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Abstract

Oblivious transfer is one of the main pillars of modern cryptography
and plays a major role as a building block for other more complex cryp-
tographic primitives. In this work, we present an efficient and versa-
tile framework for oblivious transfer (OT) using one-round key-exchange
(ORKE), a special class of key exchange (KE) where only one message is
sent from each party to the other. Our contributions can be summarized
as follows:

• We carefully analyze ORKE schemes and introduce new security def-
initions. Namely, we introduce a new class of ORKE schemes, called
Alice-Bob one-round key-exchange (A-B ORKE), and the definitions
of message and key indistinguishability.

• We show that OT can be obtained from A-B ORKE schemes fulfilling
message and key indistinguishability. We accomplish this by design-
ing a new efficient, versatile and universally composable framework
for OT in the Random Oracle Model (ROM). The efficiency of the
framework presented depends almost exclusively on the efficiency of
the A-B ORKE scheme used since all other operations are linear
in the security parameter. Universally composable OT schemes in
the ROM based on new hardness assumptions can be obtained from
instantiating our framework.

Examples are presented using the classical Diffie-Hellman KE, RLWE-
based KE and Supersingular Isogeny Diffie-Hellman KE.

1 Introduction

Oblivious transfer (OT), introduced in the 80s by Rabin [Rab81], is one of the
main pillars of modern cryptography. It involves two parties: the sender, which
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receives as input two messages M0 and M1, and the receiver, which receives as
input a bit b ∈ {0, 1}. Security for the receiver is guaranteed if the sender gets no
information on b whereas security for the sender is guaranteed if the receiver gets
Mb but no information on M1−b. Despite its simplicity, OT can be employed as a
building block to construct other more complex cryptographic primitives [Kil88],
such as secure multiparty computation (MPC) [Yao86], privacy-preserving key-
word search [FIPR05], or private information retrieval [KO97]. However, for
practical purposes, the efficiency and number of OT executions needed to per-
form these tasks, specially MPC protocols, is a clear bottleneck, even using
optimizations, such as OT extensions [ALSZ17]. Hence, the development of ef-
ficient OT protocols is crucial to make MPC protocols ubiquitous, which is the
motivation of this work.

Recall that key-exchange (KE) allows two parties, usually called Alice and
Bob, to share a key while preventing an eavesdropper to get any information
about the key. It is probably the oldest public-key cryptographic primitive
and its study goes back to the seminal paper of Diffie and Hellman [DH76].
In this work, we consider a special type of KE, called one-round key-exchange
(ORKE), where only one message is sent from each party to the other (see, for
example, [JKL04, BJS15]). That is, to share a key using an ORKE scheme,
Alice sends one message to Bob and Bob sends one message back.

Our main result is the construction of a new efficient and Universally Com-
posable [Can01] framework for OT from ORKE, with very low overhead. Since,
it is impossible to achieve universally composable OT in the plain model [CF01],
our framework is proven secure in the random oracle model (ROM). In order
to design the framework, we analyze carefully ORKE schemes to understand
which are the additional conditions required to construct OT.

1.1 Related work

Although it is quite difficult to come up with UC-secure OT protocols, several
proposals have been made in recent years. We highlight the ones which use
public-key encryption (PKE) schemes as a building block [PVW08, DNMQ12,
DDN14, BDD+17, BPRS17] (an idea firstly presented in [BM90]). However, the
use of PKE schemes to perform OT is, in most cases, too inefficient, especially in
a scenario where one has to create a new pair of public and secret keys for each
execution of the OT. This also affects the communication complexity since, for
example, post-quantum PKE schemes have very large public keys, and all the
above mentioned OT protocols require a public key to be sent from one party
to the other.

In real life applications, key exchange (KE) schemes are often used to ex-
change keys in order to securely communicate using a symmetric-key encryption
(SKE) scheme. Hence, the idea of using KE and SKE schemes to design OT pro-
tocols seems to follow naturally. This idea was introduced in [CO15] and applied
in [HL17, DKLas18], using the Diffie-Hellman protocol and, later, post-quantum
versions were presented using the Supersingular Isogeny Diffie-Hellman (SIDH)
protocol [BOB18] and using RLWE-based KE [BDGM18]. The main advan-
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tage of using KE over PKE schemes to construct OT is that exchanging keys
and communicating via SKE is usually much more efficient than communicating
using PKE schemes (many times, the decryption algorithm of PKE schemes is
much more inefficient than the encryption algorithm. By using KE and SKE
over PKE, we avoid the use of the decryption algorithm of PKE). We remark
that both the schemes [CO15, BOB18] do not provide UC-security.

1.2 Our contribution

A-B ORKE. Our first contribution is the definition of a new class of key-
exchange protocols, called Alice-Bob one-round key-exchange (A-B ORKE). An
A-B ORKE is an ORKE where the message sent by one party (say Bob) might
depend on the message previously sent by the other party (Alice). The specific
case when Bob’s message does not depend on Alice’s is the standard ORKE (as
in [BJS15]). Thus, it is obvious that ORKE is a particular case of A-B ORKE.
More precisely, it is the non-interactive case of A-B ORKE. To encompass more
instances of our OT framework, we work with A-B ORKE schemes. However,
we remark that any vanilla ORKE scheme with the same security properties
can also be used in our construction.

We introduce new security definitions for A-B ORKE: i) key indistinguish-
able, meaning that, if Alice sends a uniformly random message (instead of mes-
sage computed using her secret key), then the shared key computed by Bob is
indistinguishable from a uniformly chosen value to her; and ii) message indistin-
guishable, which means that Alice’s message should be indistinguishable from
a uniformly random value from Bob’s point-of-view. These concepts cannot be
trivially defined in a formal way since Alice’s message may be composed by sev-
eral smaller messages, some of them indistinguishable from uniformly random
values, but others not.

Hence, consider the set of messages M that can be computed by Alice.
Suppose that there is a group M and a setM such thatM⊆M and consider a
group action ψ :M×M→M. We define message indistinguishability to be the
incapability of an adversary in distinguishing m ∈M from m′ = ψ(m,h) where
h was sampled uniformly from M. Key indistinguishability is defined similarly
as the infeasibility of a adversary to distinguish a key computed by Bob using
m′ sent by Alice (instead of m) from a uniformly chosen value.

A New framework for OT. As our main result, we present a new framework
for building an OT from any A-B ORKE scheme. Our construction shows that
it is possible to construct OT from an A-B ORKE that is message and key
indistinguishable. The framework is proven to be universally composable in the
Random Oracle Model (ROM).

The framework has four rounds and it is extremely efficient, as the overhead
is very low. It only requires: i) three messages of the A-B ORKE scheme to
be created, and exchanged; ii) a challenge that takes linear-time to create in
the security parameter; iii) and two ciphertexts of SKE to be exchanged. Thus,
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the efficiency of the framework depends almost exclusively on the A-B ORKE
scheme used.

Comparing with other recently proposed frameworks [PVW08, BDD+17], we
conclude our construction is more efficient, since we rely on ORKE and SKE,
while they rely on PKE schemes. Moreover, our framework can be used to create
OT protocols based on hard problems which cannot be achieved when using the
frameworks of [PVW08, BDD+17] (such as Supersingular Isogeny-based OT),
making our proposal extremely versatile.

Concretely, in our OT framework, the sender and the receiver use, in an
ingenious way, the A-B ORKE such that the sender is able to compute two
keys k0 and k1, one of them (kb) shared with the receiver. The messages are
encrypted by the sender with these keys using a SKE scheme and the receiver
can only decrypt one of them.

More precisely, the receiver computes mb
R, where b is its input, and chooses

a random seed t. It computes m1−b
R such that m1

R = ψ(m0
R,H1(t)), where H1 is

a random oracle with range M, and sends t and m0
R to the sender. The sender

recovers m1
R from both t and m0

R and computes two shared keys. The messages
M0 and M1 are encrypted using these keys. A challenge has to be sent from
the sender to the receiver in order to guarantee security in the UC-framework
(we give a detailed explanation for this in the next paragraph). As mentioned
before, this paradigm was firstly used to design the simplest OT protocol [CO15].
However, unlike [CO15, BOB18], in our protocol the interaction starts with the
receiver which allows to save one round. We remark that this strategy was
already used in [BDGM18].

By now, it is well-known that the protocol of [CO15] does not guarantee
security in the UC-framework due to subtle timing attacks [BDD+17, BPRS17,
DKLas18] (in particular, it does not guarantee security against a corrupted
receiver). Here, to achieve UC-security, we have to extract the inputs when
only the sender and when only the receiver are corrupted. The extraction of
the inputs of the sender is done by programming the random oracle in such a
way that the simulator will be able to compute both keys. The extraction of
the input of the receiver is a more subtle problem. We solve it using a similar
strategy as the one used in [BDD+17], where a challenge is made to the receiver
in such a way that it needs to ask the random oracle for information that reveals
the input bit to the simulator. To this end, we add two more rounds where a
challenge is sent from the sender to the receiver, which can only answer correctly
if it queries the random oracle. These queries will be fundamental to design the
simulator and avoid attacks from a corrupted receiver. These two extra rounds
do not reveal any information about the bit b to the sender since the receiver
is able to answer correctly to the challenge no matter its input. On the other
hand, the receiver only gets information on the outputs of the secret keys by a
random oracle. Observe that the output of the secret key k1−b by the random
oracle is not correlated at all with the key. Thus, the receiver does not get any
information on the key it does not have.
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1.3 Organization of the paper

In Section 2, notation and definitions are presented. The framework for OT is
presented in Section 3. The security of the framework is proven in Section 4
and its efficiency is presented in Section 5. Examples are presented in Section 6
using the classical Diffie-Hellman KE, a RLWE-based KE and the Supersingular
Isogeny Diffie-Hellman KE.

2 Preliminaries

If A is an algorithm, we denote by y ← A(x) the output of the experiment of
running A on input x. If S is a set and χ is a probabilistic distribution over S, we
denote by x←$S the experiment of choosing uniformly at random an element x
from S and by x←$χ the experiment of choosing x from S according to χ. If x
and y are two binary strings, we denote by x|y their concatenation and by x⊕y
their bit-wise XOR. If X and Y are two probability distributions, X ≈ Y means
that they are computationally indistinguishable. A negligible function negl(n)
is a function such that negl(n) < 1/poly(n) for every polynomial poly(n) and
sufficiently large n. By a PPT algorithm we mean a probabilistic polynomial-
time algorithm. By Pr[A : B1, . . . , Bn] we mean the probability of event A
given that events B1, . . . , Bn happened sequentially. Throughout this work, the
security parameter will be denoted by κ.

In this work, we use symmetric-key encryption schemes. Below, we present
the definition of a symmetric-key encryption scheme.

Definition 1. A symmetric-key encryption (SKE) scheme ∆ = (Enc∆,Dec∆)
is a pair of algorithms such that:

• c ← Enc∆(k,M ; r) is a PPT algorithm that takes as input a shared key
k, a message to encrypt M and randomness r and outputs a ciphertext c.
Whenever r is omitted, it means that it was chosen uniformly at random;

• M/ ⊥← Dec∆(k, c) is a PPT algorithm that takes as input a key k and a
ciphertext c and outputs a message M , if c was encrypted using k, or an
error message ⊥, otherwise.

A SKE scheme must be sound, that is, M ← Dec∆ (k,Enc∆ (k,M ; r)) for
any message M and any r. Also, it should be secure, that is, it should be
infeasible for an adversary, without knowledge of the secret key, to recover a
message from its ciphertext. The security notion that we consider in this work
is the one of IND-CPA secure, which is the weakest (and meaningful) security
definition that one can consider.

Let ∆ be a SKE and consider the following game between a challenger C and
an adversary A: i) C creates a key k. ii) A has access to an encryption oracle
that it can query a polynomial number of times. iii) At some point, A outputs
two messages M0 and M1. iv) A bit b is chosen uniformly by C and it encrypts
Mb and returns the corresponding ciphertext to A. v) Again, A has access to
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an encryption oracle that it can query a polynomial number of times. vi) The
game ends with A outputting a bit b′.

We say that ∆ is IND-CPA secure if the advantage of A in the game above,
defined as

∣∣Pr [b = b′]− 1
2

∣∣, is negligible in the security parameter.

2.1 UC-security and ideal functionalities

The Universal Composability (UC) framework, firstly introduced by Canetti [Can01],
allows us to analyze the security of protocols, not just per se, but also when
composed with other protocols. Due to the lack of space, only a brief intro-
duction on the UC-framework is presented. For more details on this subject we
refer the reader to [Can01].

In a nutshell, to prove UC security of a protocol π (usually called the real-
world execution) one compares it to an ideal version of the primitive, defined
a priori (usually called the ideal-world execution). The entities involved in the
ideal-world execution are dummy parties which interact via an ideal functional-
ity F . These dummy parties may or may not be corrupted by an ideal adversary
Sim, usually called the simulator. The functionality works as a trusted party: it
receives inputs from all the entities involved and returns to each one something,
depending on the primitive being implemented. In this way, each of the par-
ties learns nothing but its own input and output. In the real-world execution,
several parties interact between them via some protocol π, which implements
the desired primitive. These parties may or may not be corrupted by some
adversary A. An entity E , often called the environment, oversees the execu-
tions in both the ideal and the real worlds. At the end of the executions, the
environment is asked to distinguish them. The intuition of the UC-framework
is that a protocol π is secure if the environment E is not able to distinguish the
real-world execution of π from the ideal-world execution of F . If this happens,
we can conclude that a real-world adversary A does not have more power than
an ideal-world adversary Sim. Hence, whatever strategy a real-world adversary
A uses to cheat in the execution of π, it can also be used by an ideal-world
adversary Sim. Since we define the ideal functionality in order to avoid attacks
from any adversary, we can conclude that there is no strategy for the real-world
adversary A that allows it to know more than its own input and output.

Formally, let π be a protocol where n parties and an adversary A are in-
volved. We denote the output of the environment E in the end of the real-world
execution of π with adversary A by EXECπ,A,E . The output of E at the end
of the ideal-world execution of a functionality F with adversary Sim is denoted
by IDEALF,Sim,E . The following definition introduces the notion of a protocol
emulating (in a secure way) some ideal functionality.

Definition 2. We say that a protocol π UC-realizes F if for every PPT ad-
versary A there is a PPT simulator Sim such that for all PPT environments
E ,

IDEALF,Sim,E ≈ EXECπ,A,E

where F is an ideal functionality.
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Oblivious transfer (OT), firstly introduced by Rabin [Rab81], is a crucial
primitive in cryptography. We describe the

(
2
1

)
-OT ideal functionality FOT, as

presented in [CLOS02]. Let λ ∈ N be a fixed value known to both parties,
M0,M1 ∈ {0, 1}λ and b ∈ {0, 1}. The value sid represents the session ID and
the ID of the parties involved in the protocol.

FOT functionality

Parameters: sid, λ ∈ N known to both parties.

• Upon receiving (sid,M0,M1) from S, FOT stores M0,M1 and
ignores future messages from S with the same sid;

• Upon receiving (sid, b) from R, FOT checks if it has recorded
(sid,M0,M1). If so, returns (sid,Mb) to R and (sid, receipt) to
S and halts. Else, it sends nothing but continues running.

Unfortunately, it is impossible to design universally composable OT proto-
cols in the plain model, that is, without any setup assumption [CF01]. Hence,
we use the random oracle model (ROM) to construct our UC-secure OT proto-
col. To this end, we work on the FRO-hybrid model in order to model random
oracles in the UC framework. The random oracle ideal functionality FRO is
presented below.

FRO functionality

Parameters: Let D be the range of FRO and L be a list initially
empty.

• Upon receiving a query (sid, q) from a party P or from an ad-
versary A, FRO proceeds as follows:

– If there is a pair (q, h) ∈ L, it returns (sid, h);

– Else, it chooses h←$D, stores the pair (q, h) ∈ L and
returns (sid, h).

The idea behind the FRO-hybrid model is that every party involved in both
the ideal-world execution of F and the real-world execution of the protocol
π (including the adversary) have access to an ideal functionality FRO, which
behaves as a random oracle. The environment can access this ideal functionality
through the adversary. We denote by EXECFRO

π,A,E the output of the environment
after the real-world execution of the protocol π with an adversary A in the
real-world, with the ideal functionality FRO. The notion of a protocol securely
emulating an ideal functionality can be adapted to this model.

Definition 3. We say that a protocol π UC-realizes F in the FRO-hybrid model
if for every PPT adversary A there is a PPT simulator Sim such that for all
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PPT environments E ,

IDEALF,Sim,E ≈ EXECFRO

π,A,E .

In this work, we consider static malicious adversaries. That is, an adversary
corrupting any of the parties can deviate arbitrarily as it wishes from the pro-
tocol. However the parties are corrupted by the adversary before the beginning
of the protocol and they remain so until the end of the protocol.

2.2 One-round key-exchange

One-round key-exchange (ORKE) is a cryptographic primitive that allows two
parties to agree on a shared key while an eavesdropper gets no information
on the key. In an ORKE scheme, only one message is sent from each party
to the other. The notion of ORKE scheme appears for the first time in the
seminal work of Diffie and Hellman [DH76]. In an ORKE scheme, the messages
of Alice and Bob can be computed offline. We present the definition of ORKE.
Our definition is a variant of the one presented in [BJS15], since we are not
interested in key reuse (which is the motivation of the work of [BJS15]).

Definition 4. A one-round key-exchange (ORKE) scheme Π is defined by a
tuple of algorithms (GenΠ,MsgΠ, KeyΠ) where:

• sk← GenΠ(1κ, r) is an algorithm that takes as input a security parameter
κ and a random value r and outputs a secret keys sk. Whenever r is
omitted, it means that it is chosen uniformly at random.

• mi ← MsgΠ(ri, ski) is an algorithm that takes as input a random value ri
and secret key ski, and outputs a message mi.

• k ← KeyΠ(ri, ski,mj) is an algorithm that takes as input a secret key ski,
a random ri and a message mj and outputs a key k.

A ORKE scheme Π should be sound. That is, if for all ski ← GenΠ(1κ) and
skj ← GenΠ(1κ) and for all ri, rj ← {0, 1}κ, it holds that

KeyΠ(ri, ski,mj) = KeyΠ(rj , skj ,mi)

where mi ← MsgΠ(ri, ski) and mj ← MsgΠ(rj , skj).
For two parties Alice and Bob to exchange a shared key using Π, they both

generate a secret key and run the algorithm MsgΠ with their respective secret
key. They send the resulting message to the other party and, finally, they both
run the key algorithm KeyΠ in order to obtain the shared key.
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ORKE structure

Alice Bob

rA ←$ {0, 1}κ rB ←$ {0, 1}κ

skA ← GenΠ(1κ) skB ← GenΠ(1κ)

mA ← MsgΠ(rA, skA) mA mB ← MsgΠ(rB, skB)

mB

kA ← KeyΠ(rA, skA,mB) kB ← KeyΠ(rB, skB,mA)

We want our framework to be as general as possible, so we define a new
type of ORKE scheme which we call Alice-Bob one-round key-exchange (A-B
ORKE). An A-B ORKE scheme is an ORKE scheme where Alice sends her
message mA first. So, Bob’s message mB can depend on mA. An A-B ORKE
can be seen as a generalization of the concept of ORKE. It is obvious that every
ORKE scheme is an A-B ORKE scheme. However, the converse is not true in
general: in Ding’s KE [DXL12] or in New Hope KE [ADPS16], Bob’s message
depends on Alice’s, and thus, they are A-B ORKE schemes but not ORKE
schemes.

Definition 5. An Alice-Bob one-round key-exchange (A-B ORKE) scheme Π is
defined by three algorithms (GenΠ,MsgΠ,KeyΠ), where MsgΠ = (MsgA

Π,MsgB
Π),

such that

• sk← GenΠ(1κ, r) is an algorithm that takes as input a security parameter
κ and a random value r and outputs a secret key sk.

• mi ← MsgA
Π(ri, ski) is an algorithm that takes as input a random value ri

and secret key ski, and outputs a message mi.

• mj ← MsgB
Π(rj , skj ,mi) is an algorithm that takes as input a random

value ri, and secret key ski and a message mi previously sent by the other
party and outputs a message mj .

• k ← KeyΠ(ri, ski,mj) is an algorithm that takes as input a secret key ski,
a random ri and a message mj and outputs a key k.
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A-B ORKE structure

Alice Bob

rA ←$ {0, 1}κ rB ←$ {0, 1}κ

skA ← GenΠ(1κ, rA) skB ← GenΠ(1κ, rB)

mA ← MsgA
Π(rA, skA) mA

mB mB ← MsgB
Π(rB, skB,mA)

kA ← KeyΠ(rA, skA,mB) kB ← KeyΠ(rB, skB,mA)

Again, an A-B ORKE scheme should be sound, that is, the key obtained
by Alice should be equal to the key obtained by Bob, except with negligible
probability.

To design our framework for OT, we need that the A-B ORKE scheme used
fulfills certain properties which we have called message indistinguishability and
key indistinguishability.

First, we need to introduce the notion of non-redundant message for key
generation. Intuitively, a non-redundant message outputted by the algorithm
MsgΠ is a message such that every part of it is used to construct the shared key.
We define such property for messages sent by Alice:

Definition 6. Let κ be the security parameter, Π = (GenΠ,MsgΠ,KeyΠ) be
an A-B ORKE scheme and a ∈ N. Let m = (m1, . . . ,ma) ← MsgA

Π(rA, skA),
and mB ← MsgB

Π(rB, skB,m). Let m′ = (mi1 , . . . ,mib) for any proper subset
{i1, . . . , ib} = S ⊂ {1, . . . , a}. We say that m = (m1, . . . ,ma) is non-redundant
for key generation (NRKG) if

Pr [kB 6= k′B ∧ kB = kA : kB ← KeyΠ(rB, skB,m),

k′B ← KeyΠ(rB, skB,m
′), kA ← KeyΠ(rA, skA,mB)] ≥ 1− negl(κ)

for skA ← GenΠ(1κ), skB ← GenΠ(1κ), rA, rB←$ {0, 1}κ.

We introduce the concept of message indistinguishable for an A-B ORKE
scheme. Again, we define this property for messages sent by Alice.

Recall that, if (G, ∗) is a group with operation ∗ and X is a set, then a right
group action ψ : X×G→ X is a function that satisfies: i) ψ(x, e) = x for every
x ∈ X and the identity element e of G; and ii) ψ(ψ(x, g), h) = ψ(x, g ∗ h) for
every x ∈ X and g, h ∈ G.

In the following, let (M, ∗) be a group andM be the space of non-redundant
messages for key generation outputted by the algorithm MsgA

Π. Let ψ : M×
(M, ∗) → M be a right group action of (M, ∗) on M, where M is a set such
that M⊆M.

Definition 7. Let κ be the security parameter, Π = (GenΠ,MsgΠ,KeyΠ) be an
A-B ORKE scheme that is NRKG and ψ, M andM be as described above. We
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say that an A-B ORKE protocol is ψ-message indistinguishable if, for any PPT
adversary A, we have that

Pr
[
1← A(x, skB, h) : x← MsgA

Π(rA, skA), h←$M
]

− Pr
[
1← A(x, skB, h) : y ← MsgA

Π(rA, skA), h←$M, x← ψ(y, h)
]
≤ negl(κ)

where skA ← GenΠ(1κ), skB ← GenΠ(1κ), rA←$ {0, 1}κ.

The intuition behind this definition is that we need x = ψ(y, h) to be in-
distinguishable from uniformly chosen elements from some set, where y ∈ M
and h is an element in a set M. We also need h to have inverse in M, to be
able to recover y. One possible solution is to consider A-B ORKE schemes for
which the set M (the set of outputs of MsgA

Π) forms a group, and consider M
to be M. This happens when we consider the Diffie-Hellman KE, for example.
However, there are cases where the setM may not have inverses or, even worse,
it may not be closed under any operation (e.g., considerM to be the set of LWE
samples [Reg05], as in the A-B ORKE schemes of [DXL12, Pei14, ADPS16]).
But observe that cases like these LWE-based schemes also have some type of
indistinguishability (see Example8). From this example, we conclude that we
only need the elements inM to be indistinguishable from elements inM, where
M is a set such thatM⊆M. Again, for the framework to be as general as pos-
sible, we define message indistinguishability as the incapability to distinguish
elements of M from elements of M. This definition also includes the cases
where m = (m1, . . . ,ma) ∈M is composed by several smaller messages mi and
where only part of these coordinates are affected by the action of the group
(M, ∗) (while the other coordinates remain the same).

Example 8. Consider M to be the the set of LWE samples in Znq = (Z/qZ)n

for some n ∈ N and some q ∈ N, as in several lattice-based A-B ORKE
schemes [DXL12, Pei14, ADPS16]. Now consider M and M to be Znq and
the operation ∗ to be the sum + in Znq . Observe that, when the action ψ :

M×(Znq ,+)→M is defined as ψ(x, h) = x+h, then ψ(x, h) is uniformly chosen
at random in Znq when h←$M. From the LWE assumption [Reg05], which states
that LWE samples are indistinguishable from uniformly chosen values from Znp ,
we conclude that the schemes [DXL12, Pei14, ADPS16] are ψ-message indis-
tinguishable. The definition above generalizes this notion of indistinguishability
of messages.

Finally, we also need that the key obtained by Bob is indistinguishable from
a uniformly chosen value, when it is given a uniformly chosen value instead of
the message obtained by Alice when running MsgA

Π.

Definition 9. Let κ be the security parameter, Π = (GenΠ,MsgΠ,KeyΠ) be an
A-B ORKE scheme that is NRKG, ψ, M and M be as above and K = {0, 1}β ,
where β is the length of the key outputted by the KeyΠ algorithm. We say that
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an A-B ORKE protocol is ψ-key indistinguishable if, for any PPT adversary A,
we have that

Pr [1← A(k, skA,m,m
′, h) : k ← KeyΠ(rB, skB,m

′)]

− Pr[1← A(k, skA,m,m
′, h) : k←$K] ≤ negl(κ)

where skA ← GenΠ(1κ), skB ← GenΠ(1κ), m′ ← ψ(m,h) withm← MsgA
Π(rA, skA)

and h←$M.

As an example, KE protocols fulfilling AM security, as in [CK01], also fulfill
key indistinguishability. However, we remark that AM security is stronger than
key indistinguishability, since the former notion also provides some form of
composability.

Examples of A-B ORKE schemes that fulfill both of these conditions are
Diffie-Hellman [DH76], the lattice-based protocols of [DXL12, ADPS16], and
the Supersingular Isogeny Diffie-Hellman [JDF11] (we discuss these cases in
Section 6).

3 A framework for OT using ORKE

In this section, we present the framework for OT. Let κ be the security param-
eter. Let M and ψ :M× (M, ∗)→M be the right group action as defined in
Section 2.2, whereM is the set of outputs of algorithm MsgA

Π and let (M, ∗) be
a group. We assume that, given x, y ∈ M, it is computationally easy to find
h ∈ M such that x ← ψ(y, h). Let Π = (GenΠ,MsgΠ, KeyΠ) be an A-B ORKE
protocol that is ψ-message indistinguishable and ψ-key indistinguishable, and
∆ = (Enc∆,Dec∆) be an IND-CPA secure symmetric-key encryption protocol.
Suppose that the sender S wants to obliviously send M0 and M1, and that the
receiver R wants to receive the message Mb, where b ∈ {0, 1} is its input. Both
S and R start by generating a secret key, skS ← GenΠ(1κ) and skR ← GenΠ(1κ),
respectively.

Let Hi, for i = 1, . . . , 4 be four different instances of the random oracle
functionality FRO. More precisely, H1 : {0, 1}∗ →M is used to create a random
message from a honestly created message (for the receiver), H2 : {0, 1}∗ → K =
{0, 1}β where β is the size of the keys outputted by the KeyΠ algorithm, and
H3 : {0, 1}∗ → {0, 1}2κ+β and H4 : {0, 1}∗ → {0, 1}κ for a challenge-response
interaction.

The framework. The scheme has four communication rounds and the re-
ceiver R sends the first message.

1. When activated with its input, the receiver R:

• Chooses at random t, rR←$ {0, 1}κ;
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• Queries H1 on (sid, t) and sets the output to h ∈M;

• Computes mb
R ← MsgA

Π(rR, skR);

• If b = 1, it computes m0
R ← ψ(m1

R, h
−1). Else, it continues;

• Sends (sid, t,m0
R) to S.

2. Upon receiving (sid, t,m0
R) from R, the sender S:

• Chooses rS ← {0, 1}κ;

• Queries H1 on (sid, t) and sets the output to h′ ∈M;

• Computes m1
R ← ψ(m0

R, h
′);

• Computes m0
S ← MsgB

Π(rS, skS,m
0
R) and

m1
S ← MsgB

Π(rS, skS, m
1
R);

• Computes the keys k0
S ← KeyΠ(rS, skS,m

0
R) and

k1
S ← KeyΠ(rS, skS,m

1
R);

• Chooses w0, z0, w1, z1 ← {0, 1}κ;

• Queries H2 on (sid, k0
S) setting the output to k̄0

S, and on (sid, k1
S)

setting the output to k̄1
S;

• Queries H3 on (sid, w0) setting the output to w̄0, and on (sid, w1)
setting the output to w̄1;

• Computes a0 ← Enc∆(k̄0
S, w0; z0) and a1 ← Enc∆(k̄1

S, w1; z1);

• Sets u0 ← w̄0 ⊕ (w1|k̄1
S|z1) and u1 ← w̄1 ⊕ (w0|k̄0

S|z0);

• Queries H4 on (sid, w0, w1, z0, z1) setting the output to ch;

• Sends (sid,m0
S,m

1
S, a0, a1, u0, u1) to R.

3. Upon receiving (sid,m0
S,m

1
S, a0, a1, u0, u1) from S, the receiver R:

• Computes kR ← KeyΠ(rR, skR,m
b
S);

• Queries H2 on (sid, kR) setting the output to k̄R;

• Decrypts xb ← Dec∆(k̄R, ab);

• Queries H3 on (sid, xb) setting the output to x̄b;

• Computes (x1−b|k̄1−b
R |y1−b) = ub ⊕ x̄b;

• Queries H3 on (sid, x1−b) setting the output to x̄1−b;

• Recovers (x′b|k̄bR|yb) = u1−b ⊕ x̄1−b;

• Checks if a0 = Enc∆(k̄0
R, x0; y0), if a1 = Enc∆(k̄1

R, x1; y1), if k̄bR =
k̄R and if x′b = xb. It aborts if any of these conditions fail;

• Queries H4 on (sid, x0, x1, y0, y1) and sets the output to ch ′;

• Sends (sid, ch ′) to S.
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4. Upon receiving (sid, ch ′) from R, the sender S:

• Checks if ch = ch ′. It aborts, if the test fails;

• Encrypts c0 ← Enc∆(k0
S,M0) and c1 ← Enc∆(k1

S,M1);

• Sends (sid, c0, c1) to R and halts.

5. Upon receiving (sid, c0, c1) from S, the receiver R:

• Decrypts Mb ← Dec∆(kR, cb);

• Outputs Mb and halts.

We call this framework πOT. In the first two rounds, a key exchange is used
in a ingenious way that allows the sender and the receiver to share a common key
such that: i) the sender does not know which of the two keys it has computed
is shared with the receiver; and ii) the receiver has no information about the
other key.

In the proof of security in the UC-framework, the extraction of the inputs
of the sender (the messages M0 and M1) is done by programming the random
oracle H1 in such a way that the simulator has both keys and is able to decrypt
both ciphertexts c0 and c1.

The challenge that the sender sends to the receiver is necessary to extract
the input bit b of the receiver. The extraction is possible when the receiver
asks kR to the random oracle. Here, the simulator is able to know the bit b
by comparing this value with the keys the dummy sender has computed. Note
that this challenge does not carry any information about the key k1−b

S : the only
values that the receiver gets from this challenge are random values x0, x1, y0, y1

and the output of the secret keys by the random oracle, which, by definition,
are completely uncorrelated with the keys.

Extension to
(
N
1

)
-OT. It is straightforward to extend the framework above

to an
(
N
1

)
-OT, where S’s input is composed by N messsages M0, . . .MN−1 and

R’s input is b ∈ {0, . . . , N − 1} such that R receives Mb.
In the first message, the receiver R, instead of just sending t, sends t1, . . . , tN−2

along with m0
R. S computes h′i ← H1(ti) and the messages mi

R ← ψ(m0
R, h
′
i) for

i = 1, . . . , N − 1. From these messages, S computes N keys such that one of
them is shared with R.

Also, S chooses w0, . . . , wN−1, z0, . . . , zN−1←$ {0, 1}κ and sets the challenge
to be

ch ← H4(sid, w0, . . . , wN−1, z0, . . . , zN−1),

instead of just (sid, w0, w1, z0, z1). Furthermore, S needs to compute

ai ← SEnc∆(s̄k
i
S, wi; zi)
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and
ui ← w̄i ⊕ (wi+1 mod N |s̄k

i+1 mod N
S |zi+1 mod N )

for i = 0, . . . , N − 1. Finally, it sends (a0, · · · , aN−1, u0, · · · , uN−1) to R. The
remaining steps can be easily adapted from the version presented above.

Security for the receiver. Security for R is guaranteed by the ψ-message
indistinguishability of the A-B ORKE scheme used. Note that S receives two
messages from R. In the first one, it receives m0

R (from which it can recover m1
R)

but, by the ψ-message indistinguishability property, S has no information on
which message was the one computed using the MsgA

Π algorithm and which one
is a random value. Thus, it does not know which message R uses to compute
its key.

The second message sent by R to S is ch ′, but note that R can compute ch ′

regardless of its input, given that S has behaved honestly. Observe that when
S does not behave honestly, then R aborts the execution. We conclude that it
is infeasible for S to know the input of the receiver.

Security for the sender. The first message that S sends to R is (m0
S,m

1
S, a0, a1, u0,

u1). By the ψ-key indistinguishability of the A-B ORKE scheme used, R is
not able to derive a key from m1−b

S . Otherwise, it could break the ψ-key in-
distinguishability property of the underlying A-B ORKE. Moreover, the only
information R gets from a0, a1, u0, u1 about k1−b

S is its output by H2, that is

k̄1−b
S . Since H2 is modeled as a random oracle, the values k1−b

S and k̄1−b
S are not

correlated.
The second message sent from S to R is composed by the ciphertexts c0, c1.

Given that the SKE scheme ∆ is secure, it is infeasible for R to get information
about M1−b if it does not have the corresponding secret key. We conclude that
it is infeasible for the receiver to get both messages.

4 Security proof

We prove the main result of this paper which guarantees the UC-security of the
proposed OT protocol πOT.

Theorem 10. The protocol πOT UC-realizes FOT in the FRO-hybrid model
against static malicious adversaries, given that ∆ is IND-CPA secure and the
A-B ORKE scheme used is ψ-message indistinguishable and ψ-key indistinguish-
able.

We have to prove that, for every adversary A corrupting any number of
parties in the protocol, there is a simulator such that no environment can dis-
tinguish the real-world from the ideal-world executions.

We begin with the trivial case: when the adversary is corrupting both the
sender and the receiver then the simulator just runs internally the adversary
which generates the messages for both the sender and the receiver.
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When the adversary is is not corrupting any party, then the simulator just
follows the protocol with the random inputs, forwarding every message to A.
Observe that the obtained transcript is indistinguishable from any other tran-
script (with other inputs) from the point-of-view of A and, thus, E . Thus, the
real-world and the ideal-world executions are indistinguishable in this case.

The proof follows from Lemma 11 and Lemma 12, where the remaining cases
are considered.

Lemma 11. Given any PPT adversary A(R) corrupting the receiver R, there
is a PPT simulator Sim such that for every PPT environment E we have

IDEALFOT,Sim,E ≈ EXECFRO

πOT,A(R),E ,

given that ∆ is IND-CPA secure and the A-B ORKE scheme used is ψ-message
indistinguishable and ψ-key indistinguishable.

Proof. To prove security against a corrupted receiver, we have to construct a
simulator that is able to extract the input of a corrupted receiver, given any
adversary A(R) corrupting the receiver. In this case, the input of A(R) is a
bit b ∈ {0, 1}. Here, the idea of the extraction is that A(R) has to query the
random oracle on its key, thus revealing b to the simulator. Upon extracting the
bit b, the simulator can send b to the ideal functionality that will return back
a message Mb. To finish the simulation, the simulator follows the protocol πOT

and obliviously send Mb and M1−b ← 0λ.

1. Upon activating the adversary, the simulator Sim simulates the ran-
dom oracles H1, H2, H3 and H4 in the following way: Sim keeps a list
Li for each Hi, for i = 1, . . . , 4, which is initially empty. Whenever
A(R) queries Hi on (sid, q), Sim checks if there is (q, h) ∈ Li. If so, it
returns h. Else, it chooses h uniformly at random, records the pair
(q, h) in Li and returns h.

2. Upon receiving (sid, t,m0
R) from the adversary A(R), the simulator

Sim:

• Follows the protocol and sends (sid,m0
S,m

1
S, a0, a1, u0, u1) to A;

• Sets b ←⊥. When kb̄S is asked to the random oracle H2, it sets
b← b̄;

• Aborts, if w1−b is asked to the random oracle H3 before wb or if
k1−b

S is asked to H2.

3. Upon receiving (sid, ch ′) from the adversary A(R), the simulator Sim:

• Aborts, if ch 6= ch ′;

• If b =⊥, sets b←$ {0, 1};
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• Sends (sid, b) to the ideal functionality FOT.

4. Upon receiving (sid,Mb) from FOT, the simulator Sim:

• Encrypts cb ← Enc∆(kbS,Mb) and c1−b ← Enc∆(k1−b
S , 0λ);

• Sends (sid, c0, c1) to A(R);

• Halts whenever A(R) halts.

The executions differ when Sim aborts when was not supposed to. This
happens if A asks the key k1−b

S to the random oracle H2, or if it asks w1−b to
the random oracle H3 before wb, or even if none of the keys k0

S and k1
S are queried

to the random oracle. The first two cases have a negligible probability (in the
security parameter) of happening. The last case also has negligible probability
of happening since, without asking any of the keys, the adversary has negligible
probability of guessing ch. It follows that

IDEALFOT,Sim,E ≈ EXECFRO

πOT,A(R),E .

Lemma 12. Given any adversary A(S) corrupting the sender S, there is a
simulator Sim such that for every environment E we have

IDEALFOT,Sim,E ≈ EXECFRO

πOT,A(S),E ,

given that ∆ is IND-CPA secure and the A-B ORKE scheme used is ψ-message
indistinguishable and ψ-key indistinguishable.

Proof. In this case, the inputs of the sender are M0 and M1. The goal of the
simulator is, given any adversary corrupting the sender, to extract the messages
M0 and M1. The extraction is possible since the simulator can program the
random oracle H1, and this allows it to have both keys k0

S and k1
S. Therefore, it

is able to extract both messages from the ciphertexts c0 and c1.
Recall that, by assumption, given x, y ∈ M, it is computationally easy to

find h ∈M such that x← ψ(y, h). We specify how the simulator Sim proceeds.

1. Before activating the adversary, the simulator Sim:

• Chooses r0
R←$ {0, 1}κ and r1

R←$ {0, 1}κ;

• Computes m0
R ← MsgΠ(r0

R, skR) and m1
R ← MsgΠ(r1

R, skR).

2. Upon activating the adversary, the simulator Sim sends (sid, t,m0
R):
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• Simulates H2, H3 and H4 in the following way: Sim keeps a list
Li for each Hi, for i = 2, 3, 4, which is initially empty. Whenever
A(R) queries Hi on (sid, q), Sim checks if there is (q, h) ∈ Li. If
so, it returns h. Else, it chooses h uniformly at random, records
the pair (q, h) in Li and returns h.

• Simulates H1 in the following way: when the adversary queries H1

with (sid, t), the simulator answers h such that m1
R = ψ(m0

R, h).
For all other queries to H1, it answers as the ideal functionality
would.

3. Upon receiving (sid,m0
S,m

1
S, a0, a1, u0, u1) from A, the simulator Sim:

• Computes the keys k0
R ← KeyΠ(r0

R, skR, pkS,m
0
S) and

k1
R ← KeyΠ(r1

R, skR, pkS,m
1
S);

• Proceeds as the honest receiver would do and computes ch ′;

• Sends (sid, ch ′) to A.

4. Upon receiving (sid, c0, c1) from A, the simulator Sim:

• Computes M0 ← Dec∆(k0
R, c0) and M1 ← Dec∆(k1

R, c1);

• Sends (sid,M0,M1) to the ideal functionality FOT.

5. Upon receiving (sid, receipt) from FOT, the simulator Sim halts when-
ever the adversary halts.

Note that the executions differ in the outputs given by the random oracle H1.
But the value h, returned by the simulator to the adversary, is computationally
indistinguishable from uniformly chosen values since the A-B ORKE scheme
used is message indistinguishable. Hence, the probability that the environment
distinguishes both the real and the simulated execution of the random oracle
H1 is negligible. Hence,

IDEALFOT,Sim,E ≈ EXECFRO

πOT,A(S),E .

Remark. In the case where only S is corrupted, one could think the simulator
does not need to program H1 to obtain the keys, since they are asked by the
sender to H2. However, a closer inspection reveals that this is not true, as the
corrupted sender might just encrypt one ai with a random key instead of kiS,
and the simulator would not have the right key needed to extract the message
Mi. By allowing the simulator to program the random oracle H1, we are sure
that the keys used to encrypt each ai are the right ones.
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5 Efficiency and comparison

Efficiency of the framework. Let κ be the security parameter. To ease the
presentation, we assume that the SKE protocol ∆ has keys of size κ and cipher-
texts are of the same size as the plaintexts. Suppose that the messages being
sent by the sender are of size λ. Let α be the size of the binary representation
of elements of M.

Although our scheme has four rounds, it has a low communication complexity
since it only requires the exchange of 2α + 2λ + 10κ bits of information, per
iteration of the protocol. The first message by the sender carries α + κ bits
of information, the second 2α+ 2κ+ 6κ bits of information, the third message
is just the answer to the challenge which is of size κ and, finally, the fourth
message carries 2λ bits of information.

Our protocol is also very efficient in terms of computational complexity since
it only requires to run twice the GenΠ algorithm and the MsgΠ algorithm and
three times the KeyΠ algorithm. It requires 11 calls to the random oracle. All
other operations (sum modulo 2 and concatenation of strings) are linear in the
security parameter and should be quite fast to perform.

Comparison with other frameworks. The framework of [PVW08] requires
the use of a dual-mode public-key encryption (PKE) scheme. However, very
few dual-mode PKE are known. For example, finding a dual-mode RLWE PKE
scheme is stated as an open problem in [LKHB17]. Their framework has just two
rounds. However, since it relies on PKE schemes, a public key needs to be sent
from the receiver to the sender. For post-quantum PKE schemes, this key can
be too large, which makes the communication and the computational complex-
ity rather cumbersome and the scheme impractical for real-life uses. Another
bottleneck regarding the framework of [PVW08] is that it relies its security in
the Common Reference String (CRS) model. In practice, the common reference
string needs to be generated using a third party (which always raises security
issues) or by some multiparty computation protocol, which is too inefficient.

The work of Barreto et al. [BDD+17] presents a framework for OT in the
ROM, which can be instantiated using a PKE scheme with certain properties.
One of these properties is that the space of public keys of the PKE scheme
used must have a group structure for a certain operation. This property is too
exclusive and immediately discards some of the most important post-quantum
PKE schemes such as LWE [Reg05] or RLWE [LPR10] PKE schemes. Note
that both the public keys of these schemes do not have a group structure for
any operation (e.g., this set is not closed under addition). However, we think
that this condition is too strong and, perhaps, it could be weaken to accept LWE
and RLWE-based instances. The framework of [BDD+17] has three rounds. But
again, a public key needs to be sent from the receiver to the sender which will
be reflected in a high communication complexity. Besides that, the framework
requires six encryptions and two decryptions, whereas ours just requires the
exchange of a symmetric secret key.
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6 Framework instantiations

In the following section we provide relevant cases of ORKE schemes that can be
used to instantiate our framework. More concretely, we show that our framework
can be used with Diffie-Hellman, Ding’s KE and Supersingular Isogeny Diffie-
Hellman.

6.1 DH-based OT

Consider the Diffie-Hellman (DH) KE protocol [DH76]. Let p be a prime and
consider the group Zp = Z/pZ. Let g ∈ Zp be a generator of the multiplicative
group Z∗p. We assume g to be a public parameter of the system (e.g. a standard
one), known by all parties. The DH KE is defined by three algorithms:

• GenDH(1κ) outputs a secret key x ∈ Z∗p and a public key pk← g.

• MsgDH(ri, ski)[= MsgA
DH(ri, ski) = MsgB

DH(rj , skj , ·)] which takes as input
the secret xi and generator g and outputs gxi .

• KeyDH(ri, ski,mj) which takes as input a message mj ← gxj and a secret
key xi and outputs mxi

j .

Note that DH KE is an ORKE scheme, which means that MsgDH is the same
for both parties.

Recall that the Decisional Diffie-Hellman (DDH) assumption assumes that
(g, gx, gy, gxy) is computationally indistinguishable from (g, gx, gy, z) when z←$Z∗p.

Using the notation of Section 2.2, considerM =M = M = Z∗p, the operation
∗ to be the product modulo p and ψ : Z∗p × (Z∗p, ∗)→ Z∗p to be the action group
defined as ψ(y, h) = y ∗ h mod p.

The properties of ψ-message indistinguishability and ψ-key indistinguisha-
bility follow directly from the hardness of DDH of base g in the group Z∗p.
Consider the notation of Definition 7.

Lemma 13. The DH KE protocol is ψ-message indistinguishable.

Proof. Since g is a generator of Z∗p, the message sent by Alice to Bob is a random
element from Z∗p when it is computed using MsgΠ or using ψ.

Lemma 14. The DH KE protocol is ψ-key indistinguishable, given that the
DDH assumption holds.

Proof. Any key obtained using the KeyDH algorithm should be of the form gxy,
where gx is the output of the other party’s MsgDH, and y is the secret key of
the party running this algorithm. As before, gxy is a random element in Z∗p,
and so indistinguishable from a uniform chosen values from Z∗p, given that the
hardness of the DDH assumption holds.

Therefore, we conclude that the DH KE can be used to instantiate the
framework presented in this paper.
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6.2 RLWE-based OT

The instantiation of this framework using Ding’s KE was presented previously
in [BDGM18] and this framework can be viewed as a generalization of their
work. Here, we present a more generic instantiation using any RLWE-based KE
scheme, such as [DXL12, Pei14, ADPS16].

Let q > 2 be a prime such that q ≡ 1 mod 2n, n ∈ N be a power of 2
and Rq = Zq[x]/〈(xn + 1)〉. Let χα be a discrete Gaussian distribution with
parameter α.

Let s←$Rq. The RLWE assumption asks to distinguish (a, as + e) where
e←$χα from (a, u) where u←$Rq [LPR10]. The HNF-RLWE assumption is
similar to the RLWE assumption, but s←$χα [ACPS09].

Consider an RLWE-based KE scheme, which is secure given that the HNF-
RLWE problem is hard. Let (recMsg, recKey) be any reconciliation mechanism,
as the ones presented in [DXL12, Pei14], where recMsg receives as input a value
x1 ∈ Rq and outputs the signal w of x1 and a key K, and recKey receives as
input a value x2 ∈ Rq and a signal w and it outputs a key K. Recall that a
reconciliation mechanism is parameterized by a bound ξrec such that if x1 and
x2 are close (meaning that |x1 − x2| ≤ ξrec), then

Pr [K1 = K2 : (w,K1)← recMsg(x1),K2 ← recKey(x2, w)] ≥ 1− negl(κ) .

It is also required that, if x1 is uniform, then K1 is indistinguishable from a
uniform value, even when given w, where (w,K1)← recMsg(x1).

Let a←$Rq be a public polynomial. The four algorithms that define any
RLWE-based KE based are the following:

• GenRLWE(1κ) chooses s←$χα and outputs a secret key sk←$ s and a
public key pk← as+ 2e mod q where e←$χα.

• MsgA
RLWE(rA, skA) outputs the message mA = pkA.

• MsgB
RLWE(rB, skB,mA) computes (w,K) ← recMsg(mAskB + 2e′), where

e′←$χα, and outputs mB = (pkB, w).

• KeyRLWE(ri, ski,mj) computes ki ← sipkj + 2e′i, where e′←$χα, and
outputs the shared key K ← recKey(ki, w).

RLWE-based KE schemes [DXL12, Pei14, ADPS16] are A-B ORKE scheme
since Bob’s message depends on Alice message.

Using the notation of Section 2.2, considerM to be the set of RLWE samples,
that is, M = {x : x = as+ e ∧ s, e←$χα}, and M = M = Rq, the operation ∗
to be the sum in Rq and ψ : Rq × (Rq,+)→ Rq to be the action group defined
as ψ(y, h) = y + h.

Lemma 15. RLWE-based KE is ψ-message indistinguishable given that the
HNF-RLWE assumption holds.
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Proof. The message algorithm of Alice (MsgA
RLWE) in this key exchange proto-

col outputs messages which are HNF-RLWE samples, thus, it is trivial to reduce
the problem of breaking ψ-message indistinguishability of an RLWE-based KE
to the problem of deciding the HNF-RLWE problem.

For the ψ-key indistinguishability property, let KA and KB be the output
of the algorithm KeyDingKE when run by party A and B respectively.

Lemma 16. RLWE-based KE protocol is ψ-key indistinguishable, given that the
HNF-RLWE assumption holds.

Proof. This follows directly from the security of the KE protocol. As proved in
[DXL12, Theorem 3], to computationally distinguish KA or KB from uniformly
random in Rq reduces to the HNF-RLWE assumption. Thus, if the HNF-RLWE
assumption holds, the protocol is ψ-key indistinguishable.

We conclude that RLWE-based KE schemes [DXL12, Pei14, ADPS16] can
be used to instantiate the framework of this article.

6.3 SIDH-based OT

Following the work of [BOB18], where it is presented an OT protocol based on
the Supersingular Isogeny Diffie-Hellman (SIDH) of [JDF11], we adapt the same
techniques to achieve the first UC OT based on Supersingular Isogeny cryptog-
raphy. Although we use the same techniques to instantiate our framework using
this key exchange, we work in the ROM instead of using the secure coin flip
they use.

As defined in [JDF11], let p = `eAA `eBB · f ± 1 where `A, `B are small primes
and f is a cofactor such that p is prime. Let E0 be a supersingular curve
defined over Fp2 , and let PA, QA be a basis generating E0[`eAA ] and PB , QB a
basis generating E0[`eBB ], where E[`] is the `-torsion group of E, i.e. the set of
all points P ∈ E(Fq) such that `P is the identity. As in [BOB18], we consider
(PA, QA), (PB , QB) as public parameters of the cryptosystem.

Like the DH scheme, this is a vanilla ORKE scheme, since MsgSIDH is the
same for both parties, and does not depend on the message previously exchanged
by the other party. The three algorithms that define the KE are:

• GenSIDH(1κ, r) pick mi, ni ∈ Z/`eii Z, where at most one of them is di-
visible by `i, and compute an isogeny φi : E0 → Ei with kernel Ki =
〈[mi]Pi + [ni]Qi〉. Set sk← (mi, ni, φi).

• MsgSIDH(ri, ski)[= MsgA
SIDH(rA, skA) = MsgB

SIDH(rB , skB , ·)] compute
images

{φi(Pj), φi(Qj)} ⊂ Ei
and outputs the message m = (Ei, φi(Pj), φi(Qj)).
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• KeySIDH(ri, ski,mj) since mj ← (Ej , φj(Pi), φj(Qi)), compute an isogeny
φ′i : Ej → Eij considering its kernel 〈[mi]φj(Pi) + [ni]φj(Qi)〉. Return the
j-invariant of

EAB = φ′A(φB(E0)) = φ′B(φA(E0))

= E0
/
〈[mA]PA + [nA]QA, [mB ]PA + [nB ]QB〉.

Now, we prove that there exists the group action ψ as stated in Definition 7.
Again, we base our group action on the assumptions of [BOB18] and follow their
notation. Consider M = M to be the set of elements of the form (E,G,H),
where G and H are elements of the `-torsion group of E. In [BOB18], it is
assumed that (E,G,H) is computationally indistinguishable from (E,G+U,H+
V ) when U, V are randomly chosen among E[`] such that the Weil paring of
(G,H) and (G + U,H + V ) coincides. Moreover, they also show that such
U, V can be sampled in polynomial time among the elements of E[`], namely
U ← αGB + βHB , V ← −(α/β)U , where GB ← φB(PA), HB ← φB(QA), and
α, β ∈ Z/`Z.

We are now able to propose the required group action ψ. Let M be the group
of elements of the form (U, V ) ∈ E[`] with group law ∗ being the coordinate-wise
usual sum of the ellipic curve points. This group acts onM, ψ :M× (M, ∗)→
M, by modifying G and H, as ψ(y, h) = (E,G + U,H + V ), where y is of the
form of (E,G,H) and h of the form (U, V ), and G,H,U, V are all elements in
E[`], such that U, V are sampled accordingly with [BOB18].

Lemma 17. The SIDH KE protocol is ψ-message indistinguishable given the
security assumptions in [JDF11, Section 5] and the parameters are chosen as
to prevent any distinguisher based attack [BOB18].

Proof. In order to achieve the property of ψ-message indistinguishability, we
must prevent any distinguisher from figuring out if the first message from the
receiver is (E,G,H) or (E,G + U,H + V ). As in [BOB18], we can choose the
parameters to avoid the paring-based distinguisher using the Weil pairing, and
so prevent the sender from finding out the secret bit of the receiver. If their
conjecture that there is no other polynomial-time distinguisher for schemes of
this form holds, then our OT protocol is ψ-message indistinguishable.

Note that, differently from [BOB18], in our proposal the receiver sends either
(E,G,H) or (E,G+U,H + V ), together with the nounce t such that (U, V )←
H(t). In fact, [BOB18] uses a secure coin flip procedure to generate U, V , while in
this work we obtain U, V from the random oracle. This means that the receiver
has the ability to try a polynomial number of queries to the RO in order to
choose U, V , in contrast to the single possibility of [BOB18]. Notwithstanding,
if it would be possible for the receiver to obtain a good U, V in polynomial
many tries, then the probability of the secure coin flip would be non-negligible.
Therefore, the two approaches are equivalent with regard to the security of this
procedure.

23



Lemma 18. The SIDH KE is ψ-key indistinguishable given the assumptions
in [JDF11, Section 5].

Proof. This follows from the proof of security of the key exchange in [JDF11].
The shared key must be a j-invariant uniformly random in the set j-invariants,
i.e. a random curve in the isogeny graph, which according to the assumptions
in [JDF11, Section 5] is difficult to compute without knowledge of the private
isogenies.

Therefore, we conclude that SIDH KE protocol of [JDF11] can be used to
instantiate the framework in this article.
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