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Abstract. We prove that the discrete logarithm problem can be solved in quasi-polynomial

expected time in the multiplicative group of finite fields of fixed characteristic. More generally,
we prove that it can be solved in the field of cardinality pn in expected time (pn)2 log2(n)+O(1).

1. Introduction

In this article we prove the following theorem.

Theorem 1.1. Given any prime number p and any positive integer n, the discrete logarithm
problem in the group F×pn can be solved in expected time (pn)2 log2(n)+O(1).

Fixing the characteristic p, the complexity of solving the discrete logarithm problem in the
family of groups F×pn is then n2 log2(n)+O(1). Therefore the discrete logarithm problem in finite
fields of fixed characteristic can be solved in quasi-polynomial expected time. This result sig-
nificantly improves upon the complexity Lpn(1/2) proved by Pomerance in 1987 [Pom87]. The
quasi-polynomial complexity has been conjectured to be reachable since [BGJT14], where a first
heuristic algorithm was proposed. More generally, Theorem 1.1 implies that for any parameter
α ∈ (0, 1/2), discrete logarithms can be computed in expected time Lpn(α + o(1)) in any family
of fields where p = Lpn(α).

Following the first heuristic algorithm of [BGJT14], a new one was proposed in [GKZ18]. The
latter algorithm is proven to terminate in quasi-polynomial expected time for finite fields of fixed
characteristic that admit a suitable model. Heuristically, it seems to be easy to compute such
a model for any given field, but attempts to prove that it always exists have failed [Mic19].
Nevertheless, the approach of [GKZ18] has been perceived as the most promising way towards a
fully rigorous algorithm. Our approach in the present article is similar, and we take advantage of
the geometric insights developed in [KW18]. The main difference with all previous work is that
we rely on a different model for the field: one that can be proven to exist, eliminating the need
for heuristics. This model is introduced in Section 2. The main difficulty is then to construct an
algorithm that provably works in this model. The general strategy is similar to that of [GKZ18],
yet their algorithm does not immediately translate to the new model. An overview of the new
algorithm is presented in Section 3. The remainder of the article is dedicated to the proof.

2. A suitable model for the finite field

The recent algorithms to compute discrete logarithms in small characteristic all exploit properties
of a very particular model for the field. It is assumed that the field is of the form Fqd` , for a
prime power q and integers d and `, and there exist two polynomials h0 and h1 in Fqd [x] of degree
at most 2, and an irreducible factor I of h1x

q − h0 of degree `. The field is then represented as
Fqd` ∼= Fqd [x]/(I), and the relation

(1) xq ≡ h0
h1

mod I

is the key ingredient leading to heuristic quasi-polynomial algorithms, assuming that such a model
of Fqd` can be found where q and d are small enough. A proof that such a model can always be
found seems out of reach, therefore we propose to use another one. All we need is a property
similar to Equation (1): applying Frobenius is equivalent to a small degree rational function.
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Definition 2.1 (Elliptic curve model). Consider a prime power q and an integer n > 1. Suppose
there is an ordinary elliptic curve E defined over Fq, a rational point Q ∈ E(Fq) and an irreducible

divisor I of degree n over Fq such that for any f ∈ Fq(E), one has f ◦φq ≡ f ◦τQ mod I , where
φq is the q-Frobenius and τQ is the translation by Q. Then, Fq[I ] ∼= Fqn , and we call (E,Q,I )
a (q, n)-elliptic curve model of the field Fqn .

We now show how to construct such a model. Consider a prime power q and an integer n > 1.
Let E be an elliptic curve defined over the finite field Fq, and let φq be its q-Frobenius. Suppose
that E(Fq) contains a point Q of order n. Let

Q = {P ∈ E(Fq) | φq(P ) = P +Q}.
The kernel of the isogeny φq − idE is E(Fq), and Q = (φq − idE)−1(Q) is a translation of E(Fq).
In particular, |Q| = |E(Fq)|. Let P ∈ Q and i any positive integer. Since φq(P ) = P +Q and

φqi(P ) = φqi−1(P +Q) = φqi−1(P ) +Q,

a simple induction yields φqi(P ) = P + iQ. Also, since Q is of order n, the isogeny φqn is the
first Frobenius fixing P . The orbit of P under the action of φq is a place of degree n over Fq.
Therefore Q consists of |E(Fq)|/n irreducible components of degree n over Fq. If I is one of
these components, then Fq[I ] ∼= Fqn . Therefore, a (q, n)-elliptic curve model can be constructed
from an elliptic curve E containing an Fq-rational point Q of order n.

Given a finite field of the form Fpn , for a prime number p and an integer n, there does not
necessarily exist an elliptic curve model for Fpn , but we show in the following that one can find an
extension of that field of degree logarithmic in n which does admit an elliptic curve model. The
construction relies on the following theorem.

Theorem 2.2 ([Wat69, Theorem 4.1, condition (I)]). For any integer t coprime to q such that
|t| ≤ 2q1/2, there is an ordinary elliptic curve E defined over Fq such that |E(Fq)| = q + 1− t.

We deduce the following proposition.

Proposition 2.3. Let n ≤
√

2q1/4 be a non-negative integer. There exists an ordinary elliptic
curve defined over Fq containing an Fq-rational point of order n.

Proof. We first prove that there is an elliptic curve E over Fq such that n2 divides |E(Fq)|. Since

n2 ≤ 2q1/2, there exists an integer m such that |q+1−mn2| ≤ 2q1/2 and |q+1−(m+1)n2| ≤ 2q1/2.
Either q + 1−mn2 or q + 1− (m+ 1)n2 is coprime to p, so by Theorem 2.2, there is an ordinary
elliptic curve over Fq with either mn2 or (m+ 1)n2 rational points.

We have shown that there is an elliptic curve E defined over Fq such that n2 divides |E(Fq)|.
From [Sil86, Corollary 6.4], there are two integers a and b such that the group of rational points
E(Fq) is isomorphic to Z/aZ ⊕ Z/abZ. Then, n2 divides a2b, so n divides ab. Therefore E(Fq)
contains a point of order n. �

Theorem 2.4. For any prime number p and integer n, one can find in deterministic polynomial
time in p and n an integer r = O(log(n)) and a (pr, n)-elliptic curve model of the finite field Fprn .

Proof. Let r be a positive integer and q = pr. From Proposition 2.3, the existence of an elliptic
curve model is ensured whenever n ≤

√
2q1/4, i.e., n ≤

√
2pr/4, which holds whenever r ≥

(4 log(n)− log(4))/ log(p). Therefore, the construction of the elliptic curve model is as follows: let

r =

⌈
4 log(n)− log(4)

log(p)

⌉
,

and q = pr. Find an elliptic curve E defined over Fq and a point Q ∈ E(Fq) of order n. As q
is polynomial in p and n, these can be found in deterministic polynomial time by an exhaustive
search. Finally, let I be any irreducible component of Q = {P ∈ E(Fq) : φq(P ) = P +Q}. �

In the rest of this article, we suppose that the elliptic curve E is in (generalised) Weierstrass
form, so that we naturally have coordinates x and y such that x is of degree 2 and y of degree 3,
and for any P ∈ E, we have x(P ) = x(−P ).
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3. Overview

The following theorem, summarising a series of refinements [EG02, Die11, GKZ18], shows that to
obtain an algorithm to compute discrete logarithms, it is sufficient to have a descent procedure.

Theorem 3.1 ([Wes18, Theorem 1.4]). Consider a finite cyclic group G of order n. Assume
we are given a set F = {f1, . . . , fm} ⊂ G (called the factor base), for some integer m, and an
algorithm Descent that on input f ∈ G outputs a sequence (ej)

m
j=1 such that f =

∏m
j=1 f

ej
j .

Then, there is a probabilistic algorithm that computes discrete logarithms in G at the expected
cost of O(m log log n) calls to the descent procedure Descent, and an additional O(m3 log log n)
operations in Z/nZ.

Therefore, to prove Theorem 1.1, it is sufficient to devise an efficient descent algorithm. Fix a
(q, n)-elliptic curve model (E,Q,I ) for the finite field Fqn .

3.1. Logarithms of divisors. The notion of logarithm can be extended from field elements to
divisors of the elliptic curve as follows. Let N = |E(Fq)|, and let Div0

Fq
(E,I ) be the subset of

Div0
Fq

(E) of degree zero divisors which do not intersect I . Given a point P ∈ E, the corresponding

divisor is written [P ]. Thanks to the Pohlig-Hellman method, we fix a prime ` dividing qn−1, and
focus on the problem of computing discrete logarithms modulo `. We denote by log the logarithm
function modulo `, with respect to an arbitrary generator of the multiplicative group of the finite
field. We can suppose that N and ` are coprime (indeed, since N = O(q), any prime divisor of
N can be handled by the baby-step giant-step method in polynomial time in q). We have the
following commutative diagram where each line is exact

1 // F×q //

��

Fq(E)×I
div //

log

��

Div0
Fq

(E,I )
σ //

Log

��

E(Fq) // 0

0 // 0 // Z/`Z
id // Z/`Z // 0,

where Fq(E)×I is the multiplicative group of rational functions on E defined over Fq whose divisors

do not intersect I . The function Log sends any divisor D ∈ Div0
Fq

(E,I ) to the element log(f)/N ,

where f is any function with divisor ND (which is principal). Given an effective divisor D of degree
n not intersecting I , we also define Log(D) = Log(D − n[0E ]).

Let Di = Ei/Si be the variety of degree i effective divisors on E, where Si is the i-th symmetric
group. Let Pi ⊂ Di be the subvariety of principal divisors. Given two subvarieties A ⊂ Dn and
B ⊂ Dm, we write A + B = {A+B | A ∈ A , B ∈ B} ⊂ Dm+n. Given a point P ∈ E, we write
P2(P ) = {[P0] + [P1] | P0 + P1 = P} ⊂ D2.

3.2. Elimination and zigzag. Consider a field extension k/Fq and a divisor D ∈ Dn(k). A
degree n–to–m elimination is an algorithm that finds a list (Di)

t
i=1 of divisors over E of degrees

at most m and integers (αi)
t
i=1 such that

Log(Nk/Fq
(D)) =

t∑
i=1

αi · Log(Nk/Fq
(Di)).

The integer t is called the expansion factor of the elimination. To build a descent algorithm,
we first construct degree 4–to–3 and 3–to–2 elimination algorithms (in Propositions 6.14 and 6.6
respectively) with expansion factors at most some value C. Combining these two eliminations, we
obtain a degree 4–to–2 elimination algorithm with expansion factor at most C2. A descent can then
be constructed following the zigzag approach developed in [GKZ18], as done in Proposition 7.2.
The idea is the following. The logarithm of the finite field element that we wish to descend is
first represented as the logarithm of an irreducible divisor D over Fq of degree a power of two,
say 2e+2. Over the field Fq2e , the divisor D splits as 2e irreducible divisors of degree 4. If D′ is
any of these, then D = NF

q2
e /Fq

(D′). Applying the degree 4–to–2 elimination to D′, the value

Log(D) can be rewritten as a linear combination of logarithms Log(NF
q2

e /Fq
(Di)) where each Di
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has degree 2. Now, taking the norm of each Di to the subfield Fq2e−1 , we obtain divisors of degree

4 again, but over a smaller field. One can apply the degree 4–to–2 elimination recursively, until
all the divisors involved are of small degree, over a small field Fq2c (with c = O(1)). These small
divisors form the set

F̃ = {NF
q2

c /Fq
(D) | D ∈ DivF

q2
c (E,I ), D > 0,deg(D) ≤ 2}.

We can finally rewrite our logarithm as a combination of logarithms of elements of the factor base

F = {f ∈ Fq[E] | ∃D ∈ F̃ such that div(f) = ND}.

One difficulty in this approach is that the elimination algorithms might fail for certain divisors,
which we call traps. We show that traps are rare, in the sense that they form a proper sub-variety
of D4 or D3 of bounded degree. The descent must then carefully avoid traps. In particular, we
show that given a divisor that is not a trap, an elimination allows to rewrite it in terms of smaller
degree divisors that are themselves not traps — otherwise the descent could reach a dead end.

3.3. Degree 3–to–2 elimination. Consider an extension k/Fq and a divisor D ∈ D3(k). Let
V = span(xq+1, xq, x, 1). We define the morphisms ϕP for any P ∈ E as

ϕP : V −→ Fq(E) :


xq+1 7−→ (x ◦ τQ+P (q)) · (x ◦ τP ),

xq 7−→ x ◦ τQ+P (q) ,

x 7−→ x ◦ τP ,
1 7−→ 1.

These linear morphisms are chosen so that for any vector f ∈ V and point P ∈ E, we have the
relation ϕP (f) ≡ f ◦ τP mod I . Now, define the algebraic variety

X0 = {(f, P ) | ϕP (f) ≡ 0 mod D} ⊂ P(V )× E.

We will see that it is a curve. Let (f, P ) ∈ X0(k) be one of its k-rational points. We will prove that
there are many such rational points where the polynomial f splits into linear factors over k, i.e.,
f =

∏q+1
i=1 Li with Li linear over k. Assuming this is the case, then we have a 3–to–2 elimination.

Indeed, on one hand,

log(ϕP (f)) = log(f ◦ τP ) =

q+1∑
i=1

log(Li ◦ τP ).

On the other hand, from the definition of X0 and the fact that ϕP (f) has degree 4, we have
div(ϕP (f)) = D + [P ′]− 2[−P ]− 2[−Q− P (q)], where P ′ is a point of E(k). We deduce

Log(Nk/Fq
(D)) = log(Nk/Fq

(ϕP (f)))− Log(Nk/Fq
([P ′]− 2[−P ]− 2[−Q− P (q)]))

=

q+1∑
i=1

log(Nk/Fq
(Li ◦ τP ))− Log(Nk/Fq

([P ′]))

+ 2 · Log(Nk/Fq
([−P ])) + 2 · Log(Nk/Fq

([−Q− P (q)])).

The right-hand side is a sum of logarithms of divisors of degree 1 or 2 over k. Therefore, the
3–to–2 elimination algorithm simply consists in constructing X0, and pick uniformly at random
rational points (f, P ) ∈ X0(k) until f splits as a product of linear terms. It remains to prove that
this happens with good probability. This is formalised in Proposition 6.6.

3.4. On the action of PGLn and splitting probabilities. For the 3–to–2 elimination sketched
above to work, we rely on the idea that for (f, P ) ∈ X0(k), the polynomial f splits into linear
factors over k with good probability. This polynomial f has degree q+1, so at first glance it seems
it should split with very small probability 1/(q + 1)!. However, and this is the key of previous
(heuristic) quasi-polynomial algorithms, the polynomials in V have a very particular structure and
a fraction 1/O(q3) of them split over k. This high splitting probability can be understood from
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the action of PGL2 on P(V ). We denote by ? the action of invertible 2× 2 matrices on univariate
polynomials defined as follows:(

a b
c d

)
? f(x) = (cx+ d)deg ff

(
ax+ b

cx+ d

)
.

It induces an action of PGL2 on P(V ), also written ?. The space P(V ) is the closure of the orbit
PGL2 ? (xq − x), and if m ∈ PGL2(k), then m? (xq − x) splits as a product of linear polynomials
over k, which allows to deduce that a significant portion of the polynomials in P(V )(k) split over k.

This idea is sufficient for the previous heuristic algorithms and for our 3–to–2 elimination,
but to obtain a rigorous 4–to–3 elimination algorithm, we need to work with higher dimensional
objects. Let Vn = span(xqixj | i, j ∈ {0, 1, . . . , n−1}). Then, n×n matrices naturally act on these
polynomials by substituting xi with the scalar product of the i-th row with (x0, x1, . . . , xn−1)t.
This induces an action of PGLn on P(Vn), written ?. Let dn = xq0x1 − x

q
1x0 ∈ P(Vn). The orbit

PGLn ?d is a subvariety of P(Vn), but as soon as n > 2, this orbit is not dense anymore. However,
as illustrated in the following lemma, it remains the relevant subvariety to consider as we wish to
find polynomials that split into linear factors.

Lemma 3.2. The only polynomials in Vn with 3 distinct linear factors are in the orbit PGLn ?dn.
The only polynomials with a double linear divisor are in the orbits PGLn?(xq0x1) and PGLn?x

q+1
0 .

Proof. For the first part, suppose that the three factors are not collinear, and apply the action
of a matrix sending them to x0, x1 and x2. The resulting polynomial is divisible by x0x1x2, a
contradiction. So the three factors must be collinear, and send them to x0, x1 and x0 + x1. For
the second part, send the double divisor to x20. �

As in the PGL2 case, we have that for any m ∈ PGLn(k), the polynomial m ? dn splits into
linear factors over k. Before sketching how to use these observations to build a 4–to–3 elimination
algorithm, we note that the closure of PGLn ?dn is well understood: it consists of PGLn ?dn itself
and the closure of PGLn ? (xq0x1), described in the following lemma. Consider the vector space
Λn = span(xi | i ∈ {0, . . . , n− 1}) of linear polynomials.

Lemma 3.3. The closure of PGLn ? (xq0x1) is the image of the morphism

Ξ : P(Λn)×P(Λn) −→ P(Vn) : (u, v) 7−→ vqu,

which is just the Segre embedding of P(Λn)×P(Λn) ∼= Pn−1 ×Pn−1 into P(Vn) ∼= Pn2−1.

The points in PGLn ? (xq0x1) are called the exceptional points of the closure of PGLn ? dn, and
they play a crucial role in our analysis of the descents. In particular, a divisor being a trap or not
is closely related to the properties of the exceptional points that appear in X0.

3.5. Degree 4–to–3 elimination algorithm. Consider an extension k/Fq and a divisor D ∈
D4(k). Consider the vector space V = V3 as defined above, the element d = xq0x1 − x0x

q
1 ∈ V ,

and its orbit PGL3 ? d ⊂ P(V ). Define the morphism ψ : V → Fq[E] which substitutes x0, x1
and x2 with 1, x, and y respectively. Now, define the morphism ϕ : V → Fq[E] with ϕ(xqixj) =
(ψ(xi) ◦ τQ) · ψ(xj). Observe that ϕ(f) ≡ ψ(f) mod I for any f ∈ V . Define

X0 = {f ∈ PGL3 ? d | ϕ(f) ≡ 0 mod D}.

Let f ∈ X0(k). As briefly justified in the previous paragraph, when f is in the orbit PGL3 ? d,

we can expect it to split into linear factors over k with good probability, i.e., f =
∏q+1
i=1 Li with

Li ∈ Λ3 = span(xj | j ∈ {0, 1, 2}). When this happens, we have a 4–to–3 elimination. Indeed, on
one hand,

log(ϕ(f)) = log(ψ(f)) =

q+1∑
i=1

log(ψ(Li)).

On the other hand,

div(ϕ(f)) = D +D′ − 3[0E ]− 3[−Q],
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where D′ is an effective divisor of degree 2 defined over the field k. We deduce

Log(Nk/Fq
(D)) = log(Nk/Fq

(ϕ(f)))− Log(Nk/Fq
(D′)) + 3 · Log(Nk/Fq

([Q]))

=

q+1∑
i=1

log(Nk/Fq
(ψ(Li)))− Log(Nk/Fq

(D′)) + 3 · [k : Fq] · Log([Q]).

The right-hand side is a sum of logarithms of divisors of degree 1, 2 of 3 over k. Therefore, the
4–to–3 elimination algorithm consists in constructing X0 and pick uniformly at random rational
points f ∈ X0(k) until f splits as a product of linear terms. We need to prove that this happens
with good probability. This is formalised in Proposition 6.14.

3.6. Traps. The two types of elimination sketched above work for ‘most’ degree 3 and degree 4
divisors. There are however certain divisors for which we cannot guarantee that the elimination
succeeds: these trap divisors form subvarieties T3 ⊂ D3 and T4 ⊂ D4. When D is not a trap
divisor, we can prove that the elimination succeeds, but another problem might arise: it could
be that all possible eliminations of this divisor involve traps, so the descent cannot be iteratively
applied. We deal with this issue in Section 6.

4. Degree 3–to–2 elimination

In this section, we consider a degree 3 divisor D on E, defined over k. Note however that the
main ideas, and notably the roadmap presented in Section 4.1, also apply to the degree 4–to–3
elimination. We suppose D does not belong to a set of exceptional divisors, the traps T3 ⊂ D3,
defined in Section 4.2. Consider the vector space V = span(xq+1, xq, x, 1) in the algebra Fq[x]. As
explained in 3.3, we can associate to the divisor D a variety

X0 = {(f, P ) | ϕP (f) ≡ 0 mod D} ⊂ P(V )× E,
and our goal in this section is to prove that for a significant proportion of the pairs (f, P ) ∈ X0(k),
the polynomial f splits into linear terms over k. The general strategy is similar to that of [KW18]:
we define a curve C and a morphism C → X0 such that the image of any k-rational point of
C is a pair (f, P ) such that f splits into linear terms over k. Such a curve C can be defined in
P(V )× E ×P1 ×P1 ×P1 as

C = {(f, P, r1, r2, r3) | (f, P ) ∈ X0, and the ri-values are three distinct roots of f}.
Similarly to [KW18, Proposition 4.1], Lemma 3.2 implies that if (f, P, r1, r2, r3) ∈ C(k), then f
splits into linear factors over k (and therefore leads to an elimination, as explained in Section 3.3).

4.1. Roadmap. We need to show that C has a lot of k-rational points. It is sufficient to prove
that C has at least one absolutely irreducible component defined over k, then apply Hasse-Weil
bounds. There again, our strategy draws inspiration from [KW18]. Instead of considering directly
C, whose points encode triples of roots, we start with the following variety which considers a single
root at a time:

X1 = {(f, P, r) | (f, P ) ∈ X0, and f(r) = 0} ⊂ P(V )× E ×P1.

We can then increase the number of roots by considering fibre products over the projection
θ : X1 → X0. Indeed, we have

X1 ×X0 X1 = {((f1, P1, r1), (f2, P2, r2)) | (f1, P1) = (f2, P2) ∈ X0, and f1(r1) = f2(r2) = 0}
∼= {(f, P, r1, r2) | (f, P ) ∈ X0, and f(r1) = f(r2) = 0}.

This product contains a diagonal component ∆X1 isomorphic to X1, which corresponds to quadru-
ples (f, P, r, r). The other components X2 = X1×X0X1\∆X1 encode pairs of distinct roots (points
of the form (f, P, r, r) can still appear in X2, but they imply that r is a double root of f). We can
iterate this construction, and consider the product X2×X1

X2 over the projection X1×X0
X1 → X1

to the first factor. This product encodes triples of roots, and the curve C embeds into the non-
diagonal part X3 = X2 ×X1

X2 \∆X2
. In the rest of this section, we prove sequentially that X0,
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X1, X2, X3 and C contain absolutely irreducible components defined over k.

The following lemma allows us to prove irreducibility results through fibre products.

Lemma 4.1. Let Y and Z be two absolutely irreducible, complete curves over k, and consider
a cover η : Z → Y . Suppose there is a point s ∈ Y and two distinct points a, b ∈ Z such that
η−1(s) = {a, b}. If s, a and b are analytically irreducible, and the normalisation of η is unramified
at a, then Z ×Y Z \∆Z is absolutely irreducible, where ∆Z is the diagonal component.

Proof. The same proof as [KW18, Lemma 4.2] implies this result, where smoothness is replaced
by analytic irreducibility (both imply that a point belongs to a single irreducible component). �

Remark 1. The term analytically refers to properties of the completion of the local ring. A point
is analytically irreducible if the completion of the corresponding local ring has no zero divisors
(equivalently, a single branch passes through this point: it desingularises as a single point).

The following proposition defines our strategy: the rest of our analysis of the 3–to–2 elimina-
tion consists in showing that our cover θ : X1 → X0 satisfies the necessary conditions to apply
Proposition 4.2.

Proposition 4.2. Let X0 and X1 be complete curves over k, and suppose X0 is absolutely ir-
reducible. Let θ : X1 → X0 be a cover of degree at least 3. Let X2 = (X1 ×X0 X1) \ ∆X1 , and
X3 = (X2 ×X1 X2) \∆X2 (for the projection X2 → X1 to the first factor). Suppose that

(1) there is a point s ∈ X0 and two distinct points a, b ∈ X1 such that θ−1(s) = {a, b},
(2) the points a, b ∈ X1 and (b, b) ∈ X2 are analytically irreducible,
(3) the normalisation of the cover θ is unramified at a.

Then, either

(1) the curve X1 is absolutely irreducible, and so is X3, or
(2) the curve X1 is the union of two absolutely irreducible components A and B, with a ∈ A

and b ∈ B, and

(B ×X0 A)×B ((B ×X0 B) \∆B)

is an absolutely irreducible components of X3 defined over k.

Remark 2. Applied to the cover θ : X1 → X0 defined above, we choose s ∈ X0 to be one of the
exceptional points in X0 ∩ S, which have the form ((x− α)(x− β)q, P ). Then,

a = ((x− α)(x− β)q, P, α), and b = ((x− α)(x− β)q, P, β).

We then prove that all the conditions of the proposition are satisfied, which imply that X3 contains
an absolutely irreducible component defined over k, which by Hasse-Weil bounds implies that X3

has a lot of rational points.

Proof. First, we prove that either the curve X1 is absolutely irreducible, or it splits into two abso-
lutely irreducible components A and B defined over k. Since X1 is complete and X0 is absolutely
irreducible, each of the absolutely irreducible components of X1 surjects to X0 through θ. The
points a and b are the only two preimages of s, and since they are analytically irreducible, each
belongs to exactly one absolutely irreducible component of X1. Therefore, X1 has at most two
components. Assuming X1 is not absolutely irreducible, let A be the component containing a,
and B the component containing b. Since the normalisation of θ is not ramified at a, the cover θ
restricts to a birational morphism A → X0. Yet, θ is of degree at least 3, so it does not restrict
to a birational morphism B → X0. Since θ is defined over k, the components A and B are not
Gal(k/k)-conjugate, so they are each defined over k.

Next, we prove Point 1. If X1 is absolutely irreducible, then X2 is absolutely irreducible from
Lemma 4.1, and we deduce that X3 is absolutely irreducible from Lemma 4.1 again. Note that
we need here that X2 → X1 is unramified at (b, a) ∈ X2, a consequence of the fact that θ is
unramified at a.
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We now prove Point 2. Assume that X1 decomposes as A ∪ B. We first show that X2 is the
union of the absolutely irreducible components A ×X0 B, B ×X0 A, and (B ×X0 B) \ ∆B , each
defined over k. We have

(X1 ×X0
X1) \∆X1

= ((A×X0
A) ∪ (A×X0

B) ∪ (B ×X0
A) ∪ (B ×X0

B)) \∆X1

= (A×X0 B) ∪ (B ×X0 A) ∪ ((B ×X0 B) \∆B).

Both A ×X0
B and B ×X0

A are birational to B, so they are absolutely irreducible. The point
(b, b) ∈ (B×X0 B)\∆B is analytically irreducible (so it can only be in one component), and is the
only preimage of the point b ∈ B through the projection to the first factor. Therefore B ×X0 B
is absolutely irreducible. Finally, we prove that X3 contains an absolutely irreducible component
defined over k. Consider the component of X3 of the form

Y = (B ×X0
A)×B ((B ×X0

B) \∆B),

with respect to the projections to the first factor B×X0A→ B and B×X0B → B. The projection
Y → (B ×X0 B) \∆B is an isomorphism, so Y is absolutely irreducible. �

4.2. Traps. Recall that we need D not to be a trap: we now define what this means. Let

T 0
3 = {[D1] + [D1] + [D2] | D1, D2 ∈ E} ⊂ D3,

T 1
3 = {[D1] + [D2] + [D3] | (D1 +D2)(q) = (D1 +Di) + 2Q for some i 6= 1} ⊂ D3,

T 2
3 = {[D1] + [D2] + [D3] | D(q)

1 = Di +Q for some i} ⊂ D3.

In addition, a fourth kind of traps T 3
3 is defined in Proposition 4.4. The set of traps is T3 =⋃3

i=0 T i
3 , and we suppose that D 6∈ T3. The following lemma allows us to prove that traps can

always be avoided in the descent algorithm (in particular, not every divisor is a trap).

Lemma 4.3. Let P0 ∈ E. If P
(q)
0 6∈ {P0 −Q,P0 + 2Q}, then P2(P0) + [−P0] 6⊂ T3.

Proof. This easily follows from the above definitions, and Proposition 4.4. �

4.3. Exceptional points of X0. Let S be the image of the morphism Ξ from Lemma 3.3. In this
section we give an explicit list of the 24 points in X0 ∩ (S×E) (or only 12 points in characteristic
2). Let f = (x− β)q(x− α) ∈ S, and suppose (f, P ) ∈ X0. Then, D divides the positive part of

div(ϕP (f)) = [Pα−P ] + [−Pα−P ] + [Pβq −Q−P (q)] + [−Pβq −Q−P (q)]−2[−P ]−2[−Q−P (q)],

where Pγ is any of the two points such that x(Pγ) = γ. There are three ways to split D = D′+[D3]
where D′ is of degree 2 and D3 is a point. Each such splitting induces two possible ways for D to
divide div(ϕP (f)): either D′ divides div(ϕP (x − α)) and [D3] divides div(ϕP ((x − β)q)), or the
reverse. Let c be the number of two-torsion points on E; it is 2 in characteristic 2 (recall that E
is ordinary) and 4 otherwise. Each of these 6 configurations gives rise to c possible values of f ,
and we find that X0 ∩ S ×E contains a total of 6c points (we observe below that they project to
6c distinct points in E). Indeed, if D′ = [D1] + [D2], D′ divides div(ϕP (x− α)) and [D3] divides
div(ϕP ((x − β)q)), we get that P is any of the c points such that 2P = −(D1 + D2). Then,
α = x(P + D1) and βq = x(P (q) + Q + D3). Similarly, if [D3] divides div(ϕP (x − α)) and D′

divides div(ϕP ((x−β)q)), we get that P is any of the c points such that 2P (q) = −(D1+D2+2Q).
Then, α = x(P +D3) and βq = x(P (q) +Q+D1).

Assuming that Di 6= Dj for i 6= j and (Di +Dj)
(q) 6= (Di +Dk) + 2Q for any i, j, k (with i 6= j

and i 6= k), then the 6c points are distinct. Therefore, since D is not in T 0
3 ∪T 1

3 , the intersection
X0 ∩ (S × E) projects to 6c distinct points in E.

4.4. Irreducibility of X0. Let P ∈ E. Since dim(V ) = 4 and dim(Fq(E)/D) = 3, we generically
expect the kernel of

ϕP : V −→ Fq(E)/D : f 7−→ ϕP (f) mod D

to be a line, in which case there is exactly one f ∈ P(V ) such that (f, P ) ∈ X0. If this is indeed
the case for all P ∈ E, then the projection X0 → E is a bijection, so X0 is absolutely irreducible.
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By contradiction, suppose there is a point P ∈ E such that L = P(kerϕP ) has dimension at
least 1. From Section 4.3, the variety L intersects S only at one point, so it must be a line tangent
to S at that point. Write D =

∑3
i=1[Di], ui = x(Di + P ) and vi = x(Di + Q + P (q)). Without

loss of generality, the intersection point is (xq − v3)(x − u1). There are two cases to distinguish:
either u1 = u2, or v3 = v2 (corresponding to the two cases exhibited in Section 4.3). The points
aq+1x

q+1 + aqx
q + a1x+ a0 on the line L satisfy (by construction) the three equations

aq+1uivi + aqvi + a1ui + a0 = 0, i ∈ {1, 2, 3}.

Also, since L is tangent to S at (xq − v3)(x− u1), it also satisfies the equation

aq+1u1v3 + aqv3 + a1u1 + a0 = 0.

These linear equations can be represented in the matrix

M =


v1u1 v1 u1 1
v2u2 v2 u2 1
v3u3 v3 u3 1
v3u1 v3 u1 1

 .

Since L has dimension at least 1, the rank of this matrix is at most 2. We now show that when
D is not a trap, M is of rank 3, a contradiction (implying that X0 → E is a bijection and X0 is
absolutely irreducible). In the case where u1 = u2, we have u1 6= u3 (because D 6∈ T 0

3 ), so

rank(M) = 1 + rank

v1u1 v1 1
v2u1 v2 1
v3u1 v3 1

 = 1 + rank

v1 1
v2 1
v3 1

 .

Since D 6∈ T 0
3 , the values vi are not all equal, so the rank of M is 3. The case v3 = v2 is similar.

4.5. Local analysis of X1. Let us compute some equations for X1. We see it as a subvariety of
P3×E×P1, parameterized by the (affine) variables aq, a1, a0, xE , yE , r (where the corresponding
polynomial is xq+1 +aqx

q +a1x+a0, the point is P = (xP , yP ) ∈ E, and the root is r). As above,

let D =
∑3
i=1[Di], ui = x(P + Di) and vi = x(P (q) + Di + Q). The defining polynomials of X1

are the equation e ∈ Fq[xP , yP ] of the elliptic curve E and the four polynomials

F1 = v1u1 + aqv1 + a1u1 + a0,

F2 = v2u2 + aqv2 + a1u2 + a0,

F3 = v3u3 + aqv3 + a1u3 + a0,

G = rq+1 + aqr
q + a1r + a0.

Recall that for any P0 ∈ E, we have P2(P0) = {[R] + [T ] | R+ T = P0} ⊂ D2.

Proposition 4.4. There is a point s ∈ X0 ∩ (S × E) of which both preimages through θ in
X1 are smooth, unless D belongs to a strict subvariety T 3

3 of D3. For any P0 ∈ E, we have
P2(P0) + [−P0] 6⊂ T 3

3 .

Proof. The Jacobian matrix associated to the given defining polynomials of X1 is
0 0 0 ∂e

∂xP

∂e
∂yP

0

v1 u1 1 ∂u1

∂xP
(v1 + a1) ∂u1

∂yP
(v1 + a1) 0

v2 u2 1 ∂u2

∂xP
(v2 + a1) ∂u2

∂yP
(v2 + a1) 0

v3 u3 1 ∂u3

∂xP
(v3 + a1) ∂u3

∂yP
(v3 + a1) 0

rq r 1 0 0 rq + a1


Since X0 is smooth, the top-left 5 × 4 submatrix has rank 4. Therefore the above matrix has
rank 5 at any point where rq + a1 6= 0. Therefore, the only points that could be singular on X1

correspond to polynomials of the form (x− β)q(x− α) = xq+1 − αxq − βqx+ βqα, together with
9



the elliptic curve point (x0, y0) and the root β. In terms of the coordinates (aq, a1, a0, xE , yE , r),
such a point is given by (−α,−βq, βqα, x0, y0, β). It is non-singular if and only if the matrix

0 0 ∂e
∂xP

∂e
∂yP

v1 − rq u1 − r ∂u1

∂xP
(v1 + a1) ∂u1

∂yP
(v1 + a1)

v2 − rq u2 − r ∂u2

∂xP
(v2 + a1) ∂u2

∂yP
(v2 + a1)

v3 − rq u3 − r ∂u3

∂xP
(v3 + a1) ∂u3

∂yP
(v3 + a1)


has rank 4 at this geometric point.

Let T 3
3 be the subvariety of D3 of divisors D for which this matrix is singular at all the

corresponding 24 exceptional points (or 12 in characteristic 2). Fix P0 ∈ E, and let us show that
P2(P0) + [−P0] 6⊂ T 3

3 . Let P ∈ E, and

D = [D1] + [D2] + [D3] = [−P0] + [P0 − 2P ] + [2P ] ∈P2(P0) + [−P0].

The point ((x − β)q(x − α), P ) is on the induced X0 for α = x(P + D1) = x(P + D2) and
βq = x(P (q) +D3 +Q). At this exceptional point, the matrix simplifies to

0 0 ∂e
∂xP

∂e
∂yP

v1 − βq u1 − β ∂u1

∂xP
(v1 − βq) ∂u1

∂yP
(v1 − βq)

v2 − βq u2 − β ∂u2

∂xP
(v2 − βq) ∂u2

∂yP
(v2 − βq)

0 u3 − β 0 0


It is easy to see that v1 − v2 and u3 − β are non-zero rational functions of P . Then, the matrix is
singular if and only if the following matrix is singular:(

∂e
∂xP

∂e
∂yP

∂u1

∂xP
− ∂u2

∂xP

∂u1

∂yP
− ∂u2

∂yP

)
An explicit computation shows that for any D1, this determinant is a non-zero rational function
of P . Indeed, using the addition formula for the short Weierstrass equation y2 = x3 + Ax + B
in characteristic larger than 3, we get that the numerator of this determinant divides a rational
function in which the two leading terms are

y(D1)x30P − (A+ 3x(D1)2)x28P yP .

The explicit computations being cumbersome, we provide a Magma script1. This numerator is a
non-zero rational function of P if y(D1) 6= 0 or A 6= −3x(D1)2. If y(D1) = 0 and A = −3x(D1)2,
then B = 2x(D1)3, and the discriminant of the short Weierstrass equation is zero, a contradiction.
The cases of characteristic 2 and 3 are similar (and the arguments are indeed simpler since the
exhibited leading coefficients are x27 and x39y respectively). We deduce that for any D1, all but
finitely many points P correspond to a non-singular point. With D1 = −P0, we have shown that
P2(P0) + [−P0] 6⊂ T 3

3 . �

In the rest of this section, we fix the point s from Proposition 4.4. With s = ((x−β)q(x−α), P0),
let a = ((x−β)q(x−α), P0, α) and b = ((x−β)q(x−α), P0, β), the two preimages of s through θ.
These points s, a and b are the ones that will allow us to apply Proposition 4.2. Since these points
are smooth, they are analytically irreducible.

Lemma 4.5. The morphism X1 → X0 is unramified at a.

Proof. In terms of the coordinates (aq, a1, a0, xE , yE , r), the point a = ((x−β)q(x−α), P0, α) ∈ X1

is the tuple (−α,−βq, βqα, x0, y0, α). With a linear change of variables, send this point to the
origin, and to avoid heavy notation, we still write (aq, a1, a0, xE , yE , r) for the translated variables.
Since X0 is non-singular, it admits a local parameterisation aq, a1, a0, x, y ∈ k[[t]] at s. Then, the
curve X1 is given analytically at a by the equation

G = rq+1 + aqr
q + (a1 + αq − βq)r + (aqα

q + a1α+ a0) ∈ k[[r, t]].

1https://github.com/Calodeon/dlp-proof/blob/master/3to2elimination.m
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The induced morphism between the completions of the local rings is then given by

f : k[[t]] −→ k[[t, r]]/(G)

t 7−→ t,

Since αq − βq 6= 0, the variable t does not divide the linear term of G, and the morphism is
therefore unramified at a. �

4.6. Local analysis of X2. In this section, we show that the point (b, b) ∈ X2 is analytically
irreducible.

Lemma 4.6. Consider a morphism of smooth curves η : Z → Y over some field k. Suppose that
at some point z ∈ Z, the induced morphism between the completions of the local rings is given by

η∗z : k[[t]] −→ k[[t, r]]/(t− rqB(t, r))

t 7−→ t,

where B(0, 0) 6= 0 and B(0, r) has a non-zero linear term. Then, the point (z, z) ∈ (Z ×Y Z) \∆Z

is analytically irreducible.

Proof. Up to isomorphism, η∗z can be written as

η∗z : k[[t]]→ k[[r]] : t 7→ rqU(r),

where U(0) 6= 0 and U(r) has a non-zero linear term. Then, the completion of the local ring at
(z, z) ∈ (Z ×Y Z) \∆Z is k[[r, r′]]/C(r, r′) where

C(r, r′) =
rqU(r)− r′qU(r′)

r − r′
.

Unsurprisingly, (z, z) is singular: this corresponds to the fact that η is ramified at z, with ram-
ification index q > 2. Let us blow up the equation C(r, r′) by introducing a variable s and the
equation r′ = rs (the case r = r′s is symmetric). Substituting in C, we obtain

C(r, rs) =
rq(U(r)− sqU(rs))

r(1− s)
= rq−1

U(r)− sqU(rs)

1− s
.

The equation of the blowup is H(r, s) = C(r, rs)/rq−1. The only solution of H(0, s) = 0 is at
s = 1, so there is only one point in the blowup, and it remains to see that it is smooth. Write
U(r) = u0 + u1r + r2Ũ(r), and s′ = s− 1. We have

U(r)− sqU(rs) = U(r)− U(rs)− s′qU(rs)

= u0 + u1r + r2Ũ(r)− u0 − u1rs− r2s2Ũ(rs)− s′qU(rs)

= −u1rs′ + r2Ũ(r)− r2s2Ũ(rs)− s′qU(rs).

Therefore, u1 6= 0 is the coefficient of the monomial r in H(r, s), so H(r, s) has a non-zero linear
term, implying that the point at r = 0 and s = 1 is smooth. �

Proposition 4.7. The point (b, b) ∈ X2 is analytically irreducible.

Proof. Recall that s ∈ X0 is the point from Proposition 4.4, and a, b ∈ X1 are its two preimages
through θ. We start as in the proof of Lemma 4.5. In terms of the coordinates (aq, a1, a0, xE , yE , r),
the point b = ((x − β)q(x − α), P0, β) ∈ X1 is the tuple (−α,−βq, βqα, x0, y0, β), and we send
this point to the origin via a linear change of variables (again, to avoid heavy notation, we still
write (aq, a1, a0, xE , yE , r) for the translated variables). Let aq, a1, a0, x, y ∈ k[[t]] be the local
parameterisation of X0 at s. The curve X1 is given analytically at b by the equation

G = rq+1 + (aq + β − α)rq + a1r + (aqβ
q + a1β + a0) ∈ k[[r, t]].

Since b is non-singular, aqβ
q + a1β + a0 = tF (t) with F (0) 6= 0. Writing a1 = tH(t), we get

G = t(F (t) +H(t)r) + rq(r + aq + β − α) ∈ k[[r, t]].
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Since D 6∈ T 2
3 , we have α 6= β, so up to multiplication by a unit, G is of the form t − rqB(t, r)

for some B(t, r) such that B(0, 0) 6= 0. We would like to show that B(0, r) has a non-zero linear
term. Write v3 = v′3 + βq. From equation F3 (defined on page 9), we have

0 = v3u3 + (aq − α)v3 + (a1 − βq)u3 + a0 + βqα

= (v′3 + βq)u3 + (aq − α)(v′3 + βq) + (a1 − βq)u3 + a0 + βqα

= a1u3 − v′3(α− u3 − aq) + aqβ
q + a0

= a1(u3 − β)− v′3(α− u3 − aq) + tF (t)

Since v3 is a q-th power, we get that H(0) = a1
t (0) = − F (0)

u3(0)−β . We deduce that the linear term

of B(0, r) is −F (0)−1(1 − α−β
u3(0)−β ). Since D 6∈ T 0

3 , u3(0) 6= α, so B(0, r) has a non-zero linear

term. We conclude with Lemma 4.6. �

4.7. Irreducibility of X3. We are finally ready to prove the main result of this section.

Proposition 4.8. For any divisor D ∈ (D3 \ T3)(k), the curve X3 contains an absolutely irre-
ducible component defined over k.

Proof. We have shown that θ : X1 → X0 satisfies all the conditions of Proposition 4.2, so the
result follows. �

5. Degree 4–to–3 elimination

As for the degree 3–to–2 elimination, we are going to apply Proposition 4.2. Consider an extension
k/Fq and a divisor D ∈ D4(k). Recall from Section 3.5 that we work with the vector space

V = span(xqixj | i, j ∈ {0, 1, 2}), the morphism ψ : V → Fq[E] which substitutes x0, x1 and x2
with 1, x, and y respectively, and the morphism ϕ : V → Fq[E] with ϕ(xqixj) = (ψ(xi)◦τQ)·ψ(xj).

Let ϕ : V → Fq[E]/D be the composition of ϕ with the projection to Fq[E]/D. We then have

X0 = {f ∈ PGL3 ? d | ϕ(f) ≡ 0 mod D} = PGL3 ? d ∩P(kerϕ),

where d = xq0x1 − x
q
1x0 ∈ V . The space P(kerϕ) is a hyperplane in P(V ), which we denote by

H. We prove in Lemma 5.5 that X0 is a curve. Let us represent the elements of V (or P(V )) as
column vectors∑

ij

aijx
q
ixj =

(
a00 a01 a02 a10 a11 a12 a20 a21 a22

)t
= avec

The hyperplane H is the kernel of the matrix(
H00 H01 H02 H10 H11 H12 H20 H21 H22

)
,

where each Hij is a column vector of dimension 4. With Λ = span(xi | i ∈ {0, 1, 2}), the curve X1

is defined as

X1 = {(f, u) | f ∈ X0 and u is a factor of f} ⊂ P(V )×P(Λ).

and we set X2 = X1 ×X0
X1 \∆X1

and X3 = X2 ×X1
X2 \∆X2

as in Section 4.1.

5.1. Exceptional points of X0. Let D =
∑4
i=1[Di] ∈ D4(k) be the divisor of E to be eliminated,

and let H be the induced hyperplane. Suppose that D is not divisible by a principal divisor of
degree 3 (being divisible by a principal divisor would correspond to the traps of type T 4

4 defined
in Section 5.2). Let uvq ∈ S ∩H be an exceptional point of X0. We have ϕ(uvq) = u · (v(q) ◦ τQ)

(where v(q) is v with coefficients raised to the power q), which is of degree 6 since u and v(q) ◦ τQ
are each of degree 3. Since D divides ϕ(uvq) and D is not divisible by a principal divisor of degree
3, we have a permutation σ ∈ S4 such that

div(u) = [Dσ(1)] + [Dσ(2)] +
[
−Dσ(1) −Dσ(2)

]
− 3[0E ],

and

div(v(q) ◦ τQ) = [Dσ(3)] + [Dσ(4)] +
[
−Dσ(3) −Dσ(4) − 3Q

]
− 3[−Q].
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The second equality implies

div(v(q)) = [Dσ(3) +Q] + [Dσ(4) +Q] +
[
−Dσ(3) −Dσ(4) − 2Q

]
− 3[0E ].

Note that, as should be expected, the number of ways to split D into two parts of 2 points is
exactly the degree of S, the image of the Segre embedding Ξ from Lemma 3.3. We found an
exhaustive description of the set of exceptional points S ∩H.

There are 6 exceptional points U iV i
q

in the intersection of X0 with S. Up to reindexing, we
necessarily have the following triples of aligned points:

(V 1, V 2, V 3), (V 1, V 4, V 5), (V 2, V 5, V 6), (V 3, V 4, V 6),

(U4, U5, U6), (U2, U3, U6), (U1, U3, U4), (U1, U2, U5),

They arise as follows. Consider the 6 pairs of distinct points dividing D =
∑4
i=1[Di],

{a1, . . . , a6} = {(D3, D4), (D2, D3), (D2, D4), (D1, D4), (D1, D3), (D1, D2)}.

For each i, if ai = (Dj , Dk), then U i defines the line passing through Dj and Dk, while V i
(q)

defines the line passing through Dm +Q and Dn +Q, where {j, k,m, n} = {1, 2, 3, 4}. With this
indexing, we can see that U4, U5, and U6 are aligned because they all have a root at D1 (i.e., the
corresponding lines intersect at the point D1). All the alignments listed above arise in this way.

As in the 3–to–2 case, we follow the strategy outlined in Section 4.1, so we fix a point s ∈ X0,
say s = (V 1)qU1, and its two preimages a = ((V 1)qU1, U1) and b = ((V 1)qU1, V 1) in X1.

5.2. Summary of the traps. As long as D is not a trap, there should be no other alignement
between the points U i and V i than the ones listed above. Hence we define the following varieties
of traps, where `(R,S) denotes the line passing through R and S :

T 0
4 =

{
4∑
k=1

[Dk]

∣∣∣∣∣ `(Di, Dj) ∩ `(Dm, Dn) ∩ `(Dr, Ds) 6= ∅,
{i, j}, {m,n}, {r, s} all distinct, and {i, j} ∩ {m,n} ∩ {r, s} = ∅

}

T 1
4 =

{
4∑
k=1

[Dk]

∣∣∣∣∣ `(Di +Q,Dj +Q) ∩ `(Dm +Q,Dn +Q) ∩ `(Dr +Q,Ds +Q) 6= ∅,
{i, j}, {m,n}, {r, s} all distinct, and {i, j} ∩ {m,n} ∩ {r, s} = ∅

}

T 2
4 =

{
4∑
k=1

[Dk]

∣∣∣∣∣ `(Di, Dj)
(q) ∩ `(Dm, Dn)(q) ∩ `(Dr +Q,Ds +Q) 6= ∅,

and {i, j} 6= {m,n}

}

T 3
4 =

{
4∑
k=1

[Dk]

∣∣∣∣∣ `(Di +Q,Dj +Q) ∩ `(Dm +Q,Dn +Q) ∩ `(Dr, Ds)
(q) 6= ∅,

and {i, j} 6= {m,n}

}
T 4

4 = {F + [D4] | F ∈P3, D4 ∈ E}.

The conditional statements are to be understood as “there exist indices i, j,m, n, r, s such that
i 6= j, m 6= n, r 6= s, and... ”. Let T ′4 =

⋃3
i=0 T i

4 . Note that the full variety of traps T4 (rather
than T ′4 ) requires an additional component, studied in Section 5.9.

Lemma 5.1. For any points P0, P1 ∈ E such that either P0 6= P1 or P
(q)
0 6= P0 + 2Q, we have

P2(P0) + P2(P1) 6⊂ T ′4 .

Proof. Let R, T ∈ E, and D =
∑4
i=1[Di] ∈P2(P0) + P2(P1), where

(D1, D2, D3, D4) = (R,P0 −R, T, P1 − T ).

We simply need to show that D 6∈ T4 except for certain pairs (R, T ) that belong to some strict
subvariety of E2. There are many conditions to check in order to verify whether or not D ∈ T4;
we use symmetries (exchanging R and T , replacing R with P0 − R, or some permutations of the
three sets {i, j}, {m,n}, {r, s}) to significantly reduce this number.

First, let us characterise the cases where D 6∈ T 0
4 . Up to symmetry, we can assume that 1

belongs to two of the pairs of indices, and even that (i, j) = (1, 3), m = 1 and n ∈ {2, 4}. As
13



long as D2 = P0 −R and D4 = P1 − T are not on the line `(R, T ) (which corresponds to a strict
subvariety of E2), we have `(Di, Dj) ∩ `(Dm, Dn) = {R}. The condition for D ∈ T 0

4 is then

R ∈ `(Dr, Ds),

and for each allowable (r, s), it corresponds to (R, T ) belonging to a strict subvariety of E2. This
implies that P2(P0) + P2(P1) 6⊂ T 0

4 . The fact that P2(P0) + P2(P1) 6⊂ T 1
4 follows from the

observation that T 1
4 is a translation by −Q of T 0

4 , and that P2(P0 + 2Q) + P2(P0 + 2Q) 6⊂ T 0
4 .

The condition D 6∈ T 2
4 enjoys fewer symmetries and is therefore more cumbersome. First

assume that {i, j} ∩ {m,n} 6= ∅. Then, up to symmetry, we can assume i = m = 1, and apart
from a strict subvariety of E2, we have `(Di, Dj)

(q) ∩ `(Dm, Dn)(q) = {R(q)}. The conditions for
D ∈ T 2

4 become

R(q) ∈ `(Dr +Q,Ds +Q),

for any allowable r 6= s. None of them is satisfied as long as

R(q) 6∈ {Dr +Q | r = 1, 2, 3, 4} ∪ {−(Dr +Q)− (Ds +Q) | r 6= s},

which for any fixed T corresponds to finitely many values of R to be avoided.
It remains to consider the cases where {i, j} ∩ {m,n} = ∅. To continue the proof, let us work

in E4 instead of D4. More precisely, write

T 2
4 (i, j,m, n, r, s) =

{
(Dk)4k=1 | `(Di, Dj)

(q) ∩ `(Dm, Dn)(q) ∩ `(Dr +Q,Ds +Q) 6= ∅
}
,

such that T 2
4 is the union of the varieties π(T 2

4 (i, j,m, n, r, s)) for all allowable indices, where
π : E4 → D4 is the natural projetion. It is then sufficient to show that for each allowable
(i, j,m, n, r, s), we have π−1(P2(P0) + P2(P1)) 6⊂ π−1(π(T 2

4 (i, j,m, n, r, s))). This is equivalent
to showing that π−1(P2(P0)) × π−1(P2(P1)) 6⊂ T 2

4 (i, j,m, n, r, s) for any allowable indices; this
follows from the facts that π−1(P2(P0))×π−1(P2(P1)) is absolutely irreducible, and that for any
permutation σ ∈ S4, we have

(Dk)4k=1 ∈ T 2
4 (i, j,m, n, r, s)⇐⇒ (Dσ(k))

4
k=1 ∈ T 2

4 (σ(i), σ(j), σ(m), σ(n), σ(r), σ(s)).

Up to symmetry, it is sufficient to consider (i, j,m, n) = (1, 2, 3, 4) or (i, j,m, n) = (1, 3, 2, 4).
First, suppose that (i, j,m, n) = (1, 2, 3, 4). Again up to symmetries, it is sufficient to consider

(r, s) = (2, 3) or (3, 4). Suppose (r, s) = (3, 4), and let

(D1, D2, D3, D4) = (R,P0 −R, T, P1 − T ) ∈ π−1(P2(P0))× π−1(P2(P1)).

First, if P0 = P1, then `(D1, D2)(q) ∩ `(D3, D4)(q) = −P (q)
0 , and `(D3 + Q,D4 + Q) ∩ E =

{T +Q,P0 − T +Q,−P0 − 2Q} does not contain −P (q)
0 for almost all points R and T (as long as

P
(q)
0 6= P0 + 2Q). If P0 6= P1, let R = T . Then, `(D1, D2)(q) ∩ `(D3, D4)(q) = R(q). The condition

becomes R(q) ∈ `(D3 +Q,D4 +Q). But R(q) is on E, and

`(D3 +Q,D4 +Q) ∩ E = {R+Q,P1 −R+Q,−P1 − 2Q}.

For all but finitely many points R, we have that R(q) does not belong to this intersection.
The case (r, s) = (2, 3) is similar. The same reasoning allows to conclude for the remaining cases

(i, j,m, n, r, s) ∈ {(1, 3, 2, 4, 1, 2), (1, 3, 2, 4, 1, 3)}, at least for P0 6= P1; for P0 = P1, one should
choose T to be one of the points such that 2T = P0 and T (q) 6= −P0 − 2Q, then observe that for
almost all R, the condition for T 2

4 is not satisfied. The proof for T 3
4 is similar, and the proof for

T 4
4 is easy. �

Lemma 5.2. Suppose D is not a trap. Pick a matrix in PGL3 sending U1 to x0, V 1 to x1, and
V 2 to x2, and let it act on P(V ). In the matrix defining the transformation of H, the submatrices(

H00 H01 H02 H20

)
,
(
H00 H01 H11 H12

)
, and

(
H00 H02 H11 H12

)
.

each have full rank 4.
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Proof. Using a matrix of PGL3 as described, we can suppose that U1 = x0, V 1 = x1, and V 2 = x2.
Since (V 1)qU1 = xq1x0 ∈ H, we have that H10 is the zero vector. Suppose by contradiction that
rank

(
H00 H01 H02 H20

)
≤ 3. Then, a non-trivial linear-combination of the rows has the form(

0 0 0 0 D11 D12 0 D21 D22

)
Applied to U2 and V 2 = x2, we get that U2 is on the line (0 : D21 : D22). But U1 = x0 also lies
on this line, therefore so does U5. The relation applied to (U5, V 5) implies that U5 lies on the line
(0 : D11 : D12) (unless V 5 is on the line u1 = 0, which already contains U1 = x0 and V 2 = x2, a
contradiction). But U1 also does, so (0 : D21 : D22) = (0 : D11 : D12). The relation becomes

(αvq1 + βvq2)(D11u1 +D12u2),

where (α, β) 6= (0, 0) are coefficient such that α(D21, D22) = βD21(D11, D12). We conclude that
(0 : α : β) is the line passing through (V 3)(q),(V 4)(q) and (V 6)(q), and it also contains x0 = (U1)(q),
a contradiction.

Now, suppose by contradiction that rank
(
H00 H01 H11 H12

)
≤ 3. We get a non-trivial

linear combination of the rows of the form(
0 0 C02 0 0 0 C20 C21 C22

)
First, we cannot have C02 = 0, otherwise the above line gives the relation vq2(C20u0 + C21u1 +
C22u2): since no more that three of the U i-points can be on the line (C20 : C21 : C22), at least three
of the V i-points must be on the line (0 : 0 : 1), which also contains U1, a contradiction. We can
therefore assume that C02 = 1. We deduce that the line through U2 and U3 is (C20 : C21 : C22).
This line contains U6. We get that

0 = (V 6
0 )qU6

2 + (V 6
2 )q(C20U

6
0 + C21U

6
1 + C22U

6
2 ) = (V 6

0 )qU6
2 .

We get that either V 6
0 = 0, implying that V 6 is aligned with V 1, V 2, V 3, or U6

2 = 0, implying
that U6 is aligned with U1 and V 1. Both cases are a contradiction. The same proof leads to
rank

(
H00 H02 H11 H12

)
= 4. �

5.3. Irreducibility of X0. In this section, we prove that X0 has an absolutely irreducible com-
ponent defined over k. To do so, we first find an equation for X0 in the plane. Recall that
P(Λ) has coordinates u0, u1 and u2, and each point (u0 : u1 : u2) represents the linear polyno-
mial u0x0 + u1x1 + u2x2. Its dual space P(Λ)∨ has coordinates t0, t1 and t2, and any element
(t0 : t1 : t2) ∈ P(Λ)∨ represents the line in P(Λ) with equation u0t0 + u1t1 + u2t2 = 0. Define a

subvariety O of P(V ) × P(Λ)∨ by the six polynomials ek =
∑2
j=0 akjtj and fk =

∑2
i=0 aikt

q
i for

k = 0, 1, 2, where aij are the coordinates of P(V ).

Lemma 5.3. The variety O is the closure of the orbit PGL3 ? d. Furthermore, for any point
(f, `) ∈ O, any linear factor of f is on the line ` ⊆ P(Λ).

Proof. Notice that PGL3 acts on both O and P(Λ)∨, and the projection O → P(Λ)∨ is PGL3-
equivariant. The group PGL3 acts faithfully on P(Λ)∨, and the fibre of (0 : 0 : 1) through
O → P(Λ)∨ is the subvariety P(V2) ⊂ P(V ) where V2 = span(xqixi | i, j ∈ {0, 1}). Any f ∈ P(V2)
is a polynomial in x0 and x1, so its linear factors necessarily lie on the line in P(Λ) defined by
` = (0 : 0 : 1) (i.e., by the equation u2 = 0), proving the second part of the lemma. The group
PGL2 acts on this fibre through the embedding into PGL3 as the 2 × 2 upper-left minor. We
conclude from [KW18, Lemma 2.2], which implies that the fibre P(V2) is the closure of the action
of PGL2, proving the first part of the lemma. �

Let h1, . . . , h4 be the linearly independent linear polynomials in the aij-coordinates which define
the hyperplane H ⊂ P(V ) of codimension 4, and let C = O ∩ (H × P(Λ)∨), so that X0 is a
subvariety of C. Let C ′ ⊂ P(Λ)∨ be the projection of C to the second factor of P(V )×P(Λ)∨. In
the remainder of this section, we prove that all the absolutely irreducible components of C ′ (and
therefore also of X0) are defined over k.

Lemma 5.4. The projection C → C ′ is an injective map on the geometric points.
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Lemma 5.5. The plane curve C ′ is defined by the polynomial (in projective coordinates t0, t1, t2)

t−12 · det


tq0 tq1 tq2

tq0 tq1 tq2
t0 t1 t2

t0 t1 t2
t0 t1 t2

H00 H01 H02 H10 H11 H12 H20 H21 H22

 ,

where Hij denotes the 4-dimensional vector whose entries are the coefficients of aij in h1, . . . , h4.
The curve C ′ has degree 2q + 2.

Proof. The six polynomials ek, fk, k = 0, 1, 2, as well as h1, . . . , h4 are linear polynomials in the
aij-coordinates, thus they can be written as Mavec where M is the 10 × 9-matrix of coefficients
and

avec =
(
a00 a01 a02 a10 a11 a12 a20 a21 a22

)t
.

Pick a row of M corresponding to one of the six polynomials ek, fk, k = 0, 1, 2, add a column
to M containing zeros except at the chosen row where the entry is t−qk if ek was chosen and t−1k
if fk was chosen, denote the resulting 10 × 10-matrix by M ′ and let f = det(M ′). If two rows
(of the six above) are chosen and the corresponding entries are set in the adjoined column (with

a possible sign change of one of them), it follows from the relation
∑2
k=0 t

q
kek −

∑2
k=0 tkfk = 0

that the determinant of the matrix is zero. Then Laplace expansion with respect to the adjoined
column shows that the definition of f is independent (up to sign) of the choice of one of the six
rows. By choosing f2, deleting the adjoined column as well as the row corresponding to f2 and
setting t2 = 0 it follows from

∑1
k=0 t

q
kek −

∑1
k=0 tkfk = 0 that the determinant of the resulting

matrix is zero which implies that f is a polynomial. Therefore f defines the variety C ′.
It remains to show that f has degree 2q + 2. Choose an arbitrary point P ∈ C ∩ (S ×P(Λ)∨).

There is an element g ∈ PGL3 which maps P to (xq1x0, (0 : 0 : 1)). Since this element is a
linear transformation of P(Λ)∨, it does not change the degree of the curve, and we can simply
assume that (xq1x0, (0 : 0 : 1)) ∈ C. This implies that in each equation hi, the coefficient of

a10 is zero. Now, an simple computation shows that the coefficient of the monomial t2q2 t0t2 is
det
(
H00 H01 H11 H12

)
. From Lemma 5.2, it is not zero, so the degree of the equation is

2q + 2. �

Lemma 5.6. Let N be the matrix from Lemma 5.5, such that f = t−12 det(N) is an equation
defining C ′. We have

∂f

∂t0
= t−12 (m31 +m44 +m57), and

∂f

∂t1
= t−12 (m32 +m45 +m58),

where mij is the (i, j)-minor of N .

Proof. This is an elementary application of Jacobi’s formula ddet(N) = tr(adj(N)dN), where
adj(N) is the adjoint matrix, and dN is the differential of N . �

Corollary 5.7. The image in C ′ of any point in C ∩ S is smooth.

Proof. Let P ∈ C ∩ S. There is an element g ∈ PGL3 which maps P to (xq1x0, (0 : 0 : 1)). This

transformation will map the 4-codimensional hyperplane H̃ ⊂ P(V ) used in the definition of X0

to a 4-codimensional hyperplane H with defining polynomials h1, . . . , h4, for each of which the
coefficient of a10 is zero. From Lemma 5.6, and the fact that m31(0 : 0 : 1) = m57(0 : 0 : 1) = 0,
we get that

∂f

∂t0
(0 : 0 : 1) = m44(0 : 0 : 1) = ±det

(
H00 H01 H11 H12

)
.

From Lemma 5.2, the latter determinant is non-zero, hence the image of P on C ′ is smooth. �

Let us now study the singularities of C ′ away from S. As above, up to a transformation by
a matrix g ∈ PGL3, it is sufficient to study the point (xq1x0 − x0x

q
1, (0 : 0 : 1)) ∈ O ∩ H with

H01 = H10. Note that with this transformation, the Hij-columns change, and they do not have,
16



for instance, the properties of Lemma 5.2. We now have that the minors m31,m57,m45,m58 are
all zero at (0 : 0 : 1), and

∂f

∂t0
(0 : 0 : 1) = m44(0 : 0 : 1) = ±det

(
H00 H01 H11 H12

)
, and

∂f

∂t1
(0 : 0 : 1) = m32(0 : 0 : 1) = ±det

(
H00 H02 H10 H11

)
.

The point is singular if and only if both determinants are zero, i.e.,

rank
(
H00 H01 H02 H11 H12

)
≤ 3.

From now on, suppose that the point is indeed singular, so there is a linear combination of the
linear equations hi that has the form αa20 + βa21 + γa22, corresponding to the row vector(

0 0 0 0 0 0 α β γ
)
.

One must have (α, β) 6= (0, 0), otherwise all the points in X0 ∩ S satisfy the equation vq2u2 = 0,
meaning that among all the linear functions U i and V i, at least six of them are on the line (0 : 0 :
1) ∈ P(V )∨, a trap. Let us show that the singularity has multiplicity q. From the curve equation
given in Lemma 5.5, we derive that the quadratic terms at our point (xq1x0 − x0x

q
1, (0 : 0 : 1)) are

± det
(
H01 H02 H11 H12

)
t20,

± det
(
H00 H02 H11 H12

)
t0t1,

± det
(
H00 H02 H10 H12

)
t21,

which are all zero since rank
(
H00 H01 H02 H11 H12

)
≤ 3. Now, the terms of degree q are

± det
(
H00 H10 H11 H21

)
tq0,

± det
(
H00 H01 H11 H20

)
tq1,

which are not both zero, as that would imply (α, β) = (0, 0). So the multiplicity is q.

We now show that the blowup of this singularity is either a single smooth point or a node.
Without loss of generality, assume h1 = αa20 + βa21 + γa22, and denote by H̃ij the 3-dimensional
vector whose entries are the coefficients of aij in h2, h3 and h4. Then, restricting to the affine
plane A2 ⊂ P(Λ)∨ defined by t2 = 1, and considering one affine chart of the blowup at P0 = (0, 0)
obtained by setting t1 = st0, one obtains the equation

det



tq0 sqtq0 1
tq0 sqtq0 1

t0 st0 1
t0 st0 1

t0 st0 1
α β γ

H̃00 H̃01 H̃02 H̃10 H̃11 H̃12 H̃20 H̃21 H̃22


= tq0 det(M2),

where

M2 =



1 sq 1
1 sq 1

t0 st0 1
t0 st0 1

t0 st0 1
α β γ

H̃00 H̃01 H̃02 H̃10 H̃11 H̃12 tq0H̃20 tq0H̃21 tq0H̃22


for the pre-image (the equality follows by multiplying the last three columns by tq0 as well as

multiplying the first, second, fifth and sixth row by t−q0 ). At t0 = 0, the determinant of M2
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becomes, up to sign,

det


1 sq 1

1 sq 1
α β

H̃00 H̃01 H̃10 H̃11

 = ±(αsq − β) det
(
H̃00 H̃10 H̃11

)
.

So the preimage P1 of P0 in the blowup of C ′ is the single point at t0 = 0 and s = (β/α)1/q. Note
that if α = 0, then β 6= 0 and one can simply consider another affine patch of the blowup.

Let δ = (β/α)1/q, and set v = s − δ so that P1 is given by t0 = v = 0. We now show that
either P1 is non-singular, or it is a singular point of multiplicity 2 with two branches with distinct
tangents. To do so, we compute the linear and quadratic terms of det(M2). It is sufficient to
compute det(M2) modulo the ideal (tq0, v

q) in k[t0, v]. Up to sign, it is equal to the determinant
of M3 with

M3 =



1 δq 1
1 δq 1

t0 δt0 + vt0 1
t0 δt0 + vt0 1

t0 δt0 + vt0 1
α β γ

H̃00 H̃01 H̃02 H̃10 H̃11 H̃12


,

and by subtracting the second column from the fourth one, subtracting δq times the seventh
column from the fourth one as well as adding the eighth column to the fourth one, it follows that
det(M3) = t0 det(M4) with

M4 =



1 1
1 δq 1

t0 δt0 + vt0 1 −δ − v
1 δt0 + vt0 1

−δq + δ + v t0 δt0 + vt0 1
α β γ

H̃00 H̃01 H̃02 H̃11 H̃12


.

From det(M3) = t0 det(M4), we deduce that the constant term of det(M4) gives the linear term of
the equation, and the linear term in v for det(M4) gives us the quadratic term in t0v in det(M3).
In order to find these two terms, we can set t0 = 0 in M4. Subtracting the eighth column from
the second, subtracting δq times the eighth from the fifth one, and removing the second row as
well as the eighth one, one obtains that det(M4) = ±det(M5) with

M5 =


1 1

1 −δ − v
1 1

−δq + δ + v 1
−β −δqβ α γ

H̃00 H̃01 H̃02 H̃11 H̃12

 .

By subtracting the seventh column from the first one and removing the first row as well as the
seventh column, one obtains det(M5) = ±det(M6) with

M6 =


1 −δ − v

1 1
−δq + δ + v 1

−α −β −δqβ γ

H̃00 H̃01 H̃02 H̃11 H̃12

 .
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By subtracting the fourth column from the sixth one and removing the second row as well as the
fourth column, one obtains det(M6) = ±det(M7) with

M7 =


1 δ + v

δq − δ − v 1
−α −β −δqβ γ

H̃00 H̃01 H̃02 H̃11 H̃12

 ,

and by subtracting δ + v times the third column from the fifth one, subtracting δq − δ − v times
the sixth column from the fifth one and removing the first two rows as well as the third and sixth
column, one obtains det(M7) = ±det(M8) with

M8 =

(
α β δqβ γ(−δq + δ + v)

H̃00 H̃01 H̃11 (δ + v)H̃02 − H̃12

)
,

Finally, we have det(M8) = δ det(M9)− det(M10) + v det(M9) with

M9 =

(
α β δqβ γ

H̃00 H̃01 H̃11 H̃02

)
, and M10 =

(
α β δqβ δqγ

H̃00 H̃01 H̃11 H̃12

)
.

Therefore the linear terms of the equation of the blowup of C ′ consist only of ±(δ det(M9) −
det(M10))t0, implying that P1 is non-singular if δ det(M9) 6= det(M10).

If δ det(M9) = det(M10), then P1 is singular, and the quadratic term of the equation is of the
form t0(εt0 + det(M9)v) for some coefficient ε. As long as det(M9) 6= 0, P1 is a singularity of
multiplicity 2, with 2 distinct tangents.

Suppose that det(M9) = det(M10) = 0. We get that

rank

(
α β γ δqα δqβ δqγ

H̃00 H̃01 H̃02 H̃10 H̃11 H̃12

)
≤ 3.

Therefore, there is a linear combination of the equations defining the hyperplane that has the form(
α β γ δqα δqβ δqγ a b c

)
.

Consider the points (v0x0 + v1x1 + v2x2)q(u0x0 + u1x1 + u2x2) ∈ H ∩ S. First, they must satisfy
the equation

0 = αv2u0 + βv2u1 + γv2u2 = v2(αu0 + βu1 + γu2),

so either v2 = 0 or αu0 + βu1 + γu2 = 0. Second, they must satisfy the equation

0 = αvq0u0 + βvq0u1 + γvq0u2 + δqαvq1u0 + δqβvq1u1 + δqγvq1u2 + avq2u0 + bvq2u1 + cvq2u2

= (v0 + δv1)q(αu0 + βu1 + γu2) + vq2(au0 + bu1 + cu2).

For the points such that αu0 + βu1 + γu2 6= 0, one must have v2 = 0, and thereby v0 + δv1 = 0.
The only possibility is (v0 : v1 : v2) = (−δ : 1 : 0). Therefore, there can only be one point such
that αu0 +βu1 +γu2 6= 0 (two such points would share the factor −δqxq0 +xq1, a contradiction). So
all the points of H ∩ S satisfy αu0 + βu1 + γu2 = 0, also a contradiction (among the exceptional
points, at most 3 can lead to (u0 : u1 : u2) being on a given line).

Corollary 5.8. The curve C ′ has four singularities. Each of them has multiplicity q, and is either
analytically irreducible, or one blowup results in a node (the intersection of two smooth branches
with distinct tangents).

Proof. We have just shown the last part of the statement: any singular point has multiplicity q,
and is either analytically irreducible, or one blowup results in a node. Let us show that there are
four singularities. A point is singular if and only if, after the transformation sending its preimage
in C to (xq1x0 − x0x

q
1, (0 : 0 : 1)), we have a relation of the form(

0 0 0 0 0 0 α β γ
)
.

Applied to the points vqu = (v0x0 + v1x1 + v2x2)q(u0x0 + u1x1 + u2x2) ∈ H ∩ S, we get

vq2(αu0 + βu1 + γu2) = 0.
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For each vqu ∈ H ∩ S, either v(q) is on the line (0 : 0 : 1), or u is on the line (α : β : γ). There are
six such vqu, but no more than three values u or v can lie on any given line. Therefore, for three of
the vqu ∈ H ∩S, the v(q)-values are aligned on (0 : 0 : 1), and for the other three vqu ∈ H ∩S, the
u-values are aligned. Therefore, a point on C ′ ⊂ P(V )∨ is singular if and only if it corresponds
to one of the lines in P(V ) that contain three v(q)-values; since the divisor is not a trap, there are
exactly four such lines. �

Proposition 5.9. All the absolutely irreducible component of the curve X0 are defined over k.

Proof. Since it is a plane curve, any two components of C ′ must intersect, and they can only do
so at the singular points T ⊂ C ′. Also, a given singular point can be contained in at most 2 of the
components (at most one if it is analytically irreducible, and at most 2 if its blowup is a node).

First observe that the number of pairs of irreducible components is at most the number of
singularities, so there are at most 3 components. Second, observe that each component is defined
over an extension K/k of degree at most 2. Indeed, degree 4 or more would contradict the
previous observation. For the degree 3 case, since there are at most three components, there
must be exactly 3 Galois-conjugate components. None of the four singularities can be fixed by
the Galois action (such a singularity would appear in all three components). Yet, the number of
singularities is not divisible by 3, a contradiction.

If there is only one absolutely irreducible component, it is X0 itself, which is defined over k,
and we are done.

If there are two components, either they are both defined over k and we are done, or C ′ = A∪B,
where A and B are two Galois-conjugate absolutely irreducible plane curves. We now deal with
the latter case. Since C ′ has degree 2q+ 2, the components each have degree q+ 1, so by Bézout’s
theorem,

(q + 1)2 = A ·B =
∑

P∈A∩B
I(P,A ∩B) = 4I(P0, A ∩B),

where P0 is any of the 4 isomorphic singularities of C ′. We get I(P0, A ∩B) = (q + 1)2/4. Recall
that the multiplicity of each singularity P0 is q, and their blowups are nodes. Let f : Z → P(V )∨

be the blowup at P0, let Ã, B̃ and C̃ ′ be the corresponding blowups of A, B and C ′ respectively,
let E be the exceptional divisor, and let P̃0 the unique preimage of P0 in C ′ (it is a node, at the

intersection of Ã and B̃). Applying the formula [Ful13, Corollary 6.7.1], we get

I(P0, A ∩B) = I(P̃0, f
∗A ∩ f∗B)

= I(P̃0, (Ã+ eP0
(A)E) ∩ (B̃ + eP0

(B)E))

= I(P̃0, Ã ∩ B̃) + eP0(A)eP0(B),

where eP0(A) and eP0(B) are the multiplicities of P0 on A and B. Since eP0(A) + eP0(B) =

q, we have eP0(A)eP0(B) ≤ (q/2)2. Since P̃0 is a node at the intersection of Ã and B̃, we

have I(P̃0, Ã ∩ B̃) = 1. Therefore, I(P0, A ∩ B) ≤ (q/2)2 + 1, which contradicts the fact that
I(P0, A ∩B) = (q + 1)2/4.

Finally, it remains to deal with the case were there are 3 components. If they are all defined
over k, we are done, so let us suppose that C ′ = A ∪Aσ ∪B, where A is defined over a quadratic
extension of k and σ is the corresponding conjugation. Let a = deg(A) and b = deg(B). The only
possible configuration of the singular points T = {P1, . . . , P4} is

A ∩Aσ = {P1} = {Pσ1 }, A ∩B = {P2}, Aσ ∩B = {P3} = {Pσ2 }, and P4 = Pσ4 ∈ B.
Write ei(Z) = ePi

(Z) for the multiplicity of Pi on any component Z. We must have e1(A) =
e1(Aσ), and since e1(A) + e1(Aσ) = q, we get e1(A) = q/2. This is a contradiction, unless the
characteristic is 2. We have e1(A) = q/2 so a ≥ q/2, and e4(B) = q, so b ≥ q. Also, 2a+b = 2q+2,
so either a = q/2 and b = q + 2, or a = q/2 + 1 and b = q. From Bézout’s theorem, we have

I(P2, A ∩B) = ab = q2/2 + q.

Also, applying the formula [Ful13, Corollary 6.7.1] as in the previous case, we have

I(P2, A ∩B) = 1 + e2(A)e2(B) ≤ 1 + q2/4,
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a contradiction. �

5.4. Defining equations for X1. Consider the action of PGL3 on P(V )×P(Λ), and let W be
the closure of the orbit of (d, x0). Suppose u = u0x0 +u1x1 +u2x2 ∈ P(Λ). We focus on the affine
patch u0 = 1, since the rest of the proof is a study of local properties of points on this patch.
Consider the matrix

m =

1 −u1 −u2
0 1 0
0 0 1

 .

We have mtu = x0, so u divides f if and only if x0 divides m ? f , i.e., the coefficient of xqixj in
m ? f is zero for any i, j 6= 0. Write f =

∑
i,j aijx

q
ixj . Then,

m ? f = a00x
q
0x0 +

∑
i,j 6=0

(aij + a00u
q
iuj − ai0uj − a0ju

q
i )x

q
ixj

+
∑
i 6=0

(ai0 − a00uqi )x
q
ix0 +

∑
j 6=0

(a0j − a00uj)xq0xj .

We deduce that the equations corresponding to the condition that u divides f are

Eij : aij + a00u
q
iuj − ai0uj − a0ju

q
i = 0

for any indices i, j 6= 0. Assuming these hold, we have

m ? f = a00x
q
0x0 +

∑
i 6=0

(ai0 − a00uqi )x
q
ix0 +

∑
j 6=0

(a0j − a00uj)xq0xj .

Furthermore,

xq0

(∑
i

bixi

)
− x0

(∑
i

bixi

)q
= (b0 − bq0)xq0x0 +

∑
i

bqix
q
ix0 +

∑
j

bjx
q
0xj .

So we obtain W by adding the equations

Fij : (ai0 − a00uqi )(a0j − a00uj)
q − (aj0 − a00uqj)(a0i − a00ui)

q = 0.

So X1 is defined by these equations for W and the equations defining the hyperplane H ⊂ P(V ),
in the affine patch u0 = 1.

5.5. Blowing up a ∈ X1. Recall that we have fixed an exceptional point s = (V 1)qU1 ∈ X0, and
its two preimages a = ((V 1)qU1, U1) and b = ((V 1)qU1, V 1) in X1. We need to prove that the
conditions of Proposition 4.2 are satisfied, starting with the analytic irreducibility of a.

Lemma 5.10. The point a ∈ X1 is analytically irreducible.

Proof. Take a matrix in PGL3 sending U1 to x0, V 1 to x1, and V 2 to x2 (in particular, the line
passing through V 1, V 2, V 3 is sent to the line u0 = 0). With this transformation, a belongs to
the affine patch u0 = 1 of P(V ) × P(Λ), so we can study it locally through the equations of X0

derived in Section 5.4. From Lemma 5.2, after applying the action of this matrix, we can rewrite
the matrix defining H as 

1 0 0 0 A11 A12 0 A21 A22

0 1 0 0 B11 B12 0 B21 B22

0 0 1 0 C11 C12 0 C21 C22

0 0 0 0 D11 D12 1 D21 D22

 .
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with C11D12 − C12D11 6= 0 and C11B12 − C12B11 6= 0. Blowing up via u2 = u1t2, we get the
equations

E11 = a11 + u1(a00u
q
1 − a10 − a01u

q−1
1 ),

E12 = a12 + u1(a00u
q
1t2 − a10t2 − a02u

q−1
1 ),

E21 = a21 + u1(a00u
q
1t
q
2 − a20 − a01u

q−1
1 tq2),

E22 = a22 + u1(a00u
q
1t
q
2t2 − a20t2 − a02u

q−1
1 tq2),

F12 = (a10 − a00uq1)(a02 − a00u1t2)q − (a20 − a00uq1t
q
2)(a01 − a00u1)q.

For any Z ∈ {A,B,C,D}, write Z∗i = Z1i + Z2it
q
2, Zi∗ = Zi1 + Zi2t2. We get the relations


1 + uq+1

1 (A1∗ +A2∗t
q
2) uq1A∗1 uq1A∗2 u1A2∗ u1A1∗

uq+1
1 (B1∗ +B2∗t

q
2) 1 + uq1B∗1 uq1B∗2 u1B2∗ u1B1∗

uq+1
1 (C1∗ + C2∗t

q
2) uq1C∗1 1 + uq1C∗2 u1C2∗ u1C1∗

uq+1
1 (D1∗ +D2∗t

q
2) uq1D∗1 uq1D∗2 1 + u1D2∗ u1D1∗



a00
a01
a02
a20
a10

 = 0.

Therefore we can eliminate a00, a01, a02 and a20 in k[[u1, t2]], as

a00 = u1(A1∗ + u1c00) = u1b00,

a01 = u1(B1∗ + u1c02) = u1b01,

a02 = u1(C1∗ + u1c10) = u1b02,

a20 = u1(D1∗ + u1c20) = u1b20,

with bij and cij in k[[u1, t2]]. The equation F12 becomes

uq1(1− a00uq1)(b02 − b00u1t2)q − u1uq1(b20 − b00uq1t
q
2)(b01 − b00u1)q.

Recall that C11D12 − C12D11 6= 0 and C11B12 − C12B11 6= 0. Since (C11, C12) 6= (0, 0), the
equation b02(t2) = 0 has a single solution. It is not a zero of b20 nor b01, since neither B1∗ nor D1∗
is collinear with C1∗. �

5.6. Blowing up b ∈ X1. Recall we have the 6 points U iV i
q

in the intersection with S, and
the 3 points U1, U3, U4 are aligned, as well as V 2, V 5, V 6. Apply the action of a matrix in PGL3

sending U1 to x1, and V 1 to x0. With this transformation, b belongs to the affine patch u0 = 1 of
P(V )×P(Λ), so we can study it locally through the equations of X0 derived in Section 5.4.

Lemma 5.11. When D is not a trap, the matrix defining H can be written as
1 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 1 0 ∗ ∗ 0 ∗ ∗
0 0 0 1 C11 ∗ 0 C21 ∗
0 0 0 0 D11 ∗ 1 D21 ∗


with C11D21 − C21D11 6= 0.

Proof. The matrix can be written in the form
1 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 C10 C11 C12 C20 C21 C22

0 0 0 0 D11 D12 D20 D21 D22

 .

If C10D20 6= 0, the matrix can then be written as in the lemma. By contradiction, suppose that
C10D20 = 0; we deduce that there is a relation of the form(

0 0 0 0 E11 E12 0 E21 E22

)
Applied to U4 and V 4, we get that (V 4)(q) is on the line

L4 = (1 : E11U
4
1 + E12U

4
2 : E21U

4
1 + E22U

4
2 ).
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But (V 1)(q) = x0 also lies on this line, therefore so does (V 6)(q) (up to a reordering of V 2, V 5, V 6).
Similarly, the relation applied to U6, V 6 implies that (V 6)(q) lies on the line

L6 = (1 : E11U
6
1 + E12U

6
2 : E21U

6
1 + E22U

6
2 ).

Since L6 also contains (V 1)(q), we have L4 = L6. Note that (U4
1 , U

4
2 ) and (U6

1 , U
6
2 ) are linearly

independent (otherwise U4, U6 and V 1 would be aligned). Therefore, the equality L4 = L6 implies
that there are (α, β) 6= (0, 0) such that α(E12, E22) = β(E11, E21). The relation becomes

(αu1 + βu2)(E11v
q
1 + E21v

q
2).

We conclude that (0 : α : β) is the line passing through U2,U3 and U5, and it also contains V 1, a
contradiction.

The matrix can be written as stated in the lemma, and it remains to prove that C11D21 −
C21D11 6= 0. A proof similar to the above shows that C11D21 − C21D11 = 0 implies that V 1, V 3,
and V 4 are aligned, another contradiction. �

Lemma 5.12. If D11D
q
12 6= Dq

11D21, the point b ∈ X1 is analytically irreducible.

Remark 3. We deal with the case D11D
q
12 = Dq

11D21 in Section 5.9.

Proof. From Lemma 5.11, we can rewrite the matrix defining H as
1 0 0 0 A11 A12 0 A21 A22

0 0 1 0 B11 B12 0 B21 B22

0 0 0 1 C11 C12 0 C21 C22

0 0 0 0 D11 D12 1 D21 D22


After blowing up via u2 = u1t2, we get the equations

E11 = a11 + u1(a00u
q
1 − a10 − a01u

q−1
1 ),

E12 = a12 + u1(a00u
q
1t2 − a10t2 − a02u

q−1
1 ),

E21 = a21 + u1(a00u
q
1t
q
2 − a20 − a01u

q−1
1 tq2),

E22 = a22 + u1(a00u
q
1t
q
2t2 − a20t2 − a02u

q−1
1 tq2),

F12 = (a10 − a00uq1)(a02 − a00u1t2)q − (a20 − a00uq1t
q
2)(a01 − a00u1)q.

As in the proof of Lemma 5.10, for any Z ∈ {A,B,C,D}, write Z∗i = Z1i + Z2it
q
2, and Zi∗ =

Zi1 + Zi2t2. We get the relations
1 + uq+1

1 (A1∗ +A2∗t
q
2) uq1A∗2 u1A1∗ u1A2∗ uq1A∗1

uq+1
1 (B1∗ +B2∗t

q
2) 1 + uq1B∗2 u1B1∗ u1B2∗ uq1B∗1

uq+1
1 (C1∗ + C2∗t

q
2) uq1C∗2 1 + u1C1∗ u1C2∗ uq1C∗1

uq+1
1 (D1∗ +D2∗t

q
2) uq1D∗2 u1D1∗ 1 + u1D2∗ uq1D∗1



a00
a02
a10
a20
a01

 = 0.

Eliminating a00, a02, a10 and a20 in the ring of formal power series k[[u1, t2]] yields

a00 = uq1(A∗1 + u1c00) = uq1b00,

a02 = uq1(B∗1 + u1c02) = uq1b02,

a10 = uq1(C∗1 + u1c10) = uq1b10,

a20 = uq1(D∗1 + u1c20) = uq1b20,

for some bij and cij in k[[u1, t2]]. We get the equation

uq1u
q2

1 (b10 − b00uq1)(b02 − b00u1t2)q − uq1(D∗1 + u1c20 − b00uq1t
q
2)(1− a00u1)q,

and removing the factor uq1,

uq
2

1 (b10 − b00uq1)(b02 − b00u1t2)q − (D∗1 + u1c20 − b00uq1t
q
2)(1− a00u1)q.
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Lemma 5.11 implies that (D11, D21) 6= (0, 0), therefore D∗1(t2) = 0 has a unique solution (possibly
at infinity), with multiplicity q. We have

c20 = −D∗1D2∗ −D1∗C∗1 + u1(. . . ).

Since D∗1 and C∗1 are not collinear (Lemma 5.11), when D11D
q
12 6= Dq

11D21, the power series c20
is a unit, and we are done. �

Remark 4. Note for later that the power series c20 has both a non-zero constant and linear term.

5.7. Ramification indices. The completion of the local ring at the desingularisation of a de-
scribed above is of the form R1 = k[[u, t]]/(u − tqA(u, t)) for some unit A(u, t). Similarly, at b,
it is of the form R2 = k[[u, t]]/(u − tqB(u, t)) for some unit B(u, t). The projection X1 → X0,
analytically at a, is of the form

θ1 : k[[aij ]]/I −→ R1 : aij 7−→ ubij(u, t),

and analytically at b, it is of the form

θ2 : k[[aij ]]/I −→ R2 : aij 7−→ uqb′ij(u, t).

The point s is not smooth in this model of X0, but we can factor the morphism through the
desingularization, leading to the commutative diagram

k[[aij ]]/I

��θ1

		

θ2

��

k[[T ]]

ϕ1

{{
ϕ2

##
R1 R2

Let a be a linear combination of aij-values such that the corresponding combinations of bij and
b′ij are both units (that is possible since not all bij-values nor all b′ij-values are zeroes locally; see
the proofs of Lemmata 5.10 and 5.12). The order of the image of a in k[[T ]] is some integer x. For
i = 1, 2, in Ri, we have

qi = ord(θi(a)) = x · ord(ϕi(T )).

We deduce that ord(ϕ2(T )) = q · ord(ϕ1(T )), and since ord(ϕ1(T )) + ord(ϕ2(T )) = q + 1, we
deduce that the first has ramification index 1 and the second ramification index q.

5.8. Blowing up (b, b) ∈ X2.

Lemma 5.13. If D11D
q
12 6= Dq

11D21, the point (b, b) is analytically irreducible.

Proof. Analytically at the point b, the desingularized equation is, up to multiplication by a unit
(in k[[u1, t1]], where t1 is actually the translation to the origin of the previous t1),

u1 − tq1B(u1, t1),

where B(u1, s1) is a unit (with a non-zero linear term, because c20 above had a non-zero linear
term — see Remark 4). The fibre product at this point with respect to the projection to X0 is
given by the equations in k[[u, t, v, s]]

u− tqB(u, t) = 0,

v − sqB(v, s) = 0,

uqbij(u, t)− vqbij(v, s) = 0,

for all pairs i, j. There is an automorphism of k[[u, t]] sending u − tqB(u, t) to u while fixing t.
It sends u to some F (u, t) = u + tqG(u, t) where G is another unit. The same applied to k[[v, s]]
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sends v − sqB(v, s) to v, and v to F (v, s), and fixes s. Therefore the curve is isomorphic to the
curve given by the equations in k[[t, s]]

F (0, t)qbij(F (0, t), t)− F (0, s)qbij(F (0, s), s) = 0.

For simplicity, we just write

F (t)qbij(F (t), t)− F (s)qbij(F (s), s) = 0.

At least one of them must be non-zero of course, which means F (t) is not the zero polynomial
(there are more explicit ways to see this I guess). Write F (t) = tqG(t) where G(0) 6= 0. The
equations above are divisible by t− s (which corresponds to the diagonal component of the fibre
product). Blow up with t = st′. We get

t′q
2

G(st′)qbij(F (st′), st′)−G(s)qbij(F (s), s)

(t′ − 1)
= 0.

Pick some indices i, j such that bij(0, 0) 6= 0 (they exist since not all bij-values are zeroes locally;
see the proof of Lemma 5.12). The only solution at s = 0 is t′ = 1, which is non-singular. Indeed,
the smallest degree (in terms of the variables s and t′−1) term of the numerator is αbij(0, 0)(t′−1)s
for some non-zero constant α (this comes from the facts that G has a non-zero linear term α and
bi,j has no linear term: its first term after the constant is at degree q or larger), which is linear
once the denominator removes the factor t′ − 1. �

5.9. The case D11D
q
12 = Dq

11D21. It only remains to show that the case D11D
q
12 = Dq

11D21 can
be avoided: it corresponds to D being some kind of trap.

Lemma 5.14. One can choose s ∈ X0 ∩ S such that D11D
q
12 6= Dq

11D21, unless D belongs to a
strict subvariety T 5

4 of D4. For any P0, P1 ∈ E, we have P2(P0) + P2(P1) 6⊂ T 5
4 .

Proof. Let T 5
4 be the subvariety of D4 such that D11D

q
12 = Dq

11D21 for all the corresponding
exceptional points. We need to show that for any P0, P1 ∈ E, we have P2(P0) + P2(P1) 6⊂ T 5

4 .
Consider points R, T ∈ E, and the divisor

D = [R] + [P0 −R] + [T ] + [P1 − T ] ∈P2(P0) + P2(P1).

Let u1 = `(D1, D3), and (v1)(q) = `(D2 + Q,D4 + Q). The following computation shows that
D11D

q
12 − D

q
11D21 is a non-zero rational function of R and T , at the exceptional point (v1)qu1.

For simplicity of exposition, we allow exponents 1/q in rational functions for the rest of this proof,

so we can consider v1 = `
(
D

(1/q)
2 +Q,D

(1/q)
4 +Q

)
. Consider the matrix

m =

v10 v11 v12
u10 u11 u12
0 0 1

 ,

which sends the line u1 to the line (0 : 1 : 0) and v1 to the line (1 : 0 : 0). Observe that this
matrix is non-singular away from a strict subvariety of pairs (R, T ) ∈ E2. Indeed, it is easy to
check that v10u

1
1 − v11u10 is a non-zero rational function of R and T . Let m(Di) = (ai0 : ai1 : ai2),

and m(q)(Di +Q) = (bi0 : bi1 : bi2). We have a11 = a31 = 0 and b20 = b40 = 0. The matrix defining H
(after applying the action of m) is

b10a
1
0 0 b10a

1
2 b11a

1
0 0 b11a

1
2 b12a

1
0 0 b12a

1
2

0 0 0 b21a
2
0 b21a

2
1 b21a

2
2 b22a

2
0 b22a

2
1 b22a

2
2

b30a
3
0 0 b30a

3
2 b31a

3
0 0 b31a

3
2 b32a

3
0 0 b32a

3
2

0 0 0 b41a
4
0 b41a

4
1 b41a

4
2 b42a

4
0 b42a

4
1 b42a

4
2

 ,

From Lemma 5.11, apart from a strict subvariety of (P0, P1) ∈ E2, one must have

det

(
b10a

1
0 b10a

1
2

b30a
3
0 b30a

3
2

)
6= 0,
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We deduce

D11 = b21a
2
0 × b41a41 − b41a40 × b21a21 = b21b

4
1(a20a

4
1 − a40a21),

D12 = b21a
2
0 × b41a42 − b41a40 × b21a22 = b21b

4
1(a20a

4
2 − a40a22),

D21 = b21a
2
0 × b42a41 − b41a40 × b22a21.

Let us prove that D11 and D12 both have a pole of order 6q +O(1) at R (for almost all T ), while
D21 only has a pole of order 3q+O(1) (this implies that D11D

q
12 −D

q
11D21 is a non-zero rational

function of R and T ). Only the bji -values can contribute poles of order larger that O(1), and more

specifically, only the terms that have a (uji )
q-factor (they have degree multiple of q, while other

terms have degree O(1)). We have

bj1 = (u10)(q) + (u11)(q)x(Dj +Q) + (u12)(q)y(Dj +Q),

and

u10 = det

(
x(D1) y(D1)
x(D3) y(D3)

)
= det

(
x(R) y(R)
x(T ) y(T )

)
,

so it only remains to show that a20a
4
1 − a40a21 and a20a

4
2 − a40a22 are non-zero. We have

aj0 = v10 + v11x(Dj) + v12y(Dj),

aj1 = u10 + u11x(Dj) + u12y(Dj),

aj2 = y(Dj).

Therefore,

a20a
4
2 − a40a22 = (v10 + v11x(D2) + v12y(D2))y(D4)− (v10 + v11x(D4) + v12y(D4))y(D2)

= v10(y(D4)− y(D2)) + v11(x(D2)y(D4)− x(D4)y(D2))

Its terms with highest pole at D4 are y(D4)(v10 + v11x(D2)), since y(D4) has a pole of degree 3 and
v10 + v11x(D2) is a zero of degree at most O(1/q) (unless v10 + v11x(D2) is itself the zero function,
but it is the case only for finitely many D2 since it has a pole of degree 2 + O(1/q) at D2). So
a20a

4
2 − a40a22 is non-zero. Also,

a20a
4
1 − a40a21 = (v10 + v11x(D2) + v12y(D2))(u10 + u11x(D4) + u12y(D4))

− (v10 + v11x(D4) + v12y(D4))(u10 + u11x(D2) + u12y(D2))

= v10(u11x(D4) + u12y(D4)) + v11x(D2)(u10 + u12y(D4)) + v12y(D2)(u10 + u11x(D4))

− v10(u11x(D2) + u12y(D2))− v11x(D4)(u10 + u12y(D2))− v12y(D4)(u10 + u11x(D2))

The latter expression has the following terms with highest pole at D4:

y(D4)(v10u
1
2 − v12u10 + x(D2)(v11u

1
2 − v12u11)).

Again this proves that a20a
4
1 − a40a

2
1 is a non-zero function of R and T , unless v10u

1
2 − v12u

1
0 =

v11u
1
2 − v12u11 = 0, which would imply that u1 and v1 are the same line, which happens for a strict

subvariety of (R, T ) ∈ E2 (these correspond to traps T 2
4 or T 3

4 ). �

5.10. Irreducibility of X3. We can now prove the main result of this section.

Proposition 5.15. For any divisor D ∈ (D4 \ T4)(k), the curve X3 contains an absolutely irre-
ducible component defined over k.

Proof. We have shown that θ : X1 → X0 satisfies all the conditions of Proposition 4.2, so the
result follows. �
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6. Avoiding traps

Paradoxically, to avoid traps, we need to add more traps. Originally, a divisor is a trap if it
cannot be eliminated into smaller degree divisors. These are traps of level 0. Now, we want to call
a divisor a trap also if it can be eliminated, but only into divisors that are themselves traps. We
call these traps of level 1, and so on. For a rigorous definition, let x0 = 1, x1 = x and x2 = y in
k[E], and for n = 2 or 3 let Vn = span(xix

q
j | i, j < n) and Λn = span(xi | i < n). Recall that the

4–to–3 elimination arises from the relation ϕ(f) ≡ ψ(f) mod I for any f ∈ V4. Indeed, when f

splits as a product of linear factors f =
∏q+1
i=1 Li, and applying the norm and the logarithm maps,

we deduce

q+1∑
i=1

log(Nk/Fq
(Li)) = Log(Nk/Fq

(D)) + Log(Nk/Fq
(D′))− 3 · [k : Fq] · Log([Q]),

for some divisor D′ of degree 2. The sum on the left is referred to as the left-hand side of the
elimination, and the terms on the right are the right-hand side of the elimination. Similarly, for
the 3–to–2 elimination, we get relations of the form

q+1∑
i=1

log(Nk/Fq
(Li ◦ τP )) = Log(Nk/Fq

(D)) + Log(Nk/Fq
([P ′]))

− 2 · Log(Nk/Fq
([−P ]))− 2 · Log(Nk/Fq

([−Q− P (q)])),

and the sum on the left is the left-hand side of the elimination, and the terms on the right are the
right-hand side of the elimination.

Consider the morphisms

δ′ : P(V3)×P(Λ3) −→ D3 : (f, u) 7−→ div(u) + 3[0E ],

δi : P(V2)×P(Λ2)× E −→ D4 : (f, u, P ) 7−→ div(u ◦ τP ) + div

(
(u ◦ τP )

(
q2

i−1
))

+ 4[0E ].

The intuition behind these morphisms is the following. Given any degree 4 divisor D, the cor-
responding X1 is a curve in P(V3) × P(Λ3). Suppose f ∈ X0 splits as a product of linear poly-

nomials f =
∏q+1
i=1 Li. For any such f , the preimages of f in X1 are the points (f, Li), and we

have δ′(f, Li) = div(Li) + 3[0E ]. Therefore, δ′(X1) contains all the degree 3 divisors susceptible

to appear on the left-hand side of the elimination, i.e., the
∑q+1
i=1 log(Nk/Fq

(Li)) part of the elim-
ination. In particular, we wish to show that δ′(X1) does not consist only of traps. Similarly, δi
allows to capture the divisors susceptible to appear on the left-hand side of the 3–to–2 elimination.

Consider the natural morphisms π3 : E3 → D3 and π4 : E4 → D4. For any i ≥ 0, let
T3(i, 0) = π−1(T3) and T4(i, 0) = π−1(T4). For any i > 0, let T3(i, 1) be the set of pairs
(P1, P2) ∈ E2 such that(

P1, P2, P

(
q2

i−1
)

1 , P

(
q2

i−1
)

2

)
∈ T4(i− 1, 0) ⊂ E4,

and for any i > 0, let T4(i, 1) be the set of pairs (P1, P2) ∈ E2 such that

(P1, P2,−P1 − P2) ∈ T3(i, 0) ⊂ E3,

For any 1 < j ≤ 2i − 1 define T3(i, j) = T4(i − 1, j − 1) ⊂ E2, and for any 1 < j ≤ 2i define
T4(i, j) = T3(i, j − 1) ⊂ E2. Now, for every i, let

T3(i) =

2i−1⋃
j=1

T3(i, j), and T4(i) =

2i⋃
j=1

T4(i, j).
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Finally, we can define traps at level i as

T3(i) = T3 ∪

{
3∑
k=1

[Pk]

∣∣∣∣∣ ∀k 6= `, (Pk, P`) ∈ T3(i)

}
,

T4(i) = T4 ∪

{
4∑
k=1

[Pk]

∣∣∣∣∣ ∀k 6= `, (Pk, P`) ∈ T4(i)

}
.

The following proposition suggests this is the correct notion of traps: if a divisor is not a trap
at a certain level, then its eliminations do not all lead to traps at the level below (at least on the
left-hand side). Given a divisor D of degree 3 (respectively, of degree 4), we write X1(D) for the
corresponding curve X1 as defined in Section 4.1 (respectively, in Section 5).

Proposition 6.1. For any i > 0,

(1) if D ∈ D4 and D 6∈ T4(i), then δ′(X1(D)) 6⊂ T3(i), and
(2) if D ∈ D3 and D 6∈ T3(i), then δi(X1(D)) 6⊂ T4(i− 1).

Proof. Suppose D 6∈ T4(i). So there is a pair (P1, P2) dividing D such that (P1, P2) 6∈ T4(i). In
particular, (P1, P2) 6∈ T4(i, 1) so [P1] + [P2] + [−P1 − P2] 6∈ T3. Also, for any 1 < j ≤ 2i, we have
(P1, P2) 6∈ T4(i, j) = T3(i, j − 1) so (P1, P2) 6∈ T3(i). Therefore,

[P1] + [P2] + [−P1 − P2] ∈ δ′(X1(D)) \T3(i),

proving that δ′(X1(D)) 6⊂ T3(i). The second point is proved in the same way. �

6.1. Degree of trap subvarieties. Let n ∈ {3, 4}. Embedding E in P2, we can naturally see

En as a projective variety in
(
P2
)n

. When referring to the degree of a subvariety of En, we
refer to its degree through the Segre embedding. Alternatively, we could consider its degree in
the projectivization of the affine patch A2n, and as long as the variety properly intersects the
hyperplane at infinity, these two notions of degree differ by a factor O(1).

The variety Dn can be seen as a subvariety of P
(
Sn(A3)

) ∼= P(n+2
2 )−1, where Sn(A3) is the

affine n-th symmetric power of A3. Each morphism πn : En → Dn is the restriction of the natural

morphism
(
P2
)n → P

(
Sn(A3)

)
. We refer to the embedding Dn ⊂ P(n+2

2 )−1 when discussing
the degree of a subvariety of Dn. An important observation is that for any variety A ⊂ En, the
degree of A differs from the degree of πn(A ) ⊂ Dn by a factor O(1). It is easy to see that with
this notion of degree, we have deg(T3) = qO(1) and deg(T4) = qO(1).

Lemma 6.2. For i > 0 and any j > 0,

T3(i, 2j) = T4(i− j, 1),

T3(i, 2j + 1) = T3(i− j, 1),

T4(i, 2j) = T3(i− j + 1, 1),

T4(i, 2j + 1) = T4(i− j, 1).

Proof. These identities easily follow from the recursive definitions of T3(i, j) and T4(i, j). �

Lemma 6.3. For i > O(1), we have2 deg(T4(i, 1)) = qO(1) and deg(T3(i, 1)) = q2
i−1+O(1).

Proof. The fact that deg(T4(i, 1)) = qO(1) follows from deg(T3) = qO(1), which easily follows from
the definition of T3. For T3(i, 1), let fj(P1, P2, P3, P4) be the equations defining π−1(T4) ⊂ E4.

By construction of T4, each of them has degree qO(1). Choosing any of these equations (at least
a non-trivial one), say f1, we have,

T3(i, 1) ⊂

{
(P1, P2)

∣∣∣∣∣ f1
(
P1, P2, P

(
q2

i−1
)

1 , P

(
q2

i−1
)

2

)
= 0

}
⊂ E2.

2Here and in the rest of the article, when we write that some statement holds “for i > O(1)”, we mean that
there exists a constant c such that it holds for any i > c.
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There is a constant c such that for all i > c, the equation

f1

(
P1, P2, P

(
q2

i−1
)

1 , P

(
q2

i−1
)

2

)
= 0

is non-trivial. This equation has degree q2
i−1+O(1), and so does T3(i, 1). �

Corollary 6.4. For any i > O(1), we have deg(T3(i)) = q2
i−1+O(1) and deg(T4(i)) = q2

i−1+O(1).

Proof. From Lemmata 6.2 and 6.3, we deduce that for any i > 0 and j > 0,

deg(T3(i, 2j)) = qO(1),

deg(T4(i, 2j)) = q2
i−j+O(1),

deg(T3(i, 2j − 1)) = q2
i−j+O(1),

deg(T4(i, 2j − 1)) = qO(1).

The result follows from the definitions of T3(i) and T4(i). �

6.2. Degree 3–to–2 elimination. The following proposition allows to avoid traps appearing on
the left-hand side during the 3–to–2 elimination.

Proposition 6.5. For any i > 0, if D ∈ D3 and D 6∈ T3(i), then

|(δi(X1(D)) ∩T4(i− 1))(Fq2i−1 )| ≤ q 3
2 ·2

i−1+O(1).

Proof. Since D 6∈ T3(i), δi(X1(D)) 6⊂ T4(i−1). Also, deg(δi(X1(D))) = q2
i−1+O(1) and deg(T4(i−

1)) = q2
i−2+O(1). Applying Bézout’s theorem,

|δi(X1(D)) ∩T4(i− 1)| ≤ deg(δi(X1(D))) · deg(T4(i− 1)) = q2
i−1+2i−2+O(1),

which proves the proposition. �

Proposition 6.6 (Degree 3–to–2 elimination). Consider the field k = Fq2i and a divisor D ∈
(D3\T3(i))(k). For i ≥ O(1), there is a probabilistic algorithm that finds a list (Dj)

q+1
j=1 of effective

divisors of degree 2 over k, three divisors D′1, D
′
2, D

′
3 of degree 1 over k and, integers α1, α2, α3

such that

Log(Nk/Fq
(D)) =

q+1∑
j=1

log(Nk/Fq
(Dj)) +

3∑
i=1

αi · log(NF
q2

i−1 /Fq
(D′j)),

in expected time polynomial in q and 2i. Furthermore, it ensures that

(1) for any Dj, we have Nk/F
q2

i−1
(Dj) 6∈ T4(i− 1), and

(2) for any D′j, we have Nk/F
q2

i−2
(D′j) 6∈ T4(i− 2).

Proof. Consider an affine patch A of the ambient space (which intersects all the components of

X3), and the corresponding restriction X̃3 ⊂ A. We have deg(X̃3) = qO(1). From Proposition 4.8
and [Bac96, Theorem 3.1], we have∣∣∣X̃3(k)

∣∣∣ ≥ q2i − q2i−1+O(1).

The algorithm simply consists in generating random points of X̃3(k), which can be done in poly-

nomial time since the degree of the curve is polynomial in q. Each (f, P, u1, u2, u3) ∈ X̃3(k)
gives a possible elimination, as described in Section 3.3. It only remains to prove that with high
probability, no trap appears in the elimination.

Fix a linear factor u, and consider the subvariety Hu of A parameterising polynomials of which

u is a factor. One cannot have X̃3 ⊂ Hu (or D would be in T 0
3 ), so X̃3 ∩ Hu contains at

most (q − 1) deg(X̃3) points (let H ′u be the (degree 1) subspace of A where u = u1; each point

(f, P, u, u2, u3) in X̃3 ∩ H ′u gives q − 1 points in X̃3 ∩ H ′u simply by choosing u1 to be any of
the linear factors of f other than u2 and u3). Similarly, any divisor coprime to D appears in
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at most qO(1) of the functions ϕP (f), for (f, P, u, v, w) ∈ X3, by looking at the hyperplanes
HP = P(V )× {P} × (P1)3 for P ∈ E.

Each element on X3(k) gives a relation where the right-hand side is a divisor of the form
D+ [P0]− 2[P1]− 2[P2] for some points P` ∈ E(Fq2i ). Let ` ∈ {0, 1, 2}. Ranging over all rational

points X3(k), the point P` takes q2
i+O(1) distinct values. Any such point can be descended to

Nk/F
q2

i−2
([P`]) ∈ D4(Fq2i−2 ). Applying [Bac96, Theorem 3.1], there are only q3·2

i−2+2i−3+O(1)

such divisors that are traps.
Now, let us look at traps that could appear on the left-hand side. The degree 4 divisors that

can appear on the left-hand side are δi(X1(D)). Since D 6∈ T3(i), Proposition 6.5 implies that

|(δi(X1(D)) ∩ T4(i − 1))(Fq2i−1 )| ≤ q3·2
i−2+O(1). Therefore, at most q3·2

i−2+O(1) points of X3(k)

give rise to a trap on the left-hand side.

Finally, if G ⊂ X̃3(k) is the subset of points giving an elimination that does not involve traps
on either side, we get∣∣∣X̃3(k) \G

∣∣∣ ≤ q3·2i−2+2i−3+O(1) + q3·2
i−2+O(1) = q

7
8 ·2

i+O(1).

Therefore, for i ≥ O(1), more than half the points of X3(k) are in G, so choosing uniformly random
points in X3(k), the elimination succeeds in expected polynomial time in q and 2i. �

6.3. Degree 4–to–3 elimination. The following proposition allows to avoid traps appearing on
the left-hand side during the 4–to–3 elimination.

Proposition 6.7. For any i > O(1), if D 6∈ T4(i), then |(δ′(X1(D))∩T3(i))(Fq2i )| ≤ q2i−1+O(1).

Proof. SinceD 6∈ T4(i), δ′(X1(D)) 6⊂ T3(i), so dim(δ′(X1(D))∩T3(i)) = 0. Now, deg(δ′(X1(D))) =

qO(1) and deg(T3(i)) = q2
i−1+O(1). Applying Bézout’s theorem,

|(δ′(X1(D)) ∩T3(i))(Fq2i )| ≤ deg(δ′(X1(D))) deg(T3(i)) = q2
i−1+O(1).

�

The following results allow to avoid traps on the right-hand side during the 4–to–3 elimination.

Lemma 6.8. For any S,R ∈ E such that S(q) 6∈ {S−Q,S+ 2Q}, we have P2(S) + P2(R) 6⊂ T4

and P2(S) + [−S] 6⊂ T3.

Proof. This is simply a summary of Lemmata 4.3, 5.1 and 5.14. �

Lemma 6.9. As long as the order of Q is not a power of two (which can be enforced), there is no
S ∈ E(Fq2i ) such that S(q) ∈ {S −Q,S + 2Q}.

Proof. Suppose S(q) = S + jQ for j ∈ {−1, 2}. Then, for any integer r, S(qr) = S + rjQ. The
smallest r such that S(qr) = S is the order of jQ, which not a power of two. So S cannot be
defined over a power-of-two degree extension of Fq, i.e., it cannot be defined over a field Fq2i . �

For any positive integer i and any P ∈ E, let Bi(S) =

{
F + F

(
q2

i
) ∣∣∣∣ F ∈P2(S)

}
.

Lemma 6.10. Let S ∈ E(Fq2i+1 ). For any i ≥ O(1), we have that Bi(S) 6⊂ T4.

Proof. We show that for any i ≥ O(1), there exists D ∈ P2(S) such that D + D

(
q2

i
)
6∈ T4. Let

A =

(
P2(S) + P2

(
S

(
q2

i
)))

∩ T4. Since P2(S) + P2

(
S

(
q2

i
))

is an absolutely irreducible

surface and is not contained in T4, the intersection A is a curve. We have

|A (Fq2i )| ≤ c(A )(q2
i

+ 1 + deg(A )2q2
i−1

) ≤ q2
i+O(1),

where c(A ) is the number of absolutely irreducible components of A . On the other hand, observe
that through the morphism P2(S)→ Bi(S), each point has at most 4 preimages, so

|Bi(S)(Fq2i )| ≥ |P2(S)(Fq2i+1 )|/4 = q2
i+1+O(1).
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Therefore Bi(S) 6⊂ A . Since Bi(S) ∩T4 ⊂ A , we deduce Bi(S) 6⊂ T4. �

Lemma 6.11. Let S ∈ E(Fq2i ). For any i > O(1), and j > 0, we have P2(S) 6⊂ T3(i, j).

Proof. From Lemma 6.2, it suffices to prove that P2(S) 6⊂ T4(i, 1) and P2(S) 6⊂ T3(i, 1) for any
i > 0. Since P2(S) + [−S] 6⊂ T3, there is a divisor D ∈ P2(S) such that D + [−S] 6∈ T3 which
by definition implies that D 6∈ T4(i, 1). Also, from Lemma 6.10, we have Bi−1(S) 6⊂ T4 so there

exists D ∈P2(S) such that D +D

(
q2

i−1
)
6∈ T4, which implies that D 6∈ T3(i, 1). �

Lemma 6.12. Let S ∈ E(Fq2i+1 ). For any i ≥ O(1), we have that Bi(S) 6⊂ T4(i).

Proof. Recall that T4(i) =
⋃2i
j=0 T4(i, j). From Lemma 6.10, Bi(S) 6⊂ T4(i, 0). From Lemma 6.11,

Bi(S) 6⊂ T4(i, j). We conclude from the absolutely irreducible of Bi(S) (it is an image of P2(S)).
�

Proposition 6.13. Let S ∈ E(Fq2i+1 ). For any i ≥ O(1), |Bi(S) ∩T4(i)| ≤ q 3
2 2

i+O(1).

Proof. From Lemma 6.12, we have Bi(S) 6⊂ T4(i), therefore dim(Bi(S)∩T4(i)) < dim(Bi(S)) =
1. Therefore, from Bézout’s theorem,

|Bi(S) ∩T4(i)| ≤ deg(Bi(S)) deg(T4(i)) = q2
i+2i−1+O(1) = q

3
2 2

i+O(1).

�

Proposition 6.14 (Degree 4–to–3 elimination). Consider the field k = Fq2i and a divisor D ∈
(D4\T4(i))(k). For i ≥ O(1), there is a probabilistic algorithm that finds a list (Dj)

q+1
j=1 of effective

divisors of degree 3 over k, and one effective divisor D′ of degree 2 over k such that

Log(Nk/Fq
(D)) =

q+1∑
j=1

Log(Nk/Fq
(Dj))− Log(Nk/Fq

(D′)) + 3 · 2i · Log([Q]),

and runs in expected time polynomial in q and 2i. Furthermore, it ensures that Di 6∈ T3(i) for
each index i, and Nk/F

q2
i−1

(D′) 6∈ T4(i− 1).

Proof. This proof is similar to the proof of Proposition 6.6. We consider an affine patch A of the

ambient space, and the corresponding X̃3, and we have deg(X̃3) = qO(1). From Proposition 5.15
and [Bac96, Theorem 3.1], we have∣∣∣X̃3(k)

∣∣∣ ≥ q2i − q2i−1+O(1).

As in the 3–to–2 case, the algorithm consists in generating random points of X̃3(k). Each

(f, u1, u2, u3) ∈ X̃3(k) gives a possible elimination, as described in Section 3.3, and it remains
to prove that with high probability, no trap appears in the elimination.

Fix a linear factor u, and consider the subvariety Hu of A parameterising polynomials of which

it is a factor. Either X̃3 ⊂ Hu, a trap, or X̃3 ∩ Hu contains at most (q − 1) deg(X̃3) points (let

H ′u be the (degree 1) subspace of A where u = u1; each point (f, u, u2, u3) in X̃3 ∩H ′u gives q − 1

points in X̃3 ∩ H ′u simply by choosing u1 to be any of the linear factors of f other than u2 and

u3). Similarly, any divisor coprime to D appears in at most deg(X̃3) of the functions ϕ(f), for

(f, u, v, w) ∈ X̃3.
Each element on X3 gives a relation where the right-hand side is a divisor of the form

D +D′ − 3[0E ]− 3[−Q]

for D′ ∈P2(−σD − 3Q), where σD is the sum of the points of D. Proposition 6.13 implies that

at most q
3
2 2

i−1+O(1) such divisors D′ give rise to a trap at level i− 1. So at most dq
3
2 2

i−1+O(1) =

q
3
2 2

i−1+O(1) points of X3 give rise to a trap on the right-hand side.
Now, let us look at traps that could appear on the left-hand side. The degree 3 divisors that

can appear on the left-hand side are δ′(X1(D)) Since D = F + F

(
q2

i
)

for some F ∈ D2 and
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D 6∈ T4(i), Proposition 6.7 implies that |(δ′(X1(D)) ∩ T3(i))(Fq2i )| ≤ q2
i−1+O(1). Therefore, at

most q2
i−1+O(1) points of X3 give rise to a trap on the left-hand side.

Finally, if G ⊂ X̃3(k) is the subset of points giving an elimination that does not involve traps
on either side, we get ∣∣∣X̃3(k) \G

∣∣∣ ≤ q3·2i−2+O(1) + q2
i−1+O(1) = q

3
4 ·2

i+O(1).

Therefore, for i ≥ O(1), more than half the points of X3(k) are in G, so choosing uniformly random
points in X3(k), the elimination succeeds in expected polynomial time in q and 2i.

�

7. Proof of the main theorem

Lemma 7.1. Given a polynomial F ∈ Fq[E], there is a probabilistic polynomial-time algorithm
that finds an irreducible polynomial G ∈ Fq[E] of degree 2e+2 such that G ≡ F mod I , for
some integer e = log2(n) + O(1). Furthermore, G = NF

q2
e /Fq

(D) for some irreducible divisor

D ∈ (D4 \T4(e))(Fq2e ).

Proof. This is an application of the Chebotarev density theorem for function fields. Let H(I )
be the ray class field modulo I of Fq(E), and ϕ : ClI → Gal(H(I )/Fq(E)) the Artin map
from the ray class group. Recall that ClI = D(I )/P (I ) where D(I ) is the group of fractional
ideals of Fq[E] coprime to I and P (I ) is the subgroup of principal ideals generated by elements
f ∈ Fq[E] such that I | div(f − 1). From [Sal06, p. 520], ϕ is an isomorphism.

Let e > log2(n) − 1 be an integer, and pick a uniformly random function f ∈ Fq[E] of degree
2e+2 such that I | div(f). Let G = F + f . Then, G ≡ F mod I , and G is uniformly distributed
among the functions of degree 2e+2 in the I -ray class of F . Recall that n = deg(I ) and
N = #E(Fq). Let SFq (E,I ) be the set of irreducible divisors of E other than I , defined over
Fq. Applying the Chebotarev density theorem [Ros13, Theorem 9.13B] to H(I )/Fq(E), we get
that for any d > 0,

#{P ∈ SFq
(E,I ) | deg(P ) = d, [P ]I = [F ]I } =

1

# ClI

qd

d
+O

(
qd/2

d

)
.

Let d = 2e+2. Since # ClI = N(qn − 1)/(q − 1), we get

#{P ∈ SFq
(E,I ) | deg(P ) = d, [P ]I = [F ]I } =

q2
e+2−n+O(1)

2e+2
.

On the other hand, applying [Bac96, Theorem 3.1], we have |T4(e)(Fq2e )| = q3·2
e+O(1). So for

e = log2(n) +O(1), the random prime divisor G is not a trap with overwhelming probability. �

Let c = O(1) be the smallest integer such that both degree 4–to–3 and 3–to–2 eliminations
from Propositions 6.14 and Propositions 6.6 are guaranteed to work for i > c. Let

F̃ = {NF
q2

c /Fq
(D) | D ∈ Divk(E,I ), D > 0,deg(D) ≤ 2}.

The factor base for the descent algorithm is defined as

F = {f ∈ Fq[E] | ∃D ∈ F̃ such that div(f) = ND}.

Proposition 7.2 (Zigzag descent). Given a polynomial F ∈ Fq[E], there is a probabilistic algo-
rithm that finds integers (αf )f∈F such that

log(F ) =
∑
f∈F

αf · log(f),

and that runs in expected time q2 log2(n)+O(1).

Proof. First apply Lemma 7.1 to find an irreducible polynomial G in Fq[E] of degree 2e+2 such
that G ≡ F mod I , and such that log(G) = Log(NF

q2
e /Fq

(D)) for some irreducible divisor

D ∈ (D4 \T4(e))(Fq2e ). Applying the degree 4–to–3 elimination (Proposition 6.14), there is a list
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(Di)
q+1
i=1 of effective divisors of degree 3 over Fq2e and an effective divisor D′ of degree 2 over Fq2e

such that

Log(NF
q2

e /Fq
(D)) =

q+1∑
i=1

Log(NF
q2

e /Fq
(Di))− Log(NF

q2
e /Fq

(D′)) + 3 · 2e · Log([Q]).

Since Di ∈ D3 \ T3(e), one can apply the degree 3–to–2 elimination (Proposition 6.6), rewrit-
ing each of them as combinations of smaller degree polynomials. At this stage, the quantity
Log(NF

q2
e /Fq

(D)) is expressed as a product of O(q2) terms involving divisors of degree 1 or 2 over

Fq2e . They give irreducible divisors of degree 4 by considering the norm to Fq2e−1 or Fq2e−2 (and

these divisors do not belong to T4(e − 1) or T4(e − 2) respectively), hence one can recursively

apply the degree 4–to–3 and 3–to–2 eliminations, until all the resulting divisors are in the set F̃.
We obtain a linear combination of logarithms of factor base elements via the fact that for any

D ∈ F̃, we have Log(D) = log(f)/N , where f is any function such that div(f) = ND. �

7.1. Proof of the main theorem. Theorem 1.1 follows immediately from Theorem 3.1, Theo-
rem 2.4, and Proposition 7.2.
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