
Pay-To-Win:
Incentive Attacks on Proof-of-Work Cryptocurrencies
Aljosha Judmayer

SBA Research
ajudmayer@sba-research.org

Nicholas Stifter
TU Wien

nicholas.stifter@tuwien.ac.at

Alexei Zamyatin
Imperial College London
a.zamyatin@imperial.ac.uk

Itay Tsabary
Technion and IC3

itaytsabary@gmail.com

Ittay Eyal
Technion and IC3
stanga@gmail.com

Peter Gaži
IOHK

peter.gazi@iohk.io

Sarah Meiklejohn
University College London
s.meiklejohn@ucl.ac.uk

Edgar Weippl
SBA Research

eweippl@sba-research.org

ABSTRACT
The feasibility of bribing attacks on cryptocurrencies was first high-
lighted in 2016, with various new techniques and approaches hav-
ing since been proposed. Recent reports of real world 51% attacks
on smaller cryptocurrencies underline the realistic threat bribing
attacks present, in particular to permissionless cryptocurrencies.

In this paper, bribing attacks and similar techniques, which we
refer to as incentive attacks, are systematically analyzed and cat-
egorized. Thereby, we show that the problem space is not fully
explored and present several new and improved incentive attacks.
We identify no- and near-fork incentive attacks as a powerful, yet
largely overlooked, category. In particular transaction ordering and
exclusion attacks raise serious security concerns for stateful cryp-
tocurrencies, such as smart contract platforms.

Further, we propose the first trustless out-of-band bribing at-
tack capable of facilitating double-spend collusion across different
blockchains that reimburses collaborators in case of failure. Our
attack is hereby rendered between 85% and 95% cheaper than com-
parable bribing techniques (e.g., the whale attack). We implement
the basic building blocks of all our out-of-band attacks as Ethereum
smart contracts to demonstrate their feasibility.

1 INTRODUCTION
”The system is secure as long as honest nodes collectively control more
CPU power than any cooperating group of attacker nodes.” Satoshi
Nakamoto [25].

Despite an ever growing body of research in the field of cryp-
tocurrencies, it is still unclear if Bitcoin, and thus Nakamoto con-
sensus, is actually incentive compatible under practical conditions
and the intended properties of the system emerge from the appro-
priate utility model for miners [10]. Bribing attacks, in particular,
target incentive compatibility and assume that at least some miners
act rationally, i.e., they accept bribes to maximize their profit. If
the attacker, together with all bribable miners, can gain a sizable
portion of the computational power, even for a short period of time,
attacks are likely to succeed. The economic feasibility of obtaining

a computational majority, in particular for small PoW cryptocur-
rencies, is hereby already effectively highlighted through websites
such as Crypto511 and real-world incidents2.

Another serious cause for concern are transaction ordering and
exclusion attacks (e.g. [19]) that can be performed as near- or no fork
incentive attacks. Hereby, the adversary’s goal is to bribe miners
such that they construct new (valid) blocks in a way that benefits
the adversary. A specific form of this attack, namely front running,
is highlighted and analyzed in recent research, focusing on its occur-
rence in the Ethereum platform [12, 14]. The possibility for rational
miners to (trustlessly) auction the contents of their block propos-
als (i.e., votes) to the highest bidder raises fundamental questions
on the security and purported guarantees of most permissionless
blockchains.

Most incentive attacks proposed so far focus on optimizing a
players utility. In this paper, we also consider how bribes may break
the mechanism design and cause rational players to deviate from
the prescribed protocol. To do so, we first systematically expose
the body of research on bribing-, front-running- Goldfinger- and
other related attacks. These techniques are summarized under the
general term incentive attacks as they all intend to tamper with the
incentives of rational actors in the system.

We present, to the best of our knowledge, the first compre-
hensive systematization of incentive attacks which allows to
compare and categorize the varying system models of previously
proposed attacks. Thereby, we show that the problem space is not
yet fully explored.

We propose three new incentive attacks 3 to fill some of the
gaps outlined by our systematization. Two thereof lie in the previ-
ously underrepresented domain of no/near fork incentive attacks.
The third is the first attack to incentivize trustless double-spend
collusion in an out-of-band scenario.

We introduce three crucial enhancements to incentive at-
tacks i.e., (i) ephemeral mining relays, as a mechanism for exe-
cuting trustless, time bounded, cross-chain incentive attacks, (ii)
guaranteed payment of bribed miners even if the attack fails, which

1See: https://www.crypto51.app
2See: https://www.gate.io/article/16735
3One of which is also described in concurrent work [35].

https://www.crypto51.app
https://www.gate.io/article/16735

Preprint, 2019-07-02,

actually reduces the costs of such attacks, (iii) crowdfunded attacks,
to further reduce the individual costs of executing incentive attacks.

1.1 Outline of this Paper
We begin our analysis by outlining general system model assump-
tions most analyzed and newly proposed incentive attacks have in
common (Section 2). Literature on bribing- and related attacks is
then systematically analyzed and compared in Section 3.

Our new pay-to-win attacks are first outlined at a high level in
Section 4, including the main technical requirements that have to
be fulfilled. Sections 5, 6 and 7 describe in detail how the respective
attacks can be constructed in current cryptocurrencies such that
the previously stated requirements are satisfied.

The paper is completed with a general discussion in Section 8
and concluding remarks in Section 9. We provide extensive details
on the implementation (ephemeral mining relay) and evaluation of
the individual attacks in the Appendix.

2 GENERAL SYSTEM MODEL
For all analyzed and presented incentive attacks we adopt the fol-
lowing general system model. If an analyzed attack deviates from
this model, it is highlighted when the attack is described. Additional
assumptions and augmentations relevant for specific attacks are
introduced where they become necessary.

We consider incentive attacks within permissionless proof-of-
work (PoW) cryptocurrencies. That is, we assume protocols adhering
to the design principles of Bitcoin [25], generally referred to as
Nakamoto consensus or Bitcoin backbone protocol [17, 26, 31].

Within the attacked cryptocurrency we differentiate between
miners, who participate in the consensus protocol and attempt to
solve PoW-puzzles, and clients, who do not engage in such activities.
As in previous work on bribing attacks [9, 21, 23, 32], we assume the
set of miners to be fixed, as well as their respective computational
power within the network to remain constant. To abstract from
currency details, we use the term value as a universal denomination
for the purchasing power of a certain amount of cryptocurrency
units or any other out-of-band funds such as fiat currency. Miners
and clients may own cryptocurrency units and are able to transfer
this value by creating and broadcasting valid transactions within
the network. Moreover, as in prior work, e.g., [21, 23, 33], we make
the simplifying assumption that exchange rates are constant over
the duration of the attack.

Participating miners are categorized into three groups and their
roles remain static for the attack duration. Categories follow the
BAR (Byzantine, Altruistic, Rational) [5, 20] rational behavior model.

• Byzantine miners or attacker(s) (Blofeld): The attacker
B wants to execute an incentive attack on a target cryptocur-
rency. B is in control of bribing funds fB > 0 that can be
in-band or out-of-band, depending on the attack scenario. He
has some or no hash rate α ≥ 0 in the target cryptocurrency.
The attacker may deviate arbitrarily from the protocol rules.

• Altruistic or honest miner(s) (Alice): Honest miners A
always follow the protocol rules, hence they will not accept
bribes to mine on a different chain-state or deviate from the
rules even if it would offer larger profit. Miners A control
some or no hash rate β ≥ 0 in the target cryptocurrency.

• Rational or bribableminer(s) (Rachel):MinersR control-
ling hash rate ω ≥ 0 in the target cryptocurrency aiming to
maximize their short term profits. We consider miners “brib-
able" if they follow strategies that deviate from the protocol
rules as long as they are expected to yield higher profits than
being honest. Bribable miners have some hash rate ω > 0
in the cryptocurrency under attack. For our analyses we
assume bribable miners do not concurrently engage in other
rational strategies such as selfish mining.

Additionally, we assume the victim (Vincent) of the bribing
attacks to be a client without any hash rate. While other bribing
attacks model the victim as an honest miner, we also distinguish be-
tween a rational victim to allow for a more fine grained description
and subsequent analysis. If Vincent is to be modeled with posses-
sion of some hash rate, it can be considered either to be part of β
or ω. It holds that α + β + ω = 1.

Whenever we refer to an attack as trustless, we imply that no
trusted third party is needed between briber and bribee to ensure
correct payments are performed for the desired actions. Thus the
goal is to design incentive attacks in a way that the attacker(s) as
well as the collaborating miners have no incentive to betray each
other if they are economically rational.

2.1 Communication and Timing
Participants communicate through message passing over a peer-
to-peer gossip network, which we assume implements a reliable
broadcast functionality. We further assume that all miners in the
target cryptocurrency have perfect knowledge about the attack
once it has started. Analogous to [17], we model the adversary
Blofeld as “rushing”, meaning that he gets to see all other players
messages before he decides his strategy, e.g., executes his attack.

If more than one cryptocurrency is involved in the considered
scenario, i.e., an additional funding cryptocurrency is used to orches-
trate and fund the attack on a target cryptocurrency, then we assume
their respective mean block interval and mining difficulties to re-
main fixed for the duration of the attack as well. Further, no attacks
are launched against the funding cryptocurrency concurrently.

3 INCENTIVE ATTACK SYSTEMATIZATION
Incentive attacks represent a generalized form of bribing attacks [9],
comprising adversarial strategies aimed at manipulating the incen-
tives of rational participants. Hereby, we first introduce a general
classification along two different dimensions, namely by the in-
tended impact an attack has on transactions and their ordering and
the required interference, i.e., the depth of blockchain reorganiza-
tions caused by forks for the attack to be successful. Combined
with other important characteristics and approaches, we system-
atically analyze and categorize the body of research on incentive
manipulation attacks.

3.1 Intended Impact on Transactions
A core goal for permissionless PoW cryptocurrencies, is it to achieve
an (eventually) consistent and totally ordered log of transactions
that define the global state of the shared ledger. We differentiate
between the following three main categories of incentive attacks
aimed at manipulating transactions and their ordering:

Pay-To-Win:
Incentive Attacks on Proof-of-Work Cryptocurrencies Preprint, 2019-07-02,

• transaction revision, change a previously published, pos-
sibly confirmed transaction;

• transaction ordering, change either the proposed or al-
ready agreed upon order of transactions;

• transaction exclusion, exclude a specific transaction from
the ordered log of transactions, either for a bounded amount
of time or indefinitely.

Some incentive attacks may allow multiple types of transaction
manipulation at the same time (see Table 1). The ability to invalidate
a transaction can be considered the result of successfully performing
one or more of the above transaction manipulation attacks and does
not necessitate a separate category.

3.2 Required Interference with Consensus
While the previous category of transaction manipulation attacks
describes the intended impact, here we consider the required inter-
ference with consensus by which they can be achieved. Specifically,
we introduce three different fork requirements.

• Deep fork required, where a fork with depth l exceeding
a security parameter k is necessary (i.e., l > k). The victim
defines k [16, 30] and it refers to its required number of
confirmation blocks for accepting transactions.

• Near-fork required, where the required fork depth is not
dependent on a k defined by the victim (i.e., l ≤ k).

• No-fork required, where no blockchain reorganization is
necessary at all (i.e., k = 0).

No-fork attacks distinguish themselves from the other two cate-
gories by aiming to manipulate miner’s block proposals rather than
(preliminary) consensus decisions, i.e., already mined blocks. Deep-
and near-fork attacks seek to undo state-updates to the ledger that
are already confirmed by sequential proof-of-work.

Some attacks, such as front-running or transaction revision
where the victim accepts k=0, may be executable as no-fork attacks.
Others, such as performing a double spend where the victim has
carefully chosen k [30], may need to substantially affect consensus
and violate the security assumption that a common prefix of the
blockchain remains stable, except with negligible probability [16].

3.3 Categorization and Comparison of Attacks
Equipped with our classification by intended impact and required
interference, we consider related work on the topic of incentive
manipulation attacks. Further properties are introduced as part of
the discussion. Table 1 presents our categorization of previous pro-
posals, as well as our new pay-to-win attacks. Each row represents
a different attack and columns outline respective properties.
Tx revision / Tx ordering / Tx exclusion are outlined in sub-
section 3.1. In the literature, several bribing attacks are designed
to replace or revise a specific transaction, i.e., perform a single
double-spend [9, 21, 23]. As a consequence, they do not consider
defining the order or exclusion of arbitrary transactions. Despite of
the double-spending transaction the block content of subsequent
blocks can freely be defined by the bribed miners. Therefore, it
would be possible for such miners to also perform a double-spend
of one of their transactions for free by piggybacking on the attack
financed by the original attacker.

GoldfingerCon [23] can be seen as a special case of the trans-
action exclusion attack which rewards Bitcoin miners for mining
empty blocks with the help of an Ethereum smart contract. Similarly,
Pitchforks [18] leverage merged mining to subsidize the creation
of empty (or specially crafted) blocks in the attacked chain [18].

The Script puzzle 38.2% [32] and CensorshipCon attack [23]
distract hash rate of bribable miners to gain an advantage over the
remaining honest miners. Both attacks allow arbitrary transaction
ordering and exclusion, but require that the adversary controls more
hash rate than the remaining miners. Deep forks and transaction
revision are not directly considered and require further analysis.

The only previously proposed attack to achieve all three proper-
ties is the Script Puzzle double-spend [32]. However, upon successful
execution rational miners are deprived of their bribes, rendering
the attack non-repeatable.
Requires chain reorganization is outlined in 3.2 and classifies
if an attack is realized without-, with a near- or with a deep-fork.
A classical double-spending attack scenario [28, 30] requires deep
forks (l > k) to reorganize the chain. Since, the attacker has full
control over the required hash rate to perform the attack, he also
can arbitrarily order- and exclude transaction from the longest
chain.

Depending on the scenario and the desired attack outcome, e.g.,
only ordering is relevant, deep forks are not necessarily required.
For instance, the order of unconfirmed transactions can be ma-
nipulated without necessitating a fork, such as performing front-
running [14]. Ordering attacks on smart contract cryptocurrencies
have not been intensively studied [29]. In the paper at hand, we gen-
eralize this ability in the context of incentive attacks and analyze
how it can be realized (Section 5).
Requires attacker hash rate α for the attack to be successfully
executed. As observable in table 1 there are three attacks which
require α > 0. The Script Puzzle 38.2% attack allows an adversary
with appropriate hash rate to establish a computational majority
and gain a net profit without considering double-spending attacks.
In (Script Puzzle double-spend) the adversary has no minimum hash
rate requirement, however it is designed as a single-shot double-
spending attack. CensorshipCon also requires attacker hash rate to
include uncle blocks from rational miners. Since it has to include all
mined uncle blocks, it requires that the hash rate of the attacker is
larger than 1

3 and the hash rate of the bribable miners to be between
[13 ,

2
3).
Note, that it makes sense to bound the attacker hashrate below

1
2 , otherwise the attacker has no need to perform bribing attacks
since he could overtake the chain single handedly.
Required minimal rational miner hash rate ω for the attack
to have a chance to succeed as described and evaluated in the
respective paper. Generally, all bribing attacks have to assume that
at least some of the miners are rational and hence bribable. Note
that the Script Puzzle attacks require all miners to be rational, i.e.,
α + ω = 1.
Distracts hash rate from the valid tip(s) of the attacked blockchain
to some other form of puzzle or alternative branch that does not
contribute to state transitions, e.g., Ethereum uncle blocks in case
of CensorshipCon or another cryptocurrency in the case of Pitch-
forks.

Preprint, 2019-07-02,

Tx rev. Tx ord. Tx excl. Required chain
reorganization

Attacker
hashrate α

Rational
hashrate ω

Distracts
hashrate

Requires
smart contract Payment Trustless for

attacker
Trustless for
collaborator Subsidy Compensates

if attack fails
Checklocktime bribes [9] ✓ ✗ ✗ Deep fork ✗ ≈ [12 , 1] ✗ ✗ in-band ✓ ∼ ✗ ✗

Whale Transactions [21] ✓ ✗ ✗ Deep fork ✗ ≈ [12 , 1] ✗ ✗ in-band ✓ ∼ ✗ ✗

Script Puzzle double-spend [32] ✓ ✓ ✓ Deep fork (0, 1
2) 1 − α ✓ ✗ in-band ∼ ✗ ✗ ∼

Script Puzzle 38.2% attack [32] ✗ ✓ ✓ Near-/No forks [0.382, 1
2) 1 − α ✓ ?† out-of-band ?† ?† ✗ ✓

Proof-of-Stale blocks [22, 34] -⋆ -⋆ -⋆ -⋆ ✗ - ✓ ✓ out-of-band ∼ ✓ ✗ ✓

CensorshipCon [23] ✗ ✓ ✓ Near-/No forks [13 ,
1
2) [13 ,

2
3) ✓ ✓ in-band ∼ ✗ ✓ ✗

HistoryRevisionCon [23] ✓ ✗ ✗ Deep fork ✗ ≈ [12 , 1] ✗ ✓ in-band ✓ ∼ ✓ ✗

GoldfingerCon [23] - - ✓all No fork ✗ ≈ [12 , 1] ✗ ✓ out-of-band ✓ ✓ ✗ ✓

Pitchforks [18] - - ✓all No fork ✗ (13 , 1) ✓ ✗ out-of-band ✓ ✓ ✓ ✗

Front-running [12, 14] ✗ ✓ ✗ No fork ✗ (0, 1) ✗ ✗ in-band ✗ ✓ ✗ ✓

P2W Tx Ord. IB ✗ ✓ ✗ No fork ✗ (0, 1) ✗ ✓ in-band ✓ ✓ ✗ ✗

P2W Tx Excl.& Ord. OOB ✗ ✓ ✓ Near-/No forks ✗ [12 , 1] ✗ ✓ out-of-band ✓ ✓ ✗ ✓

P2W Tx Rev. & Excl. & Ord. OOB ✓ ✓ ✓ Deep fork ✗ [12 , 1] ✗ ✓ out-of-band ✓ ✓ ✗ ✓

Table 1: Comparison of our P2W and existing incentive attacks on cryptocurrencies. A property is marked with ✓ , if is is
achieved and with ✗ otherwise, - is used if a property does not apply. The symbol ∼means that the property cannot be clearly
mapped to any of the previously defined categories without further details or discussion. The symbol⋆means that this attack
aims against mining pools and hence is not intended to manipulate the chain. The symbol † means that the paper does not
explicitly specify the out-of-band payment method but assumes its correctness.

Requires smart contracts holds true for all attacks which neces-
sitate the use of smart contracts to operate as expected.
Payment specifies where the payments to the bribees are per-
formed. Rewards are either in-band i.e., in the respective cryptocur-
rency under attack or out-of-band e.g., in a different cryptocurrency.
It can be argued that miners will try not to harm the value of their
own cryptocurrency by accepting in-band bribes, hence out-of-band
incentive attacks are of particular interest.
Trustless for attacker specifies if the attack itself can be exploited
by collaborating/bribed miners to profit without adhering to the
attack. For example, script puzzle attacks require some form of
freshness guarantee to prevent bribees from intentionally waiting
until the attack fails before computing puzzle solutions to obtain
rewards. It is also possible to claim rewards for stale honest blocks
that are later on submitted as uncles to the CensorshipCon.
Trustless for collaborator specifies if bribees have to trust the
attacker that they will receive their payments, if they adhere to the
attack. In Checklocktime bribes the adversary can try to cheat by
creating a conflicting/racing transaction. However, this attempt is
only possible if the attacker is under control of some hash rateα > 0.
The same holds true for Whale Transactions, since the attacker
has to provide new high fee transactions for each block on the
attack chain at each step of the attack. While HistoryRevisionCon
does not explicitly consider trustlessness for collaborating miners,
an augmentation is possible 4 CensorshipCon requires that the
attacker includes blocks produced by collaborating miners as uncle
blocks and thus is not trustless. The Script Puzzles double-spend
attack is designed as a one-shot attack that defrauds collaborators.
The Script Puzzles 38.2% attack does not specify how payments are
performed and assumes a trusteless out-of-band payment method.
In front-running attacks the attacker has no guarantee that the
desired ordering will be achieved by a high fee.
Subsidy means that the attack leverages some characteristic of
the cryptocurrency or environment to become cheaper. In case of

4The issue stems from the fact that the bribing contract checks the balance of the
Ethereum account which should receive the bribing funds before issuing any bribes, but
without any additional locking constraints these funds can be moved be the attacker
once received.

CensorshipCon the rewards from uncle blocks are used to subsidize
the attack, whereas in pitchforks the additional income frommerged
mining is used as an incentive.
Compensates if attack fails refers to the property that at least a
portion of the bribe is paid unconditional of the outcome. To suc-
cessfully engage rational miners, attacks such as Checklocktime [9],
whale [21] and HistoryRevisionCon [23], must compensate the
financial risk faced by participants in case it fails. So far no attack
facilitating transaction revision achieves this property.

Script Puzzle double-spend defrauds the bribed miners if success-
ful and actually only pays out rewards if it fails.

In Front-running attacks, high transaction fees are usually in-
curred even if the desired ordering effect is not achieved. Thus, in
this case it is an undesirable property for the attacker.

3.4 Main Observations
It can be observed that most bribing attack scenarios focus either
on transaction revision or transaction exclusion, and allow for trans-
action ordering merely as a by-product. A notable exception are
front-running attacks. We argue, that front-running is only a subset
of possible (re-)ordering attacks. For instance, it can be desirable
to position a transaction precisely between two other transactions.
An example for such an attack can be found in [29], where a vul-
nerability in the BlockKing contract is described.

Generally, any miner can freely define the order and set of
transactions to include in their own block proposals as long as
a valid block is produced. In this paper, scenarios where the or-
dering of transactions can be manipulated by attackers that are
not themselves miners are of particular interest. Ordering attacks
on smart contract cryptocurrencies are still not well understood
and discussed [29], yet can be observed in practice [12, 14]. A
notable exception specifically designed to exclude transactions is
CensorshipCon [23].

Moreover, we also observe an insufficiency of out-of-band in-
centive attacks. The only available techniques, beyond Goldfinger
attacks, require substantial attacker hash rate. Note hat Proof-of-
stale-blocks [22] represents a special case aimed at mining pools.

Pay-To-Win:
Incentive Attacks on Proof-of-Work Cryptocurrencies Preprint, 2019-07-02,

Theoretically, all attacks in which the payment is performed out-of-
band can be used to launch Goldfinger-style attacks, as the reward
of the bribee is not directly bound to the value of the respective
cryptocurrency under attack. The question whether or not such
attacks are profitable depends on the external utility that can be
generated from the failing cryptocurrency.

In the following, we propose new incentive attacks aimed at
different scenarios to fill some of the gaps that were outlined by
our systematic comparison and subsequent observations.

4 PAY-TO-WIN INCENTIVE ATTACKS
We introduce three new pay-to-win incentive attacks that are trust-
less, both for the attacker and the collaborating miners. We differen-
tiate between in-band attacks, i.e. funded and executed within the
same cryptocurrency, and out-of-band attacks, where the attacks
are funded and coordinated on a different cryptocurrency. Our at-
tacks do not require the adversary to control any hash rate, i.e., we
assume α = 0.

This section provides a high level overview of the attacks, in-
troduced techniques and operational requirements. Sections 5-7,
each describe one of the introduced attacks in detail and follow the
same structure: (i) a general overview of the attack, (ii) a step-by-
step description, (iv) attack evaluations, and, (v) analysis of attack
properties.

4.1 P2W Attack Overview
In-Band Attacks. We introduce a new in-band attack, executed and
coordinated on a smart contract capable proof-of-work blockchain.

In-Band Transaction Ordering. The attack (Section 5) incen-
tivizes no-fork transaction ordering in-band: colluding miners are
rewarded if unconfirmed transactions are ordered as desired by the
adversary. Compared to front running [12], this attack utilizes a
smart contract to directly reward miners iff the correct ordering
condition is upheld. Current front running attacks can be consid-
ered an all pay auction [12], where the losing transaction – even if
its execution fails – unnecessarily pays a high fee.

Out-of-Band Attacks. We differentiate between a target cryptocur-
rency, where the attack is to be executed, and a funding cryptocur-
rency, where the attack is coordinated and funded. While the fund-
ing cryptocurrency must support smart contracts (e.g. Ethereum),
there are no such requirements for the target cryptocurrency (e.g.
Bitcoin). Out-of-band attacks are arguably more difficult to detect,
as this would require monitoring multiple smart contract capable
blockchains.
Out-of-BandTransactionExclusion/Ordering.This attack (Sec-
tion 6), presents an out-of-band transaction exclusion attack where
the attacker is also able to specify the order of the included transac-
tions. This might be used to censor certain transactions (e.g., closing
of payments channels) or to perform multiple front-running attacks
at once. To execute the attack, we describe how an attacker can
construct a smart contract which temporarily rewards the creation
of attacker defined blocks on the target cryptocurrency. We call
this technique an ephemeral mining relay, as it combines elements
from a mining pool and a chain relay (see the end of this Section).

Out-of-Band Transaction Revision. Finally, we describe an out-
of-band transaction revision attack (Section 7) that directly facili-
tates double-spend collusion: miners are bribed to mine blocks on
the branch favored by the adversary, on another blockchain. The
previously introduced techniques introduced are hereby combined
to demonstrate that they can together form more powerful attacks.
We show how it can be constructed to always reward collaborating
miners, regardless of the outcome of the attack. Interestingly, this
renders attacks significantly cheaper, as the necessary compensa-
tion to colluders when the attack fails is reduced.

4.2 Technical Requirements
The technical requirements for all three introduced attacks to be
considered trustless are summarized as follows:

(1) Given a block in a block interval (on the target chain) defined
by the attacker, a trustless way to verify that:

(a) a certain state transition was performed (e.g., a transaction
was included in the blockchain).

(b) a certain state transition has not taken place (e.g., a trans-
action was not included).

(2) A trustless way to uniquely attribute blocks to miner ad-
dresses, as well as a way to map the latter to corresponding
addresses in the funding cryptocurrency.

(3) A trustless way to transfer value in the funding cryptocur-
rency to a uniquely attributed funding cryptocurrency ad-
dress of a collaborating miner (see point 2)

(4) A trustless way to determine the state of the target cryptocur-
rency after T blocks have been mined on top of a block pre-
defined by the attacker, i.e., the longest chain. This implies
that it is possible to verify the PoW of the target cryptocur-
rency in smart contracts on the funding cryptocurrency.

(5) A trustless way to determine the state of the attack on the
target cryptocurrency afterT blocks have been mined on top
of a block pre-defined by the attacker, i.e., the attack chain
anchored at this specific block.

Ephemeral mining relay: To verify the outcome of the attack
and correctly pay rewards in trustless out-of-band scenarios, we
introduce the concept of ephemeral mining relays. An ephemeral
mining relay is a smart contract that combines the functionality
of a chain relay [2, 11, 36] and mining pool [22, 34]. However,
in contrast to previous proposals, the mining relay is capable of
fully validating the consensus rules of the target cryptocurrency
by restricting the allowed block structure. Furthermore, it tracks
all ongoing blockchain branches, which is a necessary features for
correct verification of incentive attacks. We provide a more detailed
description of the ephemeral mining relay construction, a proof
of concept implementation deployed on Ethereum for verifying
the Bitcoin blockchain, and a cost analysis in the Appendix G.1.
The additional verification costs of our implementation amount to
less than USD 1.00 per Bitcoin block - negligible compared to the
potential economic impact of incentive attacks.

5 TRANSACTION ORDERING IN-BAND
This no-fork attack pays additional rewards to miners for reordering
unconfirmed transactions, comparable to front-running attacks [12,
14]. In front-running attacks, the adversary increases the chance

Preprint, 2019-07-02,

of their transaction being included before others by increasing the
transaction fee paid to miners. However, the result is an all pay
auction: even if the attack fails, the high-fee transaction can be
included by miners. As such, the adversary must always pay the
fee, independent of the attack outcome [12]. In contrast, our attack
ensures the adversary pays colluding miners only if the attack was
successful, i.e., if the desired transaction ordering was achieved.

5.1 Description
Initialization. The adversary (Blofeld) observes the P2P network
and initiates the attack once he sees a victim’s (Vincent) transac-
tion txV which he wants to front-run (e.g. registering a domain
name or interacting with an exchange). First, Blofeld publishes
his front-running transaction txB . Simultaneously, he publishes
and initializes an attack contract with the identifiers of the two
transactions, the desired order (txB < txV), the block in which the
transaction(s) are to be included, and a bribe ϵ . Once the contract
creation transaction has been mined, (i) the configuration can no
longer be changed and (ii) the bribe is locked until the attack times
out. This is necessary to prevent the attacker from attempting to
defraud colluding miners by altering the payout conditions, after
the attack was executed.
Attack. If the attack is successful, colludingminers generate a block
which has the desired ordering of transactions. Note: even if the
victim attempts to update the original transaction txV with tx ′V ,
e.g. using replace by fee [4], txV remains valid and can alternatively
be included by miners. Rational miners will hence include txB and
txV in the specified order, fulfilling the payout conditions, as long
as this results in the highest reward.
Payout. After k blocks (k is the blockchain’s security parameter
defined by the attacker in this case), miners can claim their payouts,
whereby the smart contract first checks if the ordering of the two
transactions is as specified.

5.2 Evaluation
5.2.1 Evaluation with Rational Miners Only (ω = 1): First, we as-
sume a scenario where all miners act rationally, i.e., are bribable.
Miners are incentivized to collude with the adversary, as the con-
tract guarantees a reward ϵ > 0 in addition to normal mining.
Participation in the attack does not require to mine on an alterna-
tive fork, hence colluding miners face no additional risk that their
blocks will be excluded from the main chain. It is also possible for
miners to include an unconfirmed attack contract creation trans-
action in the same block as the ordering attack itself and still be
certain of payment if their block becomes part of the longest chain.

5.2.2 Evaluation with Altruistic Miners (ω + β = 1): In theory, this
attack is practicable with any hash rate of bribable miners ω > 0,
however the higher the hash rate, the higher the chances of success.
If 2/3 of the hash rate is controlled by rational miners, the attack
is expected to succeed in two out of three cases. We refer to the
Section C in the Appendix for an analysis where rational miners are
additionally incentivized to fork main chain blocks to successfully
remove a undesired block from the chain.

5.3 Properties and Analysis
Wenow analyze possible defensive strategies of the victim (Vincent).
Specifically, we consider the possibility of counter bribing.

Immediate Counter Bribing: As long as the new block has not
beenmined, an effective counter measure against this attack is to im-
mediately perform counter bribing through the same attack mech-
anism. Hereby, attacker and victim engage in an English auction
instead of the all-pay-auction observed in other front-running [12].
This defensive strategy assumes that Vincent is actively monitoring
the P2P network and immediately becomes aware of the attack.

Delayed Counter Bribing: If Vincent only has an SPV (Simple
Payment Verification [25]) wallet, he may only recognize the attack
after a new block with the intended ordering of the attacker has
already been mined. Vincent is not in possession of any hash rate
he cannot directly launch a counter attack to fork the respective
block. Thus, the costs for a successful counter bribing attack have
become much higher than the costs for the original attacker Blofeld.
Moreover, form the previously described bribing attacks in section 3,
no attack is directly applicable by Vincent in this scenario. For an
analysis on how much it costs to remove one block from the chain
see Appendix C.

6 TRANSACTION EXCLUSION AND
ORDERING OUT-OF-BAND

In this section we describe how out-of-band incentive attacks,
which facilitate both transaction exclusion and ordering, can be
constructed. Thereby, we supersede our previous attack in terms of
capabilities. For example, such attacks can be profitable for an at-
tacker attempting to falsely close an off-chain payment channel (i.e.,
publish an old/invalid state) but prevent the victim from executing
the usual penalizing measures [13, 24, 27].

Out-of-band attacks have the advantage, that they can be funded
on any smart contract capable funding cryptocurrency, while the
attack occurs on a different target cryptocurrency. These attacks are
arguable more difficult to detect and protect against, as the victim
would have to monitor multiple, if not all, smart contract capa-
ble blockchains. For better readability, we use Bitcoin (target) and
Ethereum (funding cryptocurrency) as examples when describing
the attack below. As outlined in section 4, we rely on ephemeral
mining relays to trustlessly verify the state of the target cryptocur-
rency, the correct execution of the attack, and also handle payouts
to colluding miners (see Appendix G.1 and F for details on the
relay).

6.1 Description
Initalization. The attacker’s goal is to prevent an unconfirmed
transaction txV from being included in newly mined blocks within
Bitcoin (target). The adversary initializes an attack smart contract
by specifying block templates, which have to be used by the collab-
orating Bitcoin miners to be eligible for rewards. This allows the
attacker to fully control the content of the mined blocks, including
ordering and inclusion of transactions. For each block template, the
corresponding bribe is also conditionally locked within the smart
contract, ensuring miners will be reimbursed independent of the
attack outcome as long as they provide a valid solution.

Pay-To-Win:
Incentive Attacks on Proof-of-Work Cryptocurrencies Preprint, 2019-07-02,

In the case of Bitcoin block templates, the adversary publishes
incomplete block headers to the attack contract, as well as the cor-
responding coinbase transaction. The latter is necessary to allow
collaborating miners to include their own Ethereum payout ad-
dresses within the block template, as this is later used by the smart
contract for reimbursement if a valid block is submitted. Miners
joining the attack can only freely change the nonce (used to iter-
ate over PoW solutions) and the coinbase field (include Ethereum
address) in the generated Bitcoin blocks.

We point out that it is the attacker who must receive the Bitcoin
block rewards and not the collaborating miners. Instead, collab-
orators are reimbursed the value of the Bitcoin block reward as
part of the bribing payouts in the Ethereum attack contract. This is
required as an additional payout guarantee for the bribee in order
to render the attack trustless for collaborators, since rational miners
may not be able to verify if the block template they are bribed to
mine on will result in a valid block. We provide more details on
block template constructions in Appendix G.1 and F.
Attack. Rational miners submit valid Bitcoin blocks, based on the
attacker’s block templates, to the attack smart contract on Ethereum
via the ephemeral mining relay, which verifies that they form a
valid chain. As multiple miners may race to claim the rewards for
the same block template, they are incentivized to timely publish
any valid PoW solutions they find. An additional incentive for the
bribee to publish a solution timely comes from the fact that the
attack contract pays an additional ϵ for each solution if the bribing
attack as a whole is successful. The incentive of the attacker to
publish the solutions with the associated full block on the target
chain comes from the rewards he receives directly, plus the gain
from an successful attack.

At each step, the attacker updates the Bitcoin block templates
after each submission to the attack contract and, if necessary, can
add additional bribes. If no new templates are submitted, the attack
halts. Figure 1 provides an explanatory visualization of an ongoing
attack.

We note that it is possible for the target- and the funding chain
to desynchronize, i.e., that two or more Bitcoin blocks are mined
before a single Ethereum block has been found. As such, the attacker
may also publish block templates for multiple blocks in advance
(leaving references to previous blocks to be filled in by miners).
Payout. Similar to the in-band case, miners can claim payouts in
the attack contract once k Bitcoin blocks have been mined after
the attack has ended (k being a security parameter defined by the
attacker). The attack smart contract is responsible for verifying the
validity of submitted blocks i.e., their PoW, compliance with the
specified block template, and that all blocks form a valid attack
chain. If a submitted block is valid, the attack contract rewards
miners even if the attack chain did not succeed to become the
main chain, i.e., collaborating miners face no risk. The first miner
to submit a valid PoW for the respective block template will, in
any case, receive value equivalent to the full Bitcoin block reward
regardless if the attack has failed, plus an extra ϵ if the attack is
successful.

Ethereum block
Zero or more blocks in between

Bitcoin block Rewarded blockBlock not yet mined

out-of-band tx ordering attack:

b0 b1 b2

b'3

eT
e0 e1 e2

b3

e3

b4

e4

b5

eN

bN bN+k

Failed:

b0 b1 b2

b3

eT
e0 e1 e2

b'3

e3

b'4

e4

b'5

eN

b'N

bN+kb4 b5 bN

Ongoing:

b0 b1 b2

e0 e1

b'4

b'3 b'4 b'5 b'N

tx incl.

tx incl.

b'5
tx incl.

init

init

init

target chain
(B

itcoin)
funding chain
(E

thereum
)

pay

pay

Successful:

1

1+ϵ 1+ϵ 1+ϵ 1+ϵ 1+ϵ 1+ϵ

1 11 1 1

Figure 1: Blockchain structure and timeline of an ongoing,
a failed, as well as a successful tx exclusion and ordering
attack with out-of-band payments. The attack is initialized
when the attack contract is published in block e0. Block tem-
plates are published as transactions in the funding cryp-
tocurrency and refer to blocks in the target cryptocurrency.
It is possible to include more than one block template in a
single block, as shown in e3. The payouts are performed in
block eT . The colored blocks are rewarded by the attack con-
tract, either only with their original value (reward + free =
1) or with an additional 1 + ϵ if the attack was successful.

6.2 Evaluation
6.2.1 Evaluation with Rational Miners Only (ω = 1): We assume a
scenario where all miners act rationally, i.e., are bribable, and have
instant knowledge of the attack once the smart contract has been
initialized. As previously outlined, the attacker locks up a bribe
per submitted block template, to ensure miners face no payout risk
and are incentivized to join the attack. For an attack duration of
N blocks, we can derive the necessary financial resources (budget)
for Blofeld in Ether (fB) required for this attack by evaluating the
worst case scenario, i.e., the attack runs for N blocks but is still
unsuccessful. Note that, N is only known to the attacker.
Necessary attack budget and costs of a failed attack: The bud-
get of the attack contract must cover and compensate all lost re-
wards for every Bitcoin attack chain block in Ether5 in case the
attack fails. The initial funds of the attacker fB , as well as the ex-
pected reward per Bitcoin block rb (including fees)6, define the
maximum duration of the attack N in terms of attack chain blocks

5For simplicity we assume a fixed exchange rate between cryptocurrencies.
6In a concrete attack rb is not constant, but given by the coinbase output values of
every submitted block.

Preprint, 2019-07-02,

that can be compensated:

N =

⌊
fB − coperational

rb

⌋
(1)

fB = cfail = N · rb + coperational (2)

Thereby, coperational specifies the operational costs for smart con-
tract deployment and execution (e.g., gas costs on Ethereum). Com-
pared to the current block rewards, the operational costs for man-
aging the smart contract are negligible given the measurements
in [23] and Appendix G.1. Assume an attacker wants to specify the
transaction ordering and/or exclusion in Bitcoin for the duration
of one hour i.e., N = 6. A lower bound for the budget of the at-
tacker fB can thus be derived by the current block reward including
fees: rb = 14 BTC, yielding ≈ 84 BTC as a lower bound for the
budget.
Costs of a successful attack: Interestingly, the lower bound of
the budget is only required to cover potential losses if the attack
fails, but if the attack is successful the attacker earns the block
rewards on the main chain, thereby compensating the rewards he
has to pay to the bribed miners. The costs for a successful attack
are thus given by N · rb main chain blocks, whereas rewards must
be paid for N · (rb + ϵ) block templates:

csuccess = N · (rb + ϵ) + coperational − (N · rb) (3)
= N · ϵ + coperational (4)

Since we assume rational miners, the attack in this scenario is
always successful iff ϵ > 0. For a successful attack to be profitable,
the amount gained from ordering or transaction withholding va
must exceed csuccess .

At a first glance, given that the attacker must pay collaborating
miners regardless of the outcome of the attack, one may assume
that the costs faced by the attacker are high compared to other
bribing schemes. However, this ensures miners face no risk from
participation – requiring only a low bribe value ϵ to incentivize
sufficient participation for a successful attack, contrary to existing
bribing attacks.

6.2.2 Evaluation with Altruistic Miners (ω+β = 1): Wenow discuss
a more realistic scenario where not all miners switch to the attack
chain immediately, i.e., some of them act altruistically. Altruistic
miners follow the protocol rules and only switch to the attack chain
if it becomes the longest chain in the network – but do not attempt
to optimize their revenue, contrary to economically rational or
bribable miners7.

Blocks of altruistic miners are likely to also include transac-
tions and transaction orderings that are undesirable to the attacker.
Therefore, blocks of such miners may have to be excluded by the
attacker, i.e., by providing templates which intentionally fork away
these blocks. If altruistic miners find a block, the attacker and col-
luding miners must mine two blocks for the attack chain to become
the longest chain – which altruistic miners will then follow. Hence,
the depth of the necessary fork is equal to 1.

We derive the probability of the attack chain to win a race against
altruistic miners, based on the budget of the attacker. The attack
chain must find two blocks more than the altruistic main chain – but
7Another explanation can be that some miners have imperfect information, which
might be the case in practice.

Figure 2: The probability of catching up one block on the y-
axis (log scale) within N blocks on the x-axis for different
hashrates ω. The dashed line is the maximum probability to
catch-up one block after an unlimited number (N = ∞) of
blocks i.e., (ωβ)

2.

must achieve this within the upper bound of N blocks (maximum
funded attack duration). Each new block is appended to the main
chain with probability β , and to the attack chain with probability
ω respectively (β + ω = 1). We therefore seek all possible series
of blocks being appended to either chain, and calculate the sum
of the probabilities of the series which lead to a successful attack.
In a successful series i ∈ N blocks are added to the main chain
and k + i + 1 blocks are added to the attack chain. The probability
for a such series is:

ωk+i+1 · βi (5)

Observe a series of a successful attack with i blocks added to the
main chain and k + i + 1 blocks added to the attack chain. For any
prefix strictly shorter than thewhole series, the number of appended
blocks to the attack chain is smaller than k + 1, as otherwise the
attack would have ended sooner. It follows that the last block in
a successful attack is always appended to the attack chain.The
number of combinations for a such series is derived similarly to the
Catalan number, with a difference of k for the starting point:((

k + 2i
i

)
−
(
k + 2i
i − 1

))
(6)

Assuming the attacker can only fund up to N blocks on the
attack chain, the probability of a successful attack is hence given
by:

i≤N−k−1∑
i=0

((
k + 2i

i

)
−
(
k + 2i
i − 1

))
· ωk+i+1 · βi (7)

Figure 2 outlines the probability of catching up one block for differ-
ent hash rates ofω. It can be observed thatN quickly approaches the
maximum achievable probability of catching up one block within
an unlimited number of blocks i.e., (ωβ)

2 according to [25, 28]. Based
on these calculations, the attacker can decide whether or not to
extend the attack period and increase N to win an ongoing race
with a higher probability.

Pay-To-Win:
Incentive Attacks on Proof-of-Work Cryptocurrencies Preprint, 2019-07-02,

6.3 Properties and analysis
We now analyze important properties of this approach.

Counter attack: Themost effective countermeasure against trans-
action exclusion is to increase the fee of txV such that it surpasses
the value promised by the attack contract. The benefit of this attack
though, is that it can be executed out-of-band. Thereby, the attack
is rendered more stealthy to victims, who may only monitor the
target cryptocurrency. It can hence be argued that counter attacks
by victims are harder to execute as they are not immediately aware
of the bribing value that is being bet against them on the funding
cryptocurrency.

Transaction censorship DoS:. In this section we consider Bitcoin
as a target, however in principle the attack is also applicable to
other types of cryptocurrencies. (Quasi) Turing complete smart
contract capable cryptocurrencies are arguably more resistant to
censorship than Bitcoin’s more limited UTXO (unspent transaction
output) model, as they allow for complex and diverse interaction
patterns that can trigger state changes.

We assume, for the remainder of this discussion, that transaction
censorship should take place within Ethereum as a target cryptocur-
rency. Then, even if transactions or their respective side effects can
be accurately identified and agreed upon all miners as unwanted
behaviour, there exists the possibility of denial-of-service attacks
that can be launched by the victim in such a case. The effects of a
transaction can be proxied through multiple layers of smart con-
tract invocations and interactions. Hereby, the problem arises that
miners may only learn of the unwanted behavior of a transaction
by first evaluating its state changes. If the resulting behavior is to
be censored, miners have to roll back all changes and cannot collect
transaction fees for their efforts. Therefore, the attacker can waste
the resources of every censoring miner without a loss of funds.

It is impossible to directly overcome this issue without changing
the consensus rules, however by basing the attack on block tem-
plates (as described in this section), the problem is shifted away
from the collaborating rational miners toward the attacker. Hereby,
the attacker may choose to only include simple transactions for
which he is certain that they cannot hide any unwanted activity
e.g., all value transfer transactions, calls to known contracts such
as ERC20 Tokens etc.

Liveness: In general, the liveness of chain relays in general de-
pends upon the submission of new blocks to advance their state.
Therefore, if the relay starves through a lack of submitted blocks -
long range attacks have a higher chance to succeed, as attackers
gain additional time to compute long fake chains. The likelihood
that attacks are performed on starving chain relays is dependent
on the funds at stake.

In our concrete example instantiation, liveness is less of an issue
as the duration of the attack is finite and well defined. Moreover,
involved actors have an incentive to feed the correct information to
the relay in a timely fashion. Consider, for example, a rational miner
R who mined a block template for b ′3. Then R has an incentive to
submit the solution to the PoW for this template timely, since he is
competing with other rational miners for the offered rewards and
bribe. As the additional bribe is only payed if the attack is successful,
this further incentivizes rational miners to publish solutions timely.

Moreover, in this scenario the attacker can, at any stage, cease
publishing new block templates to reduce his losses in case the
attack appears likely to fail.

7 TRANSACTION REVISION OUT-OF-BAND
The purpose of this attack is to bribe miners into creating blocks
on the blockchain branch of a target cryptocurrency favored by
an attacker, who executes a double-spend. The novelty of the at-
tack stems from three aspects: (i) The funds used for rewarding
dishonest behaviour and collaboration during a double-spending
attack are paid on a funding cryptocurrency and not the target cryp-
tocurrency itself. (ii) By utilizing a smart contract on the funding
cryptocurrency as a platform for our attack, we are able to minimize
trust assumptions for the attacker, as well as the risk for miners
joining the attack: collaborating miners do not have to trust the
attacker to receive their bribes. Instead, the attack smart contract
ensures bribed miners receive their payments, even if the attack
fails, making the attack cheaper than comparable bribing attacks.
(iii) Additionally, the usage of smart contracts also opens up the
possibility to crowdfund and/or combine multiple double-spending
attempts into a single coordinated attack, which further reduces
the costs or participants.

7.1 Description
Figure 3 shows the stages and two different outcomes of the attack.
Initialization phase. First the attacker (Blofeld) creates the unini-
tialized attack contract and publishes it on the Ethereum blockchain.
This is done with a deploy transaction included in some Ethereum
block e0 from an Ethereum account controlled by the attacker. Then,
Blofeld creates a conflicting pair of Bitcoin transactions. The spend-
ing transaction txB is published on the main chain in Bitcoin im-
mediately, and the double-spending transaction tx ′B is kept secret.
After the confirmation period of k blocks, defined by the victim, has
passed on the Bitcoin main chain, Blofeld releases an initialization
transaction which irrevocably defines the conditions of the attack in
the smart contract on the Ethereum chain. The block e1 represents
the first block on the Ethereum chain after the Bitcoin block bk has
been published.

The contract is initialized with k+1 new Bitcoin block templates,
each carrying the transactions from the original chain to collect the
fee, but instead of txA the conflicting transaction tx ′B is included.
Collaborating miners are now free to mine on these block templates,
where they are allowed to change the nonce and the coinbase field
to find a valid PoW and include their payout Ethereum address.
Once a solution has been found, it has to be submitted by the
miner to the attack contract, which verifies the correctness of the
PoW and that only allowed fields (nonce and coinbase) have been
changed. If the submitted solution is valid, the contract knows
which previous block hash to use to verify the next solution and so
forth. As soon as the attacker becomes aware that a valid solution
was broadcasted in the Ethereum P2P network, he uses the PoW
solution to complete the whole block and submits it to the Bitcoin
P2P network. The attacker and the collaborating miners have an
incentive to submit solutions timely. The collaborating miners want
to collect an additional bribe ϵ in case the attack succeeds, and the

Preprint, 2019-07-02,

Ethereum block
Zero or more blocks in between

Bitcoin block Rewarded blockBlock not yet mined

out-of-band tx revision attack:

Failed:

Ongoing:

b0 b'1 b'2

e0 e1

b'k b'k+1 b'k+2 b'N

init

target chain
(B

itcoin)
funding chain
(E

thereum
)

b1 b2 bk bk+1

b0 b'1 b'2

e0

b'k b'k+1 b'k+2 b'N

init

b1 b2 bk bk+1 bTbk+2 bN

eT

pay

1 1 11

b0 b'1 b'2

e0

b'k b'k+1 b'k+2 b'N

init

b1 b2 bk bk+1 bk+2

eT

pay

Successful:
1 1 1

b'T

e2

1+ϵ 1+ϵ 1+ϵ 1+ϵ 1+ϵ

update

deploy

e1

deploy

e1

deploy

Figure 3: Blockchain structure and example timeline of a tx
revision attack with out-of-band payment. The attack con-
tract can be deployed before the actual attack starts. After k
blocks on the target chain have passed, the attack contract
is initialized with k + 1 block templates. The double-spend
transaction(s) are included in block b ′1. The payouts are per-
formed in block eT . The colored blocks are rewarded by the
attack contract, either with their original value (reward +
free) or with an additional 1 + ϵ if the attack was successful.
If the attack succeeds, the first k blocks on the Bitcoin main
chain also have to be compensated to provide an incentive
for the respective miners to also mine on the attack chain.

attacker wants to get his blocks included in the Bitcoin main chain
to receive the Bitcoin block rewards.

It is also possible to deploy and initialize the attack contract
at the same time, but publishing an uninitialized attack contract
upfront in a deploy transaction has the advantage that an attack
on the target chain could also be crowdfunded before it even has
started (see below). In any case, it is important that the double-
spend transaction tx ′B is disclosed after block bk on the main chain,
as otherwise Alice may recognize the double-spending attack and
refuse to release the goods.
Attack phase: Bribed miners now proceed to mine k + 1 blocks
on the attack chain. If additional blocks are found on the main
chain, the attacker can update the attack contract with new block
templates for blocks k + 2 to N , where N is the maximum number
of attack blocks that can be funded by the adversary.

Payout phase: Once the attack has ended at time T , the miners
which joined the attack can collect their bribes from the contract.
To accurately pay out bribes, the contract has to determine which
chain in Bitcoin has won the race and is now the longest chain.
Since collaborating miners are competing for mined blocks, the
contract should have received all attack chain block b ′x by them and
hence know exactly the state of the attack branch. Additionally, the
attacker who initialized the contract and provided the funds has an
incentive to feed the main chain, if such a conflicting longer chain
exists, since he would pay an additional ϵ for every block otherwise.
Therefore there is always some actor who has an incentive to feed
the correct longest chain to the attack contract.

The attack contract distinguishes between the two possible out-
comes:

• Attack fails (Main chain wins). In this case the contract must
fully compensate the bribed miners for their attack chain
blocks, which are now stale. Every collaborating miner who
mined and successfully submitted a block on the attack chain
receives the reward for that block without an additional ϵ .

• Attack succeeds (Attack chain wins). If the attack chain wins,
then the contract executes the following actions: 1) Fully
(reward + fees = 1) compensate the miners of k main chain
blocks starting from b1 to provide an initial motivation also
for them to switch to the attack chain. 2) Pay the miner of
every attack chain block, b ′1 to b

′
k+2 in our example, the full

block reward plus an additional ϵ as a bribe.

Upon being invoked with a miner’s cash-out transaction, the
contract checks if the attack has already finished and a valid chain
up to a predefined block height bT is known. This ensures that
every participant had enough time to submit information about the
longest Bitcoin chain to the contract and that the blocks b1 to bN
have received sufficient confirmations according to an acceptance
policy logarithmic in the chain’s length as specified in [30]. If the
acceptance policy is fulfilled, the contract unlocks the payment of
compensations and rewards to the miners of the associated blocks.

For blocks on the attack chain, in the simplest case all bribed
miners directly provide Ethereum addresses in the coinbase fields
or disclose their public keys directly via pay-to-pubkey outputs in
the coinbase transaction in Bitcoin, as described and implemented
in the Goldfinger attack example in [23]. For the first k main chain
blocks, where miners were not yet aware of the attack, they must
prove to the contract that they indeed mined the respective block(s).
This can be achieved, e.g. by providing the ECDSA public keys
corresponding to the payouts in the respective coinbase outputs
to the smart contract such that it can check if they match and the
then recompute the corresponding Ethereum addresses.
Crowdfunding. The attack described above also opens up the
possibility to be crowdfunded. The simplest crowdfunding approach
would be to allow the donation of funds after the attack contract
has been deployed, but before it is initialized. This methods allows
to collect funds but does not offer any guarantees for the backers.

A solution which incentivizes multiple attackers to perform
double-spending attacks concurrently would allow to split the funds
for the attack among the collaborators. The main challenges that
have to be solved in such a scenario are as follows:

Pay-To-Win:
Incentive Attacks on Proof-of-Work Cryptocurrencies Preprint, 2019-07-02,

• It has to be ensured that every collaborating attacker, who
invests funds to achieve a double-spend attack indeed has
some chance that his individual double-spend is successful
i.e., if the invested value is used by the contract, then a
double-spend attack has to be performed.

• It has to be ensured that the attack cannot be poisoned by
collaborating attackers such that they are able to sabotage
the whole attack for all participants i.e., it should not be
possible for a participant to cause the attack to fail.

• The attack should not rely on any trusted third party

The details of how such an attack can be constructed on Ethereum
as a funding cryptocurrency and Bitcoin as a target cryptocurrency
are given in the appendix F. On a high level, the stages of the attack
are as follows. First, the initialization transaction only announces
that an attack might happen and the block interval from b1 to bk
whichwill be affected. Then, all Bitcoin users which have performed
transactions in block b1 can decide if to invest into the attack to
potentially double-spend their transaction. The collaborating at-
tackers, further referred to as backers, submit the new transaction
to the contract together with some ether to increase the overall
funds fB of the attack. An attacker can also specify a fixed rate
of funds he wants to collect depending on the overall value of the
submitted Bitcoin transaction which should be double-spent.

If the funding goal of reverting at least k + 1 blocks has been
reached, the attack starts as previously described. Since the attacker
who initialized the contract has to take care of producing the new
blocks for the chain containing the double-spend transactions, some
method has to be implemented that the transactions of other attack-
ers are assured to get included in b ′1. In the appendix F we describe
a method which requires a collateral from the original attacker as
high as the funds he wants to collect i.e., fB . Thereby, it can be
ensured that the other attackers only pay if their transaction was
really included in the new chain in block b ′1 – which can be proven
to a smart contract. Otherwise they are refunded from the collateral
submitted by the initial attacker.

7.2 Evaluation
Analogous to our evaluation in section 6 we now proceed to eval-
uate the success probability, as well as the costs incurred in the
attack. We again distinguish between two cases: (i) we evaluate
the attack under the assumption that only rational miners exist
and then (ii) relieve this assumption and consider a scenario with
altruistic miners.

7.2.1 Evaluation with Rational Miners Only ω = 1: A lower bound
for the required funds of the attacker(s) fB can be derived analogous
to the evaluation in section 6 when adjusting for k as the security
parameter defined by the victim of the attack.
Necessary attack budget and costs of a failed attack: The min-
imum number of blocks on the attack chain in a successful attack
is k + 1 i.e., the number of confirmations required on the main
chain, plus one to exceed the main chain’s length. A lower bound
for the budget of the attacker fB can thus be derived due to the
condition N ≥ k + 1 which has to hold for an attack to be feasible.
For Bitcoin, a common choice of k = 6 and the current block reward,
including fees, is approximately rb = 14 providing a lower bound

for the budget of ≈ 98 BTC s.t. the following inequality holds:
fB
rb
> k (8)

Costs and profitability of a successful attack: Again, the lower
bound of the budget is only required to cover potential losses if the
attack fails. However, if it is successful the attack it is cheaper than
this lower bound. The costs for a successful attack are given by the
k · rb main chain blocks that have to be compensated on the attack
chain plus the additional N · ϵ bribes.

csuccess = k · rb + N · ϵ + coperational (9)

The initial k compensations are necessary to provide the same
incentive for all miners that have already produced blocks on the
main chain to switch to the attack chain. Since we assume rational
miners, the attack in this scenario is always successful iff N ≥ k + 1
holds and ϵ > 0. For Bitcoin, this means that the costs of a successful
double spend with k = 6 and rb = 14 and ϵ = 0.0001 are ≈ 84.0007
BTC. For a successful attack to be profitable, the value of the double-
spendvd has to be greater than the value used for bribing. In Bitcoin
transactions carrying more than 84 BTC are observed regularly8.
This further highlights the dependence of transaction volume to
confirmation time as also stated in [30].

7.2.2 Evaluation with Altruistic Miners ω + β = 1: Figure 4 shows
the attack success probability of the attack for different values of
the portion of the hash rate which can be bribed ω, as well as
different amounts of blocks N these bribed miners can be rewarded
or compensated for. The number of confirmation blocks on the
main chain after which the attack starts is set to k = 6. Clearly, the
attack requires N > k to have a chance of being successful. As with
the classical 51% attack, the attack eventually succeeds once the
bribable hash rate is above the 50% threshold and the number of
payable blocks N grows.

Figure 4: Attack success probability of a double-spending at-
tack depending on the amount of blocks that can be compen-
sated/rewarded N in a bribing attack. Different amounts for
the hash rate ω of bribed miners are given. The number of
confirmation blocks k is set to 6.

Given these probabilities we can calculate the required number
of blocks N we need to reach a success probability of 99.4% given
8cf. https://www.blockchain.com/btc/largest-recent-transactions

https://www.blockchain.com/btc/largest-recent-transactions

Preprint, 2019-07-02,

values for k and ω. Table 2 shows a comparison against the whale
attack described in [21]. It can be observed that in contrast to the
whale attack, our attack becomes cheaper whenω grows large since
we faster reach the required probability and therefore have to pay
less bribes. Moreover, the costs of our attack if it succeeds are lower
than the budget (fB) required to be available at the beginning of
the attack to compensate all bribed miners if the attack would fail.
Thereby, we are between ≈ 85% and ≈ 95% cheaper than the whale
attack.

ω whale costs P2W budget
fB

% whale P2W costs
csuccess

% whale N

0.532 2.93e+23 7305 0.00 577 0.00 487
0.670 999.79 600 60.01 130 13.00 40
0.764 768.09 330 42.96 112 14.58 22
0.828 1265.14 240 18.97 106 8.38 16
0.887 1205.00 195 16.18 103 8.55 13
0.931 1806.67 165 9.13 101 5.59 11
0.968 2178.58 135 6.20 99 4.54 9
0.999 2598.64 120 4.62 98 3.77 8

Table 2: Comparison of attack costs of the whale attack [21]
against our attack for k = 6 and a success probability of 99.4%
(due to floating point precision). For the calculations we set
rb = 15 and defined the additional bribing value ϵ = 1 to
account for all operational costs. Costs and budget in BTC.

7.2.3 Available funds: With the possibility to crowdfund attacks,
theoretically also double-spends of low value transactions could be
made feasible if they together accumulate enough attack funds (fB).
The discrepancy between the value transferred in one Bitcoin block
and the rewards (including fees) distributed for mining one Bitcoin
block, show that the funds for long range double-spending attacks
using this technique are theoretically available. Over the last year9
the median value of bitcoins transacted per day (excluding change
addresses) is approximately 1 billion USD, whereas the median
mining reward per day including transactions fees is approximately
15 million USD.

7.3 Properties and Analysis
The properties of this attack are comparable to the previous out-
of-band attack described in section 6. Additionally, the following
aspects require some more discussion in context of this attack.

Counter bribing: As already outlined in the previous sections,
counter bribing is a viable strategy for the victim against incen-
tive attacks. This also illustrates an important aspect of incentive
attacks, namely their visibility. On the one hand, miners of the
target cryptocurrency have to recognize that an attack is going on,
otherwise they wont be able to join it to receive bribes and the
attack would fail. On the other hand, if the victims of the attack
recognize its existence, they can initiate and coordinate a counter
bribing attack. So the optimal conditions for incentive attacks were
to arise if all rational miners have been informed directly about the
attack, while all victims/merchants are not miners themselves and
do not monitor all possible funding cryptocurrencies to check if an
attack is going on.
9Numbers retrieved from https://www.blockchain.com/charts

Cost optimization: The biggest cost driver in the proposed attack
is the compensation of k main chain blocks to provide an incentive
for all rational miners to switch to the attack chain. In a blockchain
with where every block is uniquely attributable to a set of known
miners, and where also the overall hashrate of those miners can
be approximated, the payout of compensations can be further op-
timized in various ways. Consider for example a scenario where
a small miner, compared to the other miners, is lucky and mines
several block within k . Then the attacker can exclude this miner
from the payout of compensations since it is unlikely that he will
substantially contribute to the attack chain.

8 DISCUSSION
Through our comprehensive systematization of incentive attacks
we are able to highlight unconsidered attack types and present
new and improved techniques that address several of these open
questions.

Hereby, the body of research on incentive attacks demonstrates
that not only the hash rate distribution among permissionless PoW
based cryptocurrencies plays a central role in defining their under-
lying security guarantees. The ratio of rational miners and available
funds for performing bribes also form a key component that de-
mands further study. Our out-of-band attacks also help to highlight
that being able to cryptographically interlink cryptocurrencies in-
creases their attack surface.

In our quest for devising trustless out-of-band attacks an inter-
esting analogy is also revealed: At an abstract level,the presented
attacks require a construction not unlike a mining pool, where the
pool owner defines rules for block creation within a smart contract.
Moreover, every participant must be able to claim his promised
funds in a trustless fashion, based on the submitted blocks and the
state of the targeted cryptocurrency. Our ephemeral mining relay
provides exactly this functionality. Luu et al. [22] also proposes
a mining pool (Smart pool) which itself is managed by a smart
contract. However, its design and potential applications did not
consider use-cases with malicious intent. Smart pool does not en-
force any properties regarding the content and validity of a block
beyond a valid PoW, as the intrinsic incentive among participants
is assumed to collect the respective reward in the mined cryptocur-
rency, which is only possible if valid blocks have been created.

Smart contract based incentive attacks also introduce the pos-
sibility of trustless crowdfunding and alignment of interests for
multiple attackers, who want to perform double-spends during the
same time period. Together with the topic of counter bribing, new
research directions are shown that raise fundamental questions on
the incentive compatibility of Nakamoto consensus.

An interesting topic that was left unexplored is the idea of em-
ploying incentive attack techniques to encourage desirable rather
than malicious behavior in mining entities and protocol partici-
pants, e.g. for quickly reaching a majority during protocol upgrade
phases.

9 CONCLUSION
The systematization of incentive attacks presented in this paper
forms a necessary prerequisite and basis for the comparison and
discussion of related work. We close some of the hereby identified

https://www.blockchain.com/charts

Pay-To-Win:
Incentive Attacks on Proof-of-Work Cryptocurrencies Preprint, 2019-07-02,

research gaps by describing and evaluating three new trustless
incentive attacks that achieve new characteristics and are rendered
cheaper than previous approaches.

Our contributions underline that incentive attacks on cryptocur-
rencies remain an open and highly relevant research topic with a
variety of unexplored areas.

All previously proposed, and in-the-wild observed incentive at-
tacks, as well as the attacks described in this paper, indicate that the
security properties of permissionless PoW based cryptocurrencies
are not accurately reflected by assuming only honest and Byzan-
tine actors. As soon as rational players are considered, interesting
questions arise whether or not the incentive structures of prevalent
cryptocurrencies actually encourage desirable outcomes. Addition-
ally, in a world where multiple cryptocurrencies coexist, it is likely
not sufficient to model them individually as closed systems.

Further game theoretic modeling and analysis of incentive at-
tacks as well as their complex cross-chain interactions is necessary
to more accurately assess risks and security guarantees.

REFERENCES
[1] [n.d.]. Average Number Of Transactions Per Block. https://www.blockchain.

com/en/charts/n-transactions-per-block. Accessed 2019-05-10.
[2] [n.d.]. BTC Relay. https://github.com/ethereum/btcrelay. Accessed 2018-04-17.
[3] [n.d.]. CoinMarketCap: Cryptocurrency Market Capitalizations. https://

coinmarketcap.com/. Accessed 2019-05-10.
[4] [n.d.]. Replace by Fee. https://en.bitcoin.it/wiki/Replace_by_fee. Accessed

2019-05-11.
[5] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-

Philippe Martin, and Carl Porth. 2005. BAR fault tolerance for coopera-
tive services. In ACM SIGOPS operating systems review, Vol. 39. ACM, 45–
58. http://www.dcc.fc.up.pt/~Ines/aulas/1314/SDM/papers/BAR%20Fault%
20Tolerance%20for%20Cooperative%20Services%20-%20UIUC.pdf

[6] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,
Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. 2014. Enabling
blockchain innovations with pegged sidechains. http://newspaper23.com/ripped/
2014/11/http-_____-___-_www___-blockstream___-com__-_sidechains.pdf Ac-
cessed: 2016-07-05.

[7] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2012. From ex-
tractable collision resistance to succinct non-interactive arguments of knowledge,
and back again. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference. ACM, 326–349.

[8] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recur-
sive composition and bootstrapping for SNARKs and proof-carrying data. In
Proceedings of the forty-fifth annual ACM symposium on Theory of computing.
ACM, 111–120.

[9] Joseph Bonneau. 2016. Why buy when you can rent? Bribery attacks on Bit-
coin consensus. In BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin and
Blockchain Research. http://fc16.ifca.ai/bitcoin/papers/Bon16b.pdf

[10] Joseph Bonneau. 2018. Hostile blockchain takeovers (short paper). In 5th Work-
shop on Bitcoin and Blockchain Research, Financial Cryptography and Data Security
18 (FC). Springer. http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final17.pdf

[11] Vitalik Buterin. 2016. Chain Interoperability. https://static1.squarespace.com/
static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/
Chain+Interoperability.pdf Accessed: 2017-03-25.

[12] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. 2019. Flash Boys 2.0: Frontrunning, Transac-
tion Reordering, and Consensus Instability in Decentralized Exchanges. arXiv
preprint arXiv:1904.05234. https://arxiv.org/pdf/1904.05234.pdf

[13] Christian Decker and Roger Wattenhofer. 2015. A fast and scalable payment
network with bitcoin duplex micropayment channels. In Symposium on Self-
Stabilizing Systems. Springer, 3–18.

[14] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. 2019. SoK:
Transparent Dishonesty: front-running attacks on Blockchain. arXiv preprint
arXiv:1902.05164. https://arxiv.org/pdf/1902.05164.pdf

[15] Uriel Feige, Amos Fiat, and Adi Shamir. 1988. Zero-knowledge proofs of identity.
Journal of cryptology 1, 2 (1988), 77–94.

[16] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The bitcoin backbone
protocol: Analysis and applications. In Advances in Cryptology-EUROCRYPT
2015. Springer, 281–310. http://courses.cs.washington.edu/courses/cse454/15wi/
papers/bitcoin-765.pdf

[17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2016. The Bitcoin Backbone
Protocol with Chains of Variable Difficulty. http://eprint.iacr.org/2016/1048.pdf
Accessed: 2017-02-06.

[18] Aljosha Judmayer, Nicholas Stifter, Philipp Schindler, and Edgar Weippl.
2018. Pitchforks in Cryptocurrencies: Enforcing rule changes through of-
fensive forking- and consensus techniques (Short Paper). In CBT’18: Pro-
ceedings of the International Workshop on Cryptocurrencies and Blockchain
Technology. https://www.sba-research.org/wp-content/uploads/2018/09/
judmayer2018pitchfork_2018-09-05.pdf

[19] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena.
2018. Exploiting The Laws of Order in Smart Contracts. arXiv:1810.11605.
https://arxiv.org/pdf/1810.11605.pdf

[20] Harry C Li, Allen Clement, Edmund L Wong, Jeff Napper, Indrajit Roy, Lorenzo
Alvisi, and Michael Dahlin. 2006. BAR gossip. In Proceedings of the 7th symposium
on Operating systems design and implementation. USENIX Association, 191–204.
http://www.cs.utexas.edu/users/dahlin/papers/bar-gossip-apr-2006.pdf

[21] Kevin Liao and Jonathan Katz. 2017. Incentivizing blockchain forks via whale
transactions. In International Conference on Financial Cryptography and Data
Security. Springer, 264–279. http://www.cs.umd.edu/~jkatz/papers/whale-txs.pdf

[22] Loi Luu, Yaron Velner, Jason Teutsch, and Prateek Saxena. 2017. SMART POOL
: Practical Decentralized Pooled Mining. http://eprint.iacr.org/2017/019.pdf
Accessed: 2017-03-22.

[23] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. 2018. Smart Contracts
for Bribing Miners. In 5th Workshop on Bitcoin and Blockchain Research, Financial
Cryptography and Data Security 18 (FC). Springer. http://fc18.ifca.ai/bitcoin/
papers/bitcoin18-final14.pdf

[24] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. 2017.
Sprites: Payment Channels that Go Faster than Lightning. https://arxiv.org/pdf/
1702.05812.pdf Accessed: 2017-03-22.

[25] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. https:
//bitcoin.org/bitcoin.pdf Accessed: 2015-07-01.

[26] Rafael Pass, Lior Seeman, and abhi shelat. 2016. Analysis of the Blockchain Pro-
tocol in Asynchronous Networks. http://eprint.iacr.org/2016/454.pdf Accessed:
2016-08-01.

[27] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network. https:
//lightning.network/lightning-network-paper.pdf Accessed: 2016-07-07.

[28] M. Rosenfeld. 2014. Analysis of Hashrate-Based Double Spending. https:
//arxiv.org/pdf/1402.2009.pdf Accessed: 2016-03-09.

[29] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018. Temporal Properties of
Smart Contracts. In Leveraging Applications of Formal Methods, Verification and
Validation. Industrial Practice - 8th International Symposium, ISoLA 2018, Limassol,
Cyprus, November 5-9, 2018, Proceedings, Part IV. 323–338. https://ilyasergey.net/
papers/temporal-isola18.pdf

[30] Yonatan Sompolinsky and Aviv Zohar. 2016. Bitcoin’s Security Model Revisited.
http://arxiv.org/pdf/1605.09193.pdf Accessed: 2016-07-04.

[31] Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Alexei Zamyatin, and Edgar
Weippl. 2018. Agreement with Satoshi - On the Formalization of Nakamoto
Consensus. Cryptology ePrint Archive, Report 2018/400. https://eprint.iacr.org/
2018/400.pdf

[32] Jason Teutsch, Sanjay Jain, and Prateek Saxena. 2016. When cryptocurrencies
mine their own business. In Financial Cryptography and Data Security (FC 2016).
https://www.comp.nus.edu.sg/~prateeks/papers/38Attack.pdf

[33] Itay Tsabary and Ittay Eyal. 2018. The gap game. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 713–728.
https://arxiv.org/pdf/1805.05288.pdf

[34] Yaron Velner, Jason Teutsch, and Loi Luu. 2017. Smart contracts make Bitcoin
mining pools vulnerable. In International Conference on Financial Cryptography
and Data Security. Springer, 298–316.

[35] FredrikWinzer, BenjaminHerd, and Sebastian Faust. 2019. Temporary Censorship
Attacks in the Presence of Rational Miners. Cryptology ePrint Archive, Report
2019/748. https://eprint.iacr.org/2019/748

[36] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur
Gervais, and William J. Knottenbelt. 2018. XCLAIM: Trustless, Interoperable
Cryptocurrency-Backed Assets. Cryptology ePrint Archive, Report 2018/643.
https://eprint.iacr.org/2018/643.pdf https://eprint.iacr.org/2018/643.

https://www.blockchain.com/en/charts/n-transactions-per-block
https://www.blockchain.com/en/charts/n-transactions-per-block
https://github.com/ethereum/btcrelay
https://coinmarketcap.com/
https://coinmarketcap.com/
https://en.bitcoin.it/wiki/Replace_by_fee
http://www.dcc.fc.up.pt/~Ines/aulas/1314/SDM/papers/BAR%20Fault%20Tolerance%20for%20Cooperative%20Services%20-%20UIUC.pdf
http://www.dcc.fc.up.pt/~Ines/aulas/1314/SDM/papers/BAR%20Fault%20Tolerance%20for%20Cooperative%20Services%20-%20UIUC.pdf
http://newspaper23.com/ripped/2014/11/http-_____-___-_www___-blockstream___-com__-_sidechains.pdf
http://newspaper23.com/ripped/2014/11/http-_____-___-_www___-blockstream___-com__-_sidechains.pdf
http://fc16.ifca.ai/bitcoin/papers/Bon16b.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final17.pdf
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdf
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdf
https://static1.squarespace.com/static/55f73743e4b051cfcc0b02cf/t/5886800ecd0f68de303349b1/1485209617040/Chain+Interoperability.pdf
https://arxiv.org/pdf/1904.05234.pdf
https://arxiv.org/pdf/1902.05164.pdf
http://courses.cs.washington.edu/courses/cse454/15wi/papers/bitcoin-765.pdf
http://courses.cs.washington.edu/courses/cse454/15wi/papers/bitcoin-765.pdf
http://eprint.iacr.org/2016/1048.pdf
https://www.sba-research.org/wp-content/uploads/2018/09/judmayer2018pitchfork_2018-09-05.pdf
https://www.sba-research.org/wp-content/uploads/2018/09/judmayer2018pitchfork_2018-09-05.pdf
https://arxiv.org/pdf/1810.11605.pdf
http://www.cs.utexas.edu/users/dahlin/papers/bar-gossip-apr-2006.pdf
http://www.cs.umd.edu/~jkatz/papers/whale-txs.pdf
http://eprint.iacr.org/2017/019.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf
https://arxiv.org/pdf/1702.05812.pdf
https://arxiv.org/pdf/1702.05812.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2016/454.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://arxiv.org/pdf/1402.2009.pdf
https://arxiv.org/pdf/1402.2009.pdf
https://ilyasergey.net/papers/temporal-isola18.pdf
https://ilyasergey.net/papers/temporal-isola18.pdf
http://arxiv.org/pdf/1605.09193.pdf
https://eprint.iacr.org/2018/400.pdf
https://eprint.iacr.org/2018/400.pdf
https://www.comp.nus.edu.sg/~prateeks/papers/38Attack.pdf
https://arxiv.org/pdf/1805.05288.pdf
https://eprint.iacr.org/2019/748
https://eprint.iacr.org/2018/643.pdf
https://eprint.iacr.org/2018/643

Preprint, 2019-07-02,

A VARIABLES AND SYMBOLS
Used variables and symbols in accordance to [34].

Symbol Description

α Hash rate of the attacker
β Hash rate of all honest miners that are not bribable
ω Hash rate of all rational i.e., bribable miners ω =

1 − (α + β) and each mining entity i controls ωi
such that ω =

∑k
i=1 ωi

ωm Hashrate of some rational mining entity, which
evaluates the profitability of accepting bribes.

ωα Estimated hashrate of rational mining entities
which will accept bribes and follow the attackers
strategy.

Table 3: Variables and symbols related to hashrate.

Symbol Description

k Number of confirmation blocks till block is consid-
ered as confirmed by the actor which depends on
the respective scenario. This could be either the
attacker or the victim.

l The length of the attacker chain since the block
causing the fork.

N Maximum length of the attack chain during the
attack.

ex Some funding chain block at (relative) height x . In
our examples the funding chain is considered to be
Ethereum. The notation ex > ey specifies that ex
has been mined after block ey i.e., ex has a higher
blockheight.

bx Some target chain block at (relative) height x . In
our examples the target chain is considered to be
Bitcoin. The notation bx > by specifies that bx
has been mined after block by i.e., bx has a higher
blockheight.

Table 4: Variables and symbols related to blockchain me-
chanics.

Symbol Description

B The attacker that wants to execute the double-
spending attack

V The victim or merchant, e.g., the actor who would
lose money if the double-spending attack is suc-
cessful

B1,B2, ...,Bx Addresses/accounts that are under the control of
the attacker

V1,V2, ...,Vx Address/accounts that is under the control of the
victim

txV , txB , tx
′
B , Transactions: i.e., transaction of the victim, trans-

action of the attacker, conflicting transaction of the
attacker.

f ee(txV) Function that returns the fee of given transaction
e.g., txV

fB Initial funds of the attacker
re , rb Funds equivalent to one block reward (including

fees)
ϵ Additional reward paid for a block on the attack

chain. The total reward for a block on the attack
chain received by a bribed miner hence is rb + ϵ

ρ Profit of the attacker
v,vd , ... Value, e.g., value of the double-spend transaction
csuccess Total costs of a successful pay-2-win attack
cbudget Total costs of a failed pay-2-win attack, must be

equal to fA.
coperational Total operational costs for smart contract deploy-

ment and gas
ccounter Total operational costs to launch a counter bribing

attack e.g., transaction fees, gas, etc.

Table 5: Variables and symbols related to actors and costs.

B DETAILS AND IMPLEMENTATION OF TX
ORDERING IN-BAND

There are two methods which allow to implement verification of
transaction ordering in Ethereum. The first method only relies on
proofs over the transaction trie of a given block to verify the desired
transaction ordering. The second method tries to verify the desired
state.

B.1 Verify transaction ordering
This methods works via a transaction trie inclusion proof provided
to the attack smart contract. Since the key in the trie is the index of
the transaction in the block and the value is the transaction hash,
the ordering of any two or more transaction can easily be proven
to a smart contract in retrospect.

B.1.1 Properties and analysis: The advantage of this approach is
that it is easy to implement but it has some drawbacks. First, the
transaction hashes of the involved target transactions txV might

Pay-To-Win:
Incentive Attacks on Proof-of-Work Cryptocurrencies Preprint, 2019-07-02,

change e.g., if a transaction was updated via replace by fee or a com-
pletely different but conflicting transaction form the same address
with the same nonce has been issued tx ′V . This case is not much of
an issue since the original transaction txV is still valid an can be
included by a complacent rational miner.

A problem arises if the victim publishes another transaction
tx ′′V from a different account which has not been included in the
initialization of the attack contract. This transaction might be se-
mantically equivalent to txV , e.g., it would register the same name
in sENS, but is not covered in the attack condition of the contract.
Thus, a naive contract only working with transaction hashes of
known transaction can be fooled by a victim to pay out bribes al-
though the attack was not successful because tx ′′V has been included
before txB and just txV has been included after txB .

B.2 Verify operation on certain state
This approach addresses the issue of interfering transactions men-
tioned in the previous section. Thereby, two general approaches
exists: i) Runtime check: The attack contract checks if it is operat-
ing on the correct world state directly before even performing the
attack e.g., check if the name it wants to register is available. If
the attack contract would encounter an error while performing an
attack it could prevent any future payouts of bribes. ii) Retrospective
check: It is proven to the attack contract in retrospect hat it has
successfully operated on the correct workd-/smart contract state
before any funds are unlocked.

B.2.1 Retrospective check: Up to Ethereum EIP-150 revision the
transaction receipt also contained the post-transaction state Rσ . 10
This would have allowed to prove to the attack contract the state
before any transaction as well as the state after a specific transaction.
Unfortunately the post-transaction state was removed from the
transaction receipt for performance reasons.

A generic method for Ethereum around this would be to require
that the racing attack transaction has to be a index 0 in the new
block mined by the miner. It would then be possible to prove to
the attack contract in retrospect that the specified transaction at
index 0 operated on a specific world state i.e., the word state of the
previous block, e.g., where the name to register was not registered
yet. The only way to also generically prove that the resulting state
was indeed the required one without any side effects is that only
transactions which are directly relevant to the attack are included
in the new block in the respective order, because then the result-
ing world state can be pre-computed. This of course renders the
attack more expensive and therefore, less generic but more efficient
solutions are preferable.

B.2.2 Runtime check: During runtime a smart contract in Ethereum
does not know at which position the transaction which invoked the
contract is location in the current block. Moreover, it is not possible
to query the indices of other transactions during runtime.

An alternative to working with indices of transactions is work-
ing directly with the required states. The front running transaction
can also be sent to the attack contract directly, which additionally
works as a proxy or dispatcher and only forwards i.e., performs the

10The according Ethereum yellowpaper describing this is still available at http://
gavwood.com/Paper.pdf (accessed: 2019-05-04)

transaction, iff a queriable attack condition is met i.e., the target
contract is in a specific pre-defined state. For example the name is
not registered yet. Since the state (storage) of a contract cannot di-
rectly be accessed from another contract, only accessible functions,
variables and certain state variables like balance can be accessed.
This allows to write customized proxy contracts which are tailored
to check the precondition of the attack, e.g., the contract to exploit
is still in the desired state. This can for example be achieved by
reading publicly accessible variables – for which getter functions
are created automatically – or a contracts balance. This does not
change the incentives for the miner of the respective block, but
additionally ensures that no interaction happens if the race is not
won i.e,. the attack is not successful.

Summarizing, it can be said if runtime checks are possible, the
attack becomes more efficient and more complex attack scenarios
can be envisioned.

C TRANSACTION EXCLUSION IN-BAND
To highlight why executing incentive attacks out-of-band may
be desirable for an adversary, we describe an in-band transaction
exclusion attack. Thereby, we outline challenges an attacker must
overcome and describe how existing attacks are evaluated in the
classical setting for bribing attacks.

The purpose of this near-/no-fork attack is it to exclude one or
multiple unconfirmed transactions from their generated blocks.

C.1 Description
Initialization. The attacker knows some transaction txV which he
wants to prevent from getting into themain chain. He then intializes
the attack contract at block e − 1, specifying the transaction and
the duration N (in blocks) of the exclusion attack.
Attack. The attack contract will pay an extra ϵ for every block
mined between block e1 and eN that (i) does not include trans-
action txV itself and (ii) does not extend any block that included
transaction txV . That is, if an altruistic miner decides to include
txV in his block ei (i < N), colluding miners must perform a fork,
i.e., extend block ei−1 rather than ei , if they wish to receive rewards.
Payout.Collaboratingminers can claim payouts oncek blocks have
passed after the end of the attack, i.e., at a block eT ≥ eN+k , wherek
is the security parameter of the blockchain. Most PoW blockchains
use accumulators, such as Merkle trees, to store and efficiently
prove inclusion of transactions in a block. However, proving non-
existence of an element in a such accumulator is often inefficient.
To this end, the attack contract will reward any submitted block
between e1 and eN , unless the adversary submits an inclusion proof
for txV , before the payouts are claimed in block eT . If the adversary
proves that a block ex included txV , any blocks extending ex , i.e.,
ex+1, ex+2, ..., will not receive any payouts. Figure 5 shows a failed
attack where txV was included in block e3 - thus only blocks up to,
but not including, e3 are rewarded.

More information on the technicalities of this attack when im-
plemented in Ethereum are presented in Appendix D.

C.2 Evaluation
C.2.1 Evaluation with Rational Miners Only (ω = 1): Estimating
the costs of such an attack in an scenario where all miners are

http://gavwood.com/Paper.pdf
http://gavwood.com/Paper.pdf

Preprint, 2019-07-02,

Ethereum block
Zero or more blocks in between

Rewarded blockBlock not yet mined

In-band tx exclusion attack:

Failed:

Ongoing:

Successful:

eT
e0 e1 e2 e3 e4 eN

e'3e'2

tx incl.

e'4

tx incl.

eT
e0 e1 e2 e3 e4 eN

e'3e'2

tx incl.

e0 e1 e2 e3 e4 eN

init

init

init

target &
funding chain

 (E
thereum

)

eN+x

pay

pay

Figure 5: The figure shows a ongoing-, a failed- as well as
a successful Transaction exclusion attack with in-band pay-
ments. The attack is initialized when the attack contract is
published in block e1. If the unwanted transaction has been
included, this can be proven to the attack contract as shown
in the failure case in block eN+x . The payouts are performed
in block eT . The colored blocks are rewarded by the attack
contract with an additional ϵ .

rational (α = β = 0 and ω = 1) and have perfect information
about the attack is trivial. In this case, the respective transaction
would not be included into the block chain as long as the bribe ϵ
for non-inclusion surpasses the fee miners can gain from including
transaction, i.e., ϵ > fee(txV).

C.2.2 Evaluation with Altruistic Miners ω + β = 1: If a fraction
of miners behaves altruistically, i.e., will not joining the attack
independent of profit, rational miners need additional incentive to
perform near forks, excluding blocks containing txV . As rational
miners find a block with probability ω, the likely hood of rational
miners finding chains of consecutive blocks decreases exponentially
in their length l . For example, given ω = 2

3 the probability of
generating a chain of 6 consecutive blocks on merely 8.3%. Hence,
the adversary must increase the bribe ϵ paid to colluding miners, to
reimburse the risk of loosing block rewards re due to a failed fork.

Assume a block containing txV was mined by altruistic miners.
In this scenario, the attack chain, i.e., the fork produced by collabo-
rating miners which must not contain txV , is only one block behind
the main chain. As such, the required bribing funds are significantly
lower, when compared to deep fork bribing attacks. To estimate
the bribing costs of this attack, we revisit the analysis of Whale
Transactions from [21] (specifically, we extend the analysis after
Equation 4 in the aforementioned paper).

A rational miner with hashrateωm will mine on the attack chain
if he his expected profit is higher than with honest mining. To
make a rational decision on which chain to mine, he must estimate
and compate the hashrate of (i) all miners expected to join the
attack ωα , and (ii) the hashrate of all altruistic miners extending
the conflicting main chain branch β . Note that ω = ωα + ωm . For
simplicity, we normalize the block reward (incl. transaction fees) to

re = 1. The expected revenue of a rational minerm with hash rate
ωm for mining on the main chain is given by the probability that
the main chain wins multiplied with his share of mining power on
the main chain:

ρ =

(
1 −

(α+ωα
β+ωm

)z+1) · ωm
β + ωm

(10)

where z is the number of blocks the attacker chain is behind the
main chain - in our case z = 1. In contrast, the profit from mining
on the attack chain is given:

ρ ′ =

(α+ωα+ωm
β

)z+1 · ωm
α + ωα + ωm

· (ϵ + 1) (11)

A rational minerm will only join the attack if ρ ′ > ρ. We hence
derive the necessary bribe ϵ as follows:

ϵ >

(
1 −

(α+ωα
β+ωm

)z+1)
β + ωm

· α + ωα + ωm(α+ωα+ωm
β

)2 − 1 (12)

To estimate a worst case lower upper bound for the necessary
bribe, we setωα = 0 and a calculate ϵ for a small rational miner with
hashrate ωm = 0.05. We receive ϵ ≈ 17 · re , i.e., if a rational miner
m assumes no other miners will join the attack, a bribe 17 times the
value of a block reward is necessary. We provide a detailed overview
of necessary bribing values ϵ for different attack constellations (ωα
and ωm) in Table 6 in Appendix D. We observe that once ωm + ωα
exceeds 38.2%, a rational minerm is always incentivized to mine
on an attack chain with z = 1, independent of the bribe value ϵ (i.e.,
necessary ϵ = 0).

Table 6 shows the costs for incentivizing in-band transaction
exclusion if blocks that include the respective transaction should
be forked by rational miners.

C.2.3 Comparison to Existing Attacks. A comparable attack allow-
ing arbitrary transaction exclusion is HistoryRevisionCon [23].
While HistoryRevisionCon only requires bribing amounts ϵ be-
tween 0.09375 · re and 1.4375 · re (depends on how effective uncle
block inclusion can be optimized), it also requires a substantial at-
tacker hashrate (α > 1

3). For comparison: if we assumeω = 0.33 s.t.,
ωα = 0.28 and ωm = 0.05, our attack would require ϵ ≈ 0.603 · re .

The only other comparable transaction exclusion attack is the
Script Puzzle 38.2% attack, which requires α > 38.2% (in Bitcoin).
For comparison, if we assume ω = 0.382, our attacks requires a
bribe value ϵ close to zero: mining on the attacker chain becomes
the highest paying strategy independent of the bribe.

C.3 Properties and analysis
We now present some practical issues of the given straw man pro-
tocol with their respective fixtures if available in this scenario.

Unique transaction specification: To deny some transaction from
getting into the blockchain, the respective transaction has to be
known. We made the simplifying assumption that the transaction
hash is known to the attacker and wont change. Although, in prac-
tice this might not hold true because of several ways around this
restriction: Even if transaction malleability is not possible for any
third party, transactions can be recreated by the sender s.t. they are
semantically equivalent but their transaction hash differs. Ethereum

Pay-To-Win:
Incentive Attacks on Proof-of-Work Cryptocurrencies Preprint, 2019-07-02,

ωm = 0.05 ωm = 0.1 ωm = 0.2 ωm = 0.3 ωm = 0.33 ωm = 0.382 ωm = 0.4

ωα = 0.00

β = 0.950
ρ = 0.050
ϵ = 17.050
ρ′ = 0.050
P = 0.003

β = 0.900
ρ = 0.100
ϵ = 7.100
ρ′ = 0.100
P = 0.012

β = 0.800
ρ = 0.200
ϵ = 2.200
ρ′ = 0.200
P = 0.062

β = 0.700
ρ = 0.300
ϵ = 0.633
ρ′ = 0.300
P = 0.184

β = 0.670
ρ = 0.330
ϵ = 0.360
ρ′ = 0.330
P = 0.243

β = 0.618
ρ = 0.382
ϵ = 0.000
ρ′ = 0.382
P = 0.382

β = 0.600
ρ = 0.400
ϵ = 0.000
ρ′ = 0.444
P = 0.444

ωα = 0.05

β = 0.900
ρ = 0.052
ϵ = 7.503
ρ′ = 0.052
P = 0.012

β = 0.850
ρ = 0.105
ϵ = 4.056
ρ′ = 0.105
P = 0.031

β = 0.750
ρ = 0.210
ϵ = 1.362
ρ′ = 0.210
P = 0.111

β = 0.650
ρ = 0.315
ϵ = 0.267
ρ′ = 0.315
P = 0.290

β = 0.620
ρ = 0.346
ϵ = 0.062
ρ′ = 0.346
P = 0.376

β = 0.568
ρ = 0.401
ϵ = 0.000
ρ′ = 0.512
P = 0.578

β = 0.550
ρ = 0.420
ϵ = 0.000
ρ′ = 0.595
P = 0.669

ωα = 0.10

β = 0.850
ρ = 0.055
ϵ = 4.286
ρ′ = 0.055
P = 0.031

β = 0.800
ρ = 0.110
ϵ = 2.512
ρ′ = 0.110
P = 0.062

β = 0.700
ρ = 0.219
ϵ = 0.792
ρ′ = 0.219
P = 0.184

β = 0.600
ρ = 0.329
ϵ = 0.000
ρ′ = 0.333
P = 0.444

β = 0.570
ρ = 0.362
ϵ = 0.000
ρ′ = 0.437
P = 0.569

β = 0.518
ρ = 0.419
ϵ = 0.000
ρ′ = 0.686
P = 0.866

β = 0.500
ρ = 0.439
ϵ = 0.000
ρ′ = 0.800
P = 1.000

ωα = 0.20

β = 0.750
ρ = 0.059
ϵ = 1.637
ρ′ = 0.059
P = 0.111

β = 0.700
ρ = 0.117
ϵ = 0.914
ρ′ = 0.117
P = 0.184

β = 0.600
ρ = 0.234
ϵ = 0.055
ρ′ = 0.234
P = 0.444

β = 0.500
ρ = 0.352
ϵ = 0.000
ρ′ = 0.600
P = 1.000

β = 0.470
ρ = 0.387
ϵ = 0.000
ρ′ = 0.623
P = 1.000

β = 0.418
ρ = 0.448
ϵ = 0.000
ρ′ = 0.656
P = 1.000

β = 0.400
ρ = 0.469
ϵ = 0.000
ρ′ = 0.667
P = 1.000

ωα = 0.30

β = 0.650
ρ = 0.058
ϵ = 0.408
ρ′ = 0.058
P = 0.290

β = 0.600
ρ = 0.117
ϵ = 0.050
ρ′ = 0.117
P = 0.444

β = 0.500
ρ = 0.233
ϵ = 0.000
ρ′ = 0.400
P = 1.000

β = 0.400
ρ = 0.350
ϵ = 0.000
ρ′ = 0.500
P = 1.000

β = 0.370
ρ = 0.385
ϵ = 0.000
ρ′ = 0.524
P = 1.000

β = 0.318
ρ = 0.445
ϵ = 0.000
ρ′ = 0.560
P = 1.000

β = 0.300
ρ = 0.466
ϵ = 0.000
ρ′ = 0.571
P = 1.000

ωα = 0.33

β = 0.620
ρ = 0.057
ϵ = 0.144
ρ′ = 0.057
P = 0.376

β = 0.570
ρ = 0.113
ϵ = 0.000
ρ′ = 0.132
P = 0.569

β = 0.470
ρ = 0.226
ϵ = 0.000
ρ′ = 0.377
P = 1.000

β = 0.370
ρ = 0.339
ϵ = 0.000
ρ′ = 0.476
P = 1.000

β = 0.340
ρ = 0.373
ϵ = 0.000
ρ′ = 0.500
P = 1.000

β = 0.288
ρ = 0.432
ϵ = 0.000
ρ′ = 0.537
P = 1.000

β = 0.270
ρ = 0.452
ϵ = 0.000
ρ′ = 0.548
P = 1.000

ωα = 0.38

β = 0.568
ρ = 0.050
ϵ = 0.000
ρ′ = 0.067
P = 0.578

β = 0.518
ρ = 0.100
ϵ = 0.000
ρ′ = 0.180
P = 0.866

β = 0.418
ρ = 0.200
ϵ = 0.000
ρ′ = 0.344
P = 1.000

β = 0.318
ρ = 0.300
ϵ = 0.000
ρ′ = 0.440
P = 1.000

β = 0.288
ρ = 0.330
ϵ = 0.000
ρ′ = 0.463
P = 1.000

β = 0.236
ρ = 0.382
ϵ = 0.000
ρ′ = 0.500
P = 1.000

β = 0.218
ρ = 0.400
ϵ = 0.000
ρ′ = 0.512
P = 1.000

ωα = 0.40

β = 0.550
ρ = 0.046
ϵ = 0.000
ρ′ = 0.074
P = 0.669

β = 0.500
ρ = 0.093
ϵ = 0.000
ρ′ = 0.200
P = 1.000

β = 0.400
ρ = 0.185
ϵ = 0.000
ρ′ = 0.333
P = 1.000

β = 0.300
ρ = 0.278
ϵ = 0.000
ρ′ = 0.429
P = 1.000

β = 0.270
ρ = 0.306
ϵ = 0.000
ρ′ = 0.452
P = 1.000

β = 0.218
ρ = 0.354
ϵ = 0.000
ρ′ = 0.488
P = 1.000

β = 0.200
ρ = 0.370
ϵ = 0.000
ρ′ = 0.500
P = 1.000

Table 6: Comparison of minimum bribing attack costs ϵ for certain attack hashrates ωα and undecided individual miners ωm .
The table also shows the expected reward of m if ωm would be directed towards the attack chain ρ ′, as well as the expected
reward ρ if ωm would be directed towards the main chain.

actively supports this as replace-by-fee, when a new transaction
from the same account with a higher gas value is available it will
be preferred by miners. The new transaction must can but is not
even required to be semantically equivalent to the original one.

Therefore, the victim can evade the attack if the attack contract
relies on transaction hashes. A possible but less generic way around
this is to evaluate contract states instead of transaction hashes to
determine if the effects of some unwanted transaction have made it
into the blockchain. Although, this seams like a promising approach,
the feasibility of this solution highly depends on the individual case.

Counter attack. The most effective counter measure against the
attack is to increase the fee of txV s.t. it surpasses the value promised
by the attack contract. Since the transaction exclusion incentives
have to be made public, the attack cannot be considered stealthy in
the target cryptocurrency. This motivates that the incentivization
of the attack happens out-of-band on a distinct funding cryptocur-
rency and thus hidden from clients which only operate and monitor
the target cryptocurrency. Such an attack is described in the next
section 6

Proof a negative. Since we are in an in-band scenario, the suc-
cessful execution of the attack relies on a proof that transaction txV
was included to correctly pay out rewards and detect unwanted
inclusion. In can be argued that rational miners would be disin-
centivised to include this proof and collect the rewards for mined
blocks anyway. Moreover, the exact same incentive attack can be
used to keep this proof transaction out of the blockchain. We now
show that this is not an efficient counter attack by introducing and
additional cost gap. To introduce some additional cost gap between
the attack and its counter attack, the stabilization period between
eN and eT can be increased s.t. it is larger than the period between
e1 and eN . Thereby, the counter attack gets more expensive than
the original attack. This leverages the fact that the victim has to get
his transaction into the blockchain before eN , whereas the attacker
of can choose a longer stabilization period.

Nevertheless, an approach that poses more convincing evidence
of transaction absence is desirable. An in-band method that relies
on a proof that the transaction txV was indeed not included in
the chain in the respective interval would be ideal. Thereby, the
attacker can be sure that the payment only happens if the requested
condition is fulfilled. In practice such proves are less efficient in

Preprint, 2019-07-02,

current cryptocurrencies like Ethereum. A possible way around
this is to provide a block template for every block, which must
be used by the miners to be later able to collect the associated
additional reward ϵ . Thereby, it can be ensures by the attacker that
only wanted transactions are included as well as their order. The
block template can be provided in a transaction to an attack contract
which encompasses all transaction hashes in their respective order
which should be included in the next block, excluding his own hash.
A method how such a construction can be implemented in current
Ethereum is given in D.

Another alternative would be to use out-of-band techniques and
launch the attack form a different smart contract capable fund-
ing cryptocurrency whose miners are not affected by the attack.
Thereby, if the set of miners is distinct, the incentives of the miners
to not include a inclusion prove of txV are less of an issue. We
describe a more powerful out-of-band attack which uses the tech-
nique of block templates and also allows for arbitrary ordering in
section 6.

D DETAILS AND IMPLEMENTATION OF TX
EXCLUSION IN-BAND

The two important aspects of this attack are: i) Determine if the
unwanted transaction txV was included, and if so in which block
ii) Correctly reward complacent miners. Additionally, we provide
details on the costs of in-band transaction exclusion, in the classical
bribing model defined in [21].

D.1 Reward complacent miners
To collect the reward, a rational miner has to submit the block
header he mined in the respective range to the attack contract. The
attack contract then checks if this block really lies in the respective
interval in the recent history of the chain. In Ethereum, the last 256
block hashes can be accessed from within a smart contract, thereby
the smart contract can verify if a submitted block header really is
part of the recent history. From the submitted block header the
contract can also extract the beneficiary / coinbase address of the
respective miner directly.

D.2 Transaction inclusion proof
The naive way of determining if txV has been included in a block
is to request a Merkle patricia trie inclusion prove as in B that the
respective transaction is part of a given block header which lies in
the defined interval. This approach has the drawback that it will not
detect other semantically equivalent transactions with a different
hash.

A way around this in an in-band scenario on Ethereum is to
define state conditions which must be met depending on the use-
case at hand. For example, if you can show me a transaction to a
certain address / contract that is part of a block in the specified
interval than I consider this as a prove that an unwanted interaction
with the respective address / contract has taken place and do not
reward the miners from that block on. Thereby, care has to be taken
to account for transaction obfuscation via proxy contracts which
perform message calls on behalf of a transaction from an externally
owned account. These, cannot easily be proven to a contract since
the respective transaction has to be evaluated on the EVM with

the correct world-state. Thus, this variant is only error free if the
unwanted transaction has to come from an externally owne account
directly, e.g., as required by certain Tokens. 11

Therefore, the safest variant is do check if the state change
or condition which should have been triggered by an unwanted
transaction has occurred or not. For example if the balance of a
contract has been raised/decreased, or if certain public accessible
state variable have changed in an undesired way. If this can be
checked by the attack contract before performing any payouts, it is
not possible to collect rewards if the requested condition has not
been fulfilled.

D.2.1 Block template in-band. Another way around the previously
outlined problems of proving that an unwanted operation / trans-
action has not taken place is to specify exactly what transactions
are allowed to take place. Interestingly, this is easier in an out-of-
band scenario than in an in-band scenario since the attacker has
to convincingly ensure the collaborating rational miners that they
will receive their bribes while defining the content of all blocks
in a way that can be proven to the attack smart contract. At the
same time the content of the blocks also has to define those blocks,
which leads to a recursive dependency since the transaction to the
attack contract cannot define itself because their hash is not known
in advance.

One way around this is to have a delay of one block, and transac-
tions in the peer to peer network which define the content of blocks.
For example, as soon as the attack starts the attacker publishes the
attack contract txB1 which gets initialized with the current block
height. Additionally the attacker publishes a singed transaction
txB2 to the attack contract that defines the content of block e1,
i.e., the Merkle Patricia Trie root of block e1. Since txB2 cannot
define itself, complacent miners which want to collect the rewards
have to include txB2 in e2. The transaction txB2 invokes the attack
contracts, checks that is had been included in e2 and stores the in-
tended Merkle Patricia Trie root of block e1. When the attack stops,
anyone can prove to the contract that the current chain indeed
only contains specified Merkle Patricia Trie roots by showing the
respective headers to the contract within 256 blocks.

E DETAILS AND IMPLEMENTATION OF TX
EXCLUSION AND ORDERING
OUT-OF-BAND

E.1 Block templates and block intervals
Publishing new block templates timely is a key requirement of
this attack. In favor of an easier presentation we chose to rely on
the assumption that the difference between block intervals on the
two chains, namely Bitcoin and Ethereum, is big enough such that
before every new Bitcoin block there will be a new Ethereuem
block announcing the new block template. Though, in practice
collaborating miners would want to have at least a couple of block
templates available to ensure that their hardware does not stall. To
ensure that new block templates are available to rational miners,
independently of block intervals in the funding cryptocurrency,
several approaches are possible. The attacker could, for example,

11Interestingly, a UTXO model would also be easier to censor if the output which has
to be spent in an unwanted transaction is known.

Pay-To-Win:
Incentive Attacks on Proof-of-Work Cryptocurrencies Preprint, 2019-07-02,

publish a sequence of block templates where only the first includes
the previous block hash and the other previous block hash values
are filled and checked automatically by the smart contract based
on the previously submitted valid attack blocks.

Other approaches can also be envisioned. In theory, it is not
even necessary that the Ethereum block with the new block tem-
plate has been mined before the next Bitcoin block for which the
template has to be used. This is possible if the attack contract is
implemented in a way that accepts any valid Ethereum transaction
signed by the attacker as a proof that the therein announced new
block template for a specific attack was approved, and is rewarded
accordingly. Then any such transaction can be seen as a guarantee
for the collaborating miners that they will receive a reward if they
mine a block according to the template. At some later point the
transaction defining the target chain block template is included
in the funding cryptocurrency and presents proof to the attack
contract that indeed the respective block on the target chain was
based on a valid template.

E.2 Block Interval Desynchronization
To identify the need for such constructions we analyze the proba-
bility that the block intervals fluctuate in a way such that Bitcoin
blocks are mined in close succession. In other words: What is the
probability that the two chains (funding and attack chain) desyn-
chronize during an attack, i.e., that two Bitcoin blocks are mined in
close succession without an Ethereum block in between.

The time between Bitcoin and Ethereum blocks follows an ex-
ponential distribution. Assuming constant difficulty and overall
hashrate, Ethereum has a mean block interval, i.e., an expected
value EBTC (x) of 15 seconds, whereas Bitcoin has a mean block
interval of 10 · 60 seconds.

EETH (x) = 15
EBTC (x) = 600

What is the probability that the time between two Bitcoin blocks is
less than the Ethereum mean block interval of 15 seconds?

x = 15

λ =
1

EBTC (x)
P(X < x) = 1 − e−λ ·x

P(X < 15) ≈ 2.47%

What is the probability that this happens within N Bitcoin blocks
i.e., what is the probability that the time between two Bitcoin blocks
is smaller than 15 seconds during N total Bitcoin blocks.

P(N) = 1 −
(
1 − P(X < 15)

)N−1

P(32) ≈ 53.93%

This necessitates that in long running attacks, more than one block
template for target cryptocurrency blocks is included in one funding
cryptocurrency block.

We now analyze how probable it is that more than two Bit-
coin blocks are mined before one Ethereum block, i.e., what is
the probability that 3, 4, 5, . . . Bitcoin blocks are found within the
Ethereum mean block interval of 15 seconds. The block discovery

is a Poisson point process, where the Poisson distribution param-
eter Λ = E(N = n) = t

EBTC (x) refers to the expected value of the
number of events happening within t time.

P(N = n) = Λn

n!
· e−Λ

λ =
1

EBTC (x)
= 1/600

Λ = E(N = n) = t/600
t = 15

P(N = 1) ≈ 2.43%
P(N = 2) ≈ 0.03%
P(N = 3) ≈ 0.00025%

P(N = 4) ≈ 1.58 · 10−6%
P(N = 4) ≈ 7.94 · 10−9%

Thus, a lower bound for this event happening within a certain block
interval, i.e., during an attack, can be derived as follows:

n = 3

P(N) = 1 −
(
1 − P(N = 3)

) ⌈N /n ⌉

P(32) ≈ 0.486%

F DETAILS AND IMPLEMENTATION OF TX
REVISION EXCLUSION AND ORDERING
OUT-OF-BAND

F.1 Trustless crowdfunding of incentive
attacks with collateral

One of the main improvements of this attack is the possibility that
the required funds can be crowdsourced. The main challenges that
have to be solved in this scenario are outlined in section 7. In the
following, we describe one approach for trustlessly crowdfunding
incentive attacks using a collateral. The phases of the attack are as
follows:

• The attacker who initiates the attack, in the following re-
ferred to as the initiator, deploys an attack contract in the
funding cryptocurrency and locks his collateral of value fB
(as described in the original attack) with this contract.

• Then the initiator publishes his spending transaction tx ′B on
the main network.

• Once k blocks on the main chain have passed, he initializes
the attack contract with his double-spend tx ′B , the block to
be forked b1 and the common ancestor block b0.

• Then everybody who has included a transaction in block b1
is allowed to submit a double-spending transactions t ′B{2, . . .,x }
including some amount of ether that he or she is willing to
invest in the attack. In the follows these additional attackers
are referred to as backers.

• If these so called backers reach the funding goal of com-
pensating at least k + 1 blocks before block k + 1 blocks
have been submitted to the attack contract, then the attack
starts automatically. All invested funds are free to be used
as described in the original attack.

Preprint, 2019-07-02,

• Once the attack has been started by the attack contract, the
initiator publishes a block header template to the attack
contract. The Merkle branch of this template includes all
submitted double-spending transactions tx ′B{2, . . .,x }

, which
are i) valid according to information from his full node ii)
backed by some ether.

• Additionally, the attack contract has to require some fresh-
ness information such that the initiator is unable to produce
blocks before officially starting the attack to rip compen-
sations increasing his invested value fB1 from his fellow
backers. An example for such a freshness guarantee would
be the inclusion of the latest funding chain block hash e1 in
the block template.

• Then the attack proceeds as originally described.
• When N blocks have passed and been published to the attack
contract, the backers who have not witnessed that their
double-spending transactionwas included in the attack chain
can now claim their invested ether back from the attack
contract. Therefore, the attack contract automatically allows
any backer to reclaim his money if the initiator has not
submitted a valid Merkle inclusion prove for the respective
double-spending transaction.

In this approach, the attacker who initiates the attack, i.e., the
initiator, has to provide a collateral as large as the total funds re-
quired for a successful attack fB . If the initiator as well as his fellow
backers are honest, the collateral will be released by the attack con-
tract once the attack has ended – regardless if it was successful or
failed. The collateral ensures that the initiator is able to compensate
additional backers, in case their funds have been used for the attack
but the initiator did not include their double-spending transaction.

Moreover, the initiator is also required to invest funds into the
double-spending fB1 attack which will be consumed by the attack as
in the original attack. This investment by the initiator should ensure
that he is indeed willing to execute an attack and also loses funds
if he is not able to provide correct block templates. For example, if
the initiator purposely stalls the attack e.g., by not producing any
block templates or not forwarding them in time to the Bitcoin main
network, the attack will fail. But then also the initiator will lose his
invested funds fB1 . Thus, backers are free to invest ether as long as
the amounts stays below fB1 .

G EPHEMERAL MINING RELAY
In this section we outline the functionality of the ephemeral mining
relay used in out-of-band incentive attacks, and provide cost esti-
mates for an implementation on top of Ethereum, which verifies
the Bitcoin blockchain.

G.1 Construction
The out-of-band incentive attacks presented in this paper require
the deployment of a so-called ephemeral mining relay on the fund-
ing cryptocurrency. An ephemeral mining relay12 is a combination
of a chain relay [2, 11, 36] and a decentralized mining pool smart
contract [22].

12We use the term “ephemeral" as the mining relay is instantiated only temporarily
and does not require verification of the entire blockchain, but only the few blocks
relevant for the attack.

Chain relays are smart contracts which allow to verify the state
of other blockchains, i.e., verify the proof-of-work and difficulty
adjustment mechanism, differentiate between the main chain and
forks, and verify that a transaction was included within a specific
block (via SPV Proofs [6]). However, a naive chain relay implemen-
tation allows only to verify that a certain block (or transaction) was
included in a chain with the most accumulated proof-of-work (i.e.,
heaviest chain). It does not allow to verify whether the blocks and
transactions included in this heaviest chain are indeed valid, i.e.,
adhere to the consensus rules of the corresponding blockchain. As
such, chain relays are vulnerable to so called poisoning attacks [36],
where a miner tricks the relay into accepting a chain containing
invalid (e.g. double-spent) transactions as valid. Note: such an at-
tack is not possible to be performed against any node that is fully
validating consensus rules, as it will simply reject the invalid blocks.

To prevent collaborating miners from executing such poisoning
attacks (e.g., in an attempt to collect rewards, without actually
executing the attack on the target cryptocurrency), we extend its
the functionality with additional consensus rule checks. Thereby, a
major challenge is efficiently verifying that each transaction in a
block submitted to the relay is indeed valid , e.g. does not double
spend any transaction in the same blockchain branch.

To fully check the validity of blocks and transactions submitted
to a chain relay, we identify the following approaches:

• Merkle tree templates. The adversary funding and coordinat-
ing incentive attacks can specify the exact structure of the
Merkle tree to be included in the blocks mined by collabo-
rating miners. As such, miners can only freely construct the
coinbase transaction of a block - which must be separately
parsed and verified by the ephemeral chain relay. Recall: the
coinbase transaction is the first transaction in a block, which
generates new cryptocurrency units and does not spend any
existing transaction outputs. As such, a coinbase transcation
cannot be double spent and can hence fully verified at low
cost.

• Near-empty blocks. A simpler variant of the Merkle tree tem-
plates described above is to restrict the transactions included
in blocks generated by collaborating miners to the (small)
set of transactions specified by the adversary. While this
reduces the verification costs in the ephemeral mining relay,
the adversary may have to pay additional compensation to
miners for missed out transaction fees.

We note that other viable approaches may exist to verify trans-
action validity in chain relays, e.g. utilizing non-interactive Zero
Knowledge Proofs [7, 8, 15] may represent an interesting avenue
for future work.

G.2 Cost Estimates
We implement aminimal viable ephemeralmining relay on Ethereum,
which is capable of verifying the state of the Bitcoin blockchain.
We use Solidity v0.5.2 and use a local instance of the Ethereum
blockchain for cost analysis.

Specifically, we identify five main operations of an ephemeral
mining relay:

Pay-To-Win:
Incentive Attacks on Proof-of-Work Cryptocurrencies Preprint, 2019-07-02,

Operation
Approx. costs

Gas USD

Initialization 244 137 0.21

Block parsing and verification 174 929 0.15

Block header storage 141 534 0.12

Transaction parsing 117 253 0.1

Markle tree verification 80 257 - 194 351 0.07 - 0.16

Gas price: 5 Gwei, Exchange rates as per 10 May 2019 (168.01 USD/ETH) [3]

Table 7: Overview of costs for the each of the main op-
erations of the ephemeral chain relay implemented on
Ethereum for Bitcoin. Note: Merkle tree verification costs
depend on the depth of the tree / transactions in a block.
Numbers provided are lower and upper bounds.

• Initialization, i.e., storing the first block and necessary tem-
plates used as basis for the incentive attack, as defined by
the attacker.

• Block parsing and verification, i.e., checking that (i) the proof-
of-work of a block is valid and meets the necessary difficulty
target, (ii) the block extends the correct blockchain branch
(attacker fork or main chain).

• Block header storage, i.e., permanently storing the necessary
block header information in the smart contract, to be used
for later verification (e.g. during payouts). Note: it is not
necessary to store all transaction included in a block, but only
the block header (e.g., 80 bytes in Bitcoin) which contains
the root of the transaction Merkle tree.

• Transaction parsing, i.e., parsing and verifying the inputs and
outputs of a transaction and extracting any additional data
(e.g. funding cryptocurrency address to be used for payout
of collaborating miners).

• Merkle tree verification, i.e., verifying that a given transaction
(more specifically, its hash) is included in the Merkle tree
of a block at a specific position. Verification of Merkle tree
templates follows a similar principle, as it is only necessary
to check the inclusion of sub-trees (i.e., check that the root of
the attacker’s Merkle tree template is included at the correct
position in the Merkle tree of the block).

The cost estimates for the above operations are summarized in
Table 7. Note: the costs for Merkle tree verification may vary, de-
pending on the depth of the Merkle tree. However, the increase in
costs is marginal, as each additional layer merely requires an addi-
tional hashing operation (i.e., costs grow inO(loд(n), where n is the
depth of the Merkle tree). The worst case costs per Bitcoin block in
2018/2019 (< 2048 transactions/block) [1] amount to approximately
USD 0.16.

We observe the costs for maintaining a ephemeral mining relay
are marginal and negligible when compared to the potential scale of
incentive attacks described in this paper. As such, in an exaggerated
case where an out-of-band attack on Bitcoin via a relay on Ethereum
in maintained for 24 hours (144 Bitcoin blocks on average), the costs
merely amount to approximately USD 10 in the best and USD 23 in

the worst case (if all blocks are full), i.e., between USD 0.4 and USD
1 per hour. For comparison: the reward for a single Bitcoin block
(excluding transaction fees) at the time of writing amounts to USD
76 875.

	Abstract
	1 Introduction
	1.1 Outline of this Paper

	2 General System Model
	2.1 Communication and Timing

	3 Incentive Attack Systematization
	3.1 Intended Impact on Transactions
	3.2 Required Interference with Consensus
	3.3 Categorization and Comparison of Attacks
	3.4 Main Observations

	4 Pay-To-Win Incentive Attacks
	4.1 P2W Attack Overview
	4.2 Technical Requirements

	5 Transaction ordering in-band
	5.1 Description
	5.2 Evaluation
	5.3 Properties and Analysis

	6 Transaction exclusion and ordering out-of-band
	6.1 Description
	6.2 Evaluation
	6.3 Properties and analysis

	7 Transaction revision out-of-band
	7.1 Description
	7.2 Evaluation
	7.3 Properties and Analysis

	8 Discussion
	9 Conclusion
	References
	A Variables and symbols
	B Details and implementation of tx ordering in-band
	B.1 Verify transaction ordering
	B.2 Verify operation on certain state

	C Transaction exclusion in-band
	C.1 Description
	C.2 Evaluation
	C.3 Properties and analysis

	D Details and implementation of tx exclusion in-band
	D.1 Reward complacent miners
	D.2 Transaction inclusion proof

	E Details and implementation of tx exclusion and ordering out-of-band
	E.1 Block templates and block intervals
	E.2 Block Interval Desynchronization

	F Details and implementation of tx revision exclusion and ordering out-of-band
	F.1 Trustless crowdfunding of incentive attacks with collateral

	G Ephemeral Mining Relay
	G.1 Construction
	G.2 Cost Estimates

