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Abstract

A multisignature scheme allows a group of signers to produce a joint
signature on a common message, which is more compact than a collection
of distinct signatures from all signers. Given this signature and the list of
signers’ public keys, a verifier is able to check if every signer in the group
participated in signing. Recently, a multisignature scheme with public key
aggregation has drawn a lot of attention due to their applications into the
blockchain technology. Such multisignatures provide not only a compact
signature, but also a compact aggregated public key, that is both the
signature size and the public key size used to verify the correctness of the
signature are independent from the number of signers. This is useful for a
blockchain because of its duplication over a distributed network, and thus
it is required to be as compact as possible. In this paper, we introduce
a new multisignature scheme with such a feature. Our scheme is proven
secure under the Decisional Diffie-Hellman assumption. In addition, in
the presence of rogue key attacks, the security of our scheme is proven in
the plain public key model.

Multisignatures, Public key Aggregation, Decisional Diffie-Hellman problem,
Blockchain Technology.

1 Introduction

Multisignatures, introduced by Itakura and Nakamura in [11], allow a group of
signers to jointly generate a signature σ on a common message m such that
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a verifier is convinced that each member of the group participated in signing.
Such multisignatures offer advantages over standard signatures if their size is
independent from the number of signers. There are a range of applications,
in which we need to provide efficient batch verification of several signatures of
the same message under different public keys, such as applications concerning
the multi-cast (or one-to-many) communication: IP Multi-cast, Peer-to-Peer file
sharing, mobile ad-hoc networks, etc.

Recently, it is shown that multisignatures have applications in transactions
on blockchain (see a discussion in [17]). For instance, a multisignature in Bitcoin
refers to requiring more than one key to authorize a Bitcoin transaction. While
this increases the security of transaction, the storage overhead will be bigger
as all public keys are stored on the blockchain. Thus, a multisignature scheme
whose size of public keys is that of a single standard signature has particular
interests in the blockchain technology.

Multisignatures with public key aggregation. Blockchain could be
considered as a distributed ledger that will be duplicated in every node on the
network. Every single transaction happened on this network will be signed and
recorded in the blockchain. This data structure provides the integrity and au-
thenticity of transactions without trust from a third party. Because of the dupli-
cation on each node, it is required that information recorded on the blockchain
should be as compact as possible. For transactions involving multi-parties,
multisignatures are required. The public keys of all co-signers also should be
recorded on the blockchain for the purpose of later verification. Multisignatures
with small public keys thus became an interesting and challenging research topic.

In [17], Maxell et al. introduced an interesting technique that allows us to
aggregate the public keys of all involved signers into an aggregated public key.
Their scheme is based on Schnorr’s signature scheme [22] and the verification
protocol is as simple as the underlying signature scheme. Basically, their scheme
is an interactive protocol, which consists of 3 rounds of communication among
signers and the security is proved under the discrete logarithm assumption.
Subsequently, Boneh et al. [8] applied this aggregation technique and presented a
non-interactive multi-signature scheme by using the pairing-based cryptography.
Their scheme is based on the short BLS signatures [9], whose security is based on
the Gap-Diffie-Hellman assumption. The non-interactive property is achieved
due to using a bilinear map, a special cryptographic operation that could be
constructed from pairing-friendly elliptic curves [10]. Both these above schemes
are proven secure against rogue-key attacks in the plain public key model.

Rogue-key Attacks. Multisignature schemes have to be secure against
the rogue key attack, which is related to some weaknesses in the key setup
protocol. In such an attack, an adversary is allowed to choose his public key
as he wishes. Typically, the adversary chooses his public key as a function of
public keys of honest users, allowing him to produce forgeries easily. Micali et
al [18] introduced the first security model to prevent such an attack. This model
basically requires the adversary to essentially prove a knowledge of secret key
(KOSK) for every public key he/she chooses. They implemented the KOSK via
an interactive pre-processing protocol involving all potential signers. This makes
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their scheme impractical. Another way to realize the KOSK assumption is to
employ so-called Key Registration Model (KR) for Public Key Infrastructure
(PKI), introduced in the context of multisignatures by Ristenpart and Yilek
[21]. In the KR model, a Certification Authority (CA) can certify a public
key only if its owner passes a special key registration procedure, called a proof
of possession of the secret key (POP). The KR model thus shifts the proof
verification overhead from multisignature verifiers to the CA’s. This imposes a
limitation on the use of those multisignatures. Then, Bagherzandi and Jarecki
[3] removed this limitation by considering an alternative mode of PKI operation
which we call the Key Verification (KV) Model. In the KV model each private
key owner also produces a (POP) string, but instead of handing it to the CA
during the key registration process she attaches it to her key (or a PKI certificate
on the key). This POP message is then verified by a multisignature receiver
instead of by the CA, for example together with verification of PKI certificates
on that key [3].

Till date, the most practical model, so-called plain public key model, was
proposed by Bellare and Neven in [5]. In this model, the set of potential signers
is dynamic and these signers can choose their public keys as they wish and may
register keys at any time.

Our contribution. In this paper, we propose a new multisignature scheme
with public key aggregation. We will show that our scheme is secure under the
Decisional Diffie-Hellman Assumption against rogue key attacks. Moreover,
our scheme is proven secure under the plain public key model, that is, the
signers can choose their public keys as they wish and may register keys at any
time. To the best of our knowledge, this is the first multisignature scheme
supporting aggregated public keys and proved secure under a classical Diffie-
Hellman assumption.

Organization. The rest of the paper is organized as follows. Section 2
provides some preliminaries about the Decisional Diffie-Hellman (DDH) prob-
lem, multisignatures and its security model, and the generalized forking lemma.
Section 3 presents our construction based on DDH problem and analyzes its
security. We provide some discussions and a comparison to other schemes in
Section 4. Finally, we conclude the paper in Section 5.

2 Preliminary

We first recall notations and conventions used in the rest of the paper. If A
is a randomized algorithm, then A(x1, . . . ;R) denotes its output on the given

inputs x1, . . ., and coins R, and y
$← A(x1, . . .) means that y is assigned the

output of A(x1, . . . ;R) with a chosen random R. If S is a (multi)set, then | S |
denotes its cardinality, i.e., the number of elements of S. We also denote s

$← S
a random selection of an element s in the set S.
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2.1 The Decisional Diffie-Hellman Problem

Let G be a cyclic group of prime order p and let g be a generator of G. The
security of our scheme is based on the hardness of the following computational
problem.

Definition 1 (Decisional Diffie-Hellman). The DDH problem is informally
to distinguish between tuples of the form (ga, gb, gab) (called DDH triples or

DDH tuples) and tuples of the form (ga, gb, gc), where a, b, c
R← Z∗q . A dis-

tinguishing algorithm A has an advantage ε in solving the DDH problem in G
if

|Pr
[
A(ga, gb, gab) = 1 : a, b

R← Z∗q
]

− Pr
[
A(ga, gb, gc) = 1 : a, b, c

R← Z∗q
]
|

is at least ε. We say that the DDH problem is (t, ε)− hard in G if there exists
no distinguishing algorithm A which running in time at most t have advantage
ε in solving the DDH problem in G.

Hardness of the DDH problem in G implies hardness of the discrete logarithm
problem in G. The inverse of these statements is not believed to be true in
general. There are groups (e.g., gap Diffie-Hellman (GDH) groups [12]) in which
the DDH problem is known to be easy, yet the discrete logarithm problem is
still believed to be hard. However, surveys in [7, 16] showed that for a variety
of groups of interest “the best known algorithm for DDH is a full discrete log
algorithm”.

2.2 Multisignature and its Security

Formally, a multisignature scheme with key aggregation consists of five algo-
rithms MS = (Setup, KGen, KAgg, MSign, Vf) where MSign is distributed al-
gorithm. Compared to a classical multisignature scheme, a scheme with key
aggregation has one more algorithm KAgg that aggregates co-signers’ public
key.

• params→ Setup(1k). A central authority, on input the security parameter
k, runs the algorithm Setup to produces the global information params.
Algorithm Setup is probabilistic.

• (sk, pk)← KGen, executed by each signer on input params, generates this
signer’s secret key sk, the corresponding public key pk. Algorithm KGen
is probabilistic.

• The KAgg algorithm on input a set of public keys outputs a single aggre-
gate public key apk.
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• The multi-signing algorithm MSign might be a probabilistic algorithm
which, given a message m, the global information params and a list of
signers L along with their public and secret keys, produces a multisigna-
ture σ. The multi-signing can be interactive or non-interactive.

• {0, 1} ← Vf(params,m,L, σ) verifies whether σ is a valid multisignature
on the message m with respect to L. This algorithm is deterministic.

Table 1: Chosen Message Attack against Multisignature in the Plain public-key
model

Experiment Expuu−cma
MS (A) :

- params← Setup(1k); (sk∗, pk∗)← KGen(params); List← ∅;

- Run A(params, pk∗), and for every signature query m made by
A do the following:

1. List← List ∪ {(m,L)}, where L is the list of users partic-
ipating in signing the message m;

2. Execute protocol MSign on behalf of an honest player on
inputs (params,m, sk∗, L), forwarding messages to and from A.

- When A halt; parse its outputs as (m,L, σ).

- If (m,L) /∈ List, pk1 = pk∗ and Vrfy(params,m,L, σ) = 1

then return 1. Otherwise return 0.

Security. A multisignature scheme should satisfy unforgeability. The attacks
of an adversary A against multisignature schemes are to forge a group of signers
L and a multisignature of some message such that the latter is accepted by a
verifier whereas some signers of the group L did not sign the message. Table 1
shows how an attack against a multisignature scheme is performed. In principle,
we give the adversary the power to request the private key on all but one signer
and its goal is to frame this honest signer. The adversary can choose their public
keys arbitrarily, even as a function of the public key of the honest signer. The
adversary A is given the global information params, a challenging public key
pk∗ corresponding to the honest signer and signing and hash oracles. His goal is
to output a forged message-group-multisignature tuple (m,L, σ), such that the
honest signer, who did not complete the multisignature generation protocol on
the input message m, is in L and MS.Vf(params,m,L, σ) = 1.

Let A be an adversary against the multisignature scheme, which consists
of four algorithms Setup, KGen, MSign, and Vf. As in the previous works on
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multisignatures, e.g. [3, 18], we define multisignature security as Universal Un-
forgeability (UU) under a Chosen Message Attack (CMA) against a single honest
player. Namely, we define Advuu−cma

MS (A) to be the probability that experiment
Expuu−cma

MS (A) described in Table 1 outputs 1. A multisignature scheme is said
to be (t, qS , qH , N, ε)-secure in the random oracle model if Advuu−cma

MS (A) ≤ ε for
every adversary A that runs in time at most t, makes at most qS signing queries
with the honest signer, at most qH random oracle queries, and the number of
signers in L involved in any signing query or in the forgery is at most N .

2.3 Generalized Forking Lemma

The forking lemma, introduced by Pointcheval and Stern [20], is commonly used
to prove the security of Schnorr-like signature schemes [22] in the random oracle
model. The lemma was then generalized to a wider class of schemes in [5] [2].
We recall the generalized version introduced by Bagherzandi et al [2].

Let A be an algorithm, on input input, interacts with a random oracle
H : {0, 1}∗ → Zq. Let f = (ρ, h1, . . . , hqh) be randomness involved in an
execution of A, where ρ is A’s random input, hj is the j-th response of H, and
qh is the maximum number of hash queries A makes. Let Ω be the space of all
vectors f . Let fj = (ρ, h1, . . . , hj−1), e.g., f1 = ρ, f2 = (ρ, h1), etc. We consider
an execution of A on input input and randomness f , denoted A(input, f) as
adversary’s success if it outputs a pair (J, {outj}j∈J), where J is a multi-set that
is a (non-empty) subset of {1, . . . , qh}. We assume that if A fails then it outputs
J = ∅. For an given input input, the generalized forking lemma is defined as in
Algorithm GFA.

Lemma 2 (Generalized Forking Lemma [2]) Let IG be a randomized algorithm
that generates par and A be a randomized algorithm making at most qH hash
queries s.t. A(input) succeeds (i.e. outputs (J, {outj}j∈J) s.t. | J |= n) with

probability ε, where the probability goes over input
$← IG and f

$← Ω. If q >
8nqH/ε, then algorithm GFA(input) runs in time at most τ · 8n2qH/ε · ln(8n/ε)
has a forking success with probability at least ε/8, where the probability goes over
coins of IG and GFA.

3 DDH-based Multisignature Scheme with Pub-
lic Key Aggregation

In this section, we describe an interactive multisignature scheme which relies on
Decisional Diffie-Hellman problem. As our construction is based on Katz-Wang
signature scheme [13], we recall it first.

Let G be a cyclic group of prime order q, g be a generator of G, h
$← G

chosen randomly and let H : {0, 1}∗ → Zq be a hash function. A private/public

key pairs is (x, pk), where x
$← Zq and pk = (y1, y2) = (gx, hx). To sign a

message m, the signer chooses a random r
$← Zq and computes u = gr, v = hr,
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Table 2: Generalized Forking Lemma

Algorithm GFA(input)

pick random coins ρ for A, and h1, . . . , hqh
$← {0, 1}`

f = (ρ, h1, . . . , hqh)
$← Ω

(J, {outj}j∈J)← A(input, f)
If J = ∅ then return fail
Let J = {j1, . . . , jn} s.t. j1 ≤ . . . ≤ jn, X = {(hj , outjj∈J) and X ′ = {}
For i = 1 to n do

Set succi = 0, ki = 0 and kmax = 8nqh/ε · ln(8n/ε)
Repeat until succi = 1, or ki > kmax

f ′
$← Ω s.t. f ′ji = fji

Let f ′ = (ρ, h1, . . . , . . . , hji−1
, h′ji , . . . , h

′
qh

)
(J ′, {out′j}j∈J′)← A(input, f ′)
If h′ji 6= hji , J

′ 6= ∅ and ji ∈ J ′ then
add (h′ji , out′ji) to X ′ and set succi = 1

If for all i = 1 to n succi = 1 then return (X,X ′)
Else return fail

c = H(pk, u, v,m), and s = r+cx. The signature is the pair (c, s), and it can be
verified by checking if c = H(pk, u′, v′,m), where u′ = gsy−c1 and v′ = hsy−c2 .

This signature scheme was then modified and extended to a multisignature
scheme in plain public key model in [14]. Their signature consists of three
elements (u, v, s), where u, v are group elements instead of two elements (c, s).
Readers could refer to [14, Section 6] for more details.

3.1 Our Multisignature Scheme

Let G be a cyclic group of prime order q and let Hcom, Hagg, and Hsig be three
cryptographic hash functions from {0, 1}∗ to Zq. Our multisignature scheme is
defined as follows:

Parameter generation. A trusted center runs the algorithm Setup that chooses

a generator g ∈ G∗ and h
$← G at random. It then publishes params =

(G, g, h,Hcom, Hagg, Hsig) as system wide parameters.

Key generation. The algorithm KGen, executed on each signer, picks a random

number xi
$← Zq as a private key. The corresponding public keys are pki =

(yi, zi)(= (gxi , hxi)).

Key Aggregation. On input L = {pk1, . . . , pkn}, the key aggregation algorithm
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KAgg computes:

apk1 ←
n∏

i=1

y
Hagg(pki,L)
i

and

apk2 ←
n∏

i=1

z
Hagg(pki,L)
i .

Signing. Suppose that a group of n signers wishes to sign a common message m,

each has as input its own public and private key as well as a multiset of public
keys L = {pk1, . . . , pkn} of the other signers. The signing algorithm MSign,
which is interactive, consists of three rounds, where in each round signers send
(and receive) a message to (from resp.) each other signer.

• Round 1. Each signer in the group:

- picks a random number ri
$← Zq;

- computes its individual commitments ui = gri and vi = hri , then
queriesHcom to compute challenges hi = Hcom(ui) and ti = Hcom(vi);

- sends hi, ti to every other signer.

• Round 2. Each signer in the group:

- receives hj , tj from signer j, for 1 ≤ j ≤ n, j 6= i;

- sends ui, vi to signer j.

• Round 3. Each signer in the group:

- receives uj , vj from signer j, for 1 ≤ j ≤ n, j 6= i;

- checks whether hj = Hcom(uj) and tj = Hcom(vj) for all 1 ≤ j ≤
n, j 6= i. If not, abort the protocol. Otherwise, computes u =

∏n
i=1 ui

and v =
∏n

i=1 vi.

- computes ai = Hagg(pki, L) and apk1, apk2 as in Algorithm KAgg;

- queries c = Hsig(apk1, apk2, u, v, L,m), then computes ci = aic, and
si = ri + xici mod q.

- sends to signer j: si.

After receiving sj from signer j, each signer in the group:

- computes s =
∑n

i=1 si mod q;

- outputs the signature σ = (c, s);

Verification. Given the valid signature σ, list of group of signers L and message
m, the verification algorithm Vf computes u′ = gs · apk−c1 , v′ = hs · apk−c2 and
check whether c = Hsig(apk1, apk2, u

′, v′,m).
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Correctness. It is not hard to see that the scheme is correct. If every signer
produces his partial signature honestly, then the multi-signature σ = (c, s),
where s =

∑n
i=1 si mod q, and c = Hsig(apk1, apk2, u, v,m). The verification

algorithm computes:

u′ = gs·apk−c1 =
∏n

i=1 g
si(y

Hagg(pki,L)
i )−c =

∏n
i=1 g

sig−xiaic =
∏n

i=1 g
sig−xici =∏n

i=1 g
ri = u

and,

v′ = hs·apk−c2 =
∏n

i=1 h
si(z

Hagg(pki,L)
i )−c =

∏n
i=1 h

sih−xiaic =
∏n

i=1 h
sih−xici =∏n

i=1 h
ri = v.

It is hence indeed the case that c = Hsig(apk1, apk2, u
′, v′,m).

3.2 Security

Theorem 3 The proposed multisignature scheme is (t, qH , qS , ε)-unforgeable in
the random oracle model if q > 8qH/ε and if the DDH problem is (t′, ε′)-
unforgeable in G, where

ε′ ≥ ε/(8qH)

and
t′ ≤ t+ (qH + qS + 1)texp.

Assume we have a polynomial time forger F that runs in time at most t,
makes at most qH hash queries and at most qS signature queries and outputs
a valid multisignature with probability at least ε. Assume that an adversary is
trying to attack the honest signer P ∗ who have the public keys pk∗ = (y∗, z∗).

We consider an algorithm A, whose aim is informally to determine whether
a tuple (h, y∗, z∗) is a random tuple or a Diffie-Hellman tuple. To do so, the
algorithm A on inputs pk∗ = (y∗, z∗) and (G, g, h) proceeds as follows.

First, the algorithm A maintains initially empty associative arrays Hcom[·],
Hagg[·] and Hsig[·] which are used to simulate random oracles Hcom, Hagg and
Hsig, respectively.

• Queries to Hcom and Hsig. In response to a query Hcom(ui) or Hcom(vi)
and Hsig, A first checks if the output of Hcom on this input has been pre-
viously defined. If so, A returns the previously assigned value. Otherwise,
A returns with a value chosen uniformly at random from {0, 1}l0 . All
queries ui, vi are stored in the array Hcom[·], Hsig[·].

• Queries to Hagg. In response to a query Hagg, we distinguish three
types:
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1. A query on (pk, L) with pk ∈ L and pk∗ ∈ L, and this is the first
such a query with L.

2. A query on (pk, L) with pk ∈ L and pk∗ ∈ L, and a prior query of
this form with L has been made.

3. Queries of any other form.

Algorithm A responds the i-th query of type (1) by choosing a random
value for Hagg(pki, L) for every pki 6= pk∗ ∈ L. It fixes Hagg(pk∗) to h0,
an returns the chosen value. All queries of type (1) are stored in the array
Hagg[·]. In response to a type (2) query, A returns the previously assigned
value when type (1) query was made. Finally, in response to a type (3)
query, Algorithm A simply chooses and returns a random value in Zq.

• Signing query on m with L. When F makes a signing query on message
m, with the list of signers L, A computes (apk1, apk2)← KAgg(params,L).
Then, a signing query to the honest signer P ∗ consists of three rounds.
First, the forger F provides m, L to P ∗ and receives the individual chal-
lenge h∗, t∗ from P ∗ in response. Second, playing the role of rest signer,
the forger F provides the challenges hi, ti to P ∗ and receives u∗, v∗ from
P ∗ in response. Third, F provides the commitments ui, vi to P ∗ and re-
ceives s∗ from P ∗ in response. As stated above, in the simulation, it is
not the adversary providing the joint commitment u, v to simulator, we
do not thus need to use rewinding. In detail, answering signature queries
works as follows:

First, Algorithm A checks if pk∗ /∈ L, then it returns ⊥ to F . Otherwise, it
parses the public keys of signers L = {(y1, z1) = (y∗, z∗), (y2, z2), ldots, (yn, zn)}.
A then chooses at random c1, s1

$← Zq and computes u1 ← gs1y−h0c1
1 ,

v1 ← hs1z−h0c1
1 , h1 ← Hcom(u1), t1 ← Hcom(v1), and then sends h1, t1 to

all signers.

After receiving (h2, t2), · · · , (hn, tn) from the adversary F , A looks up in
the array Hcom[·] for values uj , vj such that Hcom(uj) = hj and Hcom(vj) =
ti. If multiple such values are found for some i, the algorithm A stops the
execution of F and outputs 0. If no such value was found for some i then
it sets alert ← true and sends u1, v1 to all cosigners. Otherwise, A com-
putes u←

∏n
i=1 ui and v ←

∏n
i=1 vi, c← Hsig(apk1, apk2, u, v, L,m) and

sets Hsig[apk1, apk2, u, v, L,m]← c or it aborts the execution and outputs
0 if this entry in Hsig[·] was already defined. A sends u1, v1 to all other
cosigners.

After receiving (u2, v2), . . . , (un, vn) from F , A verifies that hi = Hcom(ui)
and ti = Hcom(vi) for all 1 ≤ i ≤ n. If one of these tests fails, A halts
this signing protocol and returns ⊥ to F . If alert = true, A aborts the
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execution of F and outputs 0. Otherwise, it sends s1 to all cosigners.

After receiving s2, . . . , sn from F , A computes s =
∑n

i=1 si mod q and
returns the valid signature (c, s).

Eventually, F halts and outputs an attempted forgery σ = (c, s) on some
message m along with L = {pk∗, pk2, · · · , pkn}. It must not previously have
requested a signature on m with L. When F fails to output a successful forgery,
then A outputs (0,⊥). Otherwise, F outputs a forgery (c, s, L,m) such that
Vf(L,m, c, s) = 1, pk∗ ∈ L and F never queried (L,m) to the signing oracle.

Let jf be the index such that Hagg(pk∗, L) = hjf , let (apk1, apk2) ←
KAgg(params,L) and let aj ← Hagg(pkj , L) for L = {pk1, . . . , pkn}. Then,
A outputs (J = jf , {(c, s, L, apk1, apk2, a1, a2, . . . , an)}).

The running time o A is that of F plus the additional computation A makes.
Let qH be the total hash queries to all three hash functions Hcom, Hagg, and
Hsig. Let qS denote the signing queries. A needs two multi-exponentiations in
G to answer Hcom. We assume that multi-exponentiations take time texp and all
other operations take unit time. Finally, A spends two multi-exponentiations for
verification. A’s running time is therefore at most t+(qS+2)texp+O(qH +NqS),
where N is the maximum number of cosigners.

The successful probability of A is the probability that F succeeds, except

the failure probability. This success probability is εA = ε − (qH+NqS+1)2

2l0
−

2qS(qH+NqS)+1
q (the calculation is similar to [14, Section 6]).

We now use the algorithm A to construct an algorithm B that on input a
DDH instance (h, y∗, z∗) and a forger F , runs the generalized forking algorithm
GFA as defined in Section 2.3. If GFA outputs (0,⊥), then B outputs fail. If
GFA outputs ({jf}, {out}, {out′}), then B proceeds as follows:

• Parse out as (c, s, L, apk1, apk2, a1, a2, . . . , an), where ai = Hagg(pki, L).

• Parse out′ as (c′, s′, L′, apk′1, apk
′
2, a
′
1, a
′
2, . . . , a

′
n), where a′i = Hagg(pki, L).

From the construction of GFA, we know that out an out′ were obtained
from two executions are identical up to the jf -th Hagg query of type (1).
In particular, this means that the arguments of this query are identical,
that is, L = L′ and n = n′. If Hagg(pk∗, L) was programmed to two values
h0, h′0, an by the forking lemma it holds that h0 and h′0 are distinct, that
is, h0 6= h′0.

Suppose L = {pk∗ = pk1, pk2, . . . , pkn}. By construction of A, we know

that apk1 = yh0
1

∏
i≥2 y

ai
i , apk2 = zh0

1

∏
i≥2 z

ai
i , and apk′1 = y

h′0
1

∏
i≥2 y

ai
i ,

apk′2 = z
h′0
1

∏
i≥2 z

ai
i . Since A assigned Hagg(pki, L) ← aj for all i ≥ 2

before the forking point, we have that ai = a′i for i ≥ 2. Therefore,

apk1/apk
′
1 = y

h0−h′0
1 and apk2/apk

′
2 = z

h0−h′0
1 .
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If (h, y1, z1) is a Diffie Hellman tuple, so (hh0−h′0 , y
h0−h′0
1 , z

h0−h′0
1 ) is, and the

simulation is perfect.
Using Lemma 2, we know that if q > 8qH/ε, then B runs in time at most

(t+(qS +2)texp+O(qH +NqS)) ·8q2H/ε ·ln(8qH/ε) and succeeds with probability

ε′ ≥ εA/8 = (ε− (qH+NqS+1)2

2l0
− 2qS(qH+NqS)+1

q )/8.

4 Discussions

Comparing to the multi-signatures in [14], which are also based on Decisional
Diffie-Hellman assumption, the proposed multisignature consists of only two
elements (c, s) instead of three elements (u, v, s), where u, v are group elements.
The proposed multisignature scheme also supports key aggregation that could
be applicable to the blockchain technology. On the other hand, the scheme
in [14] offered a tight security reduction to the DDH problem as its security
proof does not require a forking lemma.

Instead of sending (R, s) as in Schnorr-based multisignature scheme [17], our
scheme sends (c, s) as a signature. If we consider the group G as a multiplicative
group of Z∗q , then c = Hsig(apk1, apk2, u

′, v′,m) is much shorter. For example,
at 128 security level, the size of c is 256 bits, while |q| = 3072 as recommended
by NIST [4]. On the other hand, if G is a group of elliptic curve points, then
both the two multisignature schemes have roughly the same signature size.

In the round 1 of Algorithm 3.1, each user can compute and exchange one
value hi = Hcom(ui‖vi) instead of two values hi = Hcom(ui) and ti = Hcom(vi).
This small change pointed out in [6], would speed up the signature generation
process and reduce the bandwidth exchanged on the network as well.

In terms of communication complexity, the non-interactive multisignature
scheme in [8] is the most efficient. However, this scheme requires a crypto-
graphic pairing, which is defined over elliptic curves with special properties,
such as the embedding degree must be small (i.e., smaller than 50 as pointed
out in [10]). Such elliptic curves are called pairing-friendly elliptic curves, while
our scheme could be implemented on ordinary elliptic curves with arbitrary
embedding degrees.

Blockchain, the technology underpinning Bitcoin [19], is a trusted and dis-
tributed ledger, in which users are able to record information, prove and transfer
their ownership from one to another without a trusted third party intermediary.
All these transactions are fully traceable, supervised by parties on the blockchain
system and no single party has control over the data. Roughly, the blockchain
technology provides proof-of-existence, proof-of-ownership or proof-of-chronology
for digital assets. It thus could be applied in many applications such as financial
services [1], supply chain 1, digital forensics [15], and many other applications.

As discussed in [17, Section 5], multisignatures with public key aggregation
have applications in blockchains, e.g., Bitcoin [19]. Multisignatures allow more

1https://www.ibm.com/developerworks/cloud/library/cl-adopting-blockchain-for-
enterprise-asset-management-eam/
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than one person to be involved into one transaction on the blockchain network.
While such an authentication mechanism enhances the security of transactions
on blockchain, it makes the blockchain bigger. With an aggregated public key
multisignature scheme, the signature as well as the corresponding public keys
are as small as the underlying signature scheme, making blockchains smaller.

5 Conclusion

Multisignatures supporting public key aggregation have a great interest in blockchain
technology as such signatures could make blockchains smaller. In this paper,
we introduced a new multisignature scheme with such a feature. The proposed
scheme is the first multisignature scheme proven secure under the Decisional
Diffie-Hellman assumption. In addition, the security of our scheme in the pres-
ence of rogue key attacks was proven in the plain public key model.
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