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Abstract

In this paper we give nearly-tight reductions for modern implicitly
authenticated Diffie-Hellman protocols in the style of the Signal and
Noise protocols which are extremely simple and efficient. Unlike previous
approaches, the combination of nearly-tight proofs and efficient protocols
enables the first real-world instantiations for which the parameters can be
chosen in a theoretically sound manner.

Our reductions have only a linear loss in the number of users, implying
that our protocols are more efficient than the state of the art when
instantiated with theoretically sound parameters. We also prove that
our security proofs are optimal: a linear loss in the number of users is
unavoidable for our protocols for a large and natural class of reductions.
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1 Introduction

Securely deploying a key exchange protocol requires implementors to carefully
choose concrete values for several parameters, such as group and key sizes. Here
we abstract all these values into a single security parameter n. The question then
becomes: how should n be selected? An answer is to select it based on formal
reductionist arguments in the style of concrete security [8]. These arguments
relate n as the security parameter of the protocol to the security parameter f(n)
of an assumed hard problem, such that breaking the protocol with parameter n
would lead to an attack on the hard problem with parameter f(n). We say a
protocol is deployed in a theoretically sound way if n is selected such that the
underlying problem is “hard enough” with parameter f(n).

Unfortunately, the parameters of most key exchange protocols deployed
today are actually not chosen in a theoretically sound way. This means that
the formal security arguments are in reality vacuous since f(n) is too small for
the underlying problem to be hard. For example, existing security proofs for
TLS [13, 24, 29] have a security loss which is quadratic in the total number of
sessions, but the parameters chosen in practice do not account for this. If one
aims for “128-bit security”, and assumes 230 users and up to 230 sessions per
user (very plausible for TLS), then a theoretically sound choice of parameters
would have to provide at least “248-bit security”. One particular consequence is
that the algebraic groups used for the Diffie-Hellman (DH) key exchange would
have to be of order |G| ≈ 2496 instead of the common 128-bit-secure choice
of |G| ≈ 2256 used today. But since larger parameters typically lead to worse
performance this is not done in practice. Thus, for TLS as actually deployed, the
proofs do not really provide a meaningful security guarantee since they relate
the hardness of breaking TLS to a DH instance which is too easy to solve.

It would be desirable if protocols could be instantiated in a theoretically
sound way without sacrificing efficiency. This has led to the study of so-called
tight security, in which one aims to construct proofs such that the gap between n
and f(n) is as small as possible. While there have been several recent advances
in this field [3, 21], typically they trade tighter proofs for the use of more complex
primitives and constructions—which themselves require more or larger keys. This
leads to the perhaps counter-intuitive observation that the resulting protocols
have a tighter security proof, but are substantially less efficient in practice. For
example, the recent protocol of Gjøsteen and Jager [21] has a constant security
loss, meaning that an attack on their protocol leads to an attack on decisional
DH with essentially the same parameters. However, it is a signed DH protocol,
and thus must be instantiated with a tightly-secure signature scheme. The
solution used by Gjøsteen and Jager [21] requires a total of 17 exponentiations
which can negate the efficiency savings from using a smaller group. In some
sense they overshoot their target: they achieve tightness without reaching the
actual goal of efficient theoretically sound deployment in practice.

In this work we instead aim between these two extremes—real-world protocols
having very non-tight proofs on the one hand, and the more theoretical protocols
having fully tight proofs on the other—and focus instead on the actual end-
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goal of achieving efficient theoretically sound deployments in practice. Our
constructions fall into the class of implicitly authenticated DH protocols, which
often are more efficient than signed DH variants, and can additionally offer
various forms of deniability. Implicitly authenticated key exchange protocols
have been studied extensively in the literature, and in the past few years have
also started to see deployments in the real world. Perhaps the most well-known
example is the Signal protocol [40], which encrypts messages for WhatsApp’s
1.5 billion users. Another example is the Noise protocol framework [38], whose
so-called IK pattern powers the new Linux kernel VPN Wireguard [18]. Similar
protocols in the literature include KEA+ [32] and UM [26].

We will give a security proof for a simple instance of this class, very close to
Signal’s basic design. In and of itself this isn’t particularly noteworthy. What is
noteworthy, however, is the tightness of the proof. Unlike any other proof for
a protocol as simple and efficient as ours, our proof only incurs a security loss
which is linear in the number of users µ and constant in the number of sessions
per user `. This is in stark contrast to most other key exchange proofs that are
typically quadratic in at least one of these parameters, and most of the time
quadratic even in their product µ`.

Our contributions. Our contributions revolve around three protocols which
all aim for high practical efficiency when instantiated with theoretically sound
parameters. The first protocol, which we call Π, is a simple and clean implicitly
authenticated DH protocol very close to Signal, Noise-KK, KEA+ and UM,
and provides weak forward secrecy. In protocol Π users exchange a single
group element and perform four group exponentiations to establish a session key.
Protocol Π—specified precisely in Section 4—aims for maximal efficiency under
the strong DH assumption.

The other two protocols, which can be seen as variants of protocol Π, are
designed to avoid the strong DH assumption of Π. The first protocol, which
we call ΠTwin, adapts the “twinning” technique of Cash et al. [15] to protocol
Π, and needs four more exponentiations. The second, which we call ΠCom,
additionally adapts the “commitment” technique of Gjøsteen and Jager [21], and
only needs two more exponentiations than protocol Π. On the other hand, it
requires one more round of communication. Both ΠTwin and ΠCom are slightly
more costly than protocol Π, but in return require only the standard CDH and
DDH assumptions.

Common to all our protocols is that they are simple and conventional, with
no heavyweight cryptographic machinery. They exchange ephemeral keys and
derive a session key from the combination of static-ephemeral, ephemeral-static
and ephemeral-ephemeral DH values via a hash function H. In our proofs H
will be a random oracle.

Our first core contribution is thus to give new reductions for all these protocols
with a linear loss L = O(µ) in the random oracle model. This is better than
almost all known AKE protocols. As we will see, even though the loss is not
constant, our protocols are so efficient that they perform better than both fully-
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tight protocols as well as the most efficient non-tight AKEs1. In contrast to
previous works, our proofs enable theoretically sound deployment of conventional
protocols while maintaining high efficiency.

Our second core contribution is to show that the O(µ) tightness loss is
essentially optimal for the protocols considered in this paper, at least for “simple”
reductions. A “simple” reduction runs a single copy of the adversary only once.
To the best of our knowledge, all known security reductions for AKE protocols
are either of this type or use the forking lemma (which of necessity leads to a
non-tight proof). Hence, to give a tighter security proof, one would have to
develop a completely new approach to prove security.

The lower-bound proof will be based on the meta-reduction techniques
described by Bader et al. [4]. However, these techniques are only able to handle
tight reductions from non-interactive assumptions, while our first protocol is
based on the interactive strong DH assumption. Therefore we develop a new
variant of the approach, which makes it possible to also handle the strong DH
assumption.

Finally, we prove that our protocols can be enhanced to also provide explicit
entity authentication by adding key-confirmation messages, while still providing
tight security guarantees. To do so, we generalise a theorem of Yang [43] in
two ways: we apply it to n-message protocols for n > 2, and we give a tight
reduction to the multi-user versions of the underlying primitives.

To summarise:

1. We give three protocols with linear-loss security reductions, making them
faster than both fully-tight protocols and the most efficient non-tight ones
when instantiated in a theoretically sound manner for reasonable numbers
of users and sessions.

2. We prove optimality of linear loss for our protocols under “simple” reduc-
tions.

3. We tightly extend our protocols with key confirmation messages to provide
explicit entity authentication.

Related work. We briefly touch upon some other protocols with non-quadratic
security loss. KEA+ [32] achieves L = O(µ`) under the Gap-DH assumption, and
where the reduction for pairing-friendly curves takes O(t log t) time. However,
for non-pairing-friendly curves the reduction takes O(t2) time. Moreover, KEA+
also does not achieve weak forward secrecy in a modern model: only one side’s
long term key can be corrupted.

The first AKE protocols with L independent of µ and ` were described by
Bader et al. [3] at TCC 2015. They describe two protocols, one with constant
security loss L = O(1) and another with loss L = O(κ) linear in the security
parameter. Both protocols make use of rather heavy cryptographic building

1When instantiated with theoretically sound parameters under reasonable assumptions on
µ and ` in modern deployment settings.
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blocks, such as tree-based signature schemes, Groth-Sahai proofs [22], and
cryptographic pairings, and are therefore not very efficient.

As already mentioned, Gjøsteen and Jager [21] recently described a more
practical protocol, which essentially is a three-message variant of “signed Diffie-
Hellman”. Even though their protocol uses a rather complex signature scheme
to achieve tightness (a single key exchange requires 17 exponentiations and
the exchange of in total 16 group elements/exponents), when instantiated with
theoretically sound parameters it turns out to be more efficient than even plain
signed DH with ECDSA, at least for large-scale deployments. Unlike [3], the
security analysis in [21] is in the random oracle model [10] since the paper aims
at maximal practical efficiency.

2 Background

In this section we recap some background and standard definitions. Let G be a
cyclic group of prime order p with generator g.

Diffie-Hellman Problems. The computational and decisional Diffie-Hellman
problems are natural problems related to breaking the Diffie-Hellman protocol.

Definition 1. Consider the following experiment involving an adversary A. The

experiment samples x, y
$← Zp and starts A(gx, gy). The advantage of A in

solving the computational Diffie-Hellman problem is defined as

AdvCDH
G,g (A) := Pr [A(gx, gy) = gxy]

Definition 2. Consider the following experiment involving an adversary A. The

experiment samples x, y, z
$← Zp and tosses a coin b

$← {0, 1}. If b = 1 then it
sets Z := gxy, while if b = 0 then it sets Z = gz. We define the advantage of A
in solving the decisional Diffie-Hellman problem as

AdvDDH
G,g (A) := |Pr [A(gx, gy, Z) = b]− 1/2|

Let DDH(gx, gy, gz) be an oracle that returns 1 if and only if xy = z. The gap
Diffie-Hellman problem asks to solve the computational Diffie-Hellman problem,
given access to the oracle DDH(·, ·, ·). The strong Diffie-Hellman problem is
related to the gap Diffie-Hellman problem, except that the adversary now gets a
less capable oracle where the first input is fixed, i.e., stDHx(·, ·) = DDH(gx, ·, ·).

Definition 3. Consider the following experiment involving an adversary A. The

experiment samples x, y
$← Zp and starts AstDHx(·,·)(gx, gy). The advantage of

A in solving the strong Diffie-Hellman problem is defined as

AdvstDH
G,g (A) := Pr

[
AstDHx(·,·)(gx, gy) = gxy

]
.
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One may wonder to which extent the number of oracle queries to the strong
DH oracle affects the concrete security of this assumption. That is, how does the
security of strong DH degrade with the number of queries to the stDH oracle?
We are not aware of any concrete attacks that exploit the oracle to solve the
CDH problem more efficiently than other algorithms for CDH. In particular, in
many elliptic curves with practical bilinear pairings it is reasonable to assume
hardness of CDH, even though the bilinear pairing is a much stronger tool than
a strong DH oracle.

A crucial technique in any tight proof using Diffie-Hellman problems is
rerandomisation [7], where a single Diffie-Hellman problem instance can be
turned into many, in such a way that an answer to any one of them can be
turned into an answer to the original instance. We will use this technique in our
proofs.

The Strong Twin Diffie-Hellman Problem. The strong twin Diffie-Hellman
problem was introduced by Cash, Kiltz, and Shoup [15] at EUROCRYPT 2008.
It is closely related to the standard computational Diffie-Hellman (CDH) prob-
lem, except that it “twins” certain group elements, in order to enable an efficient
“trapdoor-DDH” test that makes it possible to simulate a strong-CDH oracle.
This makes it possible to show that the twin-DH problem is equivalent to the
standard CDH problem. Let twinDHx0,x1(Y, Z0, Z1) be an oracle which returns
1 if and only if DDH(gx0 , Y, Z0) = 1 and DDH(gx1 , Y, Z1) = 1.

Definition 4. Consider the following experiment involving an adversary A. The

experiment samples x0, x1, y
$← Zp and starts AtwinDHx0,x1

(·,·,·)(gx0 , gx1 , gy). The
advantage of A in solving the strong twin Diffie-Hellman problem is defined as

Adv2-CDH
G,g (A) := Pr

[
AtwinDHx0,x1

(·,·,·)(gx0 , gx1 , gy) = (gx0y, gx1y)
]

The following theorem was proven by Cash, Kiltz, and Shoup [15, Theorem 3].

Theorem 1. Let A be a strong twin DH adversary that makes at most Q queries
to oracle O and runs in time tA. Then one can construct a DH adversary B
that runs in time tA ≈ tB such that

Adv2-CDH
G,g (A) ≤ AdvCDH

G,g (B) +Q/p.

3 AKE Security Model

In this section we define our game-based key exchange security model. It is
based on the real-or-random (“RoR”) security definition of Abdalla, Fouque, and
Pointcheval [2], and incorporates the extension of Abdalla, Benhamouda, and
MacKenzie [1] to capture forward secrecy. The central feature of the RoR-model
is that the adversary can make many Test-queries, and that all queries are
answered with a “real” or “random” key based on the same random bit b.
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We prefer to work in a RoR-model because it automatically lends itself to
tight composition with protocols that use the session keys of the key exchange
protocol. For security models where there is only a single Test-query, or where
each Test-query is answered based on an individual random bit [3, 21], such a
composition is not automatically tight.

Although we mainly consider key exchange protocols with implicit authenti-
cation in this paper, we show in Section 8 how they can easily be upgraded to
also have explicit authentication by adding key-confirmation messages to the
protocols. Again, the advantage of working in the RoR-model is that it allows
us to do this transformation tightly.

Execution Environment. We consider µ parties 1, . . . , µ. Each party i is
represented by a set of ` oracles, {π1

i , . . . , π
`
i}, where each oracle corresponds

to a session, i.e., a single execution of a protocol role, and where ` ∈ N is the
maximum number of protocol sessions per party. Each oracle is equipped with a
randomness tape containing random bits, but is otherwise deterministic. Each
oracle πsi has access to the long-term key pair (ski, pki) of party i and to the
public keys of all other parties, and maintains a list of internal state variables
that are described in the following:

• Pidsi (“peer id”) stores the identity of the intended communication partner.

• Ψs
i ∈ {∅, accept, reject} indicates whether oracle πsi has successfully

completed the protocol execution and “accepted” the resulting key.

• ksi stores the session key computed by πsi .

• sentsi contains the list of messages sent by πsi in chronological order.

• recvsi contains the list of messages received by πsi in chronological order.

• rolesi ∈ {∅, init, resp} indicates πsi ’s role during the protocol execution.

For each oracle πsi these variables are all initialized to the empty string ∅. The
computed session key is assigned to the variable ksi if and only if πsi reaches the
accept state, that is, we have ksi 6= ∅ ⇐⇒ Ψs

i = accept.

Partnering. To define when two oracles are supposed to derive the same
session key we use a variant of matching conversations. In addition to agreement
on their message transcripts, they should also agree upon each other’s identities
and have compatible roles (one being the initiator the other the responder).
We remark that our protocol messages consist only of group elements and
deterministic functions of them. This means that they are not vulnerable to the
“no-match” attacks of Li and Schäge [34].

Definition 5 (Origin-oracle). An oracle πtj is an origin-oracle for an oracle πsi if
Ψt
j 6= ∅, Ψs

i = accept, and the messages sent by πtj equal the messages received
by πsi , i.e., if senttj = recvsi .
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Definition 6 (Partner oracles). We say that two oracles πsi and πtj are partners
if (1) each is an origin-oracle for the other; (2) each one’s identity is the other
one’s peer identity, i.e., Pidsi = j and Pidtj = i; and (3) they do not have the

same role, i.e., rolesi 6= roletj .

Attacker Model. The adversary A interacts with the oracles through queries.
It is assumed to have full control over the communication network, modeled
by a Send query which allows it to send arbitrary messages to any oracle. The
adversary is also granted a number of additional queries that model the fact
that various secrets might get lost or leaked. The queries are described in detail
below.

• Send(i, s,m): This query allows A to send an arbitrary message m to
oracle πsi . The oracle will respond according to the protocol specification
and its current internal state. To start a new oracle, the message m has a
special form:

〈START : role, j〉; this initialises πsi in the role role, having party Pj as its
intended peer. Thus, this query sets Pidsi := j and rolesi := role. Moreover,
if πsi is started in the initiator role (role = init), then it outputs the first
message of the protocol.

• RevLTK(i): For i ≤ µ, this query allows the adversary to learn the long-
term private key ski of user i. After the query i is said to be corrupted,
and all oracles π1

i , . . . , π
`
i now respond with ⊥ to all queries.

• RegisterLTK(i, pki): For i > µ, this query allows the adversary to register
a new party i with public key pki. We do not require that the adversary
knows the corresponding private key. After the query the pair (i, pki)
is distributed to all other parties. Parties registered by RegisterLTK are
corrupted by definition.

• RevSessKey(i, s): This query allows the adversary to learn the session key
derived by an oracle. That is, query RevSessKey(i, s) returns the contents
of ksi . Recall that we have ksi 6= ∅ if and only if Ψs

i = accept. After this
query πsi is said to be revealed.

Note that unlike, e.g., [12, 14], we do not allow the adversary to learn the
sessions’ ephemeral randomness.

Security experiment. To define the security of a key exchange protocol we
want to evaluate the attacker’s knowledge of the session keys. Formally, we
have an AKE security game, played between an adversary A and a challenger
C, where the adversary can issue the queries defined above. Additionally, it is
given access to a special Test query, which, depending on a secret bit b chosen
by the challenger, either returns real or random keys. The goal of the adversary
is to guess b.
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• Test(i, s): If Ψs
i 6= accept, return ⊥. Else, return kb, where k0 = kis and

k1
$← K is a random key. If a Test query is repeated in the case b = 1,

the same random key is returned. After the query, oracle πsi is said to be
tested.

The adversary can issue many Test queries, to different oracles, but all are
answered using the same bit b.

The AKE security game, denoted GΠ(µ, `), is parameterized by the protocol
Π and two numbers µ (the number of honest parties) and ` (the maximum
number of protocol executions per party), and is run as follows.

1. C begins by drawing a random bit b
$← {0, 1}, then generates µ long-term

key pairs
{

(ski, pki)
∣∣ i ∈ [1, . . . , µ]

}
, and initializes the collection of oracles{

πsi
∣∣ i ∈ [1, . . . , µ], s ∈ [1, . . . , `]

}
.

2. C now runsA, providing all the public keys pk1, . . . , pkµ as input. During its
execution, A may adaptively issue Send, RevLTK, RevSessKey, RegisterLTK
and Test queries any number of times and in arbitrary order. The only
requirement is that all tested oracles remain fresh throughout the game (see
Definition 7 below). Otherwise, the game aborts and outputs a random bit.

3. The game ends when A terminates with output b′, representing its guess of
the secret bit b. If not all test oracles are fresh, the security game outputs a
random bit. If all test oracles are fresh and b′ = b, it outputs 1. Otherwise,
it outputs 0.

Definition 7 (Freshness). An oracle πsi is fresh, written fresh(i, s), if:

(i) RevSessKey(i, s) has not been issued,

(ii) no query Test(j, t) or RevSessKey(j, t) has been issued, where πtj is a partner
of πsi , and

(iii) Pidsi was:

(a) not corrupted before πsi accepted if πsi has an origin-oracle, and

(b) not corrupted at all if πsi has no origin-oracle.

Definition 8 (Winning events). We define the following three winning events
on game GΠ(µ, `).

(i) Event breakSound occurs if there exist two partner oracles πsi and πtj with
ksi 6= ktj . In other words, there are two partner oracles which compute
different session keys.

(ii) Event breakUnique occurs if for some oracle πsi there exist distinct oracles

πtj and πt
′

j′ such that πsi is a partner oracle to both πtj and πt
′

j′ . In other
words, there exists an oracle with more than one partner oracle.
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(iii) Let guessKE be the output of game GΠ(µ, `). We define breakKE to be the
event guessKE = 1.

Definition 9 (AKE Security). An attacker A breaks the security of protocol
Π, if at least one of breakSound, breakUnique, or breakKE occurs in GΠ(µ, `). The
advantage of the adversary A against AKE security of Π is

AdvAKE
Π (A) = max {Pr [breakSound] ,Pr [breakUnique] , |Pr [breakKE]− 1/2|} .

We say that A (εA, t, µ, `)-breaks Π if its running time is t and AdvAKE
Π (A) ≥ εA.

The running time of A includes the running time of the security experiment (see
[21, Remark 1]).

Security properties. The core aspects of the security properties in our model
are captured by the breakKE event, combined with the adversary’s capabilities
and the restrictions imposed on them through the freshness predicate.

The freshness clauses (i) and (ii) imply that we only exclude the reveal of
session keys for tested oracles as well as their partners. This encodes both (a) key
independence if the revealed key is different from the session key: knowing some
keys must not enable computing other keys, as well as (b) implicitly ensuring
agreement on the involved parties, since sessions that compute the same session
key but disagree on the parties would not be partnered, and reveal the Test
session’s key.

Our freshness clause (iii) encodes weak forward secrecy : the adversary can
learn the peer’s long-term key after the tested oracle accepted, but only if it has
been passive in the run of the oracle [28]. Krawczyk [28] presented a generic attack
that shows that a class of implicitly authenticated two-message protocols cannot
achieve full forward secrecy, but only weak forward secrecy. We remark that this
is a very standard class of protocols, including e.g. (H)MQV and NAXOS, and
that adding a key confirmation message leads to full forward secrecy [28]. Another
property captured by our model is resistance to key-compromise impersonation
attacks. Recall that KCI attacks are those where the adversary uses a party
A’s own private long-term key to impersonate other users towards A. This is
(implicitly) encoded by the absence of any adversary restrictions on learning the
private long-term key of a test-oracle itself. Additionally, the breakUnique event
captures the resistance to replay attacks. The breakSound event ensures that two
parties that execute the protocol together in the absence of an attacker (or at
least a passive one), compute the same session key.

Some recent protocols also offer post-compromise security, in which the
communication partner πtj may be corrupted before πsi has accepted. However,
in this work we consider only stateless protocols, which cannot achieve this
goal [16].

4 Protocol Π

Protocol Π, defined in Fig. 1, uses a mix of static-ephemeral and ephemeral-
ephemeral Diffie-Hellman key exchanges to get a protocol that is extremely
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Alice Bob

Public parameters
g ∈ G, p = |G|

skA := a
$← Zp

pkA := A← ga
skB := b

$← Zp
pkB := B ← gb

r
$← Zp

U ← gr

s
$← Zp

V ← gs

k ← H(ctxt‖As‖Ub‖Us)
k ← H(ctxt‖Va‖Br‖Vr)

U

V

ctxt = Â‖B̂‖pkA‖pkB‖U‖V

Figure 1: Protocol Π. The session key is derived from the combination of the
parties’ static-ephemeral, ephemeral-static, and ephemeral-ephemeral DH values.

efficient in terms of communications as well as computational effort required.
Specifically, the two protocol participants exchange ephemeral Diffie-Hellman
shares gr and gs for random r, s, and then compute a session key from three
Diffie-Hellman shared secrets (static-ephemeral, ephemeral-static, ephemeral-
ephemeral) as well as identities and a transcript. Note that this is very close to
the Noise-KK pattern [38].

Theorem 2. Consider the protocol Π defined in Fig. 1 where H is modeled as
a random oracle. Let A be an adversary against the AKE security of Π. Then
there exist adversaries B1, B2 and B3 against strong Diffie-Hellman such that

AdvAKE
Π (A) ≤ µ ·AdvstDH

G,g (B1) + AdvstDH
G,g (B2) + µ ·AdvstDH

G,g (B3) +
µ`2

p
.

The strong Diffie-Hellman adversaries all run in essentially the same time as A,
and make at most as many queries to their strong DH-oracle as A makes to its
hash oracle H.

The proof of the theorem is structured as a sequence of games running
variations on the security experiment, with the first game identical to the
experiment. We bound the difference in the probability of the event that the
experiment outputs 1 in each game. As a side effect, along the way we also get a
bound on breakUnique. Then we argue that the probability that the experiment
outputs 1 is 1/2 in the final game, which gives us a bound on breakKE. Since
the scheme has perfect correctness, the theorem follows.

To achieve this result in the final game, we shall have our oracles choose
session keys at random, without reference to secret keys or messages. Obviously,
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we have to ensure consistency with what the adversary can learn. This means
that we have to make sure that partnered oracles both choose the same key
(Game 2); that keys the adversary should be able to compute on his own are
the same as chosen by the oracle (Game 2), and that corruptions of long-term
keys that enable the adversary to compute session keys on his own return results
consistent with previous RevSessKey-queries (Game 3 and 5).

The general technique we use is to have our session oracles refrain from
computing the input to the key derivation function H (i.e., the RO), but instead
check to see if the adversary somehow computes it. Namely, the reduction can
check if the adversary ever submits the correct input to H by using the strong
DH oracle provided.

We call an oracle honest (at some point) if the user it belongs to has not yet
been corrupted (at that point). There are five types of oracles that we will have
to deal with in separate ways, and the first four are essentially fresh oracles:

• (I) initiator oracles whose response message comes from a responder oracle,
which has the same ctxt (i.e., they agree on the message transcript and
participant identities and public keys) and which is honest when the
response is received;

• (II) other initiator oracles whose intended peer is honest until the oracle
accepts;

• (III) responder oracles whose initial message comes from an initiator, which
has the same ctxt up to the responder message (thus agreeing on the first
message and participant identities and public keys) and which is honest
when the response is received;

• (IV) other responder oracles whose intended peer is honest until the oracle
accepts; and

• (V) oracles whose intended peer is corrupted.

Note that at the time an initiator oracle starts, we cannot know if it will be of
type I or II. However, we will know what type it is when it is time to compute the
oracle’s session key. We also remark that types I and III correspond to case (iii)a
in the definition of freshness. Types II and IV correspond to case (iii)b.

In the following, let Sj denote the event that the experiment in Game j
outputs 1.

Game 0. Our starting point Game 0 is the security experiment defining AKE
security. We have that

Pr [breakKE] = Pr[S0]. (1)

We begin with an administrative step to avoid pathologies where honest
players choose the same random nonces.

13



Game 1. In this game, we abort if two initiator oracles or two responder
oracles ever arrive at the same ctxt. The probability of this happening can be
upper-bounded by the probability of two oracles for the same peer choosing the
same random exponents, and we get that

|Pr[S1]− Pr[S0]| ≤ µ`2

p
. (2)

We also note that the event in this game that corresponds to breakUnique

cannot happen in this game. It follows that

Pr[breakUnique] ≤ µ`2

p
. (3)

4.1 Preparing Oracles

Our goal in this game is to change every oracle so that it no longer computes
the input to the key derivation hash H, but instead checks if the adversary
computes this input and adapts accordingly. This is essential for later games,
since it allows us to replace every use of the secret key with queries to a strong
DH oracle.

Game 2. In this game, we modify how our oracles determine their session
keys. Note that at the point in time where an initiator oracle determines its
session key, we know its type exactly.

For a type III, IV or V responder oracle with ctxt = î‖ĵ‖pk i‖pk j‖U‖V ,
having secret key sk i = b and random exponent s, and where the initiator’s
public key is pk j = A, the game does the following determine its session key

k. First, it checks to see if any H-queries î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 have
been made satisfying

W1 = As W2 = U b W3 = Us . (4)

If any such query is found k is set to the corresponding hash value. Otherwise,
the session key is chosen at random. And if such a hash query happens later,
the hash value is set to the chosen session key.

A type I initiator oracle will simply use the key from the corresponding
responder oracle.

For a type II or V initiator oracle with ctxt = î‖ĵ‖pk i‖pk j‖U‖V , having
secret key sk i = a and random exponent r, and where the responder’s public key
is pk j = B, the game does the following to determine its session key k. First,

it checks to see if any oracle queries î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 have been
made satisfying

W1 = V a W2 = Br W3 = V r . (5)

If any such query is found, k is set to the corresponding hash value. Otherwise,
the session key is chosen at random. And if such a hash query happens later,
the hash value is set to the chosen session key.
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The only potential change in this game is at which point in time the key
derivation hash oracle value is first defined, which is unobservable. It follows
that

Pr[S2] = Pr[S1]. (6)

4.2 Type IV Responder Oracles

Game 3. In this game type IV oracles choose their session key at random,
but do not modify the hash oracle unless the intended peer is corrupted. If the
adversary corrupts the intended peer i of a type IV oracle running as user j with
secret key sk j = b, random exponent s, and chosen key k, then from that point
in time, any query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖pksi ‖U
b‖Us

to the key derivation hash oracle H will result in the hash value k.
Unless one of these queries happen before user i is corrupted, the only change

is at which point in time the key derivation hash oracle value is first defined,
which is unobservable. Let F be the event that a query as above happens before
the corresponding long-term key is corrupted. Then

|Pr[S3]− Pr[S2]| ≤ Pr[F ].

Let Fi be the same event as F , but with the intended peer being user i. We
then have that Pr[F ] =

∑
i Pr[Fi].

Next, consider the event Ei which is that for some type IV oracle as above,
any query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 W1 = pksi = V a (7)

to the key derivation hash oracle H happens before user i is corrupted. Then
Pr[Fi] ≤ Pr[Ei].

We shall now bound the probability of the event Ei by constructing an
adversary against strong Diffie-Hellman. This adversary will embed its DH
challenge in some user i’s public key and type IV oracle responses for oracles
whose intended peer is user i, and recover the solution to its DH challenge from
the hash query in event Ei.

Strong Diffie-Hellman adversary B1. The algorithm B1 takes as input a
DH challenge (X,Y ) = (gx, gy) and outputs a group element Z. It has access to
a strong Diffie-Hellman oracle stDHx(·, ·).

Reduction B1 runs Game 2 with the following changes: it chooses i uniformly
at random and sets user i’s public key to pk i = X (and thus implicitly sets i’s
private key to the unknown value x). For type IV oracles whose intended peer is
user i, B1 sets V = Y · gρ0 , with ρ0 random. If the adversary corrupts user i, the
reduction B1 aborts. (For other users, the reduction simply returns the secret
key, as in Game 2.)
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We need to recognise hash queries of the form (4) and (5) that involve user i,
as well as queries of the form (7). For (4), where user i acts in the responder role,
we know the oracle’s random exponent s, so we only need to recognise if W2 is U
raised to user i’s secret key, which can be done by checking if stDHx(U,W2) = 1.

For (5), where user i is the initiator, we know the oracle’s random exponent
r, so we only need to recognise if W1 is V raised to user i’s secret key, which can
be done by checking if stDHx(V,W1) = 1.

Finally, for (7), we need to recognise if a group element W1 is V raised to
user i’s secret key, which can be done by checking if stDHx(V,W1) = 1. When
we recognise a query of the form (7), since we know that V = Y · gρ0 , we output

Z = W1X
−ρ0 = V xX−ρ0 = Y xgρ0xg−xρ0 = Y x.

In other words, our adversary B1 succeeds whenever Ei would happen in
Game 2. Furthermore, Ei in Game 2 can only happen before user i is corrupted,
so whenever Ei would happen in Game 2, B1 would not have aborted.

We get that

AdvstDH
G,g (B1) ≥ 1

µ

∑
i

Pr[Ei] ≥
1

µ

∑
i

Pr[Fi] =
1

µ
Pr[F ],

from which it follows that

|Pr[S3]− Pr[S2]| ≤ Pr[F ] ≤ µ ·AdvstDH
G,g (B1). (8)

4.3 Type III Responder Oracles

Game 4. In this game type III responder oracles choose their session key at
random, and do not modify the key derivation hash oracle.

Consider a type III responder oracle for user j with secret key sk j = b,
random exponent s, and intended peer i. Unless the adversary ever makes a
hash query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 W3 = Us , (9)

this change is unobservable. Call this event F , thus

|Pr[S4]− Pr[S3]| ≤ Pr[F ]. (10)

We shall bound the probability of F by constructing an adversary against
strong Diffie-Hellman. This adversary will embed its challenge in type I or II
initiator oracles’ message, as well as in type III responder oracles’ message. It
will recover the solution to its DH challenge from the hash query in event F .

Strong Diffie-Hellman adversary B2. The algorithm B2 takes as input a
DH challenge (X,Y ) = (gx, gy) and outputs a group element Z. It has access to
a strong DH-oracle stDHx(·, ·).
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Our reduction B2 runs Game 3 with the following changes: for type I and II
initiator oracles (we cannot distinguish these at this point in time), it computes
U = X · gρ0 , with ρ0 random. For type III responder oracles, it computes
V = Y · gρ1 , with ρ1 random. Note that in this game, the reduction knows all
static secret keys, so user corruption is handled exactly as in Game 3.

We need to recognise hash queries of the form (5) for type II initiator
oracles, as well as queries of the form (9) for type III oracles. Although we do
not know the oracle’s random exponents, we do know their secret keys. This
means that we only need to recognise if W3 is V raised to logg U = x+ ρ0. Of
course, if W3 = V x+ρ0 , then W3V

−ρ0 = V x, which we can detect by checking if
stDHx(V,W3V

−ρ0) = 1. If this is the case for a query of the form (9), then we
output

Z = W3 · V −ρ0 ·X−ρ1 = V x ·X−ρ1 = gyx+ρ1xg−xρ1 = Y x

as the solution to the DH challenge. In other words, B2 succeeds whenever F
would happen in Game 3, hence

|Pr[S4]− Pr[S3]| ≤ Pr[F ] ≤ AdvstDH
G,g (B2). (11)

Note that we do not stop the simulation in the case we detect a hash query
of the form (5) for a type II initiator oracle, because in this case the responder
message V does not contain the embedded DH challenge.

4.4 Type II Initiator Oracles

Game 5. In this game type II initiator oracles choose their session key at
random, but do not modify the hash oracle unless the intended peer is corrupted.
If the adversary corrupts the intended peer j of a type II oracle running as user
i with secret key sk i = a, random exponent r, and chosen key k, then from that
point in time, any query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖V a‖pkrj‖V
r

to the key derivation hash oracle H will result in the hash value k.
Unless one of these queries happen before the user j is corrupted, the only

change is at which point in time the key derivation hash oracle value is first
defined, which is unobservable. Let F be the event that a query as above happens
before the corresponding long-term key is corrupted. Then

|Pr[S5]− Pr[S4]| ≤ Pr[F ].

Let Fj be the same event as F , but with the intended peer being user j. We
then have that Pr[F ] =

∑
j Pr[Fj ].

Next, consider the event Ej which is that for some type II oracle as above,
any H-query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 W2 = pkrj = U b (12)
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happens before user j is corrupted (here, sk j = b). Then Pr[Fj ] ≤ Pr[Ej ].
We shall now bound the probability of the event Ej by constructing an

adversary against strong Diffie-Hellman. This adversary will embed its DH
challenge in some user j’s public key and type II oracle messages for oracles
whose intended peer is user j, and recover the solution to its DH challenge from
the hash query in event Ej .

Strong Diffie-Hellman adversary B3. The algorithm B3 takes as input a
DH challenge (X,Y ) = (gx, gy) and outputs a group element Z. It has access to
a strong DH-oracle stDHx(·, ·).

Our reduction B3 runs Game 4 with the following changes: It chooses j
uniformly at random and sets user j’s public key to pk j = X (and thus implicitly
sets j’s private key to the unknown value b = x). For type I and II initiator
oracles whose intended peer is user j, B3 sets U = Y · gρ0 , with ρ0 random. If
the adversary corrupts user j, the reduction B3 aborts. (For other users, the
reduction simply returns the secret key, as in Game 4.)

We need to recognise hash queries of the form (4) and (5) that involve user
j, as well as queries of the form (12). For (4), where user j is the responder, we
know the oracle’s random exponent s, so we only need to recognise if W2 is U
raised to user j’s secret key, which can be done by checking if stDHx(U,W2) = 1.
For (5), where user j is the initiator, we know the oracle’s random exponent r,
so we only need to recognise if W1 is V raised to user j’s secret key, which can
be done by checking if stDHx(V,W1) = 1. Finally, for (12), we need to recognise
if a group element W2 is U raised to user j’s secret key, which can be done by
checking if stDHx(U,W2) = 1.

When we recognise a query of the form (12), meaning that W2 = Ux where
know that U = Y · gρ0 , then we output

Z = W2X
−ρ0 = UxX−ρ0 = Y xgρ0xg−xρ0 = Y x.

In other words, our adversary B3 succeeds whenever Ej would happen in Game 4.
Furthermore, Ej in Game 4 can only happen before user j is corrupted, so
whenever Ej would happen in Game 4, B3 would not have aborted. We get that

AdvstDH
G,g (B3) ≥ 1

µ

∑
j

Pr[Ej ] ≥
1

µ

∑
j

Pr[Fj ] =
1

µ
Pr[F ],

from which it follows that

|Pr[S5]− Pr[S4]| ≤ Pr[F ] ≤ µ ·AdvstDH
G,g (B3). (13)

4.5 Summary

Note that in Game 5, every session key is chosen at random independent of every
key and sent message.

For type V oracles, the key derivation oracle is immediately programmed so
that the session key is available to the adversary. But type V oracles are never
fresh and therefore never subject to a Test query.
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For type II and IV oracles, the key derivation hash oracle is programmed
to make the session key available to the adversary only after the intended peer
is corrupted. But if the intended peer is corrupted, a type II or IV oracle will
become non-fresh, hence no Test query can be made to it.

For type I and III oracles, the key derivation hash oracle will never make the
session key available to the adversary.

This means that for any oracle subject to a Test query, the session key is and
will remain independent of every key and sent message. Which means that the
adversary cannot distinguish the session key from a random key. It follows that

Pr[S5] =
1

2
. (14)

Theorem 2 now follows from (1), (2), (6), (8), (11), (13) and (14). (Note
that protocol Π has perfect correctness so we have Pr[breakSound] = 0, and recall
that Game 1 gives us Pr[breakUnique] ≤ µ`2/p).

5 Avoiding the Strong Diffie-Hellman Assump-
tion

The proof of Π relies on the strong Diffie-Hellman assumption, which is an
interactive assumption. A natural goal is to look for a protocol whose proof
relies on standard non-interactive assumptions. In this section we present two
protocols that solve this problem. Both can be seen as different modifications of
protocol Π.

5.1 Protocol ΠTwin

The first protocol, which we call ΠTwin, applies the twinning technique of [15] to
the different DH values in protocol Π. This requires some additional exponentia-
tions over protocol Π, as well as the need to transmit one extra group element.
The details are given in Fig. 2: instead of sending a single Diffie-Hellman share,
the protocol initiator samples and sends two ephemeral shares, and both shares
are used in the key derivation. This duplication allows us to reduce to twin
Diffie-Hellman.

Theorem 3. Consider the protocol ΠTwin defined in Fig. 2 where H is modeled
as a random oracle. Let A be an adversary against the AKE security of ΠTwin.
Then there exists adversaries B1, B2 and B3 against strong twin Diffie-Hellman
such that

AdvAKE
ΠTwin

(A) ≤ µ ·Adv2-CDH
G,g (B1) + Adv2-CDH

G,g (B2) + µ ·Adv2-CDH
G,g (B3) +

µ`2

p
.

The adversaries all run in essentially the same time as A and make at most as
many queries to their twin DH oracle as A makes to its hash oracle H.
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Alice Bob

Public parameters
g ∈ G, p = |G|

skA := (a0, a1)
$← Z2

p

pkA := (A0, A1) = (ga0 , ga1)
skB := (b0, b1)

$← Z2
p

pkB := (B0, B1)← (gb0 , gb1)

r0, r1
$← Zp

(U0, U1)← (gr0 , gr1)

s
$← Zp

V ← gs

k ← H(ctxt‖As0‖A
s
1‖

U b0
0 ‖U

b1
0 ‖U

s
0 ‖U

s
1 )k ← H(ctxt‖V a0‖V a1‖

Br0
0 ‖B

r0
1 ‖V r0‖V r1)

U0, U1

V

ctxt = Â‖B̂‖pkA‖pkB‖U0‖U1‖V

Figure 2: Protocol ΠTwin. It is obtained from protocol Π by applying the
twinning trick of [15] to the DH values.

Since this protocol is a twinned version of protocol Π, the proof and its ideas
follow the proof of Theorem 2 very closely. The full proof is given in Appendix A.
Note that by Theorem 1, we can tightly replace the twin Diffie-Hellman terms
in the theorem statement by ordinary computational Diffie-Hellman terms.

5.2 Protocol ΠCom

The second protocol, which we call ΠCom, again uses the twinning technique
of [15], but this time only applied to the static DH values in Π. This provides tight
implicit authentication. However, instead of also twinning the ephemeral DH
values we use a variant of the commitment trick of [21]. This reduces the number
of exponentiations compared to ΠTwin, but adds another round of communication.
Also, we need to rely on the decisional Diffie-Hellman assumption instead of
computational Diffie-Hellman. The details are given in Fig. 3.

Theorem 4. Consider the protocol ΠCom defined in Fig. 3 where H and G are
modeled as random oracles. Let A be an adversary against the AKE security of
ΠCom. Then there exists adversaries B1 and B3 against computational Diffie-
Hellman and an adversary B2 against Decision Diffie-Hellman such that

AdvAKE
ΠTwin

(A) ≤ µ ·AdvCDH
G,g (B1) + AdvDDH

G,g (B2) + µ ·AdvCDH
G,g (B3) +

µ`2(1 + 2t)

p
.

The adversaries all run in essentially the same time t as A and make at most as
many queries to their twin DH oracle as A makes to its hash oracle H.

Since this protocol is partially a twinned version of protocol Π, the proof and
its ideas follow the proof of Theorem 2. However, since the ephemeral-ephemeral
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Alice Bob

Public parameters
g ∈ G, p = |G|

skA := (a0, a1)
$← Z2

p

pkA := (A0, A1)← (ga0 , ga1)
skB := (b0, b1)

$← Z2
p

pkB := (B0, B1)← (gb0 , gb1)

r
$← Zp

U ← gr

CA ← G(U)
s

$← Zp
V ← gs

CB ← G(V)

Verify G(U) = CA
k ← H(ctxt‖As0‖A

s
1‖Ub0‖Ub1‖Us)

Verify G(V) = CB
k ← H(ctxt‖Va0‖Va1‖Br0‖B

r
1‖Vr)

CA

CB

U

V

ctxt = Â‖B̂‖pkA‖pkB‖U‖V

Figure 3: Protocol ΠCom. It is obtained from protocol Π by applying the
twinning trick of [15] to the static DH values and the commitment trick of [21]
to the ephemeral DH values.

part is different, its analysis is also quite different. The full proof is given in
Appendix B.

6 Efficiency Analysis

In this section we argue that our protocols are more efficient than other com-
parable2 protocols in the literature when instantiated with theoretically sound
parameter choices. There are two reasons for this. First, the most efficient key
protocols do not have tight proofs. Hence, for theoretically sound deployment
they must use larger parameters to compensate for the proof’s security loss,
which directly translates into more expensive operations. The result is that
although some protocols require fewer operations than ours (typically group
exponentiations), the increase in computational cost per operation dominates
whatever advantage they might have over our protocols in terms of number of
operations.

Second, the few known key exchange protocols which do have tight proofs,
require a large number of operations or heavy cryptographic machinery. Thus,
even though they can use small parameters, such as the P-256 elliptic curve, here
the sheer number of operations dominates their advantage over our protocols.

To illustrate the first point in more detail, here are some examples of very
efficient key exchange protocols having non-tight security proofs: UM [35],

2Comparing protocols is complex, and we return to this at the end of this section.
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Table 1: The number of group exponentiations in our protocols compared to
other protocols in the literature. All protocols are one-round except ΠCom, which
has two rounds of communication. All security proofs are in the random oracle
model. The security loss is in terms of the number of users (µ), the number of
protocol instances per user (`), and reduction’s running time (t).

Protocol #Exponentiations Assumption Security loss O(·)
HMQV [28] 2.5 CDH µ2`2

NAXOS [31] 3 Gap-DH µ2`2

UM [35] 3 Gap-DH µ2`2

Kudla-Paterson [30] 3 Gap-DH µ2`
KEA+ [32] 3 Gap-DH µ`†

Π (Fig. 1) 4 Strong-DH µ
ΠTwin (Fig. 2) 8/7 CDH µ
ΠCom (Fig. 3) 6 DDH µ
GJ [21] 17 DDH 1

† Only when using pairing-friendly curves; otherwise L = O(µ`t).

KEA+ [32], HMQV [28], CMQV [41], T S1/2/3 [26], Kudla-Paterson [30], and
NAXOS [31]. Typically, these proofs have a tightness loss between L = O(µ`)
and L = O(µ2`2) as illustrated for a few of the protocols in Table 1.

Suppose we now want to compare the efficiency of the protocols Π, ΠTwin,
ΠCom and HMQV, aiming for around 110-bits of security. Following Gjøsteen
and Jager [21], let us imagine two different scenarios: a small-to-medium-scale
setting with µ = 216 users and ` = 216 sessions per user, and a large-scale setting
with µ = 232 users and ` = 232 sessions per user. To instantiate the protocols in
a theoretically sound manner we need to select a group large enough so that the
underlying DH-assumptions are still hard even when accounting for the security
loss. For simplicity, we only consider selecting among elliptic curve groups based
on the NIST curves P-256, P-384, and P-521, and assume that the CDH, DDH,
and Gap-DH problems are equally hard in each group.

HMQV. Supposing HMQV has a tightness loss of L ≈ µ2`2, this translates
into a loss of 264 in the small-to-medium-scale setting, and a loss of 2128

in the large-scale setting. To compensate we have to increase the group
size by a factor of L2 ≈ 2128 and L2 ≈ 2256, respectively. With a target of
110-bit security, this means that we have to instantiate HMQV with curve
P-384 and P-521, respectively.

Π, ΠTwin, ΠCom. Our protocols’ security proofs have a tightness loss of L ≈ µ,
which translates into 216 in the small-to-medium-scale setting and 232 in
the large-scale setting. In the first setting P-256 is still sufficient for 110-bit
security, but in the later setting P-384 must be used instead.

We can now compare these instantiations by multiplying the number of
exponentiations required with the cost of an exponentiation in the relevant group.
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Table 2: OpenSSL Benchmark Results for NIST Curves [21, Table 1].

Curve Exp. / Sec. Time / Exp.

NIST P-256 476.9 2.1 ms
NIST P-384 179.7 5.6 ms
NIST P-521 62.0 16.1 ms

For the latter values we use the OpenSSL benchmark numbers from Gjøsteen
and Jager [21] (reproduced in Table 2). Calculating the numbers we get:

HMQV Π ΠTwin ΠCom

S-M 2.5× 5.6 = 14 4× 2.1 = 8.4 8× 2.1 = 16.8 6× 2.1 = 12.6
L 2.5× 16.1 = 40.3 4× 5.6 = 22.4 8× 5.6 = 44.8 6× 5.6 = 33.6

Observe that Π is more efficient than HMQV in both the small-to-medium-
scale setting as well as in the large-scale setting despite needing more exponenti-
ations. This is because it can soundly use smaller curves than HMQV due to
the relative tightness of its reduction. Protocol ΠTwin is about as efficient as
HMQV in both settings, while ΠCom lies somewhere in between Π and ΠTwin,
but since it requires one extra round of communication a direct comparison is
more difficult. Of course, the main reason to prefer ΠTwin and ΠCom over Π is
the reliance on the weaker CDH and DDH assumptions rather than strong DH.
A complicating factor in comparing with HMQV is the difference in security
properties and security models (see the end of this section).

To illustrate the second point mentioned above—that our protocols are
also more efficient than protocols with fully tight proofs—we also compute the
numbers for the recent protocol of Gjøsteen and Jager (GJ) which is currently
the most efficient key exchange protocol with a fully tight proof. Since GJ
can use P-256 independent of the number of users and sessions its cost is
17× 2.1 = 35.7 in both the small-to-medium scale setting as well as the large-
scale setting. Nevertheless, we observe that the large number of exponentiations
in GJ dominates its tightness advantage in realistic settings.

Thus, absent a fully tight proof, our protocols hit a proverbial “sweet spot”
between security loss and computational complexity: they can be instantiated
soundly on relatively small curves using only a few exponentiations.

Communication complexity. For completeness we also briefly mention com-
munication complexity. Since in most implicitly-authenticated DH-based proto-
cols each user only sends one or two group elements, there is in practice little
difference between Π, ΠTwin, and ΠCom, and protocols like HMQV when it comes
to communication cost. Especially if elliptic curve groups are used.

This is in contrast to the fully tight signature-based GJ protocol, which in
total needs to exchange two group elements for the Diffie-Hellman key exchange,
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two signatures (each consisting of a random 256-bit exponent, two group elements,
and four 256-bit exponents), and one hash value. Altogether, this gives a total
of ≈ 545 bytes communicated when instantiated for a security level of, say, 128
bits [21, Section 5]. In comparison, Π, ΠTwin, and ΠCom would only need to
exchange around 160 to 224 bytes for the same security level. This assumes
curve P-384 and includes the addition of two 256-bit key-confirmation messages
to provide explicit entity authentication in order to make the comparison with
the GJ protocol fair.

On the (im)possibility of fairly comparing protocols. Our protocols are
the first implicitly authenticated key exchange protocols that were designed to
provide efficient deployment in a theoretically sound manner. This implies that
we must compare their efficiency with other protocols with slightly different
goals. In Table 1 we included protocols with closely related goals and similar
structure, but not aiming for exactly the same target.

One example of such a different goal is that NAXOS was designed to be
proven in the eCK model, which also allows the reveal of the randomness of the
tested session, similar to HMQV. Our protocols, like TLS 1.3, currently do not
offer this property. We conjecture that the NAXOS transformation could be
directly applied to our protocols to obtain eCK-secure protocols without adding
exponentiations, but it is currently unclear if this could be done with a tight
proof, and hence we leave this to future work.

7 Optimality of our Security Proofs

In this section we will show that the tightness loss of L = O(µ) in Theorem 2,
Theorem 3 and Theorem 4 is essentially optimal—at least for “simple” reductions.
Basically, a “simple” reduction runs a single copy of the adversary only once. To
the best of our knowledge, all known security reductions for AKE protocols are
either of this type or use the forking lemma. For example, the original reduction
for HMQV uses the forking lemma and thus is very non-tight, but does not fall
under our lower bound. In contrast, the HMQV reduction by Barthe et al. [5]
is simple and thus our lower bound applies. Hence, in order to give a tighter
security proof, one would have to develop a completely new approach to prove
security for such protocols.

Tightness bounds for different cryptographic primitives were given in [4, 17,
19, 20, 23, 25, 27, 33, 37, 39, 42], for instance. Bader et al. [4] describe a generic
framework that makes it possible to derive tightness lower bounds for many
different primitives. However, these techniques are only able to consider tight
reductions from non-interactive assumptions, while our first protocol is based on
the interactive strong Diffie-Hellman assumption. Morgan and Pass [36] showed
how to additionally capture bounded-round interactive assumptions, but the
strong Diffie-Hellman assumption does not bound the number of possible oracle
queries, so we cannot use their approach directly.
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Therefore we develop a new variant of the approach of Bader et al. [4],
which makes it possible to capture interactive assumptions with an unbounded
number of oracle queries, such as strong Diffie-Hellman assumption. For clarity
and simplicity, we formulate this specifically for the class of assumptions and
protocols that we consider, but we discuss possible extensions below.

Considered class of protocols. In the following we consider protocols where
public keys are group elements of the form pk = gx and the corresponding secret
key is sk = x. We denote the class of all protocols with this property with
ΠDH. Note that this class contains, in particular, NAXOS [31], KEA+ [32], and
HMQV [28].

Remark 1. One can generalize our results to unique and verifiable secret keys,
which essentially requires that for each value pk there exists only one unique
matching secret key sk , and that there exists an efficiently computable relation R
such that R(pk , sk) = 1 if and only if (pk , sk) is a valid key pair. Following Bader
et al. [4], one can generalize this further to so-called efficiently re-randomizable
keys. We are not aware of concrete examples of protocols that would require
this generality, and thus omit it here. All protocols considered in the present
paper and the vast majority of high-efficiency protocols in the literature have
keys of the form (pk , sk) = (gx, x), so we leave such extensions for future work.

Why does GJ18 not contradict our lower bound? As mentioned in
Remark 1, our bound applies to protocols with unique and verifiable secret keys.
In contrast, the protocol of Gjøsteen and Jager [21] constructs a tightly-secure
digital signature scheme based on OR-proofs, where secret keys are not unique.
As explained in [21, Section 1.1], these non-unique secret keys seem inherently
necessary to achieve fully-tight security.

Simple reductions from (strong) Diffie-Hellman. Intuitively, a simple
reduction R = RO from (strong) CDH takes as input a CDH instance (gx, gy)
and may query an oracle O that, on input Y, Z, returns 1 if and only if Y x = Z
(cf. Definition 3). More formally:

Definition 10. A simple reduction R interacts with an adversary A as follows.

1. R receives as input a CDH instance (gx, gy).

2. It generates µ public keys and starts A(pk1, . . . , pkµ). R provides A with
access to all queries provided in the security model described in Section 3.

3. R outputs a value h.

We say that R is a (tR, εR, εA)-reduction, if it runs in time at most tR and for
any adversary A with εA = AdvAKE

Π (A) holds that

Pr [h = gxy] ≥ εR.

We say that R = RO is a reduction from the strong CDH problem if it makes at
least one query to its oracle O, and a reduction from the CDH problem if not.
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Remark 2. The formalization in this section very specifically considers the
computational problems CDH and sCDH, as concrete examples of reasonable
hardness assumptions that a typical security proof for the protocols considered
in this work may be based on. We will later discuss how our results can be
extended to other interactive and non-interactive problems.

Theorem 5. Let Π be an AKE protocol such that Π ∈ ΠDH. Let |K| denote the
size of the key space of Π. For any simple (tR, εR, 1− 1/|K|)-reduction RO from
(strong) CDH to breaking Π in the sense of Definition 9 there exists an algorithm
MO, the meta-reduction, that solves the (strong) CDH problem in time tM and
with success probability εM such that tM ≈ µ · tR and

εM ≥ εR −
1

µ
.

Remark 3. Note that the lower bound εM ≥ εR − 1/µ implies that the success
probability εR cannot significantly exceed 1/µ, as otherwise there exists an
efficient algorithm M for a computationally hard problem. Note also that this
implies that the reduction cannot be tight, as it “loses” a factor of at least
1/µ, even if the running time of R is not significantly larger than that of the
adversary.

In the sequel we write [µ \ i] as a shorthand for [1 . . . i− 1, i+ 1 . . . µ].

Proof. We describe a meta-reduction M that uses R as a subroutine to solve
the (strong) CDH problem. Following Hofheinz et al. [23] and Bader et al. [4],
we will first describe a hypothetical inefficient adversary A. Then we explain
how this adversary is efficiently simulated by M. Finally, we bound the success
probability of M, which yields the claim.

Hypothetical adversary. The hypothetical adversary A proceeds as follows.

1. Given µ public keys pk1 = gx1 , . . . , pkµ = gxµ , A samples a uniformly

random index j∗
$← [µ]. Then it queries RevLTK(i) for all i ∈ [µ \ j∗] to

obtain all secret keys except for sk j∗ .

2. Next, A computes sk j∗ = xj∗ from pk j∗ = gxj∗ , e.g., by exhaustive search.3

3. Then A picks an arbitrary oracle, say π1
s for s = (j∗ + 1) mod µ, and

executes the protocol with π1
s , impersonating user j∗. That is, A proceeds

exactly as in the protocol specification, but on behalf of user j∗. Note
that A it is able to compute all messages and the resulting session key on
behalf of user j∗, because it “knows” sk j∗ .

4. Finally, A asks Test(s, 1). Note that this is a valid Test-query, as A has
never asked any RevSessKey-query or RevLTK(j∗) to the peer j∗ of oracle
π1
s . If the experiment returns the “real” key, then A outputs “1”. Otherwise

it outputs “0”.

3Note that we are considering an inefficient adversary here. As usual for meta-reductions,
we will later describe how A can be simulated efficiently.
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Note that A wins the security experiment with optimal success probability
1− 1/|K|, where |K| is the size of the key space. The loss of 1/|K| is due to the
fact that the random key chosen by the Test-query may be equal to the actual
session key.

Description of the meta-reduction. Meta-reduction M interacts with re-
duction R by simulating the hypothetical adversary A as follows.

1. M receives as input a CDH instance (gx, gy). It starts R on input (gx, gy).

2. Whenever R issues a query to oracle O, M forwards it to its own oracle.
Note that both oracles are equivalent, because M has simply forwarded
the CDH instance.

3. When R outputs public keys pk1 = gx1 , . . . , pkµ = gxµ to A, M makes a
snapshot of the current state stR of R.

4. For j ∈ [1 . . . µ], M now proceeds as follows.

(a) It lets A query RevLTK(i) for all i ∈ [µ \ j], in order to obtain all
secret keys except for sk j . Note that the reduction may or may not
respond to all RevLTK(i) queries. For instance, R may abort for
certain queries.

(b) Then it resets R to state stR.

5. Now M proceeds to simulate the hypothetical adversary. That is:

(a) It picks a uniformly random index j∗
$← [1 . . . µ] and queries RevLTK(i)

for all i ∈ [µ \ j∗].
(b) Then it executes the protocol with π1

s , impersonating user j∗. Note
that this works only if M was able to obtain sk j∗ in Step (4).

(c) Finally, M lets A ask Test(s, 1). If the experiment returns the “real”
key, then A outputs “1”. Otherwise it outputs “0”.

6. If R outputs some value h throughout the experiment, then M outputs
the same value.

Note thatM provides a perfect simulation of the hypothetical adversary, provided
that it “learns” sk j∗ in the loop in Step (4).

Analysis of the meta-reduction. M essentially runs reduction R at most
µ times. Apart from that, it performs only minor additional operations, such
that we have tM ≈ µ · tR.

In order to analyse the success probability ofM, let us say that bad occurs, if
j∗ is the only index for which R did not abort in Step (4) of the meta-reduction.
Note that in this case M learns all secret keys, except for sk j∗ , in which is the
only case where the simulation of A in Step (5.b) fails. Since we may assume
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without loss of generality that the reduction R works for at least one index

j ∈ [µ] and we chose j∗
$← [µ] uniformly random, we have

Pr [bad] ≤ 1

µ
.

Let win(R,A) denote the event that R outputs h = gxy when interacting
with A, and win(R,M) the corresponding event with M. Since M simulates A
perfectly unless bad occurs, we have

|Pr [win(R,A)]− Pr [win(R,M)]| ≤ Pr [bad] .

Furthermore, note that by definition we have εR = Pr [win(R,A)] and εM =
Pr [win(R,M)]. Hence we get |εR − εM| ≤ 1/µ, which in turn yields the lower
bound εM ≥ εR − 1/µ.

Generalizations. The tightness lower bound proven above makes several very
specific assumptions about the considered protocols, hardness assumptions, and
security models. The main purpose of this is to keep the formalization and proof
focused on the type of protocols that we are considering in this paper. However,
a natural question is to which extent the results also apply to more general
protocols, models, and assumptions, and whether and how the tightness bound
can be evaded by tweaking the considered setting.

First of all, we consider only protocols where long-term secrets are of the
form (pk , sk) = (gx, x). As already briefly discussed above, one can generalize
this to other protocols, as long as the simulation of the hypothetical adversary
by the meta-reduction is able to recover properly distributed secret keys. In
particular, one can generalize to arbitrary efficiently re-randomizable long-term
keys, as defined by Bader et al. [4]. Note that current AKE protocols with tight
security proofs [3, 21] do not have efficiently rerandomizable keys, and therefore
do not contradict our result.

In order to obtain a tighter security proof one may try to make different
complexity assumptions. These can be either non-interactive (i.e., the reduction
does not have access to an oracle O, such as e.g. DDH), or stronger interactive
assumptions. Let us first consider non-interactive assumptions. A very general
class of such assumptions was defined abstractly in Bader et al. [4], and it is
easy to verify that our proof works exactly the same way with such an abstract
non-interactive assumption instead of CDH.

Some stronger assumptions may yield tight security proofs, but not all of
them do. Consider for instance the gap Diffie-Hellman assumption, which is
identical to strong Diffie-Hellman, except that the first input to the provided
DDH-oracle is not fixed, but can be arbitrary. It is easy to verify that our proof
also works for this assumption, in exactly the same way. More generally, our
proof works immediately for any assumption for which the “winning condition”
of the reduction is independent of the sequence of oracle queries issued by the
reduction. An example of an interactive assumptions where this does not hold
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Alice Bob

ΠkΠ kΠ

ka||km ← PRF(kΠ, ctxt)
t0 ← MAC.Tag(km, 0||ctxt)

ka||km ← PRF(kΠ, ctxt)
t1 ← MAC.Tag(km, 1||ctxt)

t0

t1

accept iff
MAC.Vrfy(km, 1||ctxt, t1) = 1

accept iff
MAC.Vrfy(km, 0||ctxt, t0) = 1

ctxt = Â||B̂||TranscriptΠ

Figure 4: Generic compiler from an AKE protocol Π with implicit authentica-
tion to a protocol Π+ with explicit entity authentication.

is the trivial interactive assumption that the protocol is secure (which, of course,
immediately yields a tight security proof).

Finally, we note that our impossibility result holds also for many weaker or
stronger AKE security models. We only require that the model allows for active
attacks and provides a RevLTK query. Thus, the result immediately applies also
to weaker models that, e.g., do not provide a RevSessKey-query or only a single
Test-query, and trivially also for stronger models, such as eCK-style ephemeral
key reveals [12, 14]. It remains an interesting open question whether stronger
impossibility results (e.g., with quadratic lower bound) can be proven for such
eCK-style definitions.

8 Adding Explicit Entity Authentication

In this section we describe how explicit entity authentication (EA) [11] can be
added to our protocols by doing an additional key-confirmation step. Recall that
EA is the aliveness property that fresh oracles are guaranteed to have a partner
once they accept. Our construction is a generic compiler which transforms an
arbitrary AKE protocol Π, secure according to Definition 9, into one that also
provides EA (defined below). The details of the compiler are given in Fig. 4.

Specifically, protocol Π+ begins by running protocol Π to obtain a session
key kΠ. This key, which we henceforth call the intermediate key for protocol Π+,
is then used to derive two additional keys: ka and km. The first key becomes the
final session key of protocol Π+, while km is used to compute a key-confirmation
message, i.e., a MAC, for each party. The EA property of Π+ reduces to the
AKE security of the initial protocol Π, the multi-user PRF security of the
function used to derive ka and km, as well as the multi-user strong UF-CMA
(mu-SUF-CMA) security of the MAC scheme. The formal definitions of mu-PRF
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security and mu-SUF-CMA security are given in Appendix C (see Fig. 5 and
Fig. 6).

Our result is basically a restatement of the theorem proved by Yang [43], but
with two minor differences: (1) our result is stated for arbitrary protocols and
not only two-message protocols, and (2) since we use the AKE-RoR model the
proof is tighter and slightly simpler.

Formal definition of explicit entity authentication. Let EAΠ(µ, `) be
the same experiment as the AKE security game GΠ(µ, `) defined in Section 3,
except that the adversary no longer has access to the Test query.

Definition 11 (Explicit entity authentication). On game EAΠ(µ, `) define
breakEA to be the event that there exists an oracle πsi such that all the following
conditions are satisfied.

(i) πsi has accepted, that is, πsi .Ψ = accept.

(ii) Pidsi = j for some j ∈ [µ] and party j is not corrupted.

(iii) There exists no oracle πtj , such that πsi and πtj are partners.

Definition 12 (EA Security). An attacker A breaks the explicit entity au-
thentication (EA) of protocol Π if event breakEA occurs in EAπ(µ, `). The
EA-advantage of adversary A against protocol Π is

AdvEA
Π (A) = Pr [breakEA] .

We say that A (εA, t, µ, `)-breaks Π if its running time is t and AdvEA
Π (A) ≥ εA.

The running time of A includes the running time of the security experiment.

Theorem 6. Let Π be an AKE protocol, let Π+ be the protocol derived from
Π as defined in Fig. 4, and let A be an adversary against the EA security of
protocol Π+. Then there exists adversaries B1, B2, D, and F , such that

AdvEA
Π+(A) ≤ AdvAKE

Π (B1) + 2 ·AdvAKE
Π (B2)

+ Advmu-PRF
PRF,µ` (D) + Advmu-SUF-CMA

MAC,µ` (F),
(15)

where µ` is the number of sessions created by A. The adversaries B1, B2, D,
and F all run in essentially the same time as A.

The proof of Theorem 6 is given in Appendix C.

Remark 4. The PRF and MAC in Theorem 6 can be instantiated tightly in the
multi-user setting, e.g. by using the simple and efficient AMAC construction [6].

9 Conclusion

We have showed that it is possible to achieve highly efficient AKE protocols
that can be instantiated with theoretically sound parameters. Specifically, we
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gave protocol constructions that have only a linear tightness loss in the number
of users, while using only a handful of exponentiations. Our constructions are
at least as efficient as the best known AKE protocols in this setting. Perhaps
surprisingly, our constructions only use standard building blocks as used by
widely deployed protocols and are very similar to protocols like Noise-KK, and
offer similar security guarantees.

While our proofs have a linear loss we have showed that this is actually
unavoidable: any reduction from a protocol in our class to a wide class of
hardness assumptions must lose a factor of at least µ. Thus, our reductions are
optimal in this regard. Additionally, we proved that adding a key confirmation
step tightly provides explicit authentication.

Taken together, these results demonstrate for the first time that AKE proto-
cols can be instantiated in a theoretically sound way in real-world deployments
without sacrificing performance.
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[4] Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight
cryptographic reductions. In: Fischlin, M., Coron, J.S. (eds.) Advances
in Cryptology – EUROCRYPT 2016, Part II. Lecture Notes in Computer
Science, vol. 9666, pp. 273–304. Springer, Heidelberg, Germany, Vienna,
Austria (May 8–12, 2016) 5, 24, 25, 26, 28

[5] Barthe, G., Crespo, J.M., Lakhnech, Y., Schmidt, B.: Mind the gap: Mod-
ular machine-checked proofs of one-round key exchange protocols. In: Os-
wald, E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015,
Part II. Lecture Notes in Computer Science, vol. 9057, pp. 689–718. Springer,
Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015) 24

31



[6] Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC
and its multi-user security. In: Fischlin, M., Coron, J.S. (eds.) Advances
in Cryptology – EUROCRYPT 2016, Part I. Lecture Notes in Computer
Science, vol. 9665, pp. 566–595. Springer, Heidelberg, Germany, Vienna,
Austria (May 8–12, 2016) 30

[7] Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user
setting: Security proofs and improvements. In: Preneel, B. (ed.) Advances
in Cryptology – EUROCRYPT 2000. Lecture Notes in Computer Science,
vol. 1807, pp. 259–274. Springer, Heidelberg, Germany, Bruges, Belgium
(May 14–18, 2000) 7

[8] Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treat-
ment of symmetric encryption. In: 38th Annual Symposium on Foundations
of Computer Science. pp. 394–403. IEEE Computer Society Press, Miami
Beach, Florida (Oct 19–22, 1997) 3

[9] Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries
in message authentication and authenticated encryption. Cryptology ePrint
Archive, Report 2004/309 (2004), http://eprint.iacr.org/2004/309 48

[10] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R.,
Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93: 1st Conference on Computer
and Communications Security. pp. 62–73. ACM Press, Fairfax, Virginia,
USA (Nov 3–5, 1993) 6

[11] Bellare, M., Rogaway, P.: Entity authentication and key distribution. In:
Stinson, D.R. (ed.) Advances in Cryptology – CRYPTO’93. Lecture Notes
in Computer Science, vol. 773, pp. 232–249. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 22–26, 1994) 29

[12] Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong
security: An efficient and generic construction in the standard model. In:
Katz, J. (ed.) PKC 2015: 18th International Conference on Theory and
Practice of Public Key Cryptography. Lecture Notes in Computer Science,
vol. 9020, pp. 477–494. Springer, Heidelberg, Germany, Gaithersburg, MD,
USA (Mar 30 – Apr 1, 2015) 9, 29

[13] Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y., Zanella
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Garay,
J.A., Gennaro, R. (eds.) Advances in Cryptology – CRYPTO 2014, Part II.
Lecture Notes in Computer Science, vol. 8617, pp. 235–255. Springer, Hei-
delberg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2014) 3

[14] Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use
for building secure channels. In: Pfitzmann, B. (ed.) Advances in Cryptology
– EUROCRYPT 2001. Lecture Notes in Computer Science, vol. 2045, pp.

32

http://eprint.iacr.org/2004/309


453–474. Springer, Heidelberg, Germany, Innsbruck, Austria (May 6–10,
2001) 9, 29

[15] Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and
applications. In: Smart, N.P. (ed.) Advances in Cryptology – EURO-
CRYPT 2008. Lecture Notes in Computer Science, vol. 4965, pp. 127–145.
Springer, Heidelberg, Germany, Istanbul, Turkey (Apr 13–17, 2008) 4, 7,
19, 20, 21

[16] Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise
security. In: IEEE 29th Computer Security Foundations Symposium, CSF
2016, Lisbon, Portugal, June 27 - July 1, 2016. pp. 164–178. IEEE Computer
Society (2016), https://doi.org/10.1109/CSF.2016.19 11

[17] Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) Advances in Cryptology – EUROCRYPT 2002. Lecture
Notes in Computer Science, vol. 2332, pp. 272–287. Springer, Heidelberg,
Germany, Amsterdam, The Netherlands (Apr 28 – May 2, 2002) 24

[18] Donenfeld, J.A.: WireGuard: Next generation kernel network tunnel. In:
ISOC Network and Distributed System Security Symposium – NDSS 2017.
The Internet Society, San Diego, CA, USA (Feb 26 – Mar 1, 2017) 4

[19] Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for
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A Proof of Protocol ΠTwin

Here we prove Theorem 3. The proof structure is basically identical to that of
Theorem 2. The only difference is that where we in the proof of Theorem 2
used the strong Diffie-Hellman oracle to ensure consistency between partnered
session oracles, we now use the twin Diffie-Hellman oracle. More specifically, the
general technique is again to have our session oracles refrain from computing
the input to the key derivation function (i.e., the RO), but instead check to see
if the adversary somehow computes it. Namely, the reduction can check if the
adversary ever submits the correct input to the RO by using the twin DH oracle
provided. In the proof of Theorem 2 we used the strong DH oracle for this check,
but the additional “twinned” DH values in ΠTwin now allows us to get away
with a twin DH oracle instead.

The following the game hops are all the same as those in the proof of
Theorem 2, only adjusted to account for the extra twinned DH values used in
protocol ΠTwin compared to protocol Π. Recall that a session oracle is called
honest (at some point) if the user it belongs to has not yet been corrupted (at
that point). Again, there are five types of oracles that we will have to deal with
in separate ways, repeated below.

• (I) initiator oracles whose response message comes from a responder oracle,
which has the same term ctxt and which is honest when the response is
received;

• (II) other initiator oracles whose intended peer is honest until the oracle
accepts;

• (III) responder oracles whose initial message comes from an initiator, which
has the same ctxt (up to the responder message) and which is honest
when the response is received;

• (IV) other responder oracles whose intended peer is honest until the oracle
accepts; and

• (V) oracles whose intended peer is corrupted.

Note that at the time an initiator oracle starts, we cannot know if it will be of
type I or II. However, we will know what type it is when it is time to compute
the oracle’s session key.

In the following, let Sj denote the event that the experiment in Game j
outputs 1.

Game 0. The is original AKE security experiment, hence

Pr [breakKE] = Pr[S0]. (16)
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Game 1. In this game, we abort if two initiator oracles or two responder
oracles ever arrive at the same ctxt, hence

|Pr[S1]− Pr[S0]| ≤ µ`2

p
. (17)

A.1 Preparing Oracles

Game 2. In this game, we modify how our oracles determine their ses-
sion keys. For a type III, IV or V responder oracle with ctxt prefixed by
î‖ĵ‖pk i‖pk j‖U0‖U1‖V , having secret key (b0, b1) and random exponent s, and
where the initiator public key is (A0, A1), the game now does the following
to determine its session key k. First, it checks to see if any oracle queries
î‖ĵ‖pk i‖pk j‖U0‖U1‖V ‖W1‖ . . . ‖W6 have been made satisfying

W1 = As0
W2 = As1

W3 = Ub00

W4 = Ub10

W5 = Us0
W6 = Us1

(18)

If any such query is found, k is set to the corresponding hash value. Otherwise,
the session key is chosen at random. And if such a hash query happens later,
the hash value is set to the chosen session key.

A type I initiator oracle will simply use the key from the corresponding
responder oracle.

For a type II or V initiator oracle with ctxt prefixed by î‖ĵ‖pk i‖pk j‖U0‖U1‖V ,
having secret key (a0, a1) and random exponents (r0, r1), and where the respon-
der public key is (B0, B1), the game does the following to determine its session key
k. First, it checks to see if any oracle queries î‖ĵ‖pk i‖pk j‖U0‖U1‖V ‖W1‖ . . . ‖W6

have been made satisfying

W1 = V a0

W2 = V a1

W3 = Br0
0

W4 = Br0
1

W5 = V r0

W6 = V r1
(19)

If any such query is found, k is set to the corresponding hash value. Otherwise,
the session key is chosen at random. And if such a hash query happens later,
the hash value is set to the chosen session key.

The only potential change in this game is at which point in time the key
derivation hash oracle value is first defined, which is unobservable. It follows
that

Pr[S2] = Pr[S1]. (20)

A.2 Type IV Responder Oracles

Game 3. In this game type IV oracles choose their session key at random,
but do not modify the hash oracle unless the intended peer is corrupted. If the
adversary corrupts the intended peer i (with public key pk i = (A0, A1)) of a
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type IV oracle running as user j with secret key sk j = (b0, b1), random exponent
s, and chosen key k, then from that point in time, any query of the form

î‖ĵ‖pk i‖pk j‖U0‖U1‖V ‖As0‖A
s
1‖U

b0
0 ‖U

b1
0 ‖U

s
0‖U

s
1

to the key derivation hash oracle H will result in the hash value k.
Unless one of these queries happen before user i is corrupted, the only change

is at which point in time the key derivation hash oracle value is first defined,
which is unobservable. Let F be the event that a query as above happens before
the corresponding long-term key is corrupted. Then

|Pr[S3]− Pr[S2]| ≤ Pr[F ].

Let Fi be the same event as F , but with the intended peer being user i. We
then have that Pr[F ] =

∑
i Pr[Fi].

Next, consider the event Ei which is that for some type IV oracle as above,
any query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖ . . . ‖W6 W1 = As0 = V a0 W2 = As1 = V a1 (21)

to the key derivation hash oracle H happens before user i is corrupted. Then
Pr[Fi] ≤ Pr[Ei].

We shall now bound the probability of the event Ei by constructing an
adversary against strong twin Diffie-Hellman. This adversary will embed its
twin DH challenge in some user i’s public key and type IV oracle responses for
oracles whose intended peer is user i. This will allow it to recover the solution
to its DH challenge from the hash query in event Ei.

Strong Twin Diffie-Hellman adversary B1. The algorithm B1 takes as in-
put a twin DH challenge (X0, X1, Y ) = (gx0 , gx1 , gy) and outputs a pair of group
elements (Z0, Z1). It has access to a twin Diffie-Hellman oracle twinDHx0,x1(·, ·, ·).

Reduction B1 runs Game 2 with the following changes: it chooses i uniformly
at random and sets user i’s public key to pk i = (X0, X1) (and thus implicitly
sets i’s private key to the unknown value (x0, x1)). For type IV oracles whose
intended peer is user i, B1 sets V = Y · gρ, with ρ random. If the adversary
corrupts user i, the reduction B1 aborts. (For other users, the reduction simply
returns the secret key, as in Game 2.)

We need to recognise hash queries of the form (18) and (19) that involve
user i, as well as queries of the form (21). For (18), where user i acts in the
responder role, we know the oracle’s random exponent s, so we only need to
recognise if (W3,W4) is U0 raised to user i’s secret key, which can be done by
checking if twinDHx0,x1

(U0,W3,W4) = 1.
For (19), where user i is the initiator, we know the oracle’s random exponents

(r0, r1), so we only need to recognise if (W1,W2) is V raised to user i’s secret
key, which can be done by checking if twinDHx0,x1

(V,W1,W2) = 1.
Finally, for (21), we need to recognise if group elements (W1,W2) is V raised to

user i’s secret key, which can be done by checking if twinDHx0,x1
(V,W1,W2) = 1.
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When we recognise a query of the form (21), since we know that V = Y · gρ, we
output

Z0 = W1X
−ρ
0 = V x0X−ρ0 = Y x0gρx0g−x0ρ = Y x0

Z1 = W2X
−ρ
1 = V x1X−ρ1 = Y x1gρx1g−x1ρ = Y x1

In other words, our adversary B1 succeeds whenever Ei would happen in Game 2.
Furthermore, Ei in Game 2 can only happen before user i is corrupted, so
whenever Ei would happen in Game 2, B1 would not have aborted.

We get that

Adv2-CDH
G,g (B1) ≥ 1

µ

∑
i

Pr[Ei] ≥
1

µ

∑
i

Pr[Fi] =
1

µ
Pr[F ],

from which it follows that

|Pr[S3]− Pr[S2]| ≤ Pr[F ] ≤ µ ·Adv2-CDH
G,g (B1). (22)

A.3 Type III Responder Oracles

Game 4. In this game type III responder oracles choose their session key at
random, and do not modify the key derivation hash oracle.

Consider a type III responder oracle for user j with secret key (b0, b1), random
exponent s and intended peer i, who has secret key (a0, a1). Unless the adversary
ever makes a hash query of the form

î‖ĵ‖pk i‖pk j‖U0‖U1‖V ‖W1‖ . . . ‖W6 W5 = Us0, W6 = Us1, (23)

this change is unobservable. Call this event F . We thus have

|Pr[S4]− Pr[S3]| ≤ Pr[F ]. (24)

We will bound the probability of F by constructing an adversary against
strong twin Diffie-Hellman. This adversary will embed its challenge in type I
or II initiator oracles’ message, as well as in type III responder oracles’ message.
It will recover the solution to its twin DH challenge from the hash query in event
F .

Strong Twin Diffie-Hellman adversary B2. The algorithm B2 takes as
input a twin DH challenge (X0, X1, Y ) = (gx0 , gx1 , gy) and outputs a pair of
group elements (Z0, Z1). It has access to a twin DH-oracle twinDHx0,x1

(·, ·, ·).
Our reduction B2 runs Game 3 with the following changes: for type I and II

initiator oracles (we cannot distinguish these at this point in time), it computes
U0 = X0g

ρ0 and U1 = X1g
ρ1 , with ρ0, ρ1 random. For type III responder oracles,

it computes V = Y · gρ2 , with ρ2 random. Note that the reduction knows all
static secret keys, so user corruption is handled exactly as in Game 3.

We need to recognise hash queries of the form (19) for type II initiator oracles,
as well as queries of the form (23) for type III oracles. Although we do not know
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the oracles’ random exponents, we do know their secret keys. This means that
we only need to recognise if W5 is V raised to logg U0 = x0 + ρ0, as well as the
corresponding relations for W6. Of course, if W5 = V x0+ρ0 and W6 = V x1+ρ1 ,
then W5V

−ρ0 = V x0 and W6V
−ρ1 = V x1 , which we can detect by checking if

twinDHx0,x1
(V,W5V

−ρ0 ,W5V
−ρ1) = 1. If this is the case for a query of the form

(23), then we output

Z0 = W5V
−ρ0X−ρ2

0 = V x0X−ρ2

0 = g(y+ρ2)x0−x0ρ2 = Y x0

Z1 = W6V
−ρ0X−ρ2

1 = V x1X−ρ2

1 = g(y+ρ2)x1−x1ρ2 = Y x1

as the solution to the twin DH challenge. In other words, B2 succeeds whenever
F would happen in Game 3, hence

|Pr[S4]− Pr[S3]| ≤ Pr[F ] ≤ Adv2-CDH
G,g (B2). (25)

Note that we do not stop the simulation in the case we detect a hash query
of the form (19) for a type II initiator oracle, because in this case the responder
message V does not contain the embedded twin DH challenge.

A.4 Type II Initiator Oracles

Game 5. In this game type II initiator oracles choose their session key at
random, but do not modify the hash oracle unless the intended peer is corrupted.
If the adversary corrupts the intended peer j with public key pk j = (A0, A1) of
a type II oracle running as user i with secret key (a0, a1), random exponents
(r0, r1) and chosen key k, then from that point in time, any query of the form

î‖ĵ‖pk i‖pk j‖U0‖U1‖V ‖V a0‖V a1‖Ar0
0 ‖A

r0
1 ‖V r0‖V r1

to the key derivation hash oracle H will result in the hash value k.
Unless one of these queries happen before the user j is corrupted, the only

change is at which point in time the key derivation hash oracle value is first
defined, which is unobservable. Let F be the event that a query as above happens
before the corresponding long-term key is corrupted. Then

|Pr[S5]− Pr[S4]| ≤ Pr[F ].

Let Fj be the same event as F , but with the intended peer being user j. We
then have that Pr[F ] =

∑
j Pr[Fj ].

Next, consider the event Ej which is that for some type II oracle as above,
any query of the form

î‖ĵ‖pk i‖pk j‖U0‖U1‖V ‖W1‖ . . . ‖W6, W3 = Ar0
0 = Ub00 , W4 = Ar0

1 = Ub10

(26)

to the key derivation hash oracle H happens before user j is corrupted. Then
Pr[Fj ] ≤ Pr[Ej ].
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We shall now bound the probability of the event Ej by constructing an
adversary against strong twin Diffie-Hellman. This adversary will embed its twin
DH challenge in some user j’s public key and type II oracle messages for oracles
whose intended peer is user j, and recover the solution to its twin DH challenge
from the hash query in event Ej .

Strong Twin Diffie-Hellman adversary B3. The algorithm B3 takes as
input a twin DH challenge (X0, X1, Y ) = (gx0 , gx1 , gy) and outputs a pair of
group elements (Z0, Z1). It has access to a twin DH-oracle twinDHx0,x1(·, ·, ·).

Our reduction B3 runs Game 4 with the following changes: It chooses j
uniformly at random and sets user j’s public key to pk j = (X0, X1) (and thus
implicitly sets j’s private key to the unknown value (x0, x1)). For type I and II
initiator oracles whose intended peer is user j, B3 sets U0 = Y · gρ, with ρ
random. If the adversary corrupts user j, the reduction B3 aborts. (For other
users, the reduction simply returns the secret key, as in Game 4.)

We need to recognise hash queries of the form (18) and (19) that involve
user j, as well as queries of the form (26). For (18), where user j is the
responder, we know the oracle’s random exponent s, so we only need to recognise
if (W3,W4) is U0 raised to user j’s secret key, which can be done by checking
if twinDHx0,x1

(U0,W3,W4) = 1. For (19), where user j is the initiator, we
know the oracle’s random exponents (r0, r1), so we only need to recognise if
(W1,W2) is V raised to user j’s secret key, which can be done by checking if
twinDHx0,x1

(V,W1,W2) = 1. Finally, for (26), we need to recognise if a pair of
group elements (W3,W4) is U0 raised to user j’s secret key, which can be done
by checking if twinDHx0,x1

(U0,W3,W4) = 1.
When we recognise a query of the form (26), meaning that W3 = Ux0

0 and
W4 = Ux1

0 where we know that U0 = Y · gρ, then we output

Z0 = W3X
−ρ
0 = Ux0

0 X−ρ0 = Y x0

Z1 = W4X
−ρ
1 = Ux1

0 X−ρ1 = Y x1

In other words, our adversary B3 succeeds whenever Ej would happen in Game 4.
Furthermore, Ej in Game 4 can only happen before user j is corrupted, so
whenever Ej would happen in Game 4, B3 would not have aborted. We get that

Adv2-CDH
G,g (B3) ≥ 1

µ

∑
j

Pr[Ej ] ≥
1

µ

∑
j

Pr[Fj ] =
1

µ
Pr[F ],

from which it follows that

|Pr[S5]− Pr[S4]| ≤ Pr[F ] ≤ µ ·Adv2-CDH
G,g (B3). (27)

A.5 Summary

Note that in Game 5, every session key is chosen at random independent of every
key and sent message.
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For type V oracles, the key derivation hash oracle is immediately programmed
so that the session key is available to the adversary. But type V oracles are not
fresh and therefore never subject to a Test query.

For type II and IV oracles, the key derivation hash oracle is programmed
to make the session key available to the adversary only after the intended peer
is corrupted. But if the intended peer is corrupted, a type II or IV oracle will
become non-fresh, which means that it should never have been subject to a Test
query.

For type I and III oracles, the key derivation hash oracle will never make the
session key available to the adversary.

This means that for any oracle subject to a Test query, the session key is and
will remain independent of every key and sent message. Thus, the adversary
cannot distinguish the session key from a random key, so

Pr[S5] =
1

2
. (28)

Theorem 3 now follows from (16), (17), (20), (22), (25), (27) and (28). (Note
that protocol ΠTwin has perfect correctness so we have Pr[breakSound] = 0, and
recall that Game 1 gives us Pr[breakUnique] ≤ µ`2/p).

B Proof of Protocol ΠCom

Here we prove Theorem 4. The proof is very similar to the proofs of Theorems 2
and 3. The main difference is that twinning the ephemeral-ephemeral part of the
key exchange is replaced by mutually committing to the Diffie-Hellman messages
before sending them, which allows us to get a tight proof.

Again, we call an oracle honest (at some point) if the user it belongs to has
not yet been corrupted (at that point), and we consider five oracle types:

• (I) initiator oracles whose response message comes from a responder oracle,
which has the same term ctxt and which is honest when the response is
received;

• (II) other initiator oracles whose intended peer is honest until the oracle
accepts;

• (III) responder oracles whose initial message comes from an initiator, which
has the same ctxt (up to the responder message) and which is honest
when the response is received;

• (IV) other responder oracles whose intended peer is honest until the oracle
accepts; and

• (V) oracles whose intended peer is corrupted.

Note that at the time an initiator oracle starts, we cannot know if it will be of
type I or II. However, we will know what type it is when it is time to compute
the oracle’s session key.
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It is also worth mentioning that for any two oracles that accept, if their
transcripts agree on the first two messages (the commitments), they will also
agree on the final two messages.

In the following, let Sj denote the event that the experiment in Game j
outputs 1. We call the adversary’s queries to the key derivation function H for
H-queries, and its queries to the commitment hash function G for G-queries.

Game 0. The is original AKE security experiment, hence

Pr [breakKE] = Pr[S0]. (29)

We begin with an administrative step to avoid pathologies where honest
players choose the same random random exponents.

Game 1. In this game, we abort if two initiator oracles or two responder
oracles ever arrive at the same ctxt, hence

|Pr[S1]− Pr[S0]| ≤ µ`2

p
. (30)

B.1 Preparing Oracles

Game 2. In this game, we modify how our oracles determine their ses-
sion keys. For a type III, IV, or V responder oracle with ctxt prefixed
by î‖ĵ‖pk i‖pk j‖CA‖CB‖U‖V , having secret key (b0, b1) and random expo-
nent s, and where the initiator public key is (A0, A1), the game does follow-
ing to determine its session key k. First, it checks to see if any H-queries
î‖ĵ‖pk i‖pk j‖CA‖CB‖U‖V ‖W1‖ . . . ‖W5 have been made satisfying

W1 = As0
W2 = As1

W3 = U b0

W4 = U b1
W5 = Us (31)

If any such query is found k is set to the corresponding hash value. Otherwise,
the session key is chosen at random. And if such a hash query happens later,
the hash value is set to the chosen session key.

A type I initiator oracle will simply use the key from the corresponding
responder oracle.

For a type II or V initiator oracle with ctxt prefixed by î‖ĵ‖pk i‖pk j‖CA‖CB‖U‖V ,
having secret key (a0, a1) and random exponent r, and where the responder public
key is (B0, B1), the game does the following to determine its session key k. First, it
checks to see if anyH-queries of the form î‖ĵ‖pk i‖pk j‖CA‖CB‖U‖V ‖W1‖ . . . ‖W5

have been made satisfying

W1 = V a0

W2 = V a1

W3 = Br0
0

W4 = Br0
1

W5 = V r (32)

44



If any such query is found, k is set to the corresponding hash value. Otherwise,
the session key is chosen at random. And if such a H-query happens later, the
hash value is set to the chosen session key.

The only potential change in this game is at which point in time the key
derivation hash oracle value is first defined, which is unobservable. It follows
that

Pr[S2] = Pr[S1]. (33)

B.2 Type IV Responder Oracles

Game 3. In this game type IV oracles choose their session key at random,
but do not modify the hash oracle unless the intended peer is corrupted. If
the adversary corrupts the intended peer i (with public key pk i = (A0, A1))
of a type IV oracle running as user j with secret key sk j = (b0, b1), random
exponent s, and chosen key k, then from that point in time, any H-query of the
form

î‖ĵ‖pk i‖pk j‖CA‖CB‖U‖V ‖A
s
0‖A

s
1‖U b0‖U b1‖Us

will result in the value k.
Unless one of these H-queries happen before user i is corrupted, the only

change is at which point in time the RO output is first defined, which is
unobservable. Let F be the event that an H-query as above happens before the
corresponding long-term key is corrupted. Using exactly the same reduction B1

as in the proof of Game 3, Theorem 3, we have

|Pr[S3]− Pr[S2]| ≤ Pr[F ] ≤ µ ·Adv2-CDH
G,g (B1). (34)

B.3 Type III Responder Oracles

Game 4. In this game, we prepare for dealing with type III responder oracles
by handling a potential problem with reprogramming the commitment hash G.

In this game, the oracles do not hash their message U or V using G. Instead,
they choose a random hash value CA or CB as its commitment value. When it
receives a response, G is reprogrammed such that G(U) = CA or G(V) = CB .

The reprogramming will fail only if the adversary makes a G-query on either
U or V before reprogramming. We can upper-bound the number of random
oracle queries by the adversary’s run time t, and we get

|Pr[S4]− Pr[S3]| ≤ µ`t

p
. (35)

Game 5. In this game type III responder oracles choose their session key at
random, and do not modify the key derivation hash oracle.

Consider a type III responder oracle for user j with secret key (b0, b1), random
exponent s and intended peer i, who has secret key (a0, a1). Unless the adversary
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ever makes an H-query of the form

î‖ĵ‖pk i‖pk j‖CA‖CB‖U‖V ‖W1‖ . . . ‖W5 W5 = Us0, (36)

this change is unobservable. Call this event F . We thus have

|Pr[S5]− Pr[S4]| ≤ Pr[F ]. (37)

We shall bound the probability of F by constructing an adversary B2 against
decisional Diffie-Hellman. Adversary B2 will embed its challenge in type I
oracles’ messages, as well as in type III responder oracles’ messages. Unlike the
corresponding reductions for protocols Π and ΠTwin, we can avoid embedding
the challenge in type II initiator oracles because the commitment messages
in protocol ΠCom allow us to postpone choosing the messages until we know
whether the oracle can be of type II.

Decisional Diffie-Hellman adversary B2. The algorithm B2 takes as input
a DDH challenge (X,Y, Z) and outputs a bit. It simulates Game 4 as follows.
For a type III responder oracle that receives a group element, B2 will create
a rerandomized tuple (X ′, Y ′, Z ′) and set its V to be Y ′. When computing
its agreed key, it will use Z ′ as W5 and compute W1,W2,W3,W4 using the
corresponding secret keys. In this computation, it will use X ′. (If multiple
type III responder oracles receive the same CA, they will use rerandomized
tuples with the same X ′.)

When an initiator oracle receives its response commitment and that com-
mitment was sent by a type III responder oracle with the same ctxt value, we
know that the initiator oracle will be a type I oracle if it accepts. In this case,
B2 will discard the initiator oracle’s chosen message and instead use X ′ from
the corresponding type III responder oracle.

Note that the reduction knows all static secret keys, so user corruption is
handled exactly as in Game 4. Also, type II, IV, and V oracles can be handled
as in the previous game.

If a query of the form (36) every happens, algorithm B2 stops and outputs 1.
Otherwise it outputs 0.

It is now clear that if the DDH challenge is a DDH tuple, B2 perfectly
simulates Game 4 until the H-query happens. If the input is a random tuple,
however, the probability that the adversary makes the H-query can be upper-
bounded by µ`t/p. It follows that

|AdvDDH
G,g (B2)− Pr[F ]| ≤ µ`t/p.

which means that

|Pr[S5]− Pr[S4]| ≤ Pr[F ] ≤ AdvDDH
G,g (B2) +

µ`t

p
. (38)

Note that we do not stop the simulation in the case we detect an H-query of
the form (32) for a type II initiator oracle, because in this case the responder
message V does not contain the embedded DDH challenge.
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B.4 Type II Initiator Oracles

Game 6. In this game type II initiator oracles choose their session key at
random, but do not modify the RO H unless the intended peer is corrupted. If
the adversary corrupts the intended peer j with public key pk j = (A0, A1) of
a type II oracle running as user i with secret key (a0, a1), random exponent r,
and chosen key k, then from that point in time, any H-query of the form

î‖ĵ‖pk i‖pk j‖CA‖CB‖U‖V ‖V a0‖V a1‖Ar0‖A
r
1‖V r

will result in the value k.
Unless one of these queries happen before the user j is corrupted, the only

change is at which point in time the key derivation hash oracle value is first
defined, which is unobservable. Let F be the event that a query as above happens
before the corresponding long-term key is corrupted. Using exactly the same
reduction B3 as in the proof of Game 5, Theorem 3, we have

|Pr[S6]− Pr[S5]| ≤ Pr[F ] ≤ µ ·Adv2-CDH
G,g (B3). (39)

B.5 Summary

Note that in Game 6, every session key is chosen at random independent of every
key and sent message.

For type V oracles, the key derivation hash oracle is immediately programmed
so that the session key is available to the adversary. But type V oracles are
never fresh and therefore never subject to a Test query.

For type II and IV oracles, the key derivation hash oracle is programmed to
make the session key available to the adversary only after the intended peer is
corrupted. However, if the intended peer is corrupted, a type II or IV oracle will
become non-fresh, which means that it should never have been subject to a Test
query.

For type I and III oracles, the key derivation hash oracle will never make the
session key available to the adversary.

This means that for any oracle subject to a Test query, the session key is and
will remain independent of every key and sent message. Which means that the
adversary cannot distinguish the session key from a random key. It follows that

Pr[S6] =
1

2
. (40)

Theorem 4 now follows from (29), (30), (33), (34), (35), (38), (39) and (40).
(Note that protocol ΠCom has perfect correctness so we have Pr[breakSound] = 0,
and recall that Game 1 gives us Pr[breakUnique] ≤ µ`2/p).

C Proof of Key-Confirmation Compiler

Here we prove Theorem 6. First we formally define the mu-PRF and mu-SUF-
CMA security notions.
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Game DistbF,n(A)

1: for all i ∈ [n] do

2: Ki
$← {0, 1}κ

3: F 0
i ← F (Ki, ·)

4: F 1
i ← FUNC(D,R)

5: b′ ← A{F bi (·)}

6: return b′

Figure 5: Experiment defining mu-PRF security.

mu-PRF security. Let FUNC(D,R) denote the set of all functions from
{0, 1}D to {0, 1}R. The multi-user PRF security of a function F : {0, 1}κ ×
{0, 1}D → {0, 1}R is defined by the games Dist0

F and Dist1
F described by the

parameterized game DistbF shown in Fig. 5. The mu-PRF advantage of an
adversary A is

Advmu-PRF
F,n (A) =

∣∣Pr[Dist0
F,n(A)⇒ 0]− Pr[Dist1

F,n(A)⇒ 0]
∣∣ . (41)

mu-SUF-CMA security. A MAC scheme is a pair of algorithms MAC =
(Tag,Vrfy), where:

• Tag : {0, 1}κ × {0, 1}∗ → {0, 1}τ is a tag-generation algorithm;

• Vrfy : {0, 1}κ × {0, 1}∗ × {0, 1}τ → {0, 1} is a verification algorithm;

such that for all K ∈ {0, 1}κ, and all m ∈ {0, 1}∗, Vrfy(K,m,Tag(K,m)) = 1.
The multi-user SUF-CMA security of a MAC is defined by the ForgeMAC game
shown in Fig. 6. The mu-SUF-CMA advantage of an adversary A is

Advmu-SUF-CMA
MAC,n (A) = Pr[ForgeMAC(A),n ⇒ 1]. (42)

Remark 5. Our (mu-)SUF-CMA game is somewhat non-standard since the
adversary can make multiple verification queries instead of just one at the end
of the game (which is the normal formulation of (mu-)SUF-CMA). Bellare et al.
[9] showed that this multi-query variant of UF-CMA is in general not equivalent
to the standard 1-query definition, but for strong UF-CMA it is. Unfortunately,
the reduction from multi-query SUF-CMA to 1-query SUF-CMA is not tight in
general. But for PRF-based MACs—which many MACs are—it is.

C.1 Proof of Theorem 6

In the following let Si denote the event that breakEA occurred in Game i.
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Game ForgeMAC,n(A)

1: forgery← 0
2: for all i ∈ [n] do

3: Ki
$← {0, 1}κ

4: Ti ← ∅
5: ATag,Vrfy

6: return forgery

Tag(i,m)

1: t← MAC.Tag(Ki,m)
2: Ti ← Ti ∪ {(m, t)}
3: return t

Vrfy(i,m, t):

1: d← MAC.Vrfy(Ki,m, t)
2: if d = 1 ∧ (m, t) /∈ Ti then
3: forgery← 1

4: return d

Figure 6: Experiment defining mu-SUF-CMA security.

Game 0. This is the original EAΠ+(µ, `) experiment, hence

Pr [breakEA] = Pr[S0]. (43)

Game 1. This game proceeds like in Game 0, but it aborts if either event
breakSound or event breakUnique occurs in protocol Π. There exists an adversary
B1 such that:

|Pr[S1]− Pr[S0]| ≤ AdvAKE
Π (B1). (44)

of (44). Let E = breakSound ∨ breakUnique. Clearly Game 0 and Game 1 are
identical unless event E occurs, hence

|Pr[S1]− Pr[S0]| ≤ Pr[E]. (45)

To upper bound Pr[E] let B1 be the following AKE adversary against proto-
col Π. First B1 obtains a list of public keys from its AKE experiment which it
forwards to A. It then simulates the EAΠ+(µ, `) game for A as follows.

• All of A’s RevLTK and RegisterLTK queries B1 simply forwards to its own
AKE game.

• When A makes a Send query to an oracle which still hasn’t accepted in
protocol Π, then B1 forwards it to its own AKE experiment and returns
the response back to A.

• When an oracle πsi reaches the accept state in protocol Π, then B1 obtains
its intermediate key kΠ by issuing a RevSessKey query to its own AKE
game.

• From this point on B1 simulates the rest of protocol Π+ for oracle πsi itself
based on the intermediate key kΠ. (This includes deriving the keys ka
and km from kΠ, as well as creating/verifying the final key-confirmation
messages.)
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• Since B1 derives the session key ka of all oracles in protocol Π+, it can
answer all of A’s RevSessKey queries itself.

Once A stops, B1 stops as well and outputs some bit to its AKE experiment (we
don’t care about B1’s key-indistinguishability advantage).

From its description it is clear that B1 perfectly simulates Game 0, hence

Pr[E] ≤ AdvAKE
Π (B1) (46)

and (44) follows.

In the following, say that an oracle πsi is Π-fresh if it is fresh according to
Definition 7 with respect to protocol Π.

Game 2. In this game the intermediate keys of all Π-fresh oracles in protocol
Π+ are replaced with random keys (partners get the same random key). There
exists an adversary B2 such that:

|Pr[S2]− Pr[S1]| ≤ 2 ·AdvAKE
Π (B2). (47)

of (47). Adversary B2 is almost identical to adversary B1 described in the
previous game, except for the following difference.

• When an oracle πsi reaches the accept state in protocol Π, then B2 obtains
its intermediate key kΠ by issuing the following query to its own AKE
experiment:

– if πsi is Π-fresh, issue a Test query;

– if πsi is not Π-fresh, issue a RevSessKey query.

The rest of B2’s simulation is identical to that of B1. Additionally, if at any
point during the simulation event breakEA occurs, then B2 stops and outputs “0”
to its AKE experiment. If breakEA has not occurred by the time A stops, then
B2 outputs “1”.

Let b be the secret bit used in B2’s AKE experiment. If the Test queries
return real keys (b = 0), then B2 perfectly simulates Game 1. If the Test queries
return random keys (b = 1), then B2 perfectly simulates Game 2. In other words:

Pr[BA2 ⇒ 0 | b = 0] = Pr[S1] (48)

and

Pr[BA2 ⇒ 0 | b = 1] = Pr[S2], (49)

hence

2 ·AdvAKE
Π (B2) = |Pr[BA2 ⇒ 0 | b = 0]− Pr[BA2 ⇒ 0 | b = 1]| (50)

= |Pr[S1]− Pr[S2]|, (51)

and (47) follows.
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Game 3. This game proceeds exactly as the previous one, except that the
PRF is replaced with a truly random function for all oracles whose intermediate
keys got replaced with a random key in Game 2. That is, computations of the
form PRF(kΠ, ·) are replaced with FkΠ

(·) where FkΠ
is a truly random function.

It is straightforward to create an adversary D against the PRF such that

|Pr[S3]− Pr[S2]| ≤ Advmu-PRF
PRF,µ` (D). (52)

Analyzing Game 3. We now show that if event breakEA occurs in Game 3,
then we can create an adversary F such that

Pr[S3] ≤ Advmu-SUF-CMA
MAC,µ` (F). (53)

Let A be an EA adversary against protocol Π+ and let F be the following
mu-SUF-CMA attacker against the MAC scheme MAC. Adversary F has access
to two oracles Tag(·, ·) and Vrfy(·, ·, ·), where Tag(i,m) returns a tag t on
message m under the ith MAC key in the mu-SUF-CMA game, and Vrfy(i,m, t)
verifies m and t under the ith MAC key. F will useA to forge in its mu-SUF-CMA
game by simulating Game 3 for A as follows.

• It creates all the long-term keys itself (hence can answer all RevLTK and
RegisterLTK queries).

• It simulates all of protocol Π itself for all oracles. This includes deriving
their keys kΠ, ka, and km as in Game 3 (the random function can be
implemented by lazy sampling). As a result, F can answer all of A’s
RevSessKey queries.

• To create and verify the key-confirmation messages in protocol Π+, F
proceeds as follows.

– If an oracle is non-fresh, meaning that its intermediate key kΠ was
not replaced with random in Game 2, then F uses its MAC key km
to create and verify its key-confirmation messages itself.

– If an oracle is fresh, then F uses its two oracles Tag and Vrfy to
create and verify the oracle’s key-confirmation messages. Note that
the same MAC key-identifier x is used in the mu-SUF-CMA game
when creating/verifying the key-confirmation messages of two partner
oracles πsi and πtj . That is, Tag(x, ·) and Vrfy(x, ·, ·) is called for
both πsi and πtj for some key index x.

First notice that F perfectly simulates Game 3. This is because by Game 2
and Game 3 the MAC keys km of fresh oracles are independent and uniformly
distributed, which is exactly what the MAC keys in F ’s mu-SUF-CMA game
are as well.

We now argue that if event breakEA occurs during F ’s simulation, then F
creates a forgery for some key in its mu-SUF-CMA game. Suppose πsi was
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the oracle for which event breakEA occurred. By definition, this means that πsi
accepted without having a partner and that its intended peer’s long-term key had
not been corrupted. In order for πsi to accept in protocol Π+ the key-confirmation
message it received, call it t, must have been valid. Also, since Pidsi was not
corrupted, πsi was Π+-fresh, and hence Π-fresh, at the time its intermediate key
was derived. This means that πsi ’s key-confirmation messages were created and
verified using Tag and Vrfy in F ’s simulation. In particular, t was verified
with the call Vrfy(x, recv, t), where x is the key index associated with πsi in
the mu-SUF-CMA game and recv is the string used to verify πsi ’s incoming
key-confirmation message. Specifically, if πsi is an initiator then recv = 1||ctxt,
while if it is a responder then recv = 0||ctxt (see Fig. 4).

We claim that (recv, t) is a valid forgery in F ’s mu-SUF-CMA game for key
index x. Recall that the oracles Tag(x, ·) and Vrfy(x, ·, ·) are only called in
F ’s simulation when πsi—and possibly its Π-partner4—accepts in protocol Π.
Correspondingly, we consider two cases:

1. πsi does not have a partner in protocol Π. In this case, F makes no call of the
form Tag(x, recv) in its mu-SUF-CMA game so (recv, t) is a valid forgery
for key index x. (Here we are using that the sent and recv verification
strings are distinct.)

2. πsi has a partner in protocol Π. Suppose this partner is πtj . In response
to πtj accepting in protocol Π, F called Tag(x, recv) in order to create
its key-confirmation message t′. If t′ = t, then ksi and πtj would also be
Π+-partners, contradicting event breakEA. So we must have t′ 6= t. But
then (recv, t) must be a valid forgery since t was not produced by a call of
the form Tag(x, recv). (Here we are again using that sent and recv are
distinct.)

We have thus shown that event breakEA in Game 3 implies a MAC forgery;
proving (53). Together with (44), (47), and (52), this proves Theorem 6.

4Note that there is no contradiction between πs
i having a partner in protocol Π while at

the same time not having one in protocol Π+. This is because the transcript of protocol Π+

also includes the key-confirmation messages.
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