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Abstract

Recently, Castryck, Lange, Martindale, Panny, and Renes proposed CSIDH (pronounced “sea-side”)
as a candidate post-quantum “commutative group action.” It has attracted much attention and interest, in
part because it enables noninteractive Diffie–Hellman-like key exchange with quite small communication.
Subsequently, CSIDH has also been used as a foundation for digital signatures.

In 2003–04, Kuperberg and then Regev gave asymptotically subexponential quantum algorithms for
“hidden shift” problems, which can be used to recover the CSIDH secret key from a public key. In 2013,
Kuperberg gave a follow-up quantum algorithm called the collimation sieve (“c-sieve” for short), which
improves the prior ones, in particular by using exponentially less quantum memory and offering more
parameter tradeoffs. While recent works have analyzed the concrete cost of the original algorithms (and
variants) against CSIDH, there seems not to have been any consideration of the c-sieve.

This work fills that gap. Specifically, we generalize Kuperberg’s collimation sieve to work for arbitrary
finite cyclic groups, provide some practical efficiency improvements, give a classical (i.e., non-quantum)
simulator, run experiments for a wide range of parameters up to and including the actual CSIDH-512
group order, and concretely quantify the complexity of the c-sieve against CSIDH.

Our main conclusion is that the proposed CSIDH-512 parameters provide relatively little quantum
security beyond what is given by the cost of quantumly evaluating the CSIDH group action itself (on a
uniform superposition). The cost of key recovery is, for example, only about 216 quantum evaluations
using 240 bits of quantumly accessible classical memory (plus insignificant other resources); moreover,
these quantities can be traded off against each other. (This improves upon a recent estimate of 232.5

evaluations and 231 qubits of quantum memory, for a variant of Kuperberg’s original sieve.) Therefore,
under the plausible assumption that quantum evaluation does not cost very much more than indicated by a
recent “best case” analysis, CSIDH-512 does not achieve the claimed 64 bits of quantum security, and it
falls well short of the claimed NIST security level 1 when accounting for the MAXDEPTH restriction.
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Foundation.
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1 Introduction

In 1994, Shor [Sho94] upended cryptography by giving polynomial-time quantum algorithms for the integer
factorization and discrete logarithm problems, which can be used (on sufficiently large-scale quantum
computers) to break all widely deployed public-key cryptography. With the steady progress in engineering
quantum computers, there is an increasing need for viable post-quantum cryptosystems, i.e., ones which can
be run on today’s classical computers but resist attacks by future quantum ones. Indeed, the US National
Institute of Standards and Technology (NIST) has begun a post-quantum standardization effort [NIS], and
recently selected the second-round candidates.

1.1 Isogeny-Based Cryptography

One prominent class of candidate post-quantum cryptosystems uses isogenies between elliptic curves over a
common finite field. Isogeny-based cryptography began with the proposal of Couveignes in 1997, though it
was not widely distributed until 2006 [Cou06]. The approach was independently rediscovered by Stolbunov
(in his 2004 Master’s thesis [Sto04]) and by Rostovtsev and Stolbunov [RS06] in 2006. The central object in
these proposals is a (free and transitive) group action ? : G× Z → Z of a finite commutative group G on a
set Z. Group actions naturally generalize exponentiation in (finite) cyclic multiplicative groups C: we take
G = Z∗q to be the multiplicative group of integers modulo the order q = |C| and Z to be the set of generators
of C, and define a ? z = za.

The Couveignes–Rostovtsev–Stolbunov (hereafter CRS) proposal very naturally generalizes Diffie–
Hellman [DH76] noninteractive key exchange to use a commutative group action: some z ∈ Z is fixed for
use by all parties; Alice chooses a secret a ∈ G and publishes pA = a ? z; Bob likewise chooses a secret
b ∈ G and publishes pB = b ? z; then each of them can compute their shared key (ab) ? z = a ? pB = b ? pA.
(Note the essential use of commutativity in the second equation, where b ? (a ? z) = (ba) ? z = (ab) ? z.)

Security. Of course, for the CRS system to have any hope of being secure, we need the analogue of
the discrete logarithm problem for the group action to be hard, i.e., it must be infeasible to recover a (or
some functional equivalent) from pA = a ? z. In 2010, Childs, Jao, and Soukharev [CJS10] observed that,
assuming a suitable algorithm for the group action, this problem reduces to the (injective) abelian hidden-shift
problem on the group G. It happens that Kuperberg [Kup03] in 2003 and then Regev [Reg04] in 2004 had
already given asymptotically subexponential quantum “sieve” algorithms for this problem. More specifically,
Kuperberg’s algorithm uses exp(O(

√
n)) quantum time and space, whereas Regev’s uses slightly larger

exp(O(
√
n log n)) quantum time but only poly(n) quantum space, where n = logN is the bit length of the

group order N = |G|. While these attacks do not render CRS-type systems insecure, one must consider their
concrete complexity when setting parameters to obtain a desired level of security.

We mention that these subexponential attacks against CRS motivated Jao and De Feo [JD11] to give a
different approach to isogeny-based cryptography using supersingular curves, whose full endomorphism
rings are non-commutative, which thwarts the Kuperberg-type attacks. The Jao–De Feo scheme, now known
as Supersingular Isogeny Diffie–Helmman (SIDH), is also not based on a group action, and is inherently
interactive. Most research on isogeny-based cryptography has focused on SIDH and closely related ideas.

CSIDH. The noninteractive nature and simplicity of the CRS approach are particularly attractive features,
which motivated Castryck, Lange, Martindale, Panny, and Renes [CLM+18] to revisit the method recently.
They proposed “Commutative SIDH,” abbreviated CSIDH and pronounced “sea-side.” Like SIDH, it relies
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on supersingular curves, but it uses a commutative subring of the full endomorphism ring, which naturally
leads to a commutative group action. This design choice and other clever optimizations yield an impressive
efficiency profile: for the CSIDH-512 parameters that were claimed in [CLM+18] to have 64 bits of quantum
security and meet NIST security level 1, a full key exchange takes only about 80 milliseconds (improving
upon several minutes for prior CRS prototypes), with key sizes of only 64 bytes (compared to hundreds of
bytes for SIDH and derivatives).

In summary, the designers of CSIDH describe it as a primitive “that can serve as a drop-in replacement
for the (EC)DH key-exchange protocol while maintaining security against quantum computers.” As such, it
has attracted a good deal of attention and interest. (For example, it received the 2019 Dutch Cybersecurity
Research Paper Award.) In addition, a series of works [Sto11, DG19, BKV19] used CSIDH to develop digital
signature schemes having relatively small sizes and reasonable running times. E.g., for the same claimed
security levels as above, the CSI-FiSh signature scheme [BKV19] can have a combined public key and
signature size of 1468 bytes, which is better than all proposals to the NIST post-quantum cryptography effort.

1.2 Attacks on the CSIDH

As mentioned above, when setting parameters for CSIDH and arriving at security claims, one must take
into account known attacks. The main quantum approach is given by Kuperberg’s abelian hidden-shift
algorithm [Kup03] and descendants, where the hidden “shift” corresponds to the secret “discrete log” a ∈ G
for a given public key pA = a ? z ∈ Z. Algorithms of this type have two main components:

1. a quantum oracle that, whenever queried, outputs a certain kind of random “labeled” quantum state, in
part by evaluating the group action on a uniform superposition over the group;

2. a sieving procedure that combines labeled states in some way to generate “more favorable” ones.

By processing many fresh labeled states from the oracle, the sieve eventually creates some “highly favorable”
states, which are then measured to reveal useful information about the hidden shift (i.e., the secret key).

The overall complexity of the attack is therefore mainly determined by the complexities of the quan-
tum oracle and the sieve, where the latter includes the oracle query complexity. These can be analyzed
independently, and for each there is a line of work with a focus on CRS/CSIDH.

The oracle. To produce a labeled state, the oracle mainly needs to prepare a uniform superposition over the
group G, and apply the group action to a superposition of the “base” z ∈ Z and the public key a ? z. (It then
does a certain measurement, takes a Fourier transform, and measures again to get a label.) In the context of
isogenies, evaluating the group action on the superposition is the bottleneck, by a large amount.

The original work of Childs, Jao, and Soukharev [CJS10] implemented the oracle in exp(Õ(n1/2))
quantum time (assuming GRH) and polynomial space. Biasse, Iezzi, and Jacobson [BIJJ18] improved this to
an oracle that (under different heuristics) runs in exp(Õ(n1/3)) quantum time and polynomial space, though
they did not analyze the factors hidden by the Õ notation.

More recently, Bernstein, Lange, Martindale, and Panny [BLMP19] analyzed the concrete cost of
quantumly evaluating the CSIDH group action. For the CSIDH-512 parameters, they arrived at an estimate
of approximately 240 nonlinear qubit operations, with a failure probability below 2−32, to evaluate the group
action on a non-uniform “best conceivable” (for the attacker) distribution of group elements, namely, the
one used in CSIDH key generation. Very recent work by Beullens, Kleinjung, and Vercauteren [BKV19]
suggests that the cost for a uniform superposition may be quite close to that of the “best conceivable” case;
see Section 1.4 for further discussion.
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The sieve. Kuperberg’s original algorithm [Kup03] has exp(O(
√
n)) complexity in time, queries, and

quantum space. More specifically, he rigorously proved a query bound of O(23
√
n), and a better time and

query bound of Õ(3
√

2 log3N ) when N = rn for some small radix r (though this should never be the case for
CSIDH). As already mentioned, Regev reduced the quantum space to only polynomial in n, but at the cost of
increasing the time and query complexity to exp(O(

√
n log n)); to our knowledge, precise hidden factors

have not been worked out for this approach.
Bonnetain and Schrottenloher [BS18] provided a variant of Kuperberg’s sieve for arbitrary cyclic groups,

and gave more precise estimates of its query and quantum-space complexity. Specifically, using simulations
up to n = 100 they estimate that 21.8

√
n+2.3 queries and nearly the same number of qubits of memory are

needed. For the CSIDH-512 parameters, this translates to 232.5 queries and 231 qubits.
Notably, in 2013 Kuperberg gave a follow-up algorithm [Kup13], called the collimation sieve (or

“c-sieve” for short), which subsumes his original one and Regev’s variant. Asymptotically, it still uses
exp(O(

√
n)) quantum time and classical space, but only linear O(n) quantum space. In addition, it provides

additional options and tradeoffs, most notably between classical and quantum time when using quantumly
accessible classical memory (QRACM), i.e., classical memory that is readable in superposition. As argued
in [BHT98, Kup13], QRACM is plausibly (much) cheaper than fully quantum memory, because it does not
need to be preserved in superposition. In addition, Kuperberg proves [Kup13, Proposition 2.2] that QRACM
can be simulated using ordinary classical memory, at the cost of polylogarithmic quantum time and memory,
and a quasilinear slowdown in the amount of QRACM.

Although Kuperberg’s c-sieve dates to about five years before the CSIDH proposal, and has been briefly
cited in some of the literature, its implications for concrete CSIDH parameters appear not to have been
considered yet. That is the question we address in this work.

1.3 Contributions

We concretely analyze the complexity of Kuperberg’s collimation sieve [Kup13], with a focus on CSIDH and
its proposed parameterizations. Our study treats the quantum oracle as a “black box,” and focuses mainly on
the number of queries and the amount of quantumly accessible classical memory (QRACM) the sieve uses.

More specifically, we generalize the c-sieve to work for cyclic groups of arbitrary finite order (from
power-of-two or other smooth orders, which CSIDH groups typically do not have), provide some practical
improvements that maintain better control of the memory and time complexities, give a classical simulator
and run experiments on a wide range of parameters—including the actual CSIDH-512 group order of
N ≈ 2257.1—and concretely quantify the complexity of the c-sieve against general CSIDH parameters. As
far as we know, ours is the first work to simulate any kind of quantum sieve algorithm for groups as large as
the actual CSIDH-512 group, or even groups having orders much larger than N = 2100.

Our main conclusion is that the CSIDH-512 parameters provide relatively little quantum security beyond
what is given by the cost of the quantum oracle: the secret key can be recovered from the public key with, for
example, only about 216 oracle queries and 240 bits of QRACM, plus insignificant other resources. Under
the plausible assumption that implementing the oracle does not cost much more than the “best conceivable
case” estimate of [BLMP19], this means that CSIDH-512 does not have the claimed 64 bits of quantum
security, and it falls well short of the claimed NIST level 1 when accounting for the MAXDEPTH restriction.
Similarly, CSIDH-1024 and -1792, which were conjectured to have at least 96 and 128 bits of quantum
security (respectively), can be broken with about 227 and 241 oracle queries and the same amount of QRACM
(plus cryptanalytically plausible other resources). We again emphasize that the c-sieve offers a flexible
query/QRACM tradeoff, so these query counts can be reduced somewhat with more QRACM.
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1.4 Further Research

The main question that remains to be addressed is the concrete complexity of the quantum oracle, i.e.,
evaluation of the CSIDH group action for a uniform superposition over the group. The results of [BS18]
and even moreso [BKV19] suggest that for CSIDH-512, the cost may be close to the roughly 240 nonlinear
qubit operations estimate [BLMP19] for the “best conceivable case”—perhaps even within a factor of two
or less. This is because [BKV19] gives a fast method for mapping a uniformly random group element to a
short exponent vector, which has a very similar norm distribution to the one analyzed in [BLMP19]. (The
norm’s expectation is only about 10% larger, and its variance is actually somewhat smaller.) Also, because
the c-sieve requires so few oracle queries (e.g., 216 for CSIDH-512), some immediate improvement may be
obtainable simply by increasing the error probability of the oracle, from the 2−32 considered in [BLMP19].
A related question is whether it is possible to accelerate the oracle computations by amortization, since the
oracle takes no input and is queried many times. A detailed analysis of these issues is outside the present
scope, so we leave it to future work.

Our study is primarily focused on collimation arity r = 2, which corresponds to a sieve that produces a
binary recursion tree. Using an arity r > 2 can reduce the number of queries and/or the needed amount of
QRACM, at the cost of more classical time. In a bit more detail, the main collimation subroutine that for
r = 2 takes quasilinear Õ(L) classical time (in the amount L of QRACM) takes Õ(Lr−1) classical time in
general, but reduces the depth of the recursion tree by about an r − 1 factor, which can significantly reduce
the number of oracle queries. Our experiments demonstrate that the classical computation for r = 2 is
cryptanalytically small (e.g., on the order of several core-days), so larger arities seem worth investigating,
especially if the quantum oracle remains the main bottleneck.

1.5 Paper Organization

In Section 3 we describe and analyze our generalization of Kuperberg’s collimation sieve to arbitrary
cyclic groups. In Section 4 we describe our classical simulator for the collimation sieve, and report on
our experiments with it. In Section 5 we draw conclusions about the quantum security of various CSIDH
parameters.

Acknowledgments. We thank the organizers of the Oxford Post-Quantum Cryptography Workshop, at
which we received our first detailed exposure to CSIDH; Michael Cafarella and J. Alex Halderman for the
use of their servers to conduct experiments; and Oded Regev for clarifying conversations.

2 Preliminaries

We let N = {0, 1, 2, . . .} denote the set of nonnegative integers, and for a positive integer L we define
[L] := {0, 1, . . . , L− 1}. All logarithms have base 2 unless otherwise specified. Define χ(x) = exp(2πi · x)
and observe that χ(x)χ(y) = χ(x+ y).

2.1 CSIDH Group Action

Here we recall sufficient background on CSIDH for our purposes; for full details, see [CLM+18]. At its
heart is a free and transitive group action ? : G × Z → Z, where the group G is the ideal class group
Cl(O) of the order O = Z[

√
−p] of the imaginary quadratic number field Q(

√
−p), for a given prime p of a

certain form. (The acted-upon set Z is a certain collection of elliptic curves over Fp, each of which can be
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uniquely represented by a single element of Fp, but this will not be important for our purposes.) Because O
is commutative, its class group G = Cl(O) is abelian. Heuristically, G is cyclic or “almost cyclic” (i.e., it
has a cyclic component of order nearly as large as |G|), and its order N = |G| is approximately

√
p.

CSIDH uses d special ideals li of the order O. Heuristically, these ideals generate the class group or
a very large subgroup thereof; for simplicity, assume the former. The ideals li define an integer lattice of
relations

Λ = {z = (z1, . . . , zd) ∈ Zd : lz11 · · · l
zd
d is principal},

so G is isomorphic to Zd/Λ, via (the inverse of) the map e ∈ Zd 7→ [
∏
i l
ei
i ], of which Λ is the kernel.

A CSIDH secret key is a vector e ∈ Zd of “small” integer exponents representing a group element; more
specifically, the ei are drawn uniformly from some small interval [−B,B]. One evaluates the group action
for the associated ideal class

[
le11 · · · l

ed
d

]
by successively applying the action of each [li] or its inverse, |ei|

times. Therefore, the `1 norm of e largely determines the evaluation time. Note that a group element is not
uniquely specified by an exponent vector; any vector in the same coset of Λ defines the same group element,
but very “long” vectors are not immediately useful for computing the group action. However, if we have a
basis of Λ made up of very short vectors, then given any exponent representation of a group element, we can
efficiently reduce it to a rather short representation of the same element using standard lattice algorithms like
Babai’s nearest-plane algorithm [Bab85].

In the CSIDH-512 parameterization, for which p ≈ 2512, the class group G = Cl(O) has recently been
computed [BKV19]: it is isomorphic to the additive cyclic group ZN = Z/NZ of integers modulo

N = 3 · 37 · 1407181 · 51593604295295867744293584889

· 31599414504681995853008278745587832204909 ≈ 2257.1,

and is in fact generated by the class of the ideal l1. In addition, the lattice Λ ⊂ Z74 of relations among the
ideals li is known, along with a very high-quality (HKZ-reduced) basis. Indeed, the authors of [BKV19]
showed that a uniformly random element of ZN can be quickly reduced to a short exponent vector having a
norm distribution very similar to the CSIDH-512 one. So, in summary, for CSIDH-512 we can efficiently
represent the class group as ZN , and secret keys using the distinguished representatives {0, 1, . . . , N − 1}.

2.2 Abelian Hidden-Shift Problem

The hidden-shift problem on an additive abelian group G is as follows: given injective functions f0, f1 : G→
X (for some arbitrary set X) such that f1(x) = f0(x+ s) for some secret “shift” s ∈ G and all x ∈ G, the
goal is to find s. For cyclic groups G ∼= ZN , this hidden-shift problem is equivalent to the hidden-subgroup
problem on the N th dihedral group (which has order 2N ). Kuperberg [Kup03] gave the first nontrivial
quantum algorithm for this problem, which uses subexponential exp(

√
logN) quantum time and space.

As observed by Childs, Jao, and Soukharev [CJS10], there is a simple connection between the abelian
hidden-shift problem and the key-recovery problem for Couveignes–Rostovtsev–Stolbunov-type systems:
given the “base value” z0 ∈ Z and a public key z1 = s ? z0 for some secret key s ∈ G, where ? : G×Z → Z
is a free and transitive group action, define fb : G→ Z as fb(g) = g ? zb for b = 0, 1. These fb are injective
because ? is free and transitive, and f1(x) = x ? z1 = x ? (s ? z0) = (x+ s) ? z0 = f0(x+ s), as required.
So, solving the hidden-shift problem for these fb immediately yields the secret key.
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3 Collimation Sieve for Cyclic Groups

In this section we generalize Kuperberg’s collimation sieve [Kup13] to arbitrary cyclic groups ZN of known
order N . (The algorithm can be made to work even if we just have a bound on the group order.) In essence,
our algorithm works very much like Kuperberg’s for power-of-two group orders N = 2n, but with the
following implementation differences and optimizations:

1. The sieve creates phase vectors having multipliers that lie in progressively smaller intervals of the
integers. (Kuperberg instead makes the multipliers divisible by progressively larger powers of two.)

2. After sieving down to an interval of size S, where S can be roughly as large as the amount of
quantumly accessible classical memory (QRACM), the algorithm applies a quantum Fourier transform
of dimension S and measures, to reveal about logS of the “most-significant bits” of the secret with
good probability. (Kuperberg’s algorithm instead applies a two-dimensional Fourier transform and
measures to recover the least-significant bit of the secret with certainty.)

3. Alternatively, instead of recovering just logS bits of the secret, the algorithm can perform additional
independent sieves down to various “scaled” intervals. By combining the resulting phase vectors, the
algorithm can recover about logS different secret bits per sieve, and in particular, it can recover the
entire secret using about logN/ logS = logS N sieves. (Kuperberg’s algorithm, after recovering the
least-significant bit of the secret, effectively halves the secret and repeats to recover the remaining bits,
using logN total sieves.)

We point out that the technique in Item 3 is analogous to one attributed to Høyer in [Kup03] for recovering
the entire secret from about logN qubits obtained via Kuperberg’s original sieving technique.

3.1 Phase Vectors

We recall from [Kup13] the notion of a phase vector and some of its essential properties. Fix some positive
integer N and s ∈ ZN . For a positive integer L, a phase vector of length L is a (pure) quantum state of the
form

|ψ〉 = L−1/2
∑
j∈[L]

χ(b(j) · s/N)|j〉

for some function b : [L] → N, where the b(j) are called the (phase) multipliers. In all the algorithms
considered in this work, the multiplier functions b will be written down explicitly in a table, in sorted
order by b(j) for efficiency of collimation (see Section 3.2). Note that while this requires classical memory
proportional to L, only logL qubits of quantum memory are needed for |ψ〉. Also observe that the multipliers
are implicitly modulo N , but we will mainly work with their distinguished integer representatives in
{0, 1, . . . , N − 1}. We say that |ψ〉 is ranged on (or just on) a particular S ⊆ Z if every bj ∈ S.

Looking ahead, a phase vector will be useful to us if its multiplier function b behaves roughly like a
random function to some small desired set, e.g., a small interval [S]; see Section 3.4 for details. We will
construct such phase vectors by recursively combining ones that have random-looking multiplier functions to
somewhat bigger sets.

Creating and combining phase vectors. Prior (finite) hidden-subgroup and hidden-shift algorithms start
from a simple quantum procedure (an “oracle”) Uf that generates a special kind of one-qubit state, i.e., a
length-2 phase vector. Given quantum procedures for computing injective functions f0, f1 : ZN → X (for
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an arbitrary set X) such that f1(x) = f0(x + s) for some secret s and all x, the procedure Uf outputs a
uniformly random b ∈ ZN along with a qubit

|ψ〉 =
1√
2

(|0〉+ χ(b · s/N)|1〉),

i.e., a length-2 phase vector with b(0) = 0, b(1) = b. The details of Uf are not material here; see [Kup03,
Reg04] for accessible expositions.

Phase vectors can be naturally combined by tensoring: given phase r vectors |ψi〉 respectively having
lengths Li and multiplier functions bi, we can form the following quantum state |ψ′〉 with index set L =
[L1]× · · · × [Lr]:

|ψ〉 = |ψ1, . . . , ψr〉 = |L|−1/2
∑

j1∈[L1]

· · ·
∑

jr∈[Lr]

χ(b1(j1) · s/N) · · ·χ(br(jr) · s/N)|j1, . . . , jr〉 (3.1)

= |L|−1/2
∑
~∈L

χ(b(~) · s/N)|~〉,

where b(~) =
∑r

i=1 bi(ji). Therefore, |ψ〉 can be thought of as a kind of phase vector of length |L| =
∏r
i=1 Li,

except that its index set is not exactly [|L|] (although there is a natural bijection between L and [|L|]). More
importantly, we will never explicitly write down the full multiplier function b, but will first “filter” |ψ〉 to
have smaller length using a process called collimation, described next.

3.2 Collimating Phase Vectors

Algorithm 1 is our variant of Kuperberg’s collimation procedure; the only significant difference is that it
collimates according to “high bits” (or “middle bits”; see Section 3.2.3) rather than “low bits,” which we use
to deal with arbitrary group orders N . More precisely, it collimates phase vectors according to the quotients
(ignoring remainder) of their multipliers with the desired interval size S, yielding a new phase vector on [S].

In more detail, given phase vectors |ψi〉 having lengths Li and multiplier functions bi : [Li] → Z, the
algorithm constructs a combined phase vector |ψ′〉 having multiplier function b′(~) =

∑r
i=1 bi(ji), as shown

in Equation (3.1) above. It then measures the quotient q = bb′(~)/Sc, so that the “surviving” indices ~ are
exactly those for which b′(~) ∈ qS + [S]. The common additive qS term corresponds to a global phase
that is easily removed (or ignored, since it has no measurable effect), so the surviving phase multipliers can
be seen to lie in [S]. Let J be the set of surviving indices and suppose that |J | = L. Exactly as described
in [Kup13], the algorithm constructs a bijection π : J → [L] (and its inverse) and applies a corresponding
unitary permutation operator Uπ to the (post-measurement) state, finally yielding a true length-L phase vector
on [S].

3.2.1 Length Analysis

Algorithm 1 is guaranteed to output a phase vector on [S], but the length of the output is a random variable
affected by the phase multipliers of the input vectors and the quantum measurement.

Let r be small, with r = 2 being the main case of interest. Suppose that the input vectors |ψi〉 have
roughly uniformly distributed multipliers on [S′] for some S′ � S, and let L′ =

∏
i Li be the product of

their lengths. Then the L′ phase multipliers b′(~) are also very well distributed on [rS′] (though not quite
uniformly, because extreme values are less likely). So, we expect L ≈ L′ · S/(rS′) indices to “survive”
collimation. (E.g., when r = 2, an easy calculation shows that E[L] is very close to 2

3L
′ · S/S′, due to the

8



Algorithm 1 Collimate phase vectors.
Input: Phase vectors |ψ1〉, |ψ2〉, . . . , |ψr〉 of respective lengths L1, . . . , Lr, and a desired interval size S.
Output: A phase vector |ψ〉 on [S].

1. Form the phase vector |ψ′〉 = |ψ1, . . . , ψr〉 having index set [L1]× · · · × [Lr] and phase multiplier
function b′(~) =

∑r
i=1 bi(ji).

2. Measure |ψ′〉 according to the value of q = bb′(~)/Sc to obtain Pq|ψ′〉 for a certain subunitary Pq.

3. Find the set J of tuples ~ that satisfy the above. Let L = |J | and choose a bijection π : J → [L].

4. Output phase vector |ψ〉 = UπPq|ψ′〉 with index set [L] and multiplier function b(j) = b′(π−1(j)).

non-uniformity of pair sums.) Moreover, the surviving multipliers are close to uniformly distributed on [S],
because it is a very narrow subinterval of [rS′].

Because we will want all the input and output vectors to have roughly the same lengths L, we can
therefore take rS′L ≈ SL′ where L′ = Lr, i.e.,

S′ ≈ S · Lr−1/r. (3.2)

In other words, with one level of collimation we can narrow the size of the interval in which the multipliers
lie by roughly an Lr−1/r factor, while expecting to roughly preserve the vector lengths.

3.2.2 Complexity of Collimation

Kuperberg [Kup13, Proposition 4.2] rigorously bounds the complexity of his collimation procedure for the
arity r = 2 of main interest. Letting Lmax denote the maximum of the lengths of the input and output phase
vectors and adopting our notation, Kuperberg proves that collimation can be done with:

• Õ(Lmax) classical time, where Õ hides logarithmic factors in both Lmax and N ,

• O(Lmax logN) classical space,

• O(Lmax ·max(log(S′/S), logLmax)) bits of QRACM, and

• only poly(logLmax) quantum time and O(logLmax) quantum space.

The same holds for our more general form of collimation, with one small subtlety concerning the QRACM
usage. Naı̈vely, measuring q = bb(~)/Sc requires storing the entire bi vectors in QRACM, which requires
up to O(Lmax logS′) = O(Lmax logN) bits. This is in contrast to Kuperberg’s method, which requires
only O(Lmax log(S′/S)) bits, namely, the least-significant bits of the multipliers. We can obtain the latter
bound by storing in QRACM only sufficiently many of the “most significant bits” of the bi(ji), namely,
b̂i(ji) = bbi(ji)/Kc for some K moderately smaller than S. We then measure q = bK · b̂(~)/Sc, from which
it follows that

b̂(~) ∈ q(S/K) + [0, S/K] =⇒ b(~) ∈ qS + [0, S + rK].

By taking, say, K ≥ (S/S′)S, we use at most log(S′/K) ≤ 2 log(S′/S) bits per entry of b̂i(ji). And
due to Equation (3.2), the range size for the collimated output vector is S + rK ≈ S(1 + r2/L), which is
insignificantly larger than S for the L ≥ 216 of interest.
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The Õ(Lmax) classical time bound is achieved by keeping the phase multipliers in a sorted table, which
allows the inverse permutation π−1 : [L]→ J to be classically computed and stored in an ordinary array. In
addition, the forward permutation can be stored using an associative array in just O(Lmax logLmax) total
bits. Quantum random access to these arrays allows Uπ to be applied to the quantum state in quantum time
polynomial in logLmax. See [Kup13, Section 4.3] for full details. A close inspection shows that the constant
factor in the QRACM bound is small: the entire algorithm can be run using 4Lmax logLmax bits of QRACM
or less. This is because:

• The two multiplier functions b̂i described above can each be stored with 2 log(S′/S) ≤ 2 logL ≤
2 logLmax bits per entry, then this memory can be reused after the measurement. (Note that the factor
of 2 here is not tight.)

• The associative array representing the permutation π : J → [L] can be stored with as little as 3 logLmax

bits per entry, though the described method uses an additional logLmax bits to enable faster lookup;
this memory also can be reused after applying the permutation operator U1.

• The array storing the permutation π−1 : [L]→ J can also be stored with 2 logLmax bits per entry, and
this memory also can be reused later, after applying the permutation operator U2.

Finally, we remark that for the Lmax ≤ 240 of interest in this work, the poly(logLmax) quantum time
and O(logLmax) quantum space needed for collimation (which involves just addition, division, and table
lookups) are insignificant compared to the estimated complexity of implementing the quantum oracle Uf for
CSIDH parameters of interest [BLMP19].

3.2.3 Scaled Intervals

Collimation naturally generalizes to produce phase vectors ranged on other sets, such as “scaled intervals”
A · [S] = {0, A, 2A, . . . , (S − 1)A} for positive integers A. (We use such sets in Section 3.4.3 below.)
Specifically, if we are given r phase vectors on A · [S′], we can get a phase vector on certain scalings of [S]
as follows:

1. We can collimate according to q = bb′(~)/(AS)c, thereby creating a phase vector on A · [S] (ignoring
the global-phase term qAS), because all the b(~) are divisible by A.

2. Alternatively, we can collimate according to c = b′(~) mod (AB) for B = drS′/Se, thereby creating
a phase vector on AB · [S] (ignoring the global-phase term c), because all the b(~) are in A · [rS′].

3. Finally, we can interpolate between the above two techniques, collimating according to both q =
bb′(~)/(ABS)c and c = b′(~) mod (AB) for an arbitrary positive integer B ≤ drS′/Se, thereby
creating a phase vector on AB · [S].

By appropriately composing these kinds of collimations, we can obtain any needed scaling factor. For all
these options, adapting the above analyses yields the same ultimate conclusions, that collimation can decrease
the range size by roughly an Lr−1/r factor while keeping the input and output vector lengths roughly equal.

3.3 Collimation Sieve

Algorithm 2 is the full collimation sieve, which constructs a phase vector on a desired interval [S] by
recursively constructing phase vectors on a suitably wider interval [S′], in a depth-first manner. The algorithm
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is essentially the same as Kuperberg’s from [Kup13] (which incorporates a key insight of Regev’s [Reg04]),
except that it uses collimation on “high bits,” along with a few tweaks to make it more effective in practice
(see Section 3.3.1 below).

Typically, one would initially run Algorithm 2 with interval sizes Si where:

• S0 ≈ L, the desired length of the ultimate phase vector (which can be almost as large as the available
amount of QRACM), and

• Si+1 = min{≈ Si · Lr−1/r,N} (see Equation (3.2)), where the final Sd = N .

In the base case (when requesting a phase vector on [N ] of length ≈ L), the algorithm simply invokes
the oracle Uf some ` = blogLe times to get length-2 phase vectors |ψi〉 ∝ |0〉 + χ(bi · s/N) for known
uniformly random multipliers bi ∈ [N ], then tensors them all together to get a length-2` phase vector whose
multipliers are the mod-N subset-sums of the bi. In the recursive case (when requesting a phase vector
on [Si] for some Si < N ), the algorithm recursively obtains r phase vectors on [Si+1] of appropriate lengths,
collimates them, and returns the result.

Naturally, we can sieve to other desired output ranges, like scaled intervals Si · [S], simply by using the
alternative kinds of collimations described in Section 3.2.3.

Algorithm 2 Collimation sieve for group ZN and collimation arity r.
Input: Interval sizes S0 < S1 < · · · < Sd = N , a desired phase-vector length L, and oracle access to Uf .
Output: A phase vector on [S0] of length ≈ L.

Base case. If S0 = N , generate ` = blogLe length-2 phase vectors |ψ1〉, |ψ2〉, . . . , |ψ`〉 using Uf (see
Section 3.1). Output the length-2` phase vector |ψ〉 = |ψ1, . . . , ψ`〉.

Recursive case. Otherwise:

1. Using r recursive calls for sizes S1 < · · · < Sd = N and appropriate desired lengths, obtain r
phase vectors |ψ1〉, . . . , |ψr〉 on [S1], the product of whose lengths is ≈ L · S1/S0.

2. Collimate these phase vectors using Algorithm 1 to produce a phase vector |ψ〉 on [S0], and
output it (unless its length is much less than L, in which case discard it and restart Step 2.)

3.3.1 Practical Improvements

Recall that the length of a phase vector output by collimation is unpredictable, and may be rather longer
or shorter than expected. Because the lengths directly affect the required amount of QRACM and other
resources required by the rest of the sieve, we would like to keep them under control as much as possible. We
do so with two techniques:

1. being adaptive about the requested vector lengths in the recursive calls, and

2. discarding phase vectors that are unusually short, and recomputing from scratch.

Adaptivity means the following. Recall that to create a phase vector on [S] of length ≈ L, the algorithm
recursively creates r phase vectors on [S′] for some given S′ � S, the product of whose lengths we want to be
≈ L′ = L · (S′/S). So, on the first recursive call we request a vector of length (L′)1/r, and obtain a vector of
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some length L̃. Following that we want the product of the remaining r−1 vector lengths to be≈ L′/L̃, so we
request a vector of length (L′/L̃)1/(r−1), and so on. This immediately compensates for shorter-than-expected
vectors, which helps to avoid cascading short vectors higher in the recursion tree and a useless final output.
And in the fortunate event that we get a longer-than-expected vector, requesting correspondingly shorter
vectors speeds up the remaining computation. It is also trivial to shorten a longer-than-expected vector via a
partial measurement, in case we have a hard cap on the available amount of QRACM.

Vectors that are much shorter than expected present a more significant problem, however. Compensating
for them requires corresponding longer vectors, which require correspondingly more QRACM and computa-
tion. And getting another short vector in that part of the computation subtree further increases the required
resources. Therefore, whenever a call to Algorithm 2 produces a candidate output vector that is shorter than
the requested length by some fixed threshold factor, it simply discards it and computes a fresh one from
scratch.1 Empirically, factors of 0.25 or 0.4 seem to work well, causing a discard in only about 2% or 4.5%
of calls (respectively), and keeping the maximum vector length across the entire sieve to within a factor of
about 24–25 or 22.5 (respectively) of the desired length L; moreover, the factor tends to decrease somewhat
as L grows. (See Figure 1 for details.) Without our discard rule, the maximum vector length tends to be
several hundreds or even thousands of times larger than L, yet the final phase vector can still be much shorter
than desired.

3.3.2 Complexity Model

For the main collimation arity r = 2 of interest, we give a model for the behavior of the collimation
sieve. Based on the length analysis for r = 2 given in Section 3.2.1, we take Si = S0 · (2L/3)i for all
i = 1, . . . , d− 1 such that Si < N , and take Sd = N . So, the recursion depth of the sieve is given by

S0 · (2L/3)d ≥ N =⇒ d =

⌈
log(N/S0)

log(2L/3)

⌉
.

At the leaf level of the recursion tree (i.e., in the base case), we typically need to make a phase vector of
length about

L′ =
√

3LSd/(2Sd−1) =
√

3LN/(2Sd−1),

which we construct by making logL′ (rounded up or down) queries to Uf and tensoring the results. Supposing
that a random δ fraction of recursive calls to Algorithm 2 result in a discard (due to insufficient length), the
arity of the recursion tree is effectively 2/(1− δ). Therefore, the total number of queries to oracle Uf should
be close to

Q = (2/(1− δ))d · logL′.

Our experiments turn out to conform very closely to this model, especially for moderate and larger values
of L. See Section 4 for details.

1This is roughly analogous to what is done in Kuperberg’s original sieve [Kup03], where combining two qubits has a 50% chance
of producing a “useless” output that is then discarded.

12



3.4 Post-Processing

3.4.1 Regularization

An initial call to Algorithm 2 outputs a phase vector |ψ〉 on [S] = [S0] of length L̃ ≈ L, which we want to
be somewhat larger than S. Heuristically, for each t ∈ [S] we expect about L̃/S phase multipliers b(j) to
equal t; however, there is some variation in the number of each multiplier. Ideally, we would like a regular
state, i.e., one which has exactly the same number of multipliers for each t ∈ [S].

We can obtain one by generalizing [Kup13]: select a maximal subset X ⊆ [L̃] for which b(X) has an
equal number of every t ∈ [S]. Then measure whether |ψ〉 is in C[X], which holds with probability |X|/L̃.
If not, discard it and run the sieve again; if so, the measured form of |ψ〉 is regular. It therefore has a factor of
the form

S−1/2
∑
j∈[S]

χ(j · s/N)|j〉 ,

which we can extract by reindexing. (This requires almost no work, because the multipliers are sorted.)
Observe that the above state essentially corresponds to the dimension-S inverse quantum Fourier transform
of a point function at sS/N ; see Section 3.4.4 for details.

The probability of obtaining a regular phase vector is |X|/L̃ = mS/L̃, where m is the frequency of
the least-frequent phase multiplier t ∈ [S]. In our experiments, a length L̃ ≈ 64S typically led to success
probabilities in the 40–80% range, and a length L̃ ≈ 128S usually led to an 80% or larger success probability.

3.4.2 Punctured Regularization

The above procedure is somewhat wasteful, because it loses a factor of L̃/S ≈ 27 in the number of basis
states |j〉 in the fortunate case (and loses all of them in the unfortunate case). Alternatively, we can use the
following method for generating a “punctured” (regular) phase vector, which works for S as large as L̃ (or
even a bit more), and which produces a state that is almost as good as a regular one on [S]. Empirically, this
lets us extract almost logS bits of the secret.

Again suppose that the sieve produces a phase vector |ψ〉 on [S] of length L̃. We make a pass over j ∈ [L̃],
forming a set X of one index j for each distinct value of b(j), and ignoring duplicates. (This is trivial to do,
because the multipliers are sorted.) We then measure whether |ψ〉 is in C[X], which holds with probability
|X|/L̃. If not, we try again with a new choice of X on the leftover phase vector, as long as it remains long
enough. If so, the restriction b : X → [S] is injective, so by reindexing each j ∈ X to b(j), we now have a
state of the form

|X|−1/2
∑
j∈X

χ(b(j) · s/N)|j〉 = |X|−1/2
∑

j∈b(X)

χ(j · s/N)|j〉. (3.3)

This state is a length-|X| phase vector, except for the “punctured” index set b(X) ⊆ [S]. It is also almost
as good as a regular phase vector on [S], in the following sense. Heuristically, each of the multipliers b(j) for
j ∈ [L̃] is uniformly random, so the multipliers b(X) ⊆ [S] form a random subset of density

1− (1− 1/S)L̃ ≈ 1− (1− 1/e)L̃/S .

(For example, this density is approximately 0.368, 0.600, and 0.840 for L̃ = S, 2S, and 4S, respectively.)
Therefore, the state in Equation (3.3) corresponds to a kind of densely subsampled Fourier transform of a
point function encoding the secret. Empirically, such states have enough information to let us extract about
logS − 2 bits of the secret in expectation; see Section 3.4.4 for details.
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3.4.3 Combining (Punctured) Regular Phase Vectors

By combining k separately generated regular phase vectors for scalings of [S], we can create a regular phase
vector on [T ] for T = Sk, as shown below. In particular, for k > logS N we can create a regular phase vector
for T > N , which is large enough to recover s exactly (with good probability). Note that it might not be
necessary to recover all of s in this manner; given partial information on s (say, half of its bits) it might be
more efficient to use other methods to recover the rest.

We separately create k regular phase vectors

|ψi〉 = S−1/2
∑
j∈[S]

χ(Sij · s/N)|j〉

on the scaled intervals Si · [S] = {0, Si, 2Si, . . . , (S − 1)Si}, for i = 0, 1, . . . , k − 1. Then their tensor
product |ψ〉 = |ψ0, . . . , ψk−1〉 is

|ψ〉 = T−1/2
∑
j0∈[S]

· · ·
∑

jk−1∈[S]

χ
(k−1∑
i=0

jiS
i · s/N

)
|j0, . . . , jk−1〉 = T−1/2

∑
j∈[T ]

χ(j · s/N)|j〉,

where we have re-indexed using j =
∑k−1

i=0 jiS
i. Therefore, |ψ〉 is a regular phase vector for [T ], as desired.

The same technique works for punctured regular states, where the tensored state’s index set is the
Cartesian product of the original states’ index sets. To prevent the density from decreasing, we can use a
scaling factor slightly smaller than S, e.g., δS where δ is the density of the input states. Then the density of
the resulting state is about (δS)k/(δk−1Sk) = δ.

3.4.4 Measurement

Now suppose we have a regular phase vector |ψ〉 = T−1/2
∑

j∈[T ] χ(j · s/N)|j〉 on [T ]. Then its T -
dimensional quantum Fourier transform is

QFTT |ψ〉 = T−1
∑
w∈[T ]

∑
j∈[T ]

χ

(
js

N
− jw

T

)
|w〉 = T−1

∑
w

(∑
j

χ
(
j
( s
N
− w

T

)))
|w〉. (3.4)

We compute this state and measure, obtaining some w that reveals information about s, as analyzed next.
IfN |(sT ), then the amplitude associated with w = sT/N ∈ [T ] is nonzero and the amplitudes associated

with all the other w ∈ [T ] are zero, so measuring the state yields w with certainty, from which we recover
s = wN/T . Otherwise, fix some arbitrary w ∈ [T ] and let θ = s/N − w/T 6∈ Z. By summing the finite
geometric series (over j), we see that the amplitude associated with |w〉 is

T−1
∣∣∣∣1− χ(Tθ)

1− χ(θ)

∣∣∣∣ = T−1
∣∣∣∣χ(Tθ/2) · (χ(−Tθ/2)− χ(Tθ/2))

χ(θ/2) · (χ(−θ/2)− χ(θ/2))

∣∣∣∣ = T−1
∣∣∣∣sin(πTθ)

sin(πθ)

∣∣∣∣.
For |θ| ≤ 1/(2T ) this value is at least (T sin(π/(2T )))−1 ≥ 2/π. So when measuring the state, we obtain
a w such that |s/N − w/T | ≤ 1/(2T ) with probability at least 4/π2 ≥ 0.4. In such a case, we have

s ∈ w · NT + [− N
2T ,

N
2T ],

i.e., we know the log T “most-significant bits” of s. In particular, if T > N then this defines s uniquely.

14



Now suppose instead that we have a punctured regular phase vector |ψ〉 = |Y |−1/2
∑

j∈Y χ(j · s/N)|j〉
on [T ], for a heuristically random index set Y ⊆ [T ] of significant density. Its QFT is exactly as in
Equation (3.4), but with normalizing factor (Y T )−1/2 instead of T , and with the index j running over Y
instead of [T ]. As above, when w/T is very close to s/N , the amplitudes χ(j(s/N − w/T )) ∈ C all point
in roughly the same direction, and accumulate. Otherwise, the amplitudes heuristically point in random
directions and mostly cancel out. Therefore, the final measurement is likely to output a w close to sT/N .

For the values of S we used in our experiments, it is efficient to compute the probability of obtaining
any particular value of w when measuring (the QFT of) a particular punctured phase vector. Empirically,
we usually observe a total probability (over the first several punctured vectors coming from the final sieve
output) of about 40% or more in recovering the value of w closest to sT/N . This corresponds to extracting
at least log T − 2 bits of the secret in expectation. See Figure 2.

4 Experiments

At present, there are no (publicly available) quantum computers capable of running the full quantum algorithm
for nontrivial parameters. But fortunately, as pointed out in [Kup13], the collimation sieve itself (apart from
the quantum oracle Uf and the final QFT) is pseudoclassical: it consists entirely of permutations of the
computational basis and measurements in that basis, which are trivial to simulate classically. In addition,
the needed part of the quantum oracle Uf is easy to simulate, just by generating a uniformly random phase
multiplier b← ZN (for the qubit |ψ〉 ∝ |0〉+ χ(b · s/N)|1〉, which we do not need to generate).

4.1 Sieve Simulator

Using the above observations, we implemented a classical simulator for our generalized collimation sieve.2

The simulator is currently hard-coded for collimation arity r = 2, but would be easy to generalize to larger
arities. It allows the user to specify:

• a group order N (including an option for the exact CSIDH-512 group order, as computed in [BKV19]);

• a desired typical phase vector length L;

• an interval size S for the ultimate phase vector.

The simulator logs its progress in a human-readable form, and finally outputs various statistics for the full
sieve, including:

• the total number Q̃ of queries to the quantum oracle Uf ;

• the number Q of queries predicted by the model from Section 3.3.2;

• the length L̃max of the longest created phase vector;

• the probability of obtaining a regular phase vector from the final one, and the expected number of bits
of the secret that can be recovered from the final phase vector via regularity;

• the probabilities of obtaining punctured regular phase vectors of sufficient length from the final phase
vector, and the total probability of measuring a value that yields logS secret bits.

2The code for the simulator and instructions for running it are at https://github.com/cpeikert/
CollimationSieve. The code is written in the author’s favorite functional language Haskell, and has not been especially
optimized for performance, but it suffices for the present purposes.
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4.2 Experimental Results

We ran our simulator for a wide range of group orders N (focusing mainly on the exact CSIDH-512 group
order), desired phase-vector lengths L, and range sizes S. Our results for the CSIDH-512 group order are
given in Figure 1 and Figure 2; the former concerns full regularization of the final phase vector (Section 3.4.1),
while the latter concerns punctured regularization (Section 3.4.2). In summary, the experiments strongly
support the following general conclusions:

• For all tested group orders and desired vector lengths L ∈ [216, 226], the required classical resources
are cryptanalytically insignificant: at most a few core-days on a commodity server with 128GB or
512GB of RAM, using only four CPU cores and less than 100GB RAM per experiment.

• The actual number Q̃ of oracle queries conforms very closely to the model from Section 3.3.2,
especially for relatively larger L ≥ 222, where Q̃ was almost always within a factor of 20.4 ≈ 1.32 of
the predicted Q, and was usually even closer.

• Taking L = 64S suffices to obtain a regular phase vector on [S] with good probability, usually in the
45–80% range. Halving S, and hence making L ≈ 128S, typically results in a regularity probability of
70% or more, often yielding slightly more expected number of bits of the secret.

• Taking L = S typically suffices to obtain at least logS − 2 bits of the secret in expectation, via
punctured regularization. More specifically, we can create one or more punctured regular phase vectors
that collectively represent a roughly 40% probability of yielding logS bits of the secret.

5 Quantum (In)security of CSIDH

Here we come to some conclusions about the quantum security levels of various CSIDH parameterizations,
based on our model from Section 3.3.2 and our experiments’ close adherence to it. See Figure 3 for some
example estimates. Our summary conclusions are as follows:

1. CSIDH-512 key recovery can be accomplished using, for example, 240 bits of QRACM and only
about 216 oracle queries, or 232 bits of QRACM and about 219.3 queries. This significantly improves
the prior estimate [BS18] of about 231 fully quantum bits of memory and 232.5 queries, for a version of
Kuperberg’s original sieve algorithm [Kup03].

2. Under the plausible assumption that implementing the quantum oracle is not much more costly than
the “best conceivable” estimate of about 240 nonlinear qubit operations (see Section 1.4 for discussion),
CSIDH-512 does not achieve the claimed 64 bits of quantum security. A more prudent estimate would
be closer to 40 + 16 = 56 bits of quantum security, depending on how the cost of QRACM is modeled
in relation to other resources. (It also remains to be seen whether increasing the collimation arity can
reduce the query complexity further, for the same or even less QRACM.)

3. Under the same assumption about the quantum oracle, CSIDH-512 falls well short of the claimed
NIST quantum security level 1—i.e., as hard as key search for AES-128—when accounting for the
MAXDEPTH restriction. Specifically, NIST’s estimate for breaking AES-128 is 2170/MAXDEPTH
quantum gates, where plausible values of MAXDEPTH range between 240 and 296. Note that the
collimation sieve is extremely shallow compared to the oracle implementation, whose depth is less
than its gate count, so the total depth of the CSIDH-512 attack is at the lower end of the MAXDEPTH
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log Q̃ logQ log L̃max logL logS Pr[regular] bits threshold discard depth
(%) (%)

19.4 19.1 23.9 18 10 78 7.8 0.25 2.8 15

19.4 19.2 23.8 11 95 10.5 3.6

19.2 19.3 23.3 12 72 8.6 4.2

18.3 18.2 24.3 19 11 95 10.5 2.3 14

18.4 18.1 23.5 12 82 9.8 2.3

18.6 18.1 24.5 13 61 7.9 2.4

17.6 17.4 24.3 20 12 84 10.1 2.0 13

17.7 17.4 25.2 13 56 7.3 2.0

17.6 17.4 24.2 14 66 9.2 2.2

17.2 16.7 25.2 21 13 64 8.3 2.1 12

17.2 16.7 25.7 14 71 10.0 2.0

16.8 16.6 25.4 15 73 10.9 1.9

16.6 16.3 26.8 22 14 72 10.0 2.0 12

16.3 16.2 26.6 15 55 8.2 1.9

16.6 16.2 26.6 16 60 9.6 2.3

16.3 15.7 26.4 23 15 79 11.9 2.0 11

15.6 15.6 26.9 16 66 10.5 1.8

15.6 15.6 26.7 17 62 10.6 2.0

15.4 15.4 28.0 24 16 71 11.3 2.4 11

15.5 15.3 28.6 17 85 14.4 2.1

15.3 15.2 29.1 18 64 11.5 2.1

14.9 14.8 28.7 25 17 62 10.5 1.8 10

14.8 14.8 29.6 17 93 15.7 1.9

15.4 14.8 28.9 18 85 15.3 1.9

14.9 14.8 29.2 19 60 11.4 2.1

15.1 14.8 29.1 19 81 15.4 2.0

15.0 14.7 29.6 26 18 92 16.5 0.40 3.5 10

14.9 14.8 29.4 19 77 14.7 4.6

Figure 1: Statistics from representative runs of our collimation sieve simulator on the actual CSIDH-512
group, as computed by [BKV19]. Here Q̃ and Q are respectively the actual and predicted (by the model of
Section 3.3.2) number of queries to the quantum oracle; L̃max is the maximum length of all created phase
vectors, and L is the requested (and typical) vector length; S is the range size for the final phase vector;
“regular” is the probability of obtaining a regular vector from the final phase vector (see Section 3.4.1); “bits”
is the expected number of bits of the secret that can be recovered from the final phase vector; “threshold” is
the threshold factor used for determining whether a phase vector is too short (see Section 3.3.1); “discard”
is the fraction of recursive calls that were discarded for being below the threshold; “depth” is the recursion
depth of the sieve. Each missing entry is equal to the one above it. Every experiment ran on at most four
CPU cores on a commodity server, and completed in no more than a few core-days.
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log Q̃ logQ log L̃max logL logS bits threshold discard depth
(%)

17.2 17.0 25.3 20 20 19.1 0.25 2.2 13

18.1 17.1 24.3 18.1 2.2

16.7 16.4 25.1 21 21 20.1 2.0 12

16.8 16.4 24.9 19.4 1.9

16.6 16.4 24.8 17.7 2.0

15.9 15.7 26.6 22 22 21.2 1.9 11

16.2 15.8 25.7 20.3 2.0

16.4 15.8 25.8 20.4 2.0

15.6 15.3 26.6 23 23 21.2 1.7 11

16.0 15.4 26.3 21.9 2.0

14.9 14.8 26.8 24 24 22.5 1.8 10

15.0 14.6 28.3 25 25 22.4 2.3 10

Figure 2: Statistics from representative runs of our collimation sieve simulator on the actual CSIDH-512
group, as computed by [BKV19]. The column headers are the same as in Figure 1, except that “bits” b is the
expected number of secret bits obtainable by using punctured phase vectors obtained from the vector output
by the sieve; see Section 3.4.2 and Section 3.4.4. Each missing entry is equal to the one above it. Every
experiment ran on at most four CPU cores on a commodity server, and completed in no more than a few
core-days. (We continue to run more experiments for larger parameters.)

range. Yet its quantum gate count is far below 2130, and even well below 274 (for the high end of
MAXDEPTH).

4. Similarly, key recovery for CSIDH-1024 and -1792 using the same or somewhat more QRACM
requires only 2b oracle queries, for b in the mid-20s and high-30s, respectively. Although concrete
estimates for implementing the corresponding oracles are not yet available, these query complexities
imply that these CSIDH parameterizations have at best moderate quantum security beyond what is
given by the cost of implementing the oracle. Moreover, a similar analysis to the one above applies
regarding CSIDH-1792’s claimed NIST quantum security level 3—i.e., as hard as key search for
AES-192—for which attacks are supposed to require 2233/MAXDEPTH quantum gates.

In more detail, the estimates in Figure 3 are based on the following:

• We take S = L and use punctured regularity to obtain bits of the secret (see Section 3.4.2). We assume
that each run of the sieve reveals an expected logS − 2 bits of the secret, which is consistent with our
experiments.

• We quantify the total number T̃ of quantum-oracle queries needed to recover all but 56 bits of the
secret; the remainder can be obtained by classical brute force.3 We assume that the actual number of
queries Q̃ made by a run of the sieve is within a factor of 20.3 of the estimated number Q in expectation,
which is consistent with our experiments.

• We impose a maximum phase-vector length of L̃max = 8L. This reflects the fact that the generated
phase vectors are sometimes longer than the desired length L, but are almost always within a factor

3This choice seems conservative; it is plausible that classical attacks could relatively efficiently recover the full secret from, say,
half of its bits or even fewer, which would cut the estimated number of quantum queries in half.

18



log p logN logL log QRACM depth log T̃

512 257.1 22.3 32 11 19.3

26.1 36 10 17.5

29.9 40 8 16.1

33.8 44 7 15.1

37.6 48 6 14.2

1024 512 26.1 36 20 29.0

29.9 40 17 26.3

33.8 44 15 24.2

37.6 48 13 22.5

41.5 52 12 21.2

1792 896 29.9 40 30 40.7

33.8 44 26 36.9

37.6 48 24 34.1

41.5 52 21 31.7

45.4 56 19 29.7

Figure 3: Example complexity estimates for secret-key recovery against CSIDH-log p using the collimation
sieve with arity r = 2, for various bit lengths (rounded to the nearest integer) of the CSIDH parameter p. Each
missing entry is equal to the one above it. Here N is the estimated (or exact, in the case of CSIDH-512) group
order; L = S are respectively the desired length and range size of the sieve’s final phase vector; QRACM is
the number of bits of quantumly accessible classical memory, bounded as 4L̃max log L̃max for L̃max = 8L;
“depth” is the depth of the sieve’s recursion tree, which is a proxy for (the logarithm of) one main factor in the
classical running time; T̃ is the total number of queries to the quantum oracle to recover all but 56 bits of the
secret.
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of 8, and we can enforce this as a hard bound by doing a partial measurement whenever a phase vector
happens to be longer. We use a bound of 4L̃max log L̃max on the number of bits of QRACM (see
Section 3.2.2).
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