs, namely, CMC [10], EME [11, 8], TET [9], XCB [15, 16] and FAST [4].
CMC was the first TES to be proposed; IEEE has standardised [1] XCB and EME; TET uses
invertible universal hash; and presently FAST provides the most recent development.

Following Kaplan et al. [12], the attacks that we describe are essentially based on an algorithm
to solve the following problem.

Simon’s problem: Given a function f : {0, 1}m → {0, 1}n and the promise that there exists
s ∈ {0, 1}m \ 0m such that for all x 6= y, f(x) = f(y) if and only if x⊕ y = s, find s.
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The quantity s is called the period of the function. Simon [18] described a quantum algorithm
which, with high probability, finds the period of f with O(m) quantum queries to the function f
and additional polynomial time classical computation. The description in [18] required f to be a
2-to-1 function which was later modified to a looser condition in [12].

For each of the TES that we consider, we construct a function f based on the encryption
algorithm of the TES. The function f has a period which is based on variables that are used during
the computation, but is not revealed as part of the ciphertext. Applying Simon’s algorithm to f
uncovers the period and reveals the internal secret variable. In the cases of TET, XCB and FAST,
obtaining the period of f reveals a portion of the secret key of the TES resulting in a partial key
recovery attack. For all the five TESs, we show that using the period, it is possible to construct
two distinct plaintexts such that designated portions of the corresponding ciphertexts are equal.
This results in distinguishing attacks on all the TESs under consideration.

2 Preliminaries

The concatenation of two strings x1 and x2 will be denoted as x1||x2. Given an integer i in the
range 0 ≤ i < 2k, bink(i) denotes the k-bit binary representation of i.

We fix a positive integer n. A block cipher is a function E : K × {0, 1}n → {0, 1}n, where K
is a finite non-empty set and for each K ∈ K, EK(·) ∆

= E(K, ·) is a permutation of {0, 1}n. The
integer n denotes the block size and K is the key of the block cipher. The corresponding decryption

function is D : K × {0, 1}n → {0, 1}n, where for each K ∈ K, DK(·) ∆
= D(K, ·) is the inverse of

EK(·), i.e., for any x ∈ {0, 1}n, DK(EK(x)) = x.

2.1 Tweakable Enciphering Scheme

A tweakable enciphering scheme is a pair TES = (TES.Encrypt,TES.Decrypt) where

TES.Encrypt,TES.Decrypt : K × T × P → P

for finite non-empty sets K, T and P. The set K is called the key space, T is called the tweak space
and P is called the message/ciphertext space. We write TES.EncryptK(·, ·) (resp. TES.DecryptK(·, ·))
to denote TES.Encrypt(K, ·, ·) (resp. TES.Decrypt(K, ·, ·)). The functions TES.Encrypt and TES.Decrypt
satisfy the following two properties. For K ∈ K, T ∈ T and P ∈ P,

1. TES.DecryptK(T,TES.EncryptK(T, P )) = P ;

2. len (TES.EncryptK(T, P )) = len(P ).

The first property states that the encryption and the decryption functions are inverses of each
other while the second property states that the length of the ciphertext is equal to the length of
the plaintext. In other words, TES.EncryptK(T, ·) is a length preserving permutation of P.

We do not provide the formal definition of security of TES since this will not be required for
our work. The notion of security that we consider is that of indistinguishability from a random
oracle which returns independent and uniform random strings of appropriate lengths. This implies
other notions of security (see [10]).

Four of the five TESs that we consider, namely, XCB, TET, CMC and EME are built using n-bit
block ciphers. The security proofs of the TESs assume the underlying block cipher to be strong
pseudo-random permutation (SPRP). The other TES that we consider, namely FAST, is built using
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a n-bit to n-bit pseudo-random function (PRF). Assuming the underlying primitive to be a secure
SPRP (for XCB, TET, CMC, EME) or a secure PRF (for FAST), the security proofs of all the five
TESs provide an upper bound on the advantage of an adversary in distinguishing the TES from a
random oracle. The upper bound is essentially of the form cσ2

n/2
n, where c is a small constant and

σn is the number of n-bit blocks in all the queries made by the adversary. Ignoring the constant
c, at a broad level the proofs show that the TESs are secure up to about 2n/2 adversarially chosen
n-bit blocks.

2.2 Simon’s Algorithm with Spurious Collisions

Simon’s problem is a promise problem, i.e., the function f has to satisfy the stated condition for
Simon’s algorithm to work. There may be functions for which there is an s ∈ {0, 1}m \ 0m, such
that for all (x, y) ∈ {0, 1}m × {0, 1}m, x ⊕ y ∈ {0m, s} ⇒ f(x) = f(y), but f(x) = f(y) does not
necessarily imply x ⊕ y ∈ {s, 0m}, i.e., there could be a t different from s and 0m, such that for
some x, f(x) = f(x ⊕ t). Such a collision is called a spurious collision. This issue was considered
in [12], which defined the notion of approximate promise problem. For f : {0, 1}m → {0, 1}n such
that f(x⊕ s) = f(x) for all x, the following quantity was defined in [12].

ε(f, s) = maxt∈{0,1}m\{0,s} Pr
x

[f(x) = f(x⊕ t)]. (1)

If f satisfies the promise in Simon’s problem and has period s, then ε(f, s) = 0. We say that
a function f : {0, 1}m → {0, 1}n satisfies the promise in Simon’s problem approximately, if there is
an s such that f(x) = f(x⊕ s) for all x and 0 < ε(f, s) < 1. A modification of Simon’s algorithm
to solve the approximate promise problem has been considered in [12] where the following result
was proved.

Theorem 1 (Kaplan et al. [12]). If ε(f, s) ≤ p0 < 1, then for constant c, Simon’s algorithm returns
s with cm quantum queries, with probability at least 1− (2(1+p0

2 )c)m.

If f satisfies the approximate promise problem, then Theorem 1 shows that s can be recovered
with high probability.

Remarks:

1. A function satisfying the promise in Simon’s problem is a 2-to-1 function. Simon had consid-
ered a slightly different problem. Given a function f : {0, 1}m → {0, 1}n which is known to be
either injective or 2-to-1, determine the correct condition and if f is 2-to-1, then determine
its period.

2. In his formulation, Simon required n ≥ m. The analysis of Simon’s algorithm, on the other
hand, goes through without the condition n ≥ m and later works [12, 2, 6] have indeed also
considered n < m.

3 Outline of the Attacks

The attacks that we describe are based on Simon’s algorithm and are distinguishing attacks. For
three of the TESs, namely XCB, TET and FAST, the attacks also reveal part of the secret key.

Suppose the adversary is provided black-box access to Π, where Π is either the encryption
algorithm of a TES (which we write as Π is real) or Π is a random oracle (which we write as Π
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is random). The goal of the adversary is to determine whether Π is real or random. Using Π we
define a function f . If Π is random, then f is a random function. On the other hand, if Π is real,
then either f satisfies the promise in Simon’s problem, or the approximate promise mentioned in
Section 2.2. Simon’s algorithm is applied to f which requires making quantum queries to the given
black-box. This is a strong attack model and it has been adopted in previous works [12, 2, 6].

If Π is random, then the output of Simon’s algorithm on f will be a random string. On the
other hand, if Π is real, then with high probability Simon’s algorithm will return the period of f .
So, given the output of Simon’s algorithm, some further work is required to determine whether Π is
real or random. This work consists of making two classical queries to the black box. These queries
are built from the output of Simon’s algorithm. If Π is real, then we show that the outputs of the
two classical queries satisfy a pre-defined relation, while if Π is random, then the outputs of the
two classical queries satisfy the same relation with very low probability. So, looking at the outputs
of the two classical queries, it becomes possible to determine whether Π is real or random.

The above provides the broad outline of the attacks on the TESs. In the subsequent sections,
we do not repeat the above strategy. Instead, we provide the definition of f when Π is real, the two
classical queries and the pre-defined relation that their outputs satisfy when Π is real. Plugging
these two tools into the above attack strategy provides the complete attacks on the individual
TESs.

As mentioned above, for some of the TESs, we show that f satisfies an approximate promise.
The proof of approximate promise requires upper bounding the probability of spurious collisions.
Since the definition of f is based on the block cipher, to bound the probability of spurious collisions
of f , we need to make an assumption on the underlying block cipher. The assumption that we make
is to consider the block cipher to behave like a uniform random function. Since a block cipher is an
injective map, it would be appropriate to assume the block cipher to behave like a uniform random
permutation. If the number of inputs on which the block cipher is invoked is below the (quantum)
birthday bound, then it is reasonable to consider the block cipher to behave like a uniform random
function. In our applications, we will consider the application of the block cipher to only a few (at
most six) inputs.

The analyses of the probabilities of spurious collisions for the various TESs have a common
structure. Suppose s is the period of f . We start by considering a non-zero t 6= s which maximises
the probability of spurious collisions. The requirement is to bound the probability f(x) = f(x⊕ t).
Then for any event E, we have

Pr[f(x) = f(x⊕ t)] ≤ Pr[f(x) = f(x⊕ t)|E] + Pr[E]. (2)

In the analyses of the individual TESs, we identify a suitable event E and obtain upper bounds on
the two terms in the right hand side of (2).

In Section 4, we describe the attacks on XCB, TET and FAST. The attacks on XCB, TET and
FAST require the key of the underlying universal hash function to be non-zero. Since the hash key
is a random n-bit quantity, it is zero with probability 1/2n which is negligible for n = 128 or larger.
These attacks also recover the hash key. In Section 5, we describe the distinguishing attacks on
CMC and EME. For EME, we require the internal variable L to be non-zero. Since it is the output
of a block cipher instantiated with a random key, it is zero with probability 1/2n which is negligible
for n = 128 or larger.
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Offline Simon’s Algorithm

The attacks that we describe require quantum access to the encryption algorithms of the respective
TESs. A recent work [3] has shown that for some symmetric key algorithms, it is possible to do away
with the requirement of quantum access to the encryption algorithms. The quantum computations
are done in an offline manner while all the queries to the encryption algorithms are classical. In
particular, Simon’s algorithm is applied in an offline mode. Such attacks are more practical than
attacks which require quantum access to the encryption algorithms.

The core observation in [3] is that it is possible to determine whether a function of the form f1⊕f2

has a period without any quantum query to f2 if there is a suitable quantum state corresponding to
f2. Various examples of the idea are provided in [3]. For the TESs that we have considered, we tried
to apply the idea from [3] to obtain attacks which do not require quantum access to the encryption
algorithms. Our efforts were not successful. It was not clear how to modify the functions with
period that we constructed for the various TESs to the form f1 ⊕ f2 which seems to be required
to apply the technique of [3]. Our inability does not mean that offline Simon’s algorithm is not
applicable to these TESs. There could be other ways of constructing the functions in the desired
form. This though seems to require more work.

4 Partial Key Recovery Attacks

4.1 XCB

XCB was proposed by McGrew and Fluhrer [15]. A later variant [16] was standardised by IEEE [1].
We describe the quantum attack on the standardised version [16] of XCB. A similar attack also
works on the previous version.

XCB is built using a block cipher and a polynomial hash function. The key K of XCB is the
same as the key of the underlying block cipher. XCB defines a tweak space. In our attack, we will
fix the tweak to be the empty string e.

XCB can be used with an n-bit block cipher. For the sake of convenience, we fix n = 128. Let
EK denote the encryption function of the underlying block cipher instantiated with the key K.
Using EK , XCB derives the keys Ke, Kd, Kc and τ . Here τ is used as the key to a polynomial hash
function called GHASH, Kc is the key to the counter mode of encryption and Ke and Kd are used
as shown in Figure 1. The counter mode Ctr uses the function incr to obtain successive values to
be encrypted.

Our attack considers 4-block messages. So, we briefly describe the encryption of 4-block mes-
sages with reference to Figure 1. The message is partitioned into a single block and a 3-block
message. As per the specification of XCB, the quantity A is equal to the last block of the message
and the quantity V is the last block of the ciphertext. In more details, if y1||y2||y3||y4 is the 4-block
ciphertext corresponding to a 4-block message, then V = y4 and R = y1||y2||y3. The functions h1

and h2 in Figure 1 are polynomial hash functions using the key τ . The counter mode Ctr uses Q
as the initialisation vector. The rest of the encryption algorithm can be understood from Figure 1.
We provide more details as part of the attack.

Fix m,α0, α1 ∈ {0, 1}n, such that α0 6= α1; let b denote a bit. For the standardised version [16],
we define the following function.

f : {0, 1} × {0, 1}n → {0, 1}n

(b, x)
f7−→ y3, where y1||y2||y3||y4 ←− XCB.EncryptK(e, αb||x||m||m). (3)
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Figure 1: Enciphering a 4-block message α0||x||m||m or α1||x ⊕ α0τ ⊕ α1τ ||m||m with tweak e
under XCB.
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The function f defined in (3) satisfies the following property.

Proposition 1. Let b, b′ ∈ {0, 1}, x, x′ ∈ {0, 1}n. Suppose that the hash key τ is non-zero. Then,
f(b, x) = f(b′, x′)⇔ x⊕ x′ = αbτ ⊕ αb′τ , where α0 and α1 are as fixed before.

Proof. Let γ be a 128-bit string which is formed by concatenating the 64-bit binary representation
of 128 and the 64-bit binary representation of 512. For the input αb||x||m||m,

A = m;

B = αb||x||m;

P = EKe(m);

Q = EKe(m)⊕ αbτ4 ⊕ xτ3 ⊕mτ2 ⊕ γτ ;

R = αb ⊕ EKc(Q)||x⊕ EKc(incr(Q))||m⊕ EKc(incr(incr(Q)));

For the input αb′ ||x⊕ αbτ ⊕ αb′τ ||m||m,

A′ = m;

B′ = αb′ ||x⊕ αbτ ⊕ αb′τ ||m;

P ′ = EKe(m);

Q′ = EKe(m)⊕ αb′τ4 ⊕ xτ3 ⊕ αbτ4 ⊕ αb′τ4 ⊕mτ2 ⊕ γτ
= EKe(m)⊕ xτ3 ⊕ αbτ4 ⊕mτ2 ⊕ γτ ;

R′ = αb′ ⊕ EKc(Q
′)||x⊕ αbτ ⊕ αb′τ ⊕ EKc(incr(Q

′))||m⊕ EKc(incr(incr(Q
′)));

We observe, Q = Q′ results in equality of last blocks of R and R′. So, the third blocks of the
outputs are same, establishing one direction of the result.

For the other direction, we have

y3 = y′3 ⇒ m⊕ EKc(incr(incr(Q))) = m⊕ EKc(incr(incr(Q
′)))

⇒ Q = Q′

⇒ EKe(m)⊕ αbτ4 ⊕ xτ3 ⊕mτ2 ⊕ γτ = EKe(m)⊕ αb′τ4 ⊕ x′τ3 ⊕mτ2 ⊕ γτ
⇒ αbτ

4 ⊕ xτ3 = αb′τ
4 ⊕ x′τ3

⇒ x⊕ x′ = αbτ ⊕ αb′τ.

Classical queries: Given the period 1||s = 1||τ(α0 ⊕ α1), the two classical queries required in
Section 3 are the following. The first query is α0||x||m||m with output y1||y2||y3||y4 and the second
query is α1||x ⊕ s||m||m with output y′1||y′2||y′3||y′4. From the proof of Proposition 1 we have that
y3 = y′3 which defines the relation between the outputs of the two classical queries.

Partial key recovery: Once s = τ(α0 ⊕ α1) has been obtained, since α0 and α1 are distinct,
from s, one obtains the hash key τ as τ = s(α0 ⊕ α1)−1.
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4.2 TET

TET [9] has key space K×K, where K is the key space for the underlying block cipher having block
size n. The tweak space is T = {0, 1}∗. The message space is P = {0, 1}m where m ∈ [n, 2n − 1].
Fix arbitrary (K1,K2) from the key-space and arbitrary T from the tweak-space.

The attack against TET also considers 4-block messages. Hence, we briefly explain the en-
cryption of 4-block messages with reference to Figure 2. EK2 is the encryption function of the
underlying block cipher instantiated with the key K2. The encryption consists of five layers; the
first, second, fourth and fifth being masking layers and the third layer being application of EK2 .
For a 4-block message x1||x2||x3||x4 and hash key τ , SP = σ−1

(
x1τ

4 ⊕ x2τ
3 ⊕ x3τ

2 ⊕ x4τ
)
, where

σ = 1 ⊕ τ ⊕ τ2 ⊕ τ3 ⊕ τ4 which is assumed to be non-zero. The exact definitions of α, β and SC
are not required for our purpose, so, we skip these details and refer to [9] for their definitions. We
only note that the tweak T is used in determining β.

Figure 2: Enciphering a 4-block message α0||x||m||m or α1||x⊕ α0τ ⊕ α1τ ||m||m under TET.
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Fix m,α0, α1 ∈ {0, 1}n, such that α0 6= α1; let b denote a bit and we define the following
function.

f : {0, 1} × {0, 1}n → {0, 1}n

(b, x)
f7−→ y3 ⊕ y4, where y1||y2||y3||y4 ←− TET.EncryptK1,K2

(T, αb||x||m||m).(4)

The function f defined in (4) satisfies the following property.

Proposition 2. Let b, b′ ∈ {0, 1}, x ∈ {0, 1}n. Suppose that the hash key τ is non-zero. Then,
f(b, x) = f(b′, x⊕ αbτ ⊕ αb′τ), where α0, α1 and τ are as described earlier.

8



Proof. For the input αb||x||m||m, we have,

SP = σ−1(αbτ
4 ⊕ xτ3 ⊕mτ2 ⊕mτ);

Q3 = m⊕ SP ⊕ α2β;

Q4 = m⊕ SP ⊕ α3β;

S3 = EK2(m⊕ SP ⊕ α2β)⊕ α2β;

S4 = EK2(m⊕ SP ⊕ α3β)⊕ α3β;

y3 ⊕ y4 = EK2(m⊕ SP ⊕ α2β)⊕ α2β ⊕ EK2(m⊕ SP ⊕ α3β)⊕ α3β;

For the input αb′ ||x⊕ αbτ ⊕ αb′τ ||m||m, we have,

SP ′ = σ−1(αb′τ
4 ⊕ xτ3 ⊕ αbτ4 ⊕ αb′τ4 ⊕mτ2 ⊕mτ) = σ−1(αbτ

4 ⊕ xτ3 ⊕mτ2 ⊕mτ);

Q′3 = m⊕ SP ′ ⊕ α2β;

Q′4 = m⊕ SP ′ ⊕ α3β;

S′3 = EK2(m⊕ SP ′ ⊕ α2β)⊕ α2β;

S′4 = EK2(m⊕ SP ′ ⊕ α3β)⊕ α3β;

y′3 ⊕ y′4 = EK2(m⊕ SP ′ ⊕ α2β)⊕ α2β ⊕ EK2(m⊕ SP ′ ⊕ α3β)⊕ α3β.

Now, SP = SP ′ implies y3 ⊕ y4 = y′3 ⊕ y′4.
Hence, the proposition is proved.

The above proposition establishes that 1||α0τ ⊕ α1τ is a period of f . Proposition 2 falls short
of showing that f satisfies the promise of Simon’s problem. We show below, that f satisfies an
approximate promise.

Proposition 3. Assume that the block cipher E instantiated with a uniform random key, behaves
like a uniform random function. Suppose that the hash key τ is non-zero. Then, for f defined
in (4), ε(f, 1||α0τ ⊕ α1τ) ≤ 5/2n.

Proof. Let η||t /∈ {0||0n, 1||α0τ ⊕ α1τ} be such that the probability of f(b, x) = f(b ⊕ η, x ⊕ t) is
maximised.

Case 1: Suppose η = 0. Then t is necessarily non-zero. Let,

SP = σ−1(αbτ
4 ⊕ xτ3 ⊕mτ2 ⊕mτ); SP ′ = σ−1(αbτ

4 ⊕ xτ3 ⊕ tτ3 ⊕mτ2 ⊕mτ). (5)

As t is necessarily non-zero, SP 6= SP ′.
We have,

f(b, x) = EK2(m⊕ SP ⊕ α2β)⊕ α2β ⊕ EK2(m⊕ SP ⊕ α3β)⊕ α3β;

f(b, x⊕ t) = EK2(m⊕ SP ′ ⊕ α2β)⊕ α2β ⊕ EK2(m⊕ SP ′ ⊕ α3β)⊕ α3β.

Then f(b, x) = f(b, x⊕ t) if and only if X1 = X2, where

X1 = EK2(m⊕ SP ⊕ α2β)⊕ EK2(m⊕ SP ⊕ α3β);

X2 = EK2(m⊕ SP ′ ⊕ α2β)⊕ EK2(m⊕ SP ′ ⊕ α3β).
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Let E be the event that (m⊕SP ⊕α2β), (m⊕SP ⊕α3β), (m⊕SP ′⊕α2β) and (m⊕SP ′⊕α3β)
are distinct. As SP 6= SP ′, clearly (m⊕ SP ⊕ α2β) and (m⊕ SP ′ ⊕ α2β) are distinct and so are
(m ⊕ SP ⊕ α3β) and (m ⊕ SP ′ ⊕ α3β). As β is generated through the application of a PRF, the
probability that (α2β = α3β) is 1/2n. With similar reasoning probability that SP ⊕ SP ′ ⊕ α2β ⊕
α3β = 0 is 1/2n. So, we have Pr[E] = 4/2n. Conditioned on E, and under the assumption that E
behaves like a uniform random function, the probability that X1 = X2 is at most 1/2n. Using (2)
we have Prb,x[f(b, x) = f(b⊕ η, x⊕ t)] = Pr[X1 = X2] ≤ 5/2n.

Case 2: Suppose η = 1. Then t 6= α0τ ⊕ α1τ . Let b′ = b⊕ 1. Let,

SP = σ−1(αbτ
4 ⊕ xτ3 ⊕mτ2 ⊕mτ); SP ′ = σ−1(αb′τ

4 ⊕ xτ3 ⊕ tτ3 ⊕mτ2 ⊕mτ); (6)

As t 6= α0τ ⊕ α1τ , SP 6= SP ′.
We have,

f(b, x) = EK2(m⊕ SP ⊕ α2β)⊕ α2β ⊕ EK2(m⊕ SP ⊕ α3β)⊕ α3β;

f(b⊕ η, x⊕ t) = f(b′, x⊕ t)
= EK2(m⊕ SP ′ ⊕ α2β)⊕ α2β ⊕ EK2(m⊕ SP ′ ⊕ α3β)⊕ α3β.

So, again f(b, x) = f(b⊕ η, x⊕ t) if and only if X1 = X2, where

X1 = EK2(m⊕ SP ⊕ α2β)⊕ EK2(m⊕ SP ⊕ α3β);

X2 = EK2(m⊕ SP ′ ⊕ α2β)⊕ EK2(m⊕ SP ′ ⊕ α3β).

A reasoning similar to Case 1 shows that Prb,x[f(b, x) = f(b⊕ η, x⊕ t)] is at most 5/2n.

Classical queries: Given the period 1||s = 1||τ(α0 ⊕ α1), the two classical queries required in
Section 3 are the following. The first query is α0||x||m||m with output y1||y2||y3||y4 and the second
query is α1||x ⊕ s||m||m with output y′1||y′2||y′3||y′4. From the proof of Proposition 2 we have that
y3 ⊕ y4 = y′3 ⊕ y′4 which defines the relation between the outputs of the two classical queries.

Partial key recovery: Once s = τ(α0 ⊕ α1) has been obtained, since α0 and α1 are distinct,
from s, one obtains the hash key τ as τ = s(α0 ⊕ α1)−1.

4.3 FAST

FAST was proposed by Chakraborty, Ghosh, López and Sarkar [4]. It is built using a fixed input
length pseudo-random function and an appropriate hash function. The key K of FAST is the same
as the key of the underlying pseudo-random function. The pseudo-random function maps n-bit
strings to n-bit strings. For the sake of concreteness, we fix n = 128. Let FK denote the pseudo-
random function instantiated with the key K. FAST is targeted towards two application scenarios.
We describe the quantum attack on the instantiation targeted towards the specific task of disk
encryption. In this case, the tweak space is T = {0, 1}n and the message space is P = {0, 1}mn,
where m > 2 is determined by the size of a disk sector. In our attack we will fix the tweak to be
an arbitrary T ∈ T .

Our attack considers 4-block messages. So, we briefly describe the encryption of 4-block mes-
sages with reference to Figures 3 and 4. From a top level view, FAST consists of three distinct layers
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Figure 3: Enciphering a 4-block message α0||x||m||m or α1||x⊕ s||m||m under FAST.
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- hash-encrypt-hash. The hashing layers H and G′ are based on two universal hash functions h
and h′, both having the key τ and h′ = τh. For more details of these functions we refer to [4]. The
encryption layer consists of a two-round Feistel network and a counter mode Ctr. The two-round
Feistel is built using the PRF FK and processes the first two blocks of the plaintext. The third
and fourth blocks are encrypted in a counter mode built using FK . The offset for the counter
mode is derived from the input and output of the Feistel layer. The input of the Feistel layer is
obtained by processing the plaintext and the tweak through the first hash layer. The second hash
layer generates the first two blocks of the ciphertext by processing the output of the Feistel layer
and the third and fourth blocks of the ciphertext. Some more details are provided as part of the
attack.

Figure 4: The hash functions H (left) and G′ (right).
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Fix m,α0, α1 ∈ {0, 1}n, such that α0 ⊕ α1 = 012611; let b denote a bit. We define the following
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function.

f : {0, 1} × {0, 1}n → {0, 1}n

(b, x)
f7−→ y3 ⊕ y4, where y1||y2||y3||y4 ←− FAST.EncryptK(T, αb||x||m||m). (7)

The function f defined in (7) satisfies the following property.

Proposition 4. Let b, b′ ∈ {0, 1}, x ∈ {0, 1}n. Suppose that the hash key τ is non-zero. Then,
f(b, x) = f(b′, x⊕ αbτ ⊕ αb′τ). α0, α1 and τ are as described before.

Proof. For the input (T, αb||x||m||m),

P1 = αb ⊕ hτ (T,m||m);

Q1 = x⊕ τ(αb ⊕ hτ (T,m||m));

R1 = αb ⊕ hτ (T,m||m)⊕ FK(Q1);

Z = Q1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1);

y3 = m⊕ FK(Q1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(1));

y4 = m⊕ FK(Q1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(2));

y3 ⊕ y4 = FK(Q1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(1))

⊕FK(Q1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(2));

For the input (T, αb′ ||x⊕ αbτ ⊕ αb′τ ||m||m),

P ′1 = αb′ ⊕ hτ (T,m||m);

Q′1 = x⊕ αbτ ⊕ αb′τ ⊕ τ(αb′ ⊕ hτ (T,m||m))

= x⊕ αbτ ⊕ τhτ (T,m||m);

R′1 = αb′ ⊕ hτ (T,m||m)⊕ FK(Q′1);

Z ′ = Q′1 ⊕ αb′ ⊕ hτ (T,m||m)⊕ FK(Q′1);

y′3 = m⊕ FK(Q′1 ⊕ αb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(1));

y′4 = m⊕ FK(Q′1 ⊕ αb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(2));

y′3 ⊕ y′4 = FK(Q′1 ⊕ αb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(1))⊕ FK(Q′1 ⊕ αb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(2))

= FK(Q′1 ⊕ αb ⊕ binn(3)⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(1))⊕ FK(Q′1 ⊕ αb ⊕ binn(3)⊕ hτ (T,m||m)

⊕FK(Q′1)⊕ binn(2)), as αb ⊕ αb′ = binn(3)

= FK(Q′1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(2))

⊕FK(Q′1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(1)).

We observe that Q1 = Q′1, which implies y3 ⊕ y4 = y′3 ⊕ y′4. This proves the proposition.

The above discussion establishes that 1||α0τ ⊕ α1τ is a period of f . Proposition 4 falls short
of showing that f satisfies the promise of Simon’s problem. We show below, that f satisfies an
approximate promise.

Proposition 5. Assume that the PRF F instantiated with a uniform random key, behaves like a
uniform random function. Suppose that the hash key τ is non-zero. Then, for f defined in (7),
ε(f, 1||α0τ ⊕ α1τ) ≤ 3

2n .
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Proof. Let η||t /∈ {0||0n, 1||α0τ ⊕ α1τ} be such that the probability of f(b, x) = f(b ⊕ η, x ⊕ t) is
maximised.

• Case 1: Suppose η = 0. Then t is necessarily non-zero. We have

f(b, x) = FK(Q1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(1))

⊕FK(Q1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(2));

f(b, x⊕ t) = FK(Q1 ⊕ t⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1 ⊕ t)⊕ binn(1))

⊕FK(Q1 ⊕ t⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1 ⊕ t)⊕ binn(2)).

Let

a1 = Q1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(1),

a2 = Q1 ⊕ t⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1 ⊕ t)⊕ binn(1),

u = binn(1)⊕ binn(2);

Hence

f(b, x) = FK(a1)⊕ FK(a1 ⊕ u);

f(b, x⊕ t) = FK(a2)⊕ FK(a2 ⊕ u).

Let E be the event that a1, a1 ⊕ u, a2 and a2 ⊕ u are distinct. Clearly a1 and a1 ⊕ u are
distinct and so are a2 and a2 ⊕ u. Now we consider the following events.

– E1 := a1 = a2 or, equivalently FK(Q1)⊕ FK(Q1 ⊕ t) = t. As t 6= 0 and FK is assumed
to be a uniform random function, hence Pr[E1] = 1

2n .

– E2 := a1 = a2 ⊕ u or, equivalently FK(Q1) ⊕ FK(Q1 ⊕ t) = t ⊕ u. As in the previous
case, Pr[E2] = 1

2n .

Hence, E := E1 ∪ E2. Note that since u is a non-zero string E1 and E2 are disjoint. Hence,
Pr[E] = Pr[E1]+Pr[E2] = 2

2n . Conditioned on E, and under the assumption that FK behaves
like a uniform random function, the probability that f(b, x) = f(b, x ⊕ t) is at most 1/2n.
Using (2) we have Prb,x[f(b, x) = f(b⊕ η, x⊕ t)] ≤ 3/2n.

• Case 2: Suppose η = 1. Then t 6= α0τ⊕α1τ . Let b′ = b⊕1, Q′1 = x⊕t⊕τ(αb′⊕hτ (T,m||m)).
We have

f(b, x) = FK(Q1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(1))

⊕FK(Q1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(2));

f(b⊕ η, x⊕ t) = f(b′, x⊕ t)
= FK(Q′1 ⊕ αb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(1))

⊕FK(Q′1 ⊕ αb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(2));

Let

a1 = Q1 ⊕ αb ⊕ hτ (T,m||m)⊕ FK(Q1)⊕ binn(1)

a2 = Q′1 ⊕ αb′ ⊕ hτ (T,m||m)⊕ FK(Q′1)⊕ binn(1),

u = binn(1)⊕ binn(2);
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Hence

f(b, x) = FK(a1)⊕ FK(a1 ⊕ u);

f(b⊕ η, x⊕ t) = FK(a2)⊕ FK(a2 ⊕ u).

A reasoning similar to Case 1 shows that Prb,x[f(b, x) = f(b⊕ η, x⊕ t)] is at most 3/2n.

Classical queries: Given the period 1||s = 1||τ(α0 ⊕ α1), the two classical queries required in
Section 3 are the following. The first query is α0||x||m||m with output y1||y2||y3||y4 and the second
query is α1||x ⊕ τ(α0 ⊕ α1)||m||m with output y′1||y′2||y′3||y′4. From the proof of Proposition 4 we
have that y3 ⊕ y4 = y′3 ⊕ y′4 which defines the relation between the outputs of the two classical
queries.

Partial key recovery: Once s = τ(α0 ⊕ α1) has been obtained, since α0 and α1 are distinct,
from s, one obtains the hash key τ as τ = s(α0 ⊕ α1)−1.

5 Distinguishing Attacks

5.1 CMC

CMC was proposed by Halevi and Rogaway [10], in 2003. It is based on the CBC mode of operation
of a block cipher. The block length of the block cipher can be assumed to be n-bit. CMC has the
key space K × K, where K is the key space for the underlying block cipher and the tweak space
T = {0, 1}n. The message space of CMC is P =

⋃
i∈I{0, 1}i for some non-empty index set I ⊆ N.

Let EK denote the encryption function of the underlying block cipher instantiated with the key K.
Our attack considers 3-block messages. Hence, we briefly describe the encryption of 3-block

messages with reference to Figure 5. Let CMC be instantiated with the key (K, K̃) ∈ K × K. In
our attack we will fix the tweak to be an arbitrary T ∈ T . K̃ is used as the key to the block cipher
E only to produce T from T . At a conceptual level, the CMC encryption function consists of three
layers. The first layer is essentially CBC encryption on the message blocks, followed by a layer
of masking and the third layer is CBC decryption. The rest of the encryption algorithm can be
understood from Figure 5. We provide more details as part of the attack.

Fix m,α0, α1 ∈ {0, 1}n, such that α0 6= α1; let b denote a bit and we define the following
function.

f : {0, 1} × {0, 1}n → {0, 1}n

(b, x)
f7−→ y1, where y1||y2||y3 ←− CMC.EncryptK,K̃(T,m||αb||x). (8)

The function f defined in (8) satisfies the following property.

Proposition 6. Let b, b′ ∈ {0, 1}, x, x′ ∈ {0, 1}n. Then, f(b, x) = f(b′, x′)⇔ x⊕x′ = EK(EK(m⊕
T)⊕ αb)⊕ EK(EK(m⊕ T)⊕ αb′), where the constants α0 and α1 are as fixed before.
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Figure 5: Enciphering a 3-block message m||α0||x or m||α1||x ⊕ s under CMC. Correspondingly,
M = 2(P1 ⊕ P3) and M ′ = 2(P ′1 ⊕ P ′3).
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Proof. Let s = EK(EK(m⊕ T)⊕ α0)⊕ EK(EK(m⊕ T)⊕ α1). For the input m||α0||x,

P1 = EK(m⊕ T);

P2 = EK(α0 ⊕ EK(m⊕ T));

P3 = EK(x⊕ EK(α0 ⊕ EK(m⊕ T)));

M = 2(P1 ⊕ P3);

Q1 = P3 ⊕M ;

y1 = EK(Q1)⊕ T;

(9)

For the input m||α1||x⊕ s,

P ′1 = EK(m⊕ T);

P ′2 = EK(α1 ⊕ EK(m⊕ T));

P ′3 = EK(x⊕ s⊕ EK(α1 ⊕ EK(m⊕ T)))

= EK(x⊕ EK(EK(m⊕ T)⊕ α0)⊕ EK(EK(m⊕ T)⊕ α1)⊕ EK(α1 ⊕ EK(m⊕ T)))

= EK(x⊕ EK(EK(m⊕ T)⊕ α0));

M ′ = 2(P ′1 ⊕ P ′3);

Q′1 = P ′3 ⊕M ′;
y′1 = EK(Q′1)⊕ T.

(10)
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We see P1 = P ′1 and P3 = P ′3 implying M = M ′; P3 = P ′3 and M = M ′ together imply Q1 = Q′1,
which finally establishes y1 = y′1. This proves one direction of the proposition. Now we see the
other direction.

f(b, x) = f(b′, x′) ⇒ y1 = y′1

⇒ EK(Q1)⊕ T = EK(Q′1)⊕ T
⇒ Q1 = Q′1

⇒ P3 ⊕M = P ′3 ⊕M ′

⇒ P3 ⊕ 2(P1 ⊕ P3) = P ′3 ⊕ 2(P ′1 ⊕ P ′3)

⇒ P3 ⊕ 2(P1 ⊕ P3) = P ′3 ⊕ 2(P1 ⊕ P ′3) (as P ′1 = P1)

⇒ P3 = P ′3

⇒ EK(x⊕ EK(αb ⊕ EK(m⊕ T))) = EK(x′ ⊕ EK(αb′ ⊕ EK(m⊕ T)))

⇒ x⊕ EK(αb ⊕ EK(m⊕ T)) = x′ ⊕ EK(αb′ ⊕ EK(m⊕ T))

⇒ x⊕ x′ = EK(αb ⊕ EK(m⊕ T))⊕ EK(αb′ ⊕ EK(m⊕ T)).

The above proposition proves that 1||EK(EK(m⊕T)⊕α0)⊕EK(EK(m⊕T)⊕α1) is a period
for the function f and f is a 2-to-1 function. So, Simon’s algorithm applied to f uncovers this
period with high probability.

Obtaining the period 1||s, where s = EK(EK(m⊕ T)⊕ α0)⊕EK(EK(m⊕ T)⊕ α1) provides a
distinguishing attack against CMC.

Classical queries: Given the period 1||s = 1||EK(EK(m ⊕ T) ⊕ α0) ⊕ EK(EK(m ⊕ T) ⊕ α1),
the two classical queries required in Section 3 are the following. The first query is m||α0||x with
output y1||y2||y3 and the second query is m||α1||x ⊕ s with output y′1||y′2||y′3. From the proof of
Proposition 6 we have that y1 = y′1 which defines the relation between the outputs of the two
classical queries.

5.2 EME

EME also was proposed by Halevi and Rogaway [11]. It was later extended to handle arbitrary length
messages by Halevi [8] and the resulting scheme was called EME∗. EME∗ has been standardised as
a TES by IEEE [1] in the name EME2.

Our attack considers 3-block messages. For this message length the constructions EME and
EME2 are identical, with only the minor replacement of the tweak by a function of the tweak in
the latter. Hence, we will describe the attack in the context of EME only.

EME has the key space K, the same as the underlying block cipher having block size n; the
tweak space is T = {0, 1}n. The message space of EME is P = {0, 1}n∪{0, 1}2n∪· · ·∪{0, 1}n2

. The
key K of EME is the same as the key of the underlying block cipher. Let EK denote the encryption
function of the underlying block cipher instantiated with the key K. In our attack we fix the tweak
to be an arbitrary T ∈ T .

As our attack considers 3-block messages, we will briefly describe the encryption of 3-block
messages with reference to Figure 6. The encryption of each of the message blocks consists of five
layers: initial masking followed by an application of EK , then another masking followed by another
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application of EK and the final masking. One of the masking elements is L = 2EK(0n). The middle
layer of masking for the first block is of different form from that for second and third blocks. The
rest of the encryption algorithm can be understood from Figure 6. We provide more details as part
of the attack.

Notation: Let α denote a root of the primitive polynomial used to represent GF (2n). Note
that, 2L represents L times the field element denoted by α. Similarly, 4L represents L times the
field element denoted by α2; 6L represents L times the field element denoted by α2 ⊕ α. Hence,
6L = (α2 ⊕ α)L = 4L⊕ 2L. This notation has been used in [11] and so we follow this notation.

Figure 6: Enciphering a 3-block message m||x||x or m||x⊕6L||x⊕6L under EME. Correspondingly,
M = MQ ⊕ EK(MQ), where MQ = EK(m ⊕ L) ⊕ EK(x ⊕ 2L) ⊕ EK(x ⊕ 4L) ⊕ T and M ′ =
MQ′ ⊕ EK(MQ′) where MQ′ = EK(m⊕ L)⊕ EK(x⊕ 4L)⊕ EK(x⊕ 2L)⊕ T .
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Fix m ∈ {0, 1}n and we define the following function.

f : {0, 1}n → {0, 1}n

x
f7−→ y1, where y1||y2||y3 ←− EME.EncryptK(T,m||x||x). (11)

The function f defined in (11) satisfies the following property.

Proposition 7. Let x ∈ {0, 1}n. Then, f(x) = f(x⊕6L), where L is as defined before and suppose
it is non-zero.
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Proof. Consider the two inputs m||x||x and m||(x⊕ 6L)||(x⊕ 6L).
For the input m||x||x,

Q1 = EK(m⊕ L);

Q2 = EK(x⊕ 2L);

Q3 = EK(x⊕ 4L);

MQ = EK(m⊕ L)⊕ EK(x⊕ 2L)⊕ EK(x⊕ 4L)⊕ T ;

MR = EK(MQ);

M = MQ⊕MR;

R2 = EK(x⊕ 2L)⊕ 2M ;

R3 = EK(x⊕ 4L)⊕ 4M ;

R1 = MR⊕R2 ⊕R3 ⊕ T ;

y1 = L⊕ EK(R1) = EK(MR⊕R2 ⊕R3 ⊕ T )⊕ L; (12)

For the input m||(x⊕ 6L)||(x⊕ 6L),

Q′1 = EK(m⊕ L);

Q′2 = EK(x⊕ 4L);

Q′3 = EK(x⊕ 2L);

MQ′ = EK(m⊕ L)⊕ EK(x⊕ 4L)⊕ EK(x⊕ 2L)⊕ T ;

MR′ = EK(MQ′);

M ′ = MQ′ ⊕MR′;

R′2 = EK(x⊕ 4L)⊕ 2M ′;

R′3 = EK(x⊕ 2L)⊕ 4M ′;

R′1 = MR′ ⊕R′2 ⊕R′3 ⊕ T ;

y′1 = L⊕ EK(R′1) = EK(MR′ ⊕R′2 ⊕R′3 ⊕ T )⊕ L. (13)

From above we see that MQ = MQ′; hence, MR = MR′ and M = M ′; M = M ′ implies
R2 ⊕R3 = R′2 ⊕R′3. Hence, we see, y1 = y′1, proving the proposition.

The above discussion establishes that 6L is a period of f . Proposition 7 falls short of showing
that f satisfies the promise of Simon’s problem. We show below, that f satisfies an approximate
promise.

Proposition 8. Assume that the block cipher E instantiated with a uniform random key, behaves
like a uniform random function. Suppose L is non-zero. Then, for f defined in (11), ε(f, 6L) ≤
1/2n−1.

Proof. Let t /∈ {0n, 6L} be such that the probability of f(x) = f(x⊕ t) is maximised.
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We have

f(x) = L⊕ EK(MR⊕R2 ⊕R3 ⊕ T );

f(x⊕ t) = L⊕ EK(MR′ ⊕R′2 ⊕R′3 ⊕ T ); where MR = EK(MQ),MR′ = EK(MQ′),

MQ = EK(m⊕ L)⊕ EK(x⊕ 2L)⊕ EK(x⊕ 4L)⊕ T,
MQ′ = EK(m⊕ L)⊕ EK(x⊕ t⊕ 2L)⊕ EK(x⊕ t⊕ 4L)⊕ T,
R2 = EK(x⊕ 2L)⊕ 2M,R3 = EK(x⊕ 4L)⊕ 4M,

R′2 = EK(x⊕ t⊕ 2L)⊕ 2M ′, R′3 = EK(x⊕ t⊕ 4L)⊕ 4M ′,

M = MQ⊕MR,M ′ = MQ′ ⊕MR′.

Then f(x) = f(x⊕ t)⇔ EK(MR⊕R2⊕R3⊕ T ) = EK(MR′⊕R′2⊕R′3⊕ T )⇔MR⊕R2⊕R3 =
MR′ ⊕R′2 ⊕R′3. So,

Pr[f(x) = f(x⊕ t)]
= Pr[MR⊕MR′ = R2 ⊕R3 ⊕R′2 ⊕R′3]

= Pr[MR⊕MR′ = MQ⊕MQ′ ⊕ 6M ⊕ 6M ′] (as R2 ⊕R3 ⊕R′2 ⊕R′3 = MQ⊕MQ′ ⊕ 6M ⊕ 6M ′)

= Pr[MQ⊕MR⊕MQ′ ⊕MR′ = 6M ⊕ 6M ′]

= Pr[M ⊕M ′ = 6M ⊕ 6M ′] (14)

= Pr[M = M ′] (15)

= Pr[EK(MQ)⊕ EK(MQ′) = MQ⊕MQ′] (16)

The explanation for obtaining (15) from (14) is the following. From (14), we have 7M = 7M ′.
Recall that here 7 is a shorthand for the polynomial α2 ⊕ α⊕ 1, where α is the root of the degree
n primitive polynomial used to represent the field. So, α2 ⊕ α ⊕ 1 is an invertible element in the
field and hence the equality M = M ′ follows.

Let E be the event MQ 6= MQ′. Under the assumption that EK behaves like a uniform random
function, Pr[EK(MQ)⊕EK(MQ′) = MQ⊕MQ′|E] ≤ 1/2n. Since t /∈ {0n, 6L} and L is non-zero,
x ⊕ 2L, x ⊕ 4L, x ⊕ t ⊕ 2L and x ⊕ t ⊕ 4L are distinct. As a result, under the assumption that
EK behaves like a uniform random function, we have, Pr[E] ≤ 1/2n. From (2) and (16) we have
Pr[f(x) = f(x⊕ t)] ≤ 2/2n.

Classical queries: Given the period 6L, the two classical queries required in Section 3 are the
following. The first query is m||x||x with output y1||y2||y3 and the second query is m||x⊕6L||x⊕6L
with output y′1||y′2||y′3. From the proof of Proposition 7 we have that y1 = y′1 which defines the
relation between the outputs of the two classical queries.

6 Conclusion

This work showed that some of the well known TESs which are secure in the classical world are
broken in the quantum world. This brings up the following question. Can some simple modifications
of these schemes make them quantum secure? Perhaps future research will answer this question.
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disk encryption and beyond. Advances in Mathematics of Communications. https://www.

aimsciences.org/article/doi/10.3934/amc.2020108.

[5] Xiaoyang Dong, Bingyou Dong, and Xiaoyun Wang. Quantum attacks on some Feistel block
ciphers. Des. Codes Cryptogr., 88(6):1179–1203, 2020.

[6] Xiaoyang Dong and Xiaoyun Wang. Quantum key-recovery attack on Feistel structures. Sci.
China Inf. Sci., 61(10):102501:1–102501:7, 2018.

[7] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Gary L. Miller,
editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Comput-
ing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 212–219. ACM, 1996.

[8] Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data.
In Anne Canteaut and Kapalee Viswanathan, editors, Progress in Cryptology - INDOCRYPT
2004, 5th International Conference on Cryptology in India, Chennai, India, December 20-
22, 2004, Proceedings, volume 3348 of Lecture Notes in Computer Science, pages 315–327.
Springer, 2004.

[9] Shai Halevi. Invertible universal hashing and the TET encryption mode. In Alfred Menezes,
editor, Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of Lecture
Notes in Computer Science, pages 412–429. Springer, 2007.

[10] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh, editor,
Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture
Notes in Computer Science, pages 482–499. Springer, 2003.

[11] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki Okamoto,
editor, Topics in Cryptology - CT-RSA 2004, The Cryptographers’ Track at the RSA Con-
ference 2004, San Francisco, CA, USA, February 23-27, 2004, Proceedings, volume 2964 of
Lecture Notes in Computer Science, pages 292–304. Springer, 2004.

20
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