
A Composable Security Treatment of the
Lightning Network

Aggelos Kiayias1,2 and Orfeas Stefanos Thyfronitis Litos1

1 University of Edinburgh
2 IOHK

akiayias@inf.ed.ac.uk, o.thyfronitis@ed.ac.uk

Abstract. The high latency and low throughput of blockchain proto-
cols constitute one of the fundamental barriers for their wider adoption.
Overlay protocols, notably the lightning network, have been touted as
the most viable direction for rectifying this in practice. In this work we
present for the first time a full formalisation and security analysis of
the lightning network in the (global) universal composition setting that
takes into account a global ledger functionality for which previous work
[Badertscher et al., Crypto’17] has demonstrated its realisability by the
Bitcoin blockchain protocol. As a result, our treatment delineates exactly
how the security guarantees of the protocol depend on the properties of
the underlying ledger. Moreover, we provide a complete and modular
description of the core of the lightning protocol that highlights precisely
its dependency to underlying basic cryptographic primitives such as dig-
ital signatures, pseudorandom functions, identity-based signatures and
a less common two-party primitive, which we term a combined digital
signature, that were originally hidden within the lightning protocol’s im-
plementation.

1 Introduction

Improving the latency of blockchain protocols, in the sense of the time it takes
for a transaction to be “finalised”, as well as their throughput, in the sense of
the number of transactions they can handle per unit of time, are perhaps the
two most crucial open questions in the area of permissionless distributed ledgers
and remain fundamental barriers for their wider adoption in applications that
require large scale and reasonably expedient transaction processing, cf. [1]. The
Bitcoin blockchain protocol, introduced by Nakamoto [2], provides settlement
with probability of error that drops exponentially in the number of blocks k
that accumulate over a transaction of interest. This has been informally argued
in the original white paper, and further formally demonstrated in [3], from where
it can be inferred that the total delay in actual time for a transaction to settle
is linear in k in the worst case. These results were subsequently generalised
to the setting of partial synchrony [4] and variable difficulty [5]. Interestingly,
this latency “deficiency” is intrinsic to the blockchain approach (see below), i.e.,
latency’s dependency on k is not a side-effect of the security analysis but rather
a characteristic of the underlying protocol and the threat model it operates in.

Given the above state of affairs, one has to either change the underlying
settlement protocol or devise some other mechanism that, in conjunction with
the blockchain protocol, achieves high throughput and low latency. A number of
works proceeded with the first direction, e.g., hybrid consensus [6] or Algorand
[7]. A downside of this approach is that the resulting protocols fundamentally
change the threat model within which Bitcoin is supposed to operate, e.g., by
changing the threshold required for security or the underlying cryptographic
assumptions and setup that is needed. The additional side-effect of such solutions
is that they are fundamentally incompatible with the Bitcoin blockchain, which
is arguably the currently most successful deployed instance of the blockchain
protocol.

The alternative approach is to build an overlay protocol that utilises the
blockchain protocol as a “fall back” layer, while facilitating “off-chain” settlement
under certain additional assumptions. We note that in light of the impossibility
result regarding protocol “responsiveness” from [6] that states that no protocol
can provide settlement in time proportional to actual network delay and provide
a security threshold over 1/3, we know that some additional assumption would
be required for the overlay protocol to work.

The first instance of this approach and by far the most widely known and
utilised so far, came with the lightning network [8]3 that provided an overlay
mechanism over the Bitcoin blockchain that introduces and takes advantage of
the concept of a bilateral payment channel. The latency for a transaction be-
comes linear to actual network delay and another factor that equals the number
of bilateral payment channel hops in the path that connects the two end-points of
the transaction. If a payment transaction is confirmed by the parties implicated
in a payment then it is guaranteed that, should the parties wish it, eventually
the ledger will record “gross” settlement transactions between the parties in the
path of the payment transaction that are consistent with it. Deviations from this
guarantee are cryptographically feasible but deincentivised via on-chain penal-
ties. Moreover, note that no record of a specific payment transaction need ever
appear on-chain thus the number of lightning transactions that can be exchanged
can reach the maximum capacity the network allows between the parties, with-
out being impeded by any restrictions of the underlying blockchain protocol.

The lightning network has been very influential in the space and spun a
number of follow up research and implementations (see below for references).
We note that the lightning network is not the only option for building an overlay
over a blockchain, see e.g., [9] for an alternative approach where it is shown that
if the assumption is raised to a security threshold of 3/4 plus the honesty of an
additional special player it is possible to obtain optimal latency. Nevertheless,
the lightning network is currently the only option that readily interoperates with
the Bitcoin blockchain.

3 The specification available online is a more descriptive reference for the inner work-
ings of the protocol, see https://github.com/lightningnetwork/lightning-rfc/
blob/master/02-peer-protocol.md. See also the raiden network that implements
Lightning over Ethereum, https://raiden.network.

2

https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://raiden.network

Despite the importance of the lightning network for low latency payments
over Bitcoin there is still no work so far providing a thorough formal security
analysis. This is a dire state of affairs given the fact that the protocol is actually
currently operational4 and its complexity makes it difficult to extract precise
statements regarding the level of security it offers.
Our Results.We present the first, to our knowledge, complete security analysis
of the lightning network in the universal composition (UC) setting. We model
the payment overlay that the lightning network provides as an ideal function-
ality and we demonstrate how it can be implemented in a hybrid world which
assumes a global ledger functionality. Our treatment is general and does not
assume any specific implementation for the underlying ledger functionality. The
“paynet” functionality that we introduce abstracts all the salient security fea-
tures achieved by the lightning network. We subsequently describe the whole
lightning protocol in this setting and we prove that it realises our paynet func-
tionality under standard cryptographic assumptions; the security guarantees of
the functionality reflect specific environmental conditions regarding the avail-
ability of the honest parties to poll the status of the network. In more details
our results are as follows.

1. We present the FPayNet functionality which abstracts the syntax and security
properties that are provided by the lightning network. Using FPayNet, parties
can open and close channels, forward payments along channel paths in the
network as well as poll its status. Importantly, the functionality keeps track
of all the off-chain and on-chain balances of the parties registered and ensures
that when a channel closes the on-chain balances are in line with the off-chain
balances. In order to handle adversarial deviations in multi-hop payments,
the functionality permits the adversary to determine the outcome of each
payment by choosing either one of the following options (i) let it go through
as requested, (ii) charge it to an adversarial party along the path, (iii) charge
it to negligent honest party along the path. This last outcome is a crucial
characteristic of the security that is provided by the lightning network to
its participants: honest parties are expected to poll the functionality at a
certain specific rhythm that corresponds to their level of involvement in the
network and the properties of the underlying ledger. If a party misses that
requirement it is identified as negligent by the functionality and may lose
funds.

2. We identify for the first time the exact polling requirements that are im-
posed by the lightning network to the honest parties that are participating
so that they do not lose funds as a function of the underlying parameters
of the ledger functionality over which the lightning network is overlaid. We
describe our FPayNet given the global ledger functionality defined in [10], and
further refined in [11], for which we know already that is realised by the Bit-
coin blockchain. The functionality provides explicit security guarantees with
respect to consistency and liveness which in turn impact the guarantees pro-
vided by FPayNet. The polling requirements for each party are two-fold: (i)

4 For current deployment statistics see e.g., https://1ml.com/statistics.

3

https://1ml.com/statistics

the first type of polling refers to monitoring for closures of channels that the
party is one of the end-points and is specified by the user chosen parameter
delay, (ii) the second type of polling refers to monitoring for specific events
related to receiving and relaying payments; in particular for each payment
that a party acts as an intermediary, polling should happen twice within
the window of time when the chain in the view of the party advances from
blockheight h to blockheight h′ − a, where h, h′ are two blockheight param-
eters specified in the particular payment path, and a is a (derived) ledger
parameter which is the upper bound to the number of blocks that may be
finalised in the ledger from the time a certain transaction is emitted to the
time it becomes finalised (i.e. it is included in a block in the “stable” part
of the ledger). Moreover, the two pollings should be separated by a time
window that allows the chain to grow by at least a blocks.

3. We provide a complete pseudocode description of the lightning network pro-
tocol ΠLN and we prove that indeed it realises FPayNet under a specific set of
cryptographic assumptions. In order to express ΠLN in a way that is succinct
we identify a number of underlying cryptographic primitives that have been
used in the specification of the lightning network in a non-black-box fash-
ion and without reference. Interestingly, while some of these cryptographic
primitives are standard (they include a PRF, a Digital Signature scheme
and an Identity Based Signature scheme) there is one additional primitive
that is slightly less standard and we call combined digital signature. A com-
bined digital signature is a special case of an asymmetric two-party digital
signature primitive (e.g., see [12] and references therein) with the charac-
teristic that one of the two parties, the shareholder, generates and stores
a share of the signing key, while the public-key of the combined signature
is determined non-interactively based on public-key information produced
by both two parties. Issuing signatures requires the availability of the share
which is verifiable given the public information provided by the shareholder.
We formalise the combined digital signature primitive and show that the
construction lying within the specification of lightning is realising it under
standard cryptographic assumptions. In summary, the realisation of FPayNet
is achieved assuming the security of the underlying primitives (which in turn
can be based on EC-DLOG and the Random Oracle model).

Related Work. A first suggestion for building a unidirectional payment chan-
nel appeared in [13]. Bidirectional payment channels were developed in [14] and,
of course as part of the lightning network [8]. Subsequent work on the topic dealt
with either improving payment networks by utilising more expressive blockchains
such as Ethereum [15], hardward assumptions, see e.g., [16], or extending its func-
tionality beyond payments, to smart contracts, [17] or finally enhancing their
privacy, see e.g., [18,19,20]. Additional work looked into developing supporting
protocols for the payment networks such as rebalancing [21] or finding routes in
a decentralised fashion [22,23]. With respect to idealising the payment network
functionality in the UC setting, a number of previous papers [24,18,17,15] pre-
sented ideal functionalities abstracting the concept. The fundamental advantage

4

of our approach however here is that, for the first time, we present a payment
network functionality that interoperates with a global ledger functionality for
which we know, in light of the results of [10], that is realisable by the Bitcoin
blockchain and hence also reflects the actual parameters that can be enforced
by the implementation (in contrast, previous work utilised “too idealised” ledger
functionalities for which it is unknown whether they can be realised). See Ap-
pendix A for more details.
Organisation. In section 2 we present preliminaries for the model we employ
and the relevant cryptographic primitives. In Section 5 we present an overview of
the lightning network. Our payment network functionality is given an overview
description in Section 4. Our abstraction of the core lightning protocol is pro-
vided in Section 5. We give more details about the combined digital signature
primitive in Section 6. Finally, in Section 7 we provide an overview of the se-
curity proof. In the appendix, first we give more details on the preliminary
primitives, specifically in Sections B,C,D we discuss digital signatures, identity
based signatures and pseudorandom functions. Subsequently in Section E we go
into more details about combined digital signatures. The transaction structure
that is assumed to be provided by the underlying distributed ledger is discussed
in Section F. The paynet functionality is presented in detail in Section G. The
complete description of protocol ΠLN is presented in Section I. The ledger func-
tionality is presented in Section J and finally, the security proof is presented in
Section K.

2 Preliminaries

In this section we will give a brief overview of the tools and frameworks that we
use in this work.
Universal Composability framework. In simulation-based security, crypto-
graphic tasks are defined via an ideal “functionality” F , which can be thought
of as an uncorruptible entity that gets the inputs of all parties and returns the
expected outputs while also interacting with the adversary in a prescribed man-
ner. In this way, the functionality expresses the essence of a cryptographic task
and its security features. A protocol Π realises the functionality F if for any
real world adversary we can define a “simulator” S, acting as an ideal world
adversary, such that any environment cannot distinguish between the real world
and the ideal world executions. Albeit a powerful tool, simulation-based security
only works when a single instance of the protocol is run in isolation. However,
real-world systems almost always run several programs concurrently, which fur-
thermore may run different instances of the same protocol. To facilitate this in
the Universal Composability [25] framework it is possible to analyse a single in-
stance of the protocol and then take advantage of a generic composition theorem
to infer the security of the protocol more broadly. This is achieved by allowing
arbitrary interactions between the environment and the real-world adversary.
Hybrid functionalities used. Both our main protocol and the corresponding
functionality use GLedger [10,11] as a hybrid. GLedger formalizes an ideal dis-

5

tributed append-only data structure akin to a blockchain. Any participating
party can read from GLedger, which returns an ordered list of transactions. Fur-
thermore parties can submit new transactions which, if valid, will be added to
the ledger at the discretion of the adversary, but necessarily within a predefined
time window. This property is called liveness. Once a transaction is added to the
ledger, it becomes visible to all parties at the discretion of the adversary, but
within another predefined time window, and cannot be removed or reordered.
This is called persistence. The exact definition can be found in Appendix J.

Furthermore, GLedger needs two more functionalities: Gclock and F∆N-MC. Gclock
models the notion of time. Every participating party can request to read the cur-
rent time (which is initialized to 0) and inform Gclock that her round is over.
Gclock increments the time by one once all parties have declared the end of their
round. F∆N-MC provides an abstraction of the network. A party can send F∆N-MC
a message to be multicast to all other participants of the network. A party can
also fetch its new messages from F∆N-MC. F∆N-MC makes a message available to be
fetched immediately after its arrival, but the adversary may delay the arrival for
up to ∆ rounds. A can choose different delays for different players and reorder
messages. Additionally, he has the power to send his own messages to selected
subsets of players.

The protocol and functionality defined in the current work do not make
direct use of Gclock or F∆N-MC. We therefore omit these two in the statements
of Lemmas 4-8 and Theorem 1 for simplicity of notation; they should normally
appear as hybrids along with GLedger. Their exact definition can be found in
Appendix J. We also note that GLedger and Gclock are global functionalities [26],
whereas FPayNet and F∆N-MC are not.
Transaction structure. GLedger does not define what is a valid transaction,
but leaves it as a system parameter. Importantly, no notion of coins is built in
GLedger. We therefore specify a valid transaction, closely following concepts put
forth in Bitcoin [2], but avoiding specifying the entire Bitcoin script.

At a high level, every transaction consists of inputs and outputs. Each output
has an associated value in coins and a number of “spending methods”. A spending
method specifies the exact requirements for spending the output. Each input
must be connected to exactly one output and satisfy one of its spending methods.

Transactions in GLedger form a DAG. A new transaction is valid only if each
of its inputs correctly spends an output with no other connected input and
the sum of the values of its outputs does not exceed the sum of the values of
the outputs connected to its inputs. We refer the reader to Appendix F for a
complete overview.
Cryptographic Primitives. In the Lightning Network specification, a custom
scheme for deriving keys is used. Its syntax and security aims closely match
those of previously studied Identity Based Signature schemes [27,28], thus we
use the latter to abstract away the complexity of the construction and highlight
the security requirements it satisfies. We slightly modify previous IBS schemes
by adding an algorithm that, on input of the public parameters mpk and a label
l, returns the verification key pkl. Such an IBS scheme provides 5 algorithms:

6

– (mpk,msk)← Setup(1k): master keypair generation
– (pkl, skl)← KeyDer(mpk,msk, l): keypair derivation with label l
– pkl ← PubKeyDer(mpk, l): verification key derivation with label l
– σ ← SignIBS(m, skl): signature generation with signing key skl
– {0, 1} ← VerifyIBS(σ,m, pkl): signature verification

We refer the reader to [28] for more details. Other cryptographic primitives used
are digital signatures and pseudorandom functions, see Sections B, C, D. Finally,
a less common two-party cryptographic primitive is employed that we formalise
as combined digital signatures, see Section 6.

3 Lightning Network high level overview

Two-party channels. The aim of LN is to enable fast and cheap transactions
that do not have to be added to the blockchain, without compromising secu-
rity. Specifically no additional trust between counterparties is assumed. This is
achieved in the following way: Two parties, Alice and Bob, that have recurring
monetary exchanges create one on-chain transaction that locks up some funds,
known as the “funding transaction”. This transaction is funded by one of the
two parties and has a 2-of-2 multisig output, which needs the signatures of both
counterparties by their “funding” secret keys in order to be spent. Before ac-
tually submitting this transaction though, both parties individually ensure that
they hold a transaction that spends the 2-of-2 funding output in a way that gives
the funds to the funder, along with the signature of this transaction with the
counterparty’s funding key. These two transactions (one for each counterparty)
are called “commitment transactions”. Each party can broadcast her “local”
commitment transaction and has signed the “remote” commitment transaction,
which is the one held by the counterparty.

Every time they want to make a payment to each other, they exchange a
sequence of messages (that include specially crafted signatures) that have two
effects. Firstly, a new pair of commitment transactions, along with their signa-
tures by the funding keys, is created. Each of these transactions ensures that,
if broadcast, each party will be able to spend the appropriate share from the
coins contained in the funding output. Secondly, the two old commitment trans-
actions are revoked. This ensures that no party can close a channel using an old
commitment transaction which may be more beneficial to her than the latest
one.

Invalidating past commitment transactions requires some care. The reason
is that it is impossible to actually make past commitment transactions invalid
without spending the funding output; however, spending it would need an on-
chain transaction for each channel update, thus essentially defeating the purpose
of LN. The following idea is leveraged instead: If Alice broadcasts an old commit-
ment and Bob sees it, he can punish Alice by taking all the money in the channel.
Therefore Alice is technically able to broadcast an old commitment transaction,
but has no financial benefit in doing so. At the same time this imposes the re-
quirement that parties are vigilant about observing the blockchain — see below

7

when we talk about time-locks and how they facilitate a time window within
which parties should react.

The punishing mechanism operates as follows. Suppose Alice considers post-
ing her old local commitment transaction which has an output that carries her
old share of the funds. This output can be spent in two ways: either with a
signature by Alice’s “delayed payment” secret key which is a usual ECDSA key,
or with a signature by Bob’s “revocation” secret key, which is also an ECDSA
key, but with an additional characteristic that we will explain soon. Thus, if
Alice broadcasts an old commitment transaction, Bob will be able to obtain her
funds by spending her output using his “revocation” key. This privilege of course
opens the possibility for Bob to abuse it (in particular, when a channel is closed
— see below — Bob may steal Alice’s funds by using such revocation key) and
hence this side effect should also be carefully mitigated. The mitigation has the
following form. At the time of creation of a new commitment, both parties will
know Bob’s “revocation” public key, but no party knows its corresponding secret
– the key can only be computed by combining one secret value that Alice knows
and one secret value that Bob knows. Alice therefore can prevent Bob from us-
ing his revocation key until she sends this secret value to him. As a result, Alice
will send the secret value to Bob only after the new commitment transaction is
built and signed. Thus Bob cannot abuse his ability to use the revocation key
on a commitment transaction before this transaction is revoked. We note that
the underlying cryptographic mechanism that enables such “revocation keys” is
not straightforward and, as part of our contributions, we formalise it as a new
two-party cryptographic primitive. We call the primitive “combined signature”
and we prove that the construction hidden in the LN implementation realizes it
in the random oracle model under the assumption that the underlying digital
signature scheme is secure in Appendix E.

The last element needed to make updates secure is the so called “relative
timelock”. If Alice broadcasts a commitment transaction, she is not allowed to
immediately spend her funds with her “delayed payment” key. Instead, she has
to wait for the transaction to reach a pre-agreed block depth (the relative time-
lock, hardcoded in the output script of the commitment transaction) in order
to give some time to Bob to see the transaction and, if it does not correspond
to the latest version of the channel, punish her with his “revocation” key. This
avoids a scenario in which Alice broadcasts an old commitment transaction and
immediately spends her output, which would prevent Bob from ever proving that
this commitment was old.

Lastly, if Alice wants to unilaterally close a channel, all she has to do is
broadcast her latest local commitment transaction (the only one that is not
revoked) and wait for the timelock to expire in order to spend her funds. The
LN specification allows for cooperative channel closure which avoids the need
to wait for the timelock, but in the current work this last type of closure is not
considered.

As mentioned time locks provide specific time windows within which both
parties have to be vigilant in order to punish a misbehaving counterparty who

8

broadcasts an old commitment transaction. This means that parties have to be
regularly online to safeguard against theft. LN makes it possible to trustlessly
outsource this, but this mechanism is not analyzed in the current work.

Multi-hop payments. Having funds locked down for exclusive use with a par-
ticular counterparty would be a serious limitation. LN goes beyond that by
allowing multi-hop payments. In a situation where Alice has a channel with Bob
and he has another channel with Charlie, it is possible for Alice to pay Charlie
off-chain by leveraging Bob’s help. Remarkably, this can be achieved without
any one party trusting any of the other two. One can think of Alice giving some
“marked” money to Bob, who in turn either delivers it to Charlie or returns it
to Alice – it is impossible for Bob to keep the money. It is also impossible for
Alice and Charlie to make Bob pay for this transaction out of his pocket.

We will now give an informal overview of how this counterintuitive dynamic
is made possible. Alice initiates the payment by asking Charlie to create a new
hash for a payment of x coins. Charlie chooses a random secret, hashes it and
sends the hash to Alice. Alice promises Bob to pay him x in their channel if
he shows her the preimage of this particular hash within a specific time frame.
Bob makes the same promise to Charlie: if Charlie tells Bob the preimage of the
same hash within a specific time frame (shorter than the one Bob has agreed
with Alice), Bob will pay him x in their common channel. Charlie then sends
him the preimage (which is the secret he generated initially) and Bob agrees to
update the channel to a new version where x is moved from him to Charlie.
Similarly, Bob sends the preimage to Alice and once again Alice updates their
channel to give Bob x coins. Therefore x coins were transmitted from Alice to
Charlie and Bob did not gain or lose anything, he just increased his balance
in the channel with Alice and reduced his balance by an equal amount in the
channel with Charlie.

This type of promise where a preimage is exchanged for money is called
Hash TimeLocked Contract (HTLC). It is enforceable on-chain in case the payer
does not cooperatively update upon disclosure of the preimage, thus no trust is
needed. In the previous example with Alice, Bob and Charlie, two HTLCs were
signed and fulfilled for the payment to go through and the whole interaction
was completely off-chain. Two updates happened in each channel: one to sign
the HTLC and one to fulfill it. The time frames were chosen so that every
intermediary has had the time to learn the preimage and give it to the previous
party on the path.

Direct payments are also carried out using HTLCs.

LN gives the possibility for intermediaries to charge a fee for their service, but
such fees are not incorporated in the current analysis. Furthermore, LN leverages
the Sphinx onion packet scheme [29] to increase the privacy of payments, but
we do not formaly analyze the privacy of LN in this work – we just use it in our
protocol description to syntactically match the message format used by LN.

9

4 Overview of FPayNet

One of our contributions is the specification of FPayNet (Appendix G) a func-
tionality that describes the functional and security guarantees given by an ideal
payment network. The central aim of FPayNet is opening payment channels,
keeping track of their state, updating them according to requested payments
and closing them, as requested by honest players, all in a secure manner. In par-
ticular, the three main messages it can receive from Alice are (openChannel),
(pay) and (closeChannel).

When FPayNet receives (openChannel, Alice, Bob, x, tid) from Alice, it
informs S of E ’s intention to create a channel between Alice and Bob where
Alice owns x coins. When it receives (pay, Bob, x,−−→path, receipt) from Alice,
it informs S that E asked to perform a multi-hop payment of x coins from Alice
to Bob along the −−→path. As expected, when FPayNet receives (closeChannel,
receipt, tid) from Alice, it leaks to S the fact that E wants to close the relevant
channel.

In order to provide security guarantees, there are various moments when
FPayNet verifies whether certain expected events have actually taken place. A
number of messages prompt FPayNet to read from GLedger and perform these
checks. In the actual implementations of LN these checks are done periodically
by a polling daemon. Such checks are done by FPayNet in the following cases:
– On receiving (poll) by Alice, FPayNet asks GLedger for Alice’s latest ΣAlice

and verifies that no bad events have happened. In particular, FPayNet halts
if any of Alice’s channels has been closed maliciously with a transaction at
height h and, even though Alice has polled within [h, h+delay(Alice)−1],
she did not manage to punish the counterparty. Refer to lines 5 and 10 of
Fig. 16 for more details. If FPayNet does not halt, it leaks to S the polling
details (including the identity of the poller and the state of the ledger in
their view).

– FPayNet expects S to send a (resolvePays, charged) message that gives
details on the outcome of one or more multi-hop payments that include the
identity of the party that is charged. Moreover, for each resolved payment,
the message includes two expiry values in block height: OutgoingCltvExpiry,
which is the largest block in which the charged party could claim money from
the previous hop (closer to the payment initiator) and IncomingCltvExpiry,
which is the smallest block in which the charged party could claim money
from the next hop (closer to the payment receiver). FPayNet checks that for
each payment the charged party was one of the following: (a) the one that
initiated the payment, (b) a malicious party or (c) an honest party that is
negligent. The latter case happens when the honest party either:
1. did not poll in time to catch a malicious closure (similarly to the check

performed when a poll message is handled, as described above) (Fig. 12,
line 14) or

2. did not poll twice while the block height in the view of the player was in
[OutgoingCltvExpiry, IncomingCltvExpiry−(2 + r) windowSize] with
a distance of at least (2 + r) windowSize between the two polls or

10

3. did not enforce the retrieval of the funds lost as a result of this pay-
ment when the chain in her view had height IncomingCltvExpiry −
(2 + r) windowSize (Fig. 12, line 23) with a fulfillOnChain message,
as discussed below.

Note that (2 + r) windowSize is the maximum number of blocks an honest
party needs to wait from the moment a valid transaction is submitted until it
is added to the ledger state (Proposition 1). FPayNet also ensures that the two
expiries (OutgoingCltvExpiry and IncomingCltvExpiry) have a distance
of at least relayDelay(Alice) + (2 + r) windowSize, otherwise it halts. In
case the charged party was honest and non-negligent, FPayNet halts. It also
halts if a particular payment resulted in a channel update for which S did
not inform FPayNet (Fig. 13, line 10).

– FPayNet executes the function checkClosed(ΣAlice) every time it receives
ΣAlice from GLedger (Fig. 15, lines 1-33). In this case, it checks that every
channel that E has asked to be closed or S designated as closed indeed has a
closing transaction that corresponds to its latest state in ΣAlice. Enough time
is given for that transaction to settle in ΣAlice, but if that time passes and
the channel is still open or it is closed to a wrong version and no opportunity
for punishment was given, FPayNet halts.

A number of messages that support the protocol progress are also handled:

– Every player has to send (register, delay, relayDelay) before participat-
ing in the network. This informs FPayNet how often the player has to poll.
“delay” corresponds to the maximum time between polls so that malicious
closures will be caught. “relayDelay” is useful when the player is an inter-
mediary of a multi-hop payment. It roughly represents the size of the time
window the player has to learn a preimage from the next and reveal it to the
previous node. Subsequently FPayNet asks S to create and send a public key
that will hold the player’s funds. This public key is subsequently sent back
to the player.

– To complete her registration, Alice has to send the (toppedUp) message.
It lets FPayNet know that the desired amount of initial funds have been
transferred to Alice’s public key. FPayNet reads Alice’s state on GLedger to
retrieve this number and subsequently allows Alice to participate in the
payment network after it updates her onChainBalance.

– When FPayNet receives (checkForNew, Alice, Bob, tid) from Alice, it asks
GLedger for Alice’s latest state ΣAlice and looks for a funding transaction F
in it. If one is found, S is asked to complete the opening procedure.

– (pushFulfill, pchid), (pushAdd, pchid) and (commit, pchid) all nudge S
to carry on with the protocol that updates the state of a specific channel.
FPayNet simply forwards these messages to S.

– (fulfillOnChain) prompts S to close channels in which the counterparty is
not willing to pay, even though they have promised to do so upon disclosure
of a particular preimage. This message is simply forwarded to S, but FPayNet
takes a note that such a message was received and the current blockheight
in the view of the calling party.

11

Last but not least, E sends (getNews) to obtain the latest changes regard-
ing newly opened or closed channels, along with updates to the state of existing
ones. Here we make an interesting observation: The most complex part of LN is
arguably the negotiations that happen when a multi-hop payment takes place,
due to the many channel updates needed; indeed, two complete channel updates
for each hop are needed for a successful payment to go through. The fact that
a proposal for an update can happen asynchronously with the commitment to
this update, along with the fact that a single commitment may commit to many
indiviual update proposals only adds to the complexity. It is therefore only nat-
ural to want FPayNet to be unaware of these details. In order to disentangle the
abstraction of FPayNet from such minutiae, we allow the adversary full control
of the updates that are reported back to E via FPayNet. Nevertheless, FPayNet
enforces that any reporting deviations induced by the adversary will be caught
when a channel closes. This is quite intuitive: Consider a user of the payment
network that does not understand its inner workings but can read GLedger and
count her funds there. FPayNet provides no guarantees regarding any specific
interim reporting but the user is assured that in case she chooses to close the
relevant channel, her state in GLedger will be consistent with all the payments
that went through.

5 Overview of the Lightning Protocol ΠLN

In order to prove that software adhering to the LN specification is secure with
respect to the guarantees given by FPayNet, it is necessary to define a concrete
protocol that implements LN in the UC model. To that end we define the formal
protocol ΠLN, an overview of which is given here.

For the rest of this section, we will assume that Alice, Bob and Charlie ITIs
honestly execute ΠLN. Similarly to the ideal world, the main functions of ΠLN
are triggered when it receives (openChannel), (pay) and (closeChannel)
from E . These three messages along with (getNews) informally correspond to
actions that a “human user” would instruct the system to perform. (register)
and (toppedUp) are sent by E for player intialization. The rest of the messages
sent from E prompt ΠLN to perform actions that a software implementation
would spontaneously perform periodically. All messages sent between Alice, Bob
and Charlie correspond to messages specified by LN. For clarity of exposition,
we avoid mentioning the exact name and contents of every message. We refer
the reader to the formal definition of ΠLN for further details (Appendix I).
Registration. Before Alice can use the network, E first has to send her a
(register, delay, relayDelay) message. She generates her persistent key and
sends it back to E . The latter may choose to add some funds to this key and
then send (toppedUp) to Alice, who checks her state in GLedger and records her
on-chain balance.
Channel opening.When she receives (openChannel, Alice, Bob, x, tid) from
E , Alice initiates the message sequence needed to open a channel with Bob,
funded by her with x coins. She first generates and sends to Bob some keys and

12

her timelock delay, who also generates some keys and sends them back along with
his timelock delay. Alice then builds the funding transaction using Bob’s keys
and sends its signature back to Bob. He again mirrors Alice’s steps, sending back
his signature. Both parties can now unilaterally spend the funding transaction,
so Alice submits it to GLedger.

At a later point E may send (checkForNew, Alice, Bob, tid) to Alice. She
then checks if her state in GLedger contains the funding transaction with the
temporary ID tid and in that case she generates a new “commitment” key for
the next update and sends it to Bob. Bob also confirms that his state contains
the funding transaction, generates his next commitment key and sends it back
to Alice. The channel is now open. Both parties keep a note to give E a receipt
of the new channel the next time they receive (getNews).
Channel closing. When she receives (closeChannel, receipt, tid) from E ,
Alice checks that receipt corresponds to the latest state of the channel and
submits to GLedger the latest commitment transaction, along with all the relevant
HTLC transactions. It also takes a note to give E a receipt of the closed channel
the next time she receives (getNews).
Performing payments. When she receives (pay, Charlie, x, −−→path) from E ,
Alice attempts to pay Charlie x coins, using the provided −−→path. Let us assume
that the path is Alice – Bob – Charlie. Alice asks Charlie for an invoice with the
HTLC hash, to which Charlie reacts by choosing a random preimage and sending
back to Alice its hash. Alice then prepares a Sphinx [29] onion packet with the
relevant information for each party on the −−→path and sends it to Bob along with
the hash. Bob peels his layer of the onion and, after performing sanity checks, he
takes a note of this pending HTLC. He does not yet forward the onion to Charlie,
because Alice is not yet committed to paying Bob. The latter happens if Alice
subsequently receives (commit, pchid1) from E , where pchid1 is the ID of the
Alice – Bob channel. She then sends Bob all the signatures needed to make the
new commitment transaction spendable, who replies with the secret commitment
key of the old commitment transaction (thus revoking it), along with the public
commitment key of the future commitment transaction (to allow Alice to prepare
the next update, when that happens). LN demands that before Bob forwards
the onion, he also should commit to the new channel version (that includes
the HTLC) to Alice. This happens if he receives a (commit) message from E ,
which causes a similar exchange as above, but with the roles swapped. Now
that both parties have the HTLC in their commitment transaction and all past
commitment transactions are revoked, they consider this HTLC “irrevocably
committed”.

Bob may then receive (pushAdd, pchid1) from E . Given that the HTLC is
irrevocably committed, Bob sends the onion to Charlie, who in turn peels it,
recognizes that the payment is for him and that indeed he knows the preimage
(since he generated it himself) and waits for the HTLC between him and Bob
to be irrevocably committed. After both Bob and Charlie receive (commit),
Charlie awaits for a (pushFulfill, pchid) message from E . If it arrives, Charlie
sends the preimage to Bob, who sends it back to Alice. Once more every party

13

has to receive a (commit) message for each of the channels it participates in
order to remove the HTLC and update the definitive balance of each player
to the appropriate value after the payment is complete. After this last update,
each party keeps a note to inform E about the new balance when it receives
(getNews).

Observe that while locked up in an HTLC, funds do not belong to either
player; they are rather in a temporary, transitive state. If one party learns the
preimage, the funds become theirs, whereas if it does not learn the preimage after
some time, the other party is entitled to the funds. Also observe that within the
UC framework the necessary messages commit, pushFulfill and pushAdd
may never arrive, but in a correct software implementation the corresponding
actions happen automatically, without waiting for a prompt by the user.
Polling. Lastly, E may send (poll) to Alice. She then reads her state in GLedger
and checks for closed channels. If she finds maliciously closed channels (closed
using old commitments), she punishes the counterparty and takes all the funds
in the channel. If she finds in an honestly closed channel a preimage of an HTLC
that she has previously signed and for which she is an intermediary, she records it
and prepares to send it when she receives (pushFulfill). Finally, if she finds an
honestly closed channel with an HTLC output for which she knows the preimage,
she spends it immediately. For every closed channel she finds, she keeps a note
to report it to E the next time she receives (getNews).

Remark 1 (Differences between LN and ΠLN). In LN, a custom construction
for generating a new secret during each channel update is used. It reduces the
amount of space needed to maintain a channel from O(n) to O(logn) in the num-
ber of updates. As far as we know, its security has not been formally analyzed.
In the current paper we use instead a PRF [30].

As mentioned earlier, LN uses a custom construction that takes advantage of
elliptic curve homomorphic properties in order to derive any number of keypairs
by combining a single “basepoint” with different “labels”. We instead use Iden-
tity Based Signatures [27,28] (IBS) to abstract the properties provided by the
construction. We also prove that it actually implements an IBS, see Section C.

Additionally, we have chosen to simplify the protocol in a number of ways in
order to keep the analysis tractable. In particular LN defines several additional
messages that signal various types of errors in transmission. It also specifies ex-
actly how message retransmission should happen upon reconnection, specifically
for the case of connection failure while updating a channel. This allows for a more
robust system by excluding many cases of accidental channel closures. What is
more, an LN user can change their “delay” and “relayDelay” parameters even
after registration, which is not the case in ΠLN.

In order to incentivize users to act as intermediaries or check for channel
closures on behalf of others, LN provides for fees for these two roles. Furthermore,
in order to reduce transaction size, it specifies exact rules for prunning outputs
of too low value (known as “dust outputs”). In the current analysis we do not
consider these features.

14

Last but not least, LN makes it possible for parties to cooperatively close a
channel, thus avoiding the need to wait for the expiry of timelocks and reducing
the size of the transactions that are added to the blockchain. As we mentioned
earlier, we do not analyze this part of the specification.

6 Overview of the Combined Signature primitive

As previously mentioned, we define in this work a new primitive for combining
keys and generating signatures that is leveraged in the revocation and punish-
ment mechanism of channel updates. Furthermore, we prove that the construc-
tion designed by the creators of LN realizes this primitive. We here provide the
intuition behind it and refer the reader to Appendix E for the exact syntax,
correctness and security definitions, concrete construction and proof of security.

Previous work on the subject of multi-party signatures [12,31,32,33,34,35]
focuses on use-cases where some parties desire to generate a signature without
revealing their private information; the latter is created using an interactive
protocol. The resulting signatures can be verified by a single verification key,
which is also included in the output of the key generation protocol. As we will
see however, the primitive defined here has different aims and limitations and,
to our knowledge, has not been formalized yet.

A combined signature is a two-party primitive, say Alice and Bob with Bob
playing the role of the signer and Alice the holder of a share of the secret-key that
is essential for issuing signatures verifiable with the “combined” verification key.
The derivation of the verification key is achieved using public information drawn
from Alice and Bob and is feasible without any party knowing the corresponding
signing key. Only if Alice shares her secret information with Bob will he be able
to construct the signing key.

Beyond correctness, combined signatures have two security properties ex-
pressed as follows. Share-EUF security expresses security from the point of view
of Alice, and establishes that Bob is incapable of issuing a valid combined signa-
ture if he does not possess the corresponding secret share. On the other hand,
master-EUF-CMA security is modeled very similarly to standard EUF-CMA se-
curity, with the difference that Bob (the signer) combines malicious shares into
his public-key and issues signatures with respect to such combined keys that still
provide no advantage to the adversary in terms of producing a forged message
for a combined key of its choice.

7 Security proof overview

Theorem 1 (Lightning Payment Network Security). The protocol ΠLN
realises FPayNet given a global functionality GLedger assuming the security of the
underlying digital signature, identity-based signature, combined digital signature

15

and PRF. Specifically,

∀k ∈ N, PPT E , |Pr[ExecGLedger
ΠLN,Ad,E = 1]− Pr[ExecFPayNet,GLedger

S,E = 1]| ≤
2nmE-ds(k) + 6npE-ids(k) + 2nmpE-share(k) + 2nmE-master(k) + 2E-prf(k) .

where n is the max number of registered users, m is the max number of channels
that a user is involved in, p is the max number of times that a channel is updated
and the “E-” terms correspond to the insecurity bounds of the primitives.

Proof Sketch. The proof is done in 5 steps. In Lemma 4 we define a simulator SLN
that internally simulates a full execution of ΠLN for each player, and a “dummy”
functionality that acts as a simple relay between E and SLN. We argue that this
version of the ideal world trivially produces the exact same messages for E as
the real world.

In each subsequent step, we incrementally move responsibilities from the
simulator to the functionality. Each step defines a different functionality that
handles some additional messages from E exactly like FPayNet, until the last
step (Lemma 8) where we use FPayNet itself. Correspondingly, the simulator of
each step is adapted so that the new ideal execution is computationally indis-
tinguishable from the previous one.

Lemma 5 lets F handle registration messages, along with the corruption mes-
sages from S. In Lemma 6 the functionality additionally handles messages related
to channel opening. It behaves like FPayNet, but does not execute checkClosed().
Lemma 7 has the functionality handle all messages sent during channel updates.
Lastly, Lemma 8 has the entire FPayNet as its functionality, by incorporating the
message for closing a channel, executing checkClosed() normally and handing
the message that returns to E the receipts for newly opened, updated and closed
channels. The last two steps introduce a probability of failure in case the various
types of signatures used in ΠLN are forged. We analyze these cases separately
and argue that, if such forgeries do not happen, the emulation is perfect. There-
fore we can calculate the concrete security bounds shown in the theorem.
For the formal proof, we refer the reader to Appendix K.

16

Appendices

A Previous Payment Networks in UC

In [24], [15] and [18] the specified ledger functionality settles every submitted
transaction immediately and makes it visible to all players. To date, such a ledger
has not been realized by any protocol. Furthermore, any realistic model of the
network should consider the fact that messages reach their destination with a
delay and possibly in a different order from the one they were sent. Therefore it
is plausible to believe that such a ledger functionality is not realizable on top of
realistic network models, even when corruptions are not allowed. We therefore
conclude that such a ledger is “too ideal.”

In [17] the ledger is not explicitly specified as a functionality, but it is only
informally described. Several smart contracts are formally defined instead as
UC ITMs, which are the entities with which protocols ultimately interact. The
execution model of these contracts and their interaction with the blockchain
is explained in an intuitive way, but a complete formalization of the ledger is
missing.

B Digital Signatures

Digital signatures [30] enable a party to authenticate messages to other parties.
A signature on a message is created by the signing party using the secret “sign-
ing key”; other parties can later verify that the signature was indeed made on
the message using the public “verification key”. Transactions in Bitcoin [2] are
signed using digital signatures and are considered valid only if signatures verify
correctly, thus ensuring that only parties entitled to particular funds can spend
them. Bitcoin uses ECDSA signatures over the secp256k1 curve5.

To ensure compatibility, LN uses ECDSA over the same curve as its basic
signature scheme. In this work, we abstract the particular construction away and
use instead the established primitive that a secure construction must realize.

The three algorithms used by a Digital Signatures scheme are:

– (pk, sk)← KeyGen(1k)
– σ ← SignDS(m, sk)
– {0, 1} ← VerifyDS(σ,m, pk)

We demand that the following holds for a scheme to have correctness:
∀k ∈ N,m ∈M,

Pr[(pk, sk)← KeyGen(1k),
VerifyDS(SignDS(m, sk),m, pk) = 1] = 1

5 https://en.bitcoin.it/wiki/Secp256k1

17

https://en.bitcoin.it/wiki/Secp256k1

1: (pk, sk)← KeyGen(1k)
2: i← 0
3: (auxi, response)← A(init, pk)
4: while response can be parsed as m do
5: i← i+ 1
6: store m as mi

7: σi ← SignDS(m, sk)
8: (auxi, response)← A(signature, auxi−1, σi)
9: end while
10: parse response as (m∗, σ∗)
11: if m∗ /∈ {m1, . . . ,mi} ∧VerifyDS(σ∗,m∗, pk) = 1 then
12: return 1
13: else
14: return 0
15: end if

Game EUF-CMAA
(
1k
)

Fig. 1.

Definition 1. A Digital Signatures scheme is strongly EUF-CMA-secure if

∀k ∈ N,∀A ∈ PPT,Pr
[
EUF-CMAA

(
1k
)

= 1
]

= negl (k) or equivalently

∀k ∈ N,E-ds(k) = negl (k) ,

where E-ds(k) = sup
A∈PPT

{Pr[EUF-CMAA
(
1k
)

= 1]} .

C Identity Based Signatures primitive

As we mentioned previously, LN uses a custom construction to derive three new
keys on each update. We abstract this construction using a slight modification
to the previously established Identity Based Signatures primitive [28,27]. Our
version augments the scheme with explicit verification keys, which are generated
together with the signing keys. Furthermore a new key derivation algorithm is
introduced, which returns only the verification key of an identity, given its label.
We furthermore prove that the custom construction used in LN realizes the
primitive.

The five algorithms used by an Identity Based Signatures scheme (with our
modification) are:

– (mpk,msk)← Setup(1k)
– (pkl, skl)← KeyDer(mpk,msk, l)
– pkl ← PubKeyDer(mpk, l)
– σ ← SignIBS(m, skl)
– {0, 1} ← VerifyIBS(σ,m, pkl)

18

Observe that mpk is not part of the input to SignIBS and VerifyIBS. In our
case, this input is not needed. In fact, because of the underlying similarity of
these two algorithms with their counterparts from standard Digital Signatures,
such an input would rather complicate the exposition.

We demand that the following holds for a scheme to have correctness:

– ∀k ∈ N, l ∈ L,
Pr[(mpk,msk)← Setup(1k),
(pk1, sk1)← KeyDer (mpk,msk, l) ,
pk2 ← PubKeyDer (mpk, l) ,
pk1 = pk2] = 1

– ∀k ∈ N,m ∈M,
Pr[(mpk,msk)← Setup(1k),
(pk, sk)← KeyDer (mpk,msk, l) ,
VerifyIBS(SignIBS(m, sk),m, pk) = 1] = 1

1: (mpk,msk)← Setup(1k)
2: i, j ← 0
3: (aux0, response)← A(init,mpk)
4: while response can be parsed as (m, l) or l do
5: if response can be parsed as (m, l) then
6: i← i+ 1
7: store (m, l) as (m, l)i
8: (pk, sk)← KeyDer(mpk,msk, l)
9: σ ← SignIBS(m, sk)
10: (auxi+j , response)← A(signature, auxi+j−1, σ)
11: else // response can be parsed as l
12: j ← j + 1
13: store l as lj
14: (pk, sk)← KeyDer(mpk,msk, l)
15: (auxi+j , response)← A(keypair, auxi+j−1, (pk, sk))
16: end if
17: end while
18: parse response as (m∗, l∗, σ∗)
19: if (m∗, l∗) /∈ {(m, l)1, . . . , (m, l)i} ∧ l∗ /∈
{l1, . . . , lj} ∧VerifyIBS(σ∗,m∗,PubKeyDer(mpk, l∗)) = 1 then

20: return 1
21: else
22: return 0
23: end if

Game IBS-EUF-CMAA
(
1k
)

Fig. 2.

19

Definition 2. An Identity Based Signatures scheme is IBS-EUF-CMA-secure if

∀k ∈ N,∀A ∈ PPT,Pr
[
IBS-EUF-CMAA

(
1k
)

= 1
]

= negl (k) or equivalently

∀k ∈ N,E-ibs(k) = negl (k) ,

where E-ibs(k) = sup
A∈PPT

{Pr[IBS-EUF-CMAA
(
1k
)

= 1]} .

C.1 Construction

We here define the particular construction for Identity Based Signatures used in
LN and prove its security.

Parameters: hash function H, group generator G
Setup(1k, rand):

return (G · rand, rand)
KeyDer(mpk,msk, l):

pk ← mpk +H (l ‖mpk) ·G
sk ← msk +H (l ‖mpk)
return (pk, sk)

PubKeyDer(mpk, l):
return mpk +H (l ‖mpk) ·G

SignIBS(m, skl):
return SignDS(m, skl)

VerifyIBS(σ,m, pkl):
return VerifyDS(σ,m, pkl)

Lemma 1. The construction above is IBS-EUF-CMA-secure in the Random Or-
acle model under the assumption that the underlying signature scheme is strongly
EUF-CMA-secure and the range of the Random Oracle coincides with that of the
underlying signature scheme signing keys.

Proof. Let k ∈ N,B PPT algorithm such that

Pr
[
IBS-EUF-CMAB

(
1k
)

= 1
]

= a > negl (k) .

We construct a PPT distinguisher A (Fig. 3) such that

Pr
[
EUF-CMAA

(
1k
)

= 1
]
> negl (k)

that breaks the assumption, thus proving Lemma 1.
Let Y be the range of the random oracle. The modified random oracle used in

Fig. 3 is indistinguishable from the standard random oracle by PPT algorithms
since the statistical distance of the standard random oracle from the modified
one is at most 1

2|Y | < negl (k) as they differ in at most one element.

20

1: k $← U [1, T (B) + T (A)] // T (M) is the maximum running time of M
2: Random Oracle: for every first-seen query q from B set H (q) to a random

value
3: return H (q) to B
4: (mpk,msk)← Setup

(
1k
)

5: Random Oracle: Let q be the kth first-seen query from B or A:
6: if q = (l ‖mpk) then
7: set H (l ‖mpk) to (vk −mpk) ·G−1

8: else
9: set H (q) to a random value
10: end if
11: return H (q) to B or A
12: i← 0
13: j ← 0
14: (aux0, response)← B (init,mpk)
15: while response can be parsed as (m, l) or l do
16: if response can be parsed as (m, l) then
17: i← i+ 1
18: store (m, l) as (m, l)i
19: (pk, sk)← KeyDer(mpk,msk, l)
20: σ ← SignIBS(m, sk)
21: (auxi+j , response)← B (signature, auxi+j−1, σ)
22: else // response can be parsed as l
23: j ← j + 1
24: store l as lj
25: (pk, sk)← KeyDer(mpk,msk, l)
26: (auxi+j , response)← B (keypair, auxi+j−1, (pk, sk))
27: end if
28: end while
29: parse response as (m∗, l∗, σ∗)
30: if vk = PubKeyDer(mpk, l∗) ∧ B wins the IBS-EUF-CMA game then // A

won the EUF-CMA game
31: return (m∗, σ∗)
32: else
33: return fail
34: end if

Algorithm A (vk)

Fig. 3.

21

Let E denote the event in which neither KeyDer(mpk,msk, l∗) or Pub-
KeyDer(mpk, l∗) is invoked. In that case the value H (l ‖mpk) is decided after
B terminates (Fig. 3, line 30) and thus

Pr[vk ∈ KeyDer (mpk,msk, l∗)∨
vk = PubKeyDer (mpk, l∗) |E] < negl (k)⇒

Pr[(vk ∈ KeyDer (mpk,msk, l∗)∨
vk = PubKeyDer (mpk, l∗)) ∧ E] < negl (k)⇒

Pr [vk = PubKeyDer (mpk, l∗) ∧ E] < negl (k) .

(1)

It is

(B wins)→ (vk = PubKeyDer (mpk, l∗))⇒
Pr [B wins] ≤ Pr [vk = PubKeyDer (mpk, l∗)]⇒

Pr [B wins ∧ E] ≤ Pr [vk = PubKeyDer (mpk, l∗) ∧ E] (1)⇒
Pr [B wins ∧ E] < negl (k) .

But we know that Pr [B wins] = Pr [B wins ∧ E] + Pr [B wins ∧ ¬E] and
Pr [B wins] = a by the assumption, thus

Pr [B wins ∧ ¬E] > a− negl (k) . (2)

We now focus at the event ¬E. Let F the event in which the call of to Key-
Der(mpk,msk, l∗) or PubKeyDer(mpk, l∗) results in the kth invocation of the
Random Oracle. Since k is chosen uniformly at random and using Proposition 2,
Pr [F |¬E] = 1

T (B)+T (A) . Observe that Pr [F |E] = 0 ⇒ Pr [F] = Pr [F |¬E] =
1

T (B)+T (A) .
In the case where the event (F ∧ B wins ∧ ¬E) holds, it is

PubKeyDer (mpk, l∗) = mpk+H (l∗ ‖mpk)·G = mpk+(vk−mpk)·G−1·G = vk

Since F holds, the kth invocation of the Random Oracle queried H (l∗ ‖mpk).
Therefore it is PubKeyDer (mpk, l∗) = vk. This means that the verification is
successful: VerifyIBS (σ∗,m∗, vk) = 1. We conclude that, if (F ∧ B wins ∧ ¬E),
A wins the EUF-CMA game. A final observation is that the probability that the
events (B wins ∧ ¬E) and F are almost independent, thus

Pr [F ∧ B wins ∧ ¬E] = Pr [F] Pr [B wins ∧ ¬E]± negl (k) (2)=
a− negl (k)
T (A) + T (B) ± negl (k) > negl (k)

22

D Pseudorandom Functions

A “pseudorandom function” [30] F is informally a function with two inputs: a
secret seed and a bitstring. Given that the seed is randomly selected, no PPT
algorithm can distinguish F from a randomly selected function.

In the current work a PRF is used in ΠLN to generate the randomness used
for KeyShareGen(), which returns the so-called “per commitment” keypairs
(sAlice,com,n, pAlice,com,n) (Fig. 20, line 4, Fig. 21, line 4, Fig. 25, line 5, Fig. 26,
line 7 and Fig. 33, line 18).

Definition 3. Let k ∈ N. Let Funck the set of all functions mapping k-bitstrings
to k-bitstrings. We say that function F : {0, 1}k × {0, 1}k → {0, 1}k is pseudo-
random if ∀ PPT A,

| Pr
s∈{0,1}k

A’s coins

[AF (s,·)(1k) = 1]− Pr
f∈Funck

A’s coins

[Af(·)(1k) = 1]| = negl(k) ,

where A is given oracle access to F (s, ·) and f(·) in each of the probability
expressions above respectively. Equivalently, F is pseudorandom if

∀k ∈ N,E-prf(k) = negl (k) ,

where E-prf(k) = sup
A∈PPT

{| Pr
s∈{0,1}k

A’s coins

[AF (s,·)(1k) = 1]− Pr
f∈Funck

A’s coins

[Af(·)(1k) = 1]|} .

E Combined Signatures primitive

The seven algorithms used by a Combined Signatures scheme are:

– (mpk,msk)←MasterKeyGen
(
1k
)

– (pk, sk)← KeyShareGen
(
1k
)

– (cpkl, cskl)← CombineKey (mpk,msk, pk, sk)
– cpkl ← CombinePubKey (mpk, pk)
– {0, 1} ← TestKey (sk, pk)
– σ ← SignCS (m, csk)
– {0, 1} ← VerifyCS (σ,m, cpk)

We demand that the following holds for a scheme to have correctness:

– ∀k ∈ N,
Pr[(pk, sk)← KeyShareGen

(
1k
)
,

TestKey(pk, sk) = 1] = 1
– ∀k ∈ N,

Pr[(mpk,msk)←MasterKeyGen
(
1k
)
,

(pk, sk)← KeyShareGen
(
1k
)
,

(cpk1, csk1)← CombineKey (mpk,msk, pk, sk) ,
cpk2 ← CombinePubKey (mpk, pk) ,
cpk1 = cpk2] = 1

23

– ∀k ∈ N,m ∈M,
Pr[(mpk,msk)←MasterKeyGen

(
1k
)
,

(pk, sk)← KeyShareGen
(
1k
)
,

(cpk, csk)← CombineKey (mpk,msk, pk, sk) ,
VerifyCS(SignCS(m, csk),m, cpk) = 1] = 1

1: (aux,mpk, n)← A (init)
2: for i← 1 to n do
3: (pki, ski)← KeyShareGen

(
1k
)

4: end for
5: (cpk∗, pk∗,m∗, σ∗)← A (keys, aux, pk1, . . . , pkn)
6: if pk∗ ∈ {pk1, . . . , pkn}∧ cpk∗ = CombinePubKey (mpk, pk∗)∧

VerifyCS (σ∗,m∗, cpk∗) = 1 then
7: return 1
8: else
9: return 0
10: end if

Game share-EUFA
(
1k
)

Fig. 4.

Definition 4. A Combined Signatures scheme is share-EUF-secure if

∀k ∈ N,∀A ∈ PPT,Pr
[
share-EUFA

(
1k
)

= 1
]

= negl (k) or equivalently

∀k ∈ N,E-share(k) = negl (k) ,

where E-share(k) = sup
A∈PPT

{Pr[share-EUFA
(
1k
)

= 1]} .

Definition 5. A Combined Signatures scheme is master-EUF-CMA-secure if

∀k ∈ N,∀A ∈ PPT,Pr
[
master-EUF-CMAA

(
1k
)

= 1
]

= negl (k) or equivalently

∀k ∈ N,E-master(k) = negl (k) ,

where E-master(k) = sup
A∈PPT

{Pr[master-EUF− CMAA
(
1k
)

= 1]} .

Definition 6. A Combined Signatures scheme is combine-EUF-secure if it is
both share-EUF-secure and master-EUF-CMA-secure.

E.1 Construction

We here define the particular construction for Combined Signatures used in LN
and prove its security.

Parameters: hash function H, group generator G

24

1: (mpk,msk)←MasterKeyGen
(
1k
)

2: i← 0
3: (auxi, response)← A (init,mpk)
4: while response can be parsed as (pk, sk,m) do
5: i← i+ 1
6: store pk, sk,m as pki, ski,mi

7: (cpki, cski)← CombineKey (mpk,msk, pki, ski)
8: σi ← SignCS (mi, cski)
9: (auxi, response)← A (signature, auxi−1, σi)
10: end while
11: parse response as (cpk∗, pk∗,m∗, σ∗)
12: if m∗ /∈ {m1, . . . ,mi}∧ cpk∗ = CombinePubKey (mpk, pk∗)∧

VerifyCS (σ∗,m∗, cpk∗) = 1 then
13: return 1
14: else
15: return 0
16: end if

Game master-EUF-CMAA
(
1k
)

Fig. 5.

MasterKeyGen(1k, rand):
return (rand, G · rand)

KeyShareGen(1k, rand):
return (rand, G · rand)

CombineKey(mpk,msk, pk, sk):
return msk · H (mpk ‖ pk) + sk · H (pk ‖mpk)

CombinePubKey(mpk, pk):
return mpk · H (mpk ‖ pk) + pk · H (pk ‖mpk)

SignCS(m, csk):
return SignDS(m, csk)

VerifyCS(σ,m, cpk):
return VerifyDS(σ,m, cpk)

Lemma 2. The construction above is share-EUF-secure in the Random Oracle
model under the assumption that the underlying signature scheme is strongly
EUF-CMA-secure and the range of the Random Oracle coincides with that of the
underlying signature scheme signing keys.

Proof. Let k ∈ N,B PPT algorithm such that

Pr
[
share-EUFB

(
1k
)

= 1
]

= a > negl (k) .

25

We construct a PPT distinguisher A (Fig. 6) such that

Pr
[
EUF-CMAA

(
1k
)

= 1
]
> negl (k)

that breaks the assumption, thus proving Lemma 2.

1: j $← U [1, T (B)] // T (M) is the maximum running time of M
2: Random Oracle: for every first-seen query q from B set H (q) to a random

value
3: return H (q) to B
4: (aux,mpk, n)← A (init)
5: for i← 1 to n do
6: (pki, ski)← KeyShareGen

(
1k
)

7: end for
8: Random Oracle: Let q be the jth first-seen query from B:
9: if q = (mpk ‖x) then
10: if H (x ‖mpk) unset then
11: set H (x ‖mpk) to a random value
12: end if
13: set H (mpk ‖x) to (vk − x · H (x ‖mpk)) ·mpk−1

14: else if q = (x ‖mpk) then
15: if H (mpk ‖x) unset then
16: set H (mpk ‖x) to a random value
17: end if
18: set H (x ‖mpk) to (vk −mpk · H (mpk ‖x)) · x−1

19: else
20: set H (q) to a random value
21: end if
22: return H (q) to B
23: (cpk∗, pk∗,m∗, σ∗)← B (keys, aux, pk1, . . . , pkn)
24: if vk = cpk∗ ∧B wins the share-EUF game then // A won the EUF-CMA game
25: return (m∗, σ∗)
26: else
27: return fail
28: end if

Algorithm A (vk)

Fig. 6.

Let Y be the range of the random oracle. The modified random oracle used in
Fig. 6 is indistinguishable from the standard random oracle by PPT algorithms
since the statistical distance of the standard random oracle from the modified
one is at most 1

2|Y | < negl (k) as they differ in at most one element.
Let E denote the event in which B does not invoke CombinePubKey to pro-

duce cpk∗. In that case the values H (pk∗ ‖mpk) and H (mpk ‖ pk∗) are decided

26

after B terminates (Fig. 6, line 24) and thus

Pr [cpk∗ = CombinePubKey (mpk, pk∗) |E] = 1
|Y |

< negl (k)⇒

Pr [cpk∗ = CombinePubKey (mpk, pk∗) ∧ E] < negl (k) .

(3)

It is

(B wins)→ (cpk∗ = CombinePubKey (mpk, pk∗))⇒
Pr [B wins] ≤ Pr [cpk∗ = CombinePubKey (mpk, pk∗)]⇒

Pr [B wins ∧ E] ≤ Pr [cpk∗ = CombinePubKey (mpk, pk∗) ∧ E] (3)⇒
Pr [B wins ∧ E] < negl (k) .

But we know that Pr [B wins] = Pr [B wins ∧ E] + Pr [B wins ∧ ¬E] and
Pr [B wins] = a by the assumption, thus

Pr [B wins ∧ ¬E] > a− negl (k) . (4)

We now focus at the event ¬E. Let F the event in which the call of B to
CombinePubKey to produce cpk∗ results in the jth invocation of the Ran-
dom Oracle. Since j is chosen uniformly at random and using Proposition 2,
Pr [F |¬E] = 1

T (B) . Observe that Pr [F |E] = 0⇒ Pr [F] = Pr [F |¬E] = 1
T (B) .

In the case where the event (F ∧ B wins ∧ ¬E) holds, it is

cpk∗ = CombinePubKey (mpk, pk∗) =
mpk · H (mpk ‖ pk∗) + pk∗ · H (pk∗ ‖mpk)

Since F holds, the jth invocation of the Random Oracle queried either the value
H (mpk ‖ pk∗) orH (pk∗ ‖mpk). In either case (Fig. 6, lines 9-18), it is cpk∗ = vk.
This means that VerifyCS (σ∗,m∗, vk) = 1. We conclude that in the event
(F ∧ B wins ∧ ¬E), A wins the EUF-CMA game. A final observation is that the
probability that the events (B wins ∧ ¬E) and F are almost independent, thus

Pr [F ∧ B wins ∧ ¬E] = Pr [F] Pr [B wins ∧ ¬E]± negl (k) (4)=
a− negl (k)

T (B) ± negl (k) > negl (k)

Lemma 3. The construction above is master-EUF-CMA-secure in the Random
Oracle model under the assumption that the underlying signature scheme is
strongly EUF-CMA-secure and the range of the Random Oracle coincides with
that of the underlying signature scheme signing keys.

Proof. Let k ∈ N,B PPT algorithm such that

Pr
[
master-EUF-CMAB

(
1k
)

= 1
]

= a > negl (k) .

27

We construct a PPT distinguisher A (Fig. 7) such that

Pr
[
EUF-CMAA

(
1k
)

= 1
]
> negl (k)

that breaks the assumption, thus proving Lemma 3.

1: j $← U [1, T (B) + T (A)] // T (M) is the maximum running time of M
2: Random Oracle: for every first-seen query q from B set H (q) to a random

value
3: return H (q) to B
4: (mpk,msk)←MasterKeyGen

(
1k
)

5: Random Oracle: Let q be the jth first-seen query from B or A:
6: if q = (mpk ‖x) then
7: if H (x ‖mpk) unset then
8: set H (x ‖mpk) to a random value
9: end if
10: set H (mpk ‖x) to (vk − x · H (x ‖mpk)) ·mpk−1

11: else if q = (x ‖mpk) then
12: if H (mpk ‖x) unset then
13: set H (mpk ‖x) to a random value
14: end if
15: set H (x ‖mpk) to (vk −mpk · H (mpk ‖x)) · x−1

16: else
17: set H (q) to a random value
18: end if
19: return H (q) to B or A
20: i← 0
21: (auxi, response)← B (init,mpk)
22: while response can be parsed as (pk, sk,m) do
23: i← i+ 1
24: store pk, sk,m as pki, ski,mi

25: (cpki, cski)← CombineKey (mpk,msk, pki, ski)
26: σi ← SignCS (mi, cski)
27: (auxi, response)← B (signature, auxi−1, σi)
28: end while
29: parse response as (cpk∗, pk∗,m∗, σ∗)
30: if vk = cpk∗ ∧ B wins the master-EUF-CMA game then // A won the

EUF-CMA game
31: return (m∗, σ∗)
32: else
33: return fail
34: end if

Algorithm A (vk)

Fig. 7.

28

The modified random oracle used in Fig. 7 is indistinguishable from the
standard random oracle for the same reasons as in the proof of Lemma 2.

Let E denote the event in which CombinePubKey is not invoked to produce
cpk∗. In that case the values H (pk∗ ‖mpk) and H (mpk ‖ pk∗) are decided after
B terminates (Fig. 7, line 30) and thus

Pr [cpk∗ = CombinePubKey (mpk, pk∗) |E] < negl (k)⇒
Pr [cpk∗ = CombinePubKey (mpk, pk∗) ∧ E] < negl (k) .

(5)

We can reason like in the proof of Lemma 2 to deduce that

Pr [B wins ∧ ¬E] > a− negl (k) . (6)

We now focus at the event ¬E. Let F the event in which the call of to
CombinePubKey that produces cpk∗ results in the jth invocation of the Ran-
dom Oracle. Since j is chosen uniformly at random and using Proposition 2,
Pr [F |¬E] = 1

T (B)+T (A) . Observe that Pr [F |E] = 0 ⇒ Pr [F] = Pr [F |¬E] =
1

T (B)+T (A) .
Once more we can reason in the same fashion as in the proof of Lemma 2 to

deduce that

Pr [F ∧ B wins ∧ ¬E] = Pr [F] Pr [B wins ∧ ¬E]± negl (k) (6)=
a− negl (k)
T (B) + T (A) ± negl (k) > negl (k)

Theorem 2. The construction above is combine-EUF-secure in the Random Or-
acle model under the assumption that the underlying signature scheme is strongly
EUF-CMA-secure.

Proof. The construction is combine-EUF-secure as a consequence of Lemma 2,
Lemma 3 and the definition of combine-EUF-security.

F Transaction Structure

A well-formed transaction consists of a list of inputs and a list of outputs. For
the transaction to be valid, each input must be connected to a single valid,
previously unconnected (unspent) output of another transaction in GLedger.

A well-formed output consists of a value in coins and a list of “spending
methods”. A well-formed input consists of a reference to a previously unconnected
output and a reference to a single of the latter’s spending methods, along with
the data needed to satisfy that method. A well-formed spending method contains
any combination of the following:

29

– Public keys in disjunctive normal form. An input that spends using this
spending method must contain signatures valid by the public keys of one of
the conjunctions. If no public keys are specified in the output, no signatures
are needed in the input.

– Absolute locktime da, in block height or time. An input that spends this
output can only be in block of height at least da if da is a block height,
or enter the ledger on or after time da otherwise. Zero means no absolute
locktime.

– Relative locktime dr, in block height or time. The distance of an input that
spends this output must be at least dr, counted in block height or time. Zero
means no relative locktime.

– Hashlock value. The output can be spent by an input that contains a preim-
age that hashes to the hashlock value. If no hashlock value is specified in the
output, no preimage is needed in the spending input.

Lastly, the sum of coins of the outputs referenced by the inputs of the trans-
action (to-be-spent outputs) should be greater than or equal to the sum of coins
of the outputs of the transaction.

We say that an unspent output is currently exclusively spendable by a player
Alice with a public key pk and a hash list hl if for each spending method one of
the following two holds:

– It still has a locktime that has not expired and thus is currently unspendable,
or

– The only specified public key is pk and if there is a hashlock, its hash is
contained in hl.

If an output is exclusively spendable, we say that its coins are exclusively spend-
able.

30

G Payment Network Functionality

Interface:

– from E :
• (register, delay, relayDelay)
• (toppedUp)
• (openChannel, Alice, Bob, x, tid)
• (checkForNew, Alice, Bob, tid)
• (pay, Bob, x,−−→path, receipt)
• (closeChannel, receipt, tid)
• (poll)
• (pushFulfill, pchid)
• (pushAdd, pchid)
• (commit, pchid)
• (fulfillOnChain)
• (getNews)

– to E :
• (register, Alice, delay(Alice), relayDelay(Alice), pubKey)
• (registered)
• (channelClosed, receipt)
• (news, newChannels, closedChannels, updatesToReport)

– from S:
• (registerDone, Alice, pubKey)
• (corrupted, Alice)
• (channelAnnounced, Alice, pAlice,F , pBob,F , fchid, pchid, tid)
• (update, receipt, Alice)
• (resolvePays, payid, charged)

– to S:
• (register, Alice, delay, relayDelay, lastPoll)
• (openChannel, Alice, Bob, x, fchid, tid)
• (channelOpened, Alice, fchid)
• (pay, Alice, Bob, x,−−→path, receipt, payid)
• (continue)
• (closeChannel, fchid, Alice)
• (poll, ΣAlice, Alice)
• (pushFulfill, pchid, Alice)
• (pushAdd, pchid, Alice)
• (commit, pchid, Alice)
• (fulfillOnChain, t, Alice)

Functionality FPayNet - preamble

Fig. 8.

31

1: Initialisation:
2: channels, pendingPay, pendingOpen, corrupted, Σ ← ∅

3: Upon receiving (register, delay, relayDelay) from Alice:
4: delay (Alice)← delay // Must check chain at least once every delay(Alice)

blocks
5: relayDelay (Alice)← relayDelay
6: updatesToReport (Alice) , newChannels (Alice)← ∅
7: polls (Alice)← ∅
8: focs (Alice)← ∅
9: send (read) to GLedger as Alice, store reply to ΣAlice, add ΣAlice to Σ and

add largest block number to polls(Alice)
10: checkClosed(ΣAlice)
11: send (register,Alice,delay, relayDelay, lastPoll) to S

12: Upon receiving (registerDone,Alice, pubKey) from S:
13: pubKey (Alice)← pubKey
14: send (register, Alice, delay(Alice), relayDelay(Alice), pubKey) to Alice

15: Upon receiving (toppedUp) from Alice:
16: send (read) to GLedger as Alice and store reply to ΣAlice
17: checkClosed(ΣAlice)
18: assign the sum of all output values that are exclusively spendable by Alice

to onChainBalance
19: send (registered) to Alice

20: Upon receiving any message except for (register) from Alice:
21: ignore message if Alice has not registered

22: Upon receiving (corrupted,Alice) from S:
23: add Alice to corrupted
24: for the rest of the execution, upon receiving any message for Alice, bypass

normal execution and simply forward it to S

Functionality FPayNet - support

Fig. 9.

32

1: Upon receiving (openChannel,Alice,Bob, x, tid) from Alice:
2: ensure tid hasn’t been used by Alice for opening another channel before
3: choose unique channel ID fchid
4: pendingOpen (fchid)← (Alice,Bob, x, tid)
5: send (openChannel,Alice,Bob, x, fchid, tid) to S

6: Upon receiving (channelAnnounced,Alice, pAlice,F , pBob,F , fchid, pchid, tid)
from S:

7: ensure that there is a pendingOpen(fchid) entry with temporary id tid
8: add “Alice announced”, pAlice,F , pBob,F , pchid to pendingOpen(fchid)

9: Upon receiving (checkForNew, Alice, Bob, tid) from Alice:
10: ensure there is a matching channel in pendingOpen(fchid), marked with

“Alice announced”
11: (funder, fundee, x, pAlice,F , pBob,F)← pendingOpen (fchid)
12: send (read) to GLedger as Alice and store reply to ΣAlice
13: checkClosed(ΣAlice)
14: ensure that there is a TX F ∈ ΣAlice with a (x, (pfunder,F ∧ pfundee,F))

output
15: mark channel with “waiting for fundingLocked”
16: send (fundingLocked, Alice, ΣAlice, fchid) to S

17: Upon receiving (fundingLocked, fchid) from S:
18: ensure a channel is in pendingOpen(fchid), marked with “waiting for

fundingLocked” and replace mark with “waiting for channelOpened”
19: send (read) to GLedger as Bob and store reply to ΣBob
20: checkClosed(ΣBob)
21: ensure that there is a TX F ∈ ΣBob with a (x, (pfunder,F ∧ pfundee,F)) output
22: add receipt(channel) to newChannels(Bob)
23: send (fundingLocked, Bob, ΣBob, fchid) to S

24: Upon receiving (channelOpened, fchid) from S:
25: ensure a channel is in pendingOpen(fchid), marked with “waiting for

channelOpened” and remove mark
26: offChainBalance (funder)← offChainBalance (funder) + x
27: onChainBalance (funder)← onChainBalance (funder)− x
28: channel← (funder, fundee, x, 0, 0, fchid, pchid)
29: add channel to channels
30: add receipt(channel) to newChannels(Alice)
31: clear pendingOpen(fchid) entry

Functionality FPayNet - open

Fig. 10.

33

1: Upon receiving
(
pay,Bob, x,−−→path

)
from Alice:

2: choose unique payment ID payid
3: add

(
Alice,Bob, x,−−→path, payid

)
to pendingPay

4: send
(
pay,Alice,Bob, x,−−→path, payid, state, Σ

)
to S

5: Upon receiving (update, receipt, Alice) from S:
6: add receipt to updatesToReport(Alice) // trust S here, check on

resolvePays
7: send (continue) to S

Functionality FPayNet - pay

Fig. 11.

34

1: Upon receiving (resolvePays, charged) from S: // after first sending pay,
pushFulfill, pushAdd, commit

2: for all Alice keys ∈ charged do
3: for all (Dave, payid) ∈ charged (Alice) do
4: retrieve

(
Alice,Bob, x,−−→path

)
with ID payid and remove it from

pendingPay
5: if Dave = ⊥ then
6: continue with next iteration of inner loop
7: else if Dave ∈ corrupted then
8: run code of Fig. 13
9: offChainBalance (Bob)← offChainBalance (Bob) + x
10: else // Dave honest
11: if ΣDave contains a tx that is not a localComn or a remoteComn

and spends a funding tx for an open channel that contains Dave then
12: halt // DS forgery
13: else if ΣDave contains in block htx an old remoteComm that does

not contain the HTLC and a tx that spends the delayed output of remoteComm
then

14: if polls(Dave) contains an element in
[htx, htx + delay (Dave)− 1] then

15: halt // Dave polled, but malicious closure
16: else
17: negligent(Alice)← true
18: end if
19: else if Dave 6= Alice then
20: calculate IncomingCltvExpiry, OutgoingCltvExpiry of Dave

(as in Fig. 29, l. 19)
21: if ΣDave does not contain an old remoteComm then
22: if IncomingCltvExpiry− OutgoingCltvExpiry <

relayDelay(Alice) + (2 + r) windowSize∨ (polls(Dave) contains two elements
in [OutgoingCltvExpiry, IncomingCltvExpiry− (2 + r) windowSize] that have
a difference of at least (2 + r) windowSize ∧ focs(Dave) contains
IncomingCltvExpiry− (2 + r) windowSize ∧

23: the element in polls(Dave) was added before the element in focs(Dave))
then

24: halt // Dave polled and fulfilled, but charged
25: else
26: negligent(Alice)← true
27: end if
28: end if
29: end if
30: run code of Fig. 13
31: offChainBalance (Dave)← offChainBalance (Dave)− x
32: offChainBalance (Bob)← offChainBalance (Bob) + x
33: end if
34: end for
35: end for

Functionality FPayNet - resolve payments

Fig. 12. r, windowSize as in Proposition 135

1: for all open channels ∈ −−→path that are not in any closedChannels, starting
from the one where Dave pays do

2: in the first iteration, payer is Dave. In subsequent iterations, payer is the
unique player that has received but has not given. The other channel party is
payee

3: if payer has x or more in channel then
4: update channel to the next version and transfer x from payer to payee
5: else
6: revert all updates done in this loop
7: end if
8: end for
9: for all updated channels in the previous loop do
10: ensure that a corresponding element has been added to the

updatesToReport of each honest counterparty, otherwise halt
11: end for

Loop over payment hops for update and check

Fig. 13.

1: Upon receiving (closeChannel, receipt, tid) from Alice
2: ensure that there is a channel ∈ channels : receipt (channel) = receipt

with ID tid
3: retrieve fchid from channel
4: add (fchid, receipt(channel), ⊥) to pendingClose(Alice)
5: do not serve any other (pay or closeChannel) message from Alice for this

channel
6: send (closeChannel, receipt, tid, Alice) to S

Functionality FPayNet - close

Fig. 14.

36

1: function checkClosed(ΣAlice) // Called after every (read), ensures requested
closes eventually happen

2: for all entries
(fchid, receipt, h) ∈ pendingClose(Alice) ∪ closedChannels(Alice) do

3: if there is a closing commitment transaction in ΣAlice for open channel
with ID fchid with a balance that corresponds to receipt then

4: let x, y the balances of Alice and the channel counterparty Bob
respectively

5: offChainBalance (Alice)← offChainBalance (Alice)− x
6: onChainBalance (Alice)← onChainBalance (Alice) + x
7: offChainBalance (Bob)← offChainBalance (Bob)− y
8: onChainBalance (Bob)← onChainBalance (Bob) + y
9: remove channel from channels
10: remove entry from pendingClose(Alice)
11: if there is an (fchid, _, _) entry in pendingClose(Bob) then
12: remove it from pendingClose(Bob)
13: end if
14: else if there is a tx in ΣAlice that is not a commitment tx and spends

the funding tx of the channel with ID fchid then
15: halt // DS forgery
16: else if there is a closing commitment transaction in block of height h

in ΣAlice for open channel with ID fchid with a balance that does not
correspond to the receipt and the delayed output has been spent by the
counterparty then

17: if polls(Alice) contains an entry in [h, h+ delay(Alice)− 1] then
18: halt
19: else
20: negligent(Alice)← true
21: end if
22: else if there is no such closing transaction ∧ h = ⊥ then
23: assign largest block number of ΣAlice to h of entry
24: else if there is no such closing transaction ∧ h 6= ⊥ ∧ (largest block

number of ΣAlice) ≥ h+ (2 + r) windowSize then
25: halt
26: end if
27: end for
28: if Alice has no open channels in ΣAlice AND negligent(Alice) = false then
29: if offChainBalance(Alice) 6= 0 OR onChainBalance(Alice) is not equal

to the total funds exclusively spendable by Alice in ΣAlice then
30: halt
31: end if
32: end if
33: end function

Functionality FPayNet - checkClosed()

Fig. 15.

37

1: Upon receiving (poll) from Alice:
2: send (read) to GLedger as Alice and store reply to ΣAlice
3: add largest block number in ΣAlice to polls(Alice)
4: checkClosed(ΣAlice)
5: if ∃channel ∈ ΣAlice that contains Alice and is closed by a tx that is not a

commitment transaction then
6: halt // DS forgery
7: end if
8: for all channels ∈ ΣAlice that contain Alice and are maliciously closed by

a remote commitment tx (one with an older channel version than the
irrevocably committed one) in block with height htx do

9: if the delayed output (of the counterparty) has been spent then
10: if polls(Alice) has an element in [htx, htx + delay (Alice)− 1] then
11: halt // Alice wasn’t negligent but couldn’t punish
12: else
13: negligent(Alice)← true
14: end if
15: end if
16: end for
17: send (poll, ΣAlice, Alice) to S

Functionality FPayNet - poll

Fig. 16.

38

1: Upon receiving (pushFulfill, pchid) from Alice:
2: send (pushFulfill, pchid, Alice, state, Σ) to S

3: Upon receiving (pushAdd, pchid) from Alice:
4: send (pushAdd, pchid, Alice, state, Σ) to S

5: Upon receiving (commit, pchid) from Alice:
6: send (commit, pchid, Alice, state, Σ) to S

7: Upon receiving (fulfillOnChain) from Alice:
8: send (read) to GLedger as Alice, store reply to ΣAlice and assign largest

block number to t
9: add t to focs(Alice)
10: checkClosed(ΣAlice)
11: send (fulfillOnChain, t, Alice) to S

12: Upon receiving (closedChannel, channel, Alice) from S:
13: add (fchid of channel, receipt(channel), ⊥) to closedChannels(Alice) //

trust S here, check on checkClosed()
14: send (continue) to S

15: Upon receiving (getNews) from Alice:
16: clear newChannels(Alice), closedChannels(Alice), updatesToReport(Alice)

and send them to Alice with message name news, stripping fchid and h from
closedChannels(Alice)

Functionality FPayNet - daemon messages

Fig. 17.

39

H Channel data

– Alice’s secret keys:
• sAlice: key for on-chain funds (DS)a

• sAlice,F : funding (DS)
• sbAlice,pay: payment basepoint (IBS)b

• sbAlice,dpay: delayed payment basepoint (IBS)
• sbAlice,htlc: htlc basepoint (IBS)
• sbAlice,rev: revocation basepoint (CSc – master)

– Bob’s public keys: public counterparts to 5 keys above
– seed: for deriving Alice’s per commitment keys sAlice,com,i with PRF
– Bob’s per commitment points:
• ∀i ∈ [1, . . . , n], sBob,com,i: one secret per revokeAndAck received (CS –

share)
• pBob,com,n+1 and pBob,com,n+2: current and next points (CS – share)

– Alice’s coins
– Bob’s coins
– for every HTLC that is included in the latest irrevocably committed (local or

remote) commitment:
• direction (Alice → Bob or Bob → Alice)
• hash
• preimage (if known)
• coins
• Is it included in latest localComn? (boolean)
• HTLC number

– signatures:
• signature resulting from SignDS(localComn+1, sBob,F) (DS)
• for every HTLC included in localComn+1, if HTLC is outgoing, a

signature for HTLC-timeout, else a signature for HTLC-success with
sBob,htlc,n+1 (IBS)

a basic Digital Signature
b Identity Based Signature
c Combined Signature

Fig. 18. Data Alice holds in an Alice – Bob channel with n updates

40

I Lightning Protocol

1: Initialisation:
2: channels, pendingOpen, pendingPay, pendingClose← ∅
3: newChannels, closedChannels, updatesToReport← ∅
4: unclaimedOfferedHTLCs, unclaimedReceivedHTLCs, pendingGetPaid← ∅

5: Upon receiving (register, delay, relayDelay) from E :
6: delay← delay // Must check chain at least once every delay blocks
7: relayDelay← relayDelay
8: send (read) to GLedger and assign largest block number to lastPoll
9: (pkAlice, skAlice)← KeyGen ()
10: send (register, Alice, delay, relayDelay, pkAlice) to E

11: Upon receiving (toppedUp) from E :
12: send (read) to GLedger and assign reply to ΣAlice
13: assign the sum of all output values that are exclusively spendable by Alice

to onChainBalance
14: send (registered) to E

15: Upon receiving any message (M) except for (register):
16: if if haven’t received (register) from E then
17: send (invalid, M) to E and ignore message
18: end if

19: function GetKeys
20: (pF , sF)← KeyGen () // For F output
21: (ppay, spay)← Setup () // For com output to remote
22: (pdpay, sdpay)← Setup () // For com output to self
23: (phtlc, shtlc)← Setup () // For htlc output to self
24: seed $← U(k) // For per com point
25: (prev, srev)←MasterKeyGen () // For revocation in com
26: return ((pF , sF) , (ppay, spay) , (pdpay, sdpay) ,
27: (phtlc, shtlc) , seed, (prev, srev))
28: end function

Protocol ΠLN (self is Alice always) - support

Fig. 19.

41

1: Upon receiving (openChannel,Alice,Bob, x, tid) from E :
2: ensure tid hasn’t been used for opening another channel before
3: ((phF , shF) , (phbpay, shbpay) , (phbdpay, shbdpay) ,

(phbhtlc, shbhtlc) , seed, (phbrev, shbrev))← GetKeys ()
4: prand1 ← PRF (seed, 1)
5: (phcom,1, shcom,1)← KeyShareGen

(
1k; prand1

)
6: associate keys with tid
7: add (Alice,Bob, x, tid, (phF , shF) , (phbpay, shbpay) , (phbdpay, shbdpay)

(phbhtlc, shbhtlc) , (phbcom,1, shbcom,1) , (phbrev, shbrev) , tid) to pendingOpen
8: send (openChannel,
x, delay + (2 + r) windowSize, phF , phbpay, phbdpay, phbhtlc, phcom,1, phbrev, tid)
to Bob

Protocol ΠLN - openChannel from E

Fig. 20.

1: Upon receiving (openChannel,
x, remoteDelay, ptF , ptbpay, ptbdpay, ptbhtlc, ptcom,1, ptbrev, tid) from Bob:

2: ensure tid has not been used yet with Bob
3: ((phF , shF) , (phbpay, shbpay) , (phbdpay, shbdpay) , (phbhtlc, shbhtlc) , seed,

(phbrev, shbrev))← GetKeys ()
4: prand1 ← PRF (seed, 1)
5: (phcom,1, shcom,1)← KeyShareGen

(
1k; prand1

)
6: associate keys with tid and store in pendingOpen
7: send (acceptChannel,

delay + (2 + r) windowSize, phF , phbpay, phbdpay, phbhtlc, phcom,1, phbrev, tid)
to Bob

Protocol ΠLN - openChannel from Bob

Fig. 21.

42

1: Upon receiving (acceptChannel, remoteDelay, ptF , ptbpay, ptbdpay, ptbhtlc,
ptcom,1, ptbrev, tid) from Bob:

2: ensure there is a temporary ID tid with Bob in pendingOpen on which
acceptChannel hasn’t been received

3: associate received keys with tid
4: send (read) to GLedger and assign reply to ΣAlice
5: assign to prevout a transaction output found in ΣAlice that is currently

exclusively spendable by Alice and has value y ≥ x
6: F ← TX {input spends prevout with a SignDS(TX, skAlice), output 0

pays y − x to pkAlice, output 1 pays x to tid.phF ∧ ptF }
7: pchid ← H (F)
8: add pchid to pendingOpen entry with id tid
9: ptrev,1 ← CombinePubKey (ptbrev, phcom,1)
10: (phdpay,1, shdpay,1)← KeyDer (phbdpay, shbdpay, phcom,1)
11: (phpay,1, shpay,1)← KeyDer (phbpay, shbpay, phcom,1)
12: (phhtlc,1, shhtlc,1)← KeyDer (phbhtlc, shbhtlc, phcom,1)
13: remoteCom← remoteCom1 ← TX {input: output 1 of F , outputs:

(x, phpay,1) , (0, phrev,1 ∨ (ptdpay,1, delay + (2 + r) windowSize relative))}
14: localCom← TX {input: output 1 of F , outputs:

(x, ptrev,1 ∨ (phdpay,1, remoteDelay relative)) , (0, ptpay,1)}
15: add remoteCom and localCom to channel entry in pendingOpen
16: sig← SignDS (remoteCom1, shF)
17: lastRemoteSigned← 0
18: send (fundingCreated, tid, pchid, sig) to Bob

Protocol ΠLN - acceptChannel

Fig. 22.

43

1: Upon receiving (fundingCreated, tid, pchid, BobSig1) from Bob:
2: ensure there is a temporary ID tid with Bob in pendingOpen on which we

have sent up to acceptChannel
3: phrev,1 ← CombinePubKey (phbrevptcom,1)
4: ptdpay,1 ← PubKeyDer (ptbdpay, ptcom,1)
5: ptpay,1 ← PubKeyDer (ptbpay, ptcom,1)
6: pthtlc,1 ← PubKeyDer (ptbhtlc, ptcom,1)
7: localCom← localCom1 ← TX {input: output 1 of F , outputs:

(x, ptpay,1) , (0, ptrev,1 ∨ (phdpay,1, remoteDelay relative))}
8: ensure VerifyDS (BobSig1, localCom1, ptF) = True
9: remoteCom← remoteCom1 ← TX {input: output 1 of F , outputs:

(x, phrev,1 ∨ (ptdpay,1, delay + (2 + r) windowSize relative)) , (0, phpay,1)}
10: add BobSig1, remoteCom1 and localCom1 to channel entry in pendingOpen
11: sig← SignDS (remoteCom1, shF)
12: mark channel as “broadcast, no fundingLocked”
13: lastRemoteSigned, lastLocalSigned← 0
14: send (fundingSigned, pchid, sig) to Bob

Protocol ΠLN - fundingCreated

Fig. 23.

1: Upon receiving (fundingSigned, pchid, BobSig1) from Bob:
2: ensure there is a channel ID pchid with Bob in pendingOpen on which we

have sent up to fundingCreated
3: ensure VerifyDS (BobSig1, localCom, pbF) = True
4: localCom1 ← localCom
5: lastLocalSigned← 0
6: add BobSig1 to channel entry in pendingOpen
7: sig← SignDS (F, skAlice)
8: mark pchid in pendingOpen as “broadcast, no fundingLocked”
9: send (submit, (sig, F)) to GLedger

Protocol ΠLN - fundingSigned

Fig. 24.

44

1: Upon receiving (checkForNew, Alice, Bob, tid) from E : // lnd polling
daemon

2: ensure there is a matching channel in pendingOpen with id pchid, with a
“broadcast” and a “no fundingLocked” mark, funded with x coins

3: send (read) to GLedger and assign reply to ΣAlice
4: ensure ∃ unspent TX in ΣAlice with ID pchid and a (x, phF ∧ ptF) output
5: prand2 ← PRF (seed, 2)
6: (phcom,2, shcom,2)← KeyShareGen

(
1k; prand2

)
7: add TX to channel data
8: replace “broadcast” mark in channel with “fundingLocked sent”
9: send (fundingLocked, pchid, phcom,2) to Bob

Protocol ΠLN - checkForNew

Fig. 25.

1: Upon receiving (fundingLocked, pchid, ptcom,2) from Bob:
2: ensure there is a channel with ID pchid with Bob in pendingOpen with a

“no fundingLocked” mark
3: if channel is not marked with “fundingLocked sent” then // i.e.

marked with “broadcast”
4: send (read) to GLedger and assign reply to ΣAlice
5: ensure ∃ unspent TX in ΣAlice with ID pchid and a (x, phF ∧ ptF)

output
6: add TX to channel data
7: prand2 ← PRF (seed, 2)
8: (phcom,2, shcom,2)← KeyShareGen

(
1k; prand2

)
9: generate 2nd remote delayed payment, htlc, payment keys
10: end if
11: replace “no fundingLocked” mark in channel with “fundingLocked

received”
12: move channel data from pendingOpen to channels
13: add receipt of channel to newChannels
14: if channel is not marked with “fundingLocked sent” then
15: replace “broadcast” mark in channel with “fundingLocked sent”
16: send (fundingLocked, pchid, phcom,2) to Bob
17: end if

Protocol ΠLN - fundingLocked

Fig. 26.

45

1: Upon receiving (poll) from E :
2: send (read) to GLedger and assign reply to ΣAlice
3: assign largest block number in ΣAlice to lastPoll
4: toSubmit← ∅
5: for all τ ∈ unclaimedOfferedHTLCs do
6: if input of τ has been spent then // by remote HTLC-success
7: remove τ from unclaimedOfferedHTLCs
8: if we are intermediary then
9: retrieve preimage R, pchid ′ of previous channel on the path of

the HTLC, and HTLCNo′ of the corresponding HTLC′ in pchid ′
10: add (HTLCNo′, R) to pendingFulfillspchid′
11: end if
12: else if input of τ has not been spent and timelock is over then
13: remove τ from unclaimedOfferedHTLCs
14: add τ to toSubmit
15: end if
16: end for
17: run loop of Fig. 28
18: for all honestly closed remoteComn that were processed above, with

channel id pchid do
19: for all received HTLC outputs i of remoteComn do
20: if there is an entry in pendingFulfillspchid with the same HTLCNo

and R then
21: TX← {input: i HTLC output of remoteComn with (phhtlc,n, R)

as method, output: pkAlice}
22: sig← SignIBS (TX, shhtlc,n)
23: add (sig, TX) to toSubmit
24: remove entry from pendingFulfillspchid
25: end if
26: end for
27: end for
28: send (submit, toSubmit) to GLedger

29: Upon receiving (getNews) from Alice:
30: clear newChannels, closedChannels, updatesToReport and send them to

Alice with message name news

Protocol ΠLN - poll

Fig. 27.

46

1: for all remoteComn ∈ ΣAlice that spend F of a channel ∈ channels do
2: if we do not have shrev,n then // Honest closure
3: for all unspent offered HTLC outputs i of remoteComn do
4: TX← {input: i HTLC output of remoteComn with phhtlc,n as

method, output: pkAlice}
5: sig← SignIBS (TX, shhtlc,n)
6: if timelock has not expired then
7: add (sig, TX) to unclaimedOfferedHTLCs
8: else if timelock has expired then
9: add (sig, TX) to toSubmit
10: end if
11: end for
12: for all spent offered HTLC output i of remoteComn do
13: if we are intermediary then
14: retrieve preimage R, pchid ′ of previous channel on the path of

the HTLC, and HTLCNo′ of the corresponding HTLC′ in pchid ′
15: add (HTLCNo′, R) to pendingFulfillspchid′
16: end if
17: end for
18: else // malicious closure
19: rev← TX {inputs: all remoteComn outputs, choosing phrev,n method,

output: pkAlice}
20: sig← SignCS (rev, shrev,n)
21: add (sig, rev) to toSubmit
22: end if
23: add receipt(channel) to closedChannels
24: remove channel from channels
25: end for

Loop over closed channels for poll

Fig. 28.

47

1: Upon receiving (pay, Bob, x, −−→path) from E :
2: ensure that −−→path consists of syntactically valid (pchid, CltvExpiryDelta)

pair // Payment completes only if
∀ honest i ∈ −−→path, CltvExpiryDeltai ≥ 3k + RelayDelayi

3: ensure that the first pchid ∈ −−→path corresponds to an open
channel ∈ channels in which we own at least x in the irrevocably committed
state.

4: choose unique payment ID payid // unique for Alice and Bob
5: add (Bob, x, −−→path, payid, “waiting for invoice”) to pendingPay
6: send (sendInvoice, payid) to Bob

7: Upon receiving (sendInvoice, payid) from Bob:
8: ensure there is no (Bob, payid) entry in pendingGetPaid
9: choose random, unique preimage R
10: add (Bob, R, payid) to pendingGetPaid
11: send (invoice,H (R) , relayDelay + (2 + r) windowSize, payid) to Bob

12: Upon receiving (invoice, h, minFinalCltvExpiry, payid) from Bob:
13: ensure there is a (Bob, x, −−→path, payid, “waiting for invoice”) entry in

pendingPay
14: ensure h is valid (in the range of H)
15: retrieve CltvExpiryDeltas from −−→path and remove entry from pendingPay
16: send (read) to GLedger and assign largest block number to t
17: l← |

(−−→
path

)
|

18: CltvExpiryl ← t+ minFinalCltvExpiry
19:
∀i ∈ {1, . . . , l− 1}, CltvExpiryl−i ← CltvExpiryl−i+1 + CltvExpiryDeltal−i+1

20: ensure CltvExpiry1 ≥ CltvExpiry2 + relayDelay + (2 + r) windowSize
21: m← the concatenation of l (x, CltvExpiry)
22: (µ0, δ0)← SphinxCreate

(
m, public keys of −−→path parties

)
23: let remoteComn the latest signed remote commitment tx
24: reduce simple payment output in remoteCom by x
25: add an additional (x, phrev,n+1 ∨ (phhtlc,n+1 ∧ pthtlc,n+1, on preimage

of h) ∨ phhtlc,n+1, CltvExpiry1 absolute) output (all with n+ 1 keys) to
remoteCom, marked with HTLCNo

26: reduce delayed payment output in localCom by x
27: add an additional (x, ptrev,n+1 ∨ (pthtlc,n+1, on preimage

of h) ∨ (phhtlc,n+1 ∧ pthtlc,n+1, CltvExpiry1 absolute)) output (all with n+ 1
keys) to localCom, marked with HTLCNo

28: increment HTLCNopchid by one and associate x, h, pchid with it
29: mark HTLCNo as “sender”
30: send (updateAddHtlc, first pchid of
−−→
path, HTLCNopchid , x, h, CltvExpiry1, (µ0, δ0)) to pchid channel counterparty

Protocol ΠLN - invoice

Fig. 29.

48

1: Upon receiving (updateAddHtlc, pchid,
HTLCNo, x, h, IncomingCltvExpiry,M) from Bob:

2: ensure pchid corresponds to an open channel in channels where Bob has
at least x

3: ensure HTLCNo = HTLCNopchid + 1
4: (pchid ′, x′, OutgoingCltvExpiry, δ)← SphinxPeel (skAlice,M)
5: send (read) to GLedger and assign largest block number to t
6: if δ = receiver then
7: ensure pchid ′ = ⊥, x = x′, IncomingCltvExpiry ≥

OutgoingCltvExpiry = minFinalCltvExpiry
8: mark HTLCNo as “receiver”
9: else // We are an intermediary
10: ensure x = x′, IncomingCltvExpiry ≥

max{OutgoingCltvExpiry, t}+ relayDelay + 2 (2 + r) windowSize
11: ensure pchid′ corresponds to an open channel in channels where we

have at least x
12: mark HTLCNo as “intermediary”
13: end if
14: increment HTLCNopchid by one
15: let remoteComn the latest signed remote commitment tx
16: reduce delayed payment output in remoteCom by x
17: add an

(x, phrev,n+1 ∨ (phhtlc,n+1 ∧ pthtlc,n+1, IncomingCltvExpiry absolute)∨
phhtlc,n+1, on preimage of h) htlc output (all with n+ 1 keys) to remoteCom,
marked with HTLCNo

18: reduce simple payment output in localCom by x
19: add an (x, ptrev,n+1 ∨ pthtlc,n+1, IncomingCltvExpiry absolute)∨

((pthtlc,n+1 ∧ phhtlc,n+1, on preimage of h)) htlc output (all with n+ 1 keys)
to remoteCom, marked with HTLCNo

20: if δ = receiver then
21: retrieve R : H (R) = h from pendingGetPaid and clear entry
22: add (HTLCNo, R) to pendingFulfillspchid
23: else if δ 6= receiver then // Send HTLC to next hop
24: retrieve pchid ′ data
25: let remoteCom′n the latest signed remote commitment tx
26: reduce simple payment output in remoteCom′ by x
27: add an additional (x, phrev,n+1 ∨ (phhtlc,n+1 ∧ pthtlc,n+1, on preimage

of h) ∨ phhtlc,n+1OutgoingCltvExpiry absolute) output (all with n+ 1 keys)
to remoteCom′, marked with HTLCNo′

28: reduce delayed payment output in localCom′ by x
29: add an additional (x, ptrev,n+1 ∨ (pthtlc,n+1, on preimage

of h) ∨ (pthtlc,n+1 ∧ phhtlc,n+1OutgoingCltvExpiry absolute)) output (all with
n+ 1 keys) to remoteCom′, marked with HTLCNo′

30: increment HTLCNo′ by 1
31: M ′ ← SphinxPrepare (M, δ, skAlice)
32: add (HTLCNo′, x, h, OutgoingCltvExpiry,M ′) to pendingAddspchid′
33: end if

Protocol ΠLN - updateAddHtlc

Fig. 30.
49

1: Upon receiving (updateFulfillHtlc, pchid, HTLCNo, R) from Bob:
2: if HTLCNo > lastRemoteSigned ∨ HTLCNo > lastLocalSigned ∨H (R) 6= h,

where h is the hash in the HTLC with number HTLCNo then
3: close channel (as in Fig. 36)
4: return
5: end if
6: ensure HTLCNo is an offered HTLC (localCom has h tied to a public key

that we own)
7: add value of HTLC to delayed payment of remoteCom
8: remove HTLC output with number HTLCNo from remoteCom
9: add value of HTLC to simple payment of localCom
10: remove HTLC output with number HTLCNo from localCom
11: if we have a channel phcid ′ that has a received HTLC with hash h with

number HTLCNo′ then // We are intermediary
12: send (read) to GLedger and assign reply to ΣAlice
13: if latest remoteCom′n ∈ ΣAlice then // counterparty has gone on-chain
14: TX← {input: (remoteCom′ HTLC output with number HTLCNo′, R),

output: pkAlice}
15: sig← SignIBS (TX, shhtlc,n)
16: send (submit, (sig, TX)) to GLedger // shouldn’t be already spent by

remote HTLCTimeout
17: else // counterparty still off-chain
18: // Not having the HTLC irrevocably committed is impossible

(Fig. 35, l. 15)
19: send (updateFulfillHtlc, pchid ′, HTLCNo′, R) to counterparty
20: end if
21: end if

Protocol ΠLN - updateFulfillHtlc

Fig. 31.

50

1: Upon receiving (commit, pchid) from E :
2: ensure that there is a channel ∈ channels with ID pchid
3: retrieve latest remote commitment tx remoteComn in channel
4: ensure remoteCom 6= remoteComn // there are uncommitted updates
5: ensure channel is not marked as “waiting for revokeAndAck”
6: send (read) to GLedger and assign largest block number to t
7: undo adding all outgoing HTLCs in remoteCom for which we are

intermediary and IncomingCltvExpiry < t+ relayDelay + (2 + r) windowSize
8: remoteComn+1 ← remoteCom
9: ComSig← SignDS (remoteComn+1, shF)
10: HTLCSigs← ∅
11: for i from lastRemoteSigned to HTLCNo do
12: remoteHTLCn+1,i ← TX {input: HTLC output i of remoteComn+1,

output: (chtlc,i, phrev,n+1 ∨ (ptdpay,n+1, delay + (2 + r) windowSize relative))}
13: add SignIBS (remoteHTLCn+1,i, shhtlc,n+1) to HTLCSigs
14: end for
15: add SignIBS (remoteHTLCn+1,m+1, shhtlc,n+1) to HTLCSigs
16: lastRemoteSigned← HTLCNo
17: mark channel as “waiting for revokeAndAck”
18: send (commitmentSigned, pchid, ComSig, HTLCSigs) to pchid

counterparty

Protocol ΠLN - commit

Fig. 32.

51

1: Upon receiving (commitmentSigned, pchid, comSign+1, HTLCSigsn+1) from
Bob:

2: ensure that there is a channel ∈ channels with ID pchid with Bob
3: retrieve latest local commitment tx localComn in channel
4: ensure localCom 6= localComn and localCom 6= pendingLocalCom // there

are uncommitted updates
5: if VerifyDS

(
comSign+1, localCom, ptF

)
= false ∨ |HTLCSigsn+1| 6=

HTLCNo− lastLocalSigned + 1 then
6: close channel (as in Fig. 36)
7: return
8: end if
9: for i from lastLocalSigned to HTLCNo do
10: localHTLCn+1,i ← TX {input: HTLC output i of localCom, output:

(chtlc,i, phrev,n+1 ∨ (ptdpay,n+1, remoteDelay relative))}
11: if VerifyIBS

(
HTLCSigsn+1,i, localHTLCn+1,i, pthtlc,n+1

)
= false

then
12: close channel (as in Fig. 36)
13: return
14: end if
15: end for
16: pendingLocalCom← localCom
17: mark pendingLocalCom as “irrevocably committed”
18: prandn+2 ← PRF (seed, n+ 2)
19: (phcom,n+2, shcom,n+2)← KeyShareGen

(
1k; prandn+2

)
20: send (revokeAndAck, pchid, prandn, phcom,n+2) to Bob

Protocol ΠLN - commitmentSigned

Fig. 33.

52

1: Upon receiving (revokeAndAck, pchid, stcom,n, ptcom,n+2) from Bob:
2: ensure there is a channel ∈ channels with Bob with ID pchid marked as

“waiting for revokeAndAck”
3: if TestKey (stcom,n, ptcom,n) 6= 1 then // wrong stcom,n - closing
4: close channel (as in Fig. 36)
5: return
6: end if
7: mark remoteComn+1 as “irrevocably committed”
8: localComn+1 ← pendingLocalCom
9: unmark channel
10: add receipt(channel) to updatesToReport
11: shrev,n ← CombineKey (phbrev, shbrev, ptcomn, stcom,n)
12: phrev,n+2 ← CombinePubKey (phbrev, ptcom,n+2)
13: ptrev,n+2 ← CombinePubKey (ptbrev, phcom,n+2)
14: (phdpay,n+2, shdpay,n+2)← KeyDer (phbdpay, shbdpay, phcom,n+2)
15: ptdpay,n+2 ← PubKeyDer (ptbdpay, ptcom,n+2)
16: (phpay,n+2, shpay,n+2)← KeyDer (phbpay, shbpay, phcom,n+2)
17: ptpay,n+2 ← PubKeyDer (ptbpay, ptcom,n+2)
18: (phhtlc,n+2, shhtlc,n+2)← KeyDer (phbhtlc, shbhtlc, phcom,n+2)
19: pthtlc,n+2 ← PubKeyDer (ptbhtlc, ptcom,n+2)

Protocol ΠLN - revokeAndAck

Fig. 34.

53

1: Upon receiving (pushFulfill, pchid) from E :
2: ensure that there is a channel ∈ channels with ID pchid
3: choose a member (HTLCNo, R) of pendingFulfillspchid that is both in an

“irrevocably committed” remoteComn and localComn
4: send (read) to GLedger and assign reply to ΣAlice
5: remove (HTLCNo, R) from pendingFulfillspchid
6: if remoteComn /∈ ΣAlice then // counterparty cooperative
7: send (updateFulfillHtlc, pchid, HTLCNo, R) to pchid counterparty
8: else // counterparty gone on-chain
9: TX← {input: (remoteComn HTLC output with number HTLCNo, R),

output: pkAlice}
10: sig← SignIBS (TX, shhtlc,n)
11: send (submit, (sig, TX)) to GLedger // shouldn’t be already spent by

remote HTLCTimeout
12: end if

13: Upon receiving (pushAdd, pchid) from E :
14: ensure that there is a channel ∈ channels with ID pchid
15: choose a member (HTLCNo, x, h, CltvExpiry,M) of pendingAddspchid that is

both in an “irrevocably committed” remoteComn and localComn
16: remove chosen entry from pendingAddspchid
17: send (updateAddHtlc, pchid, HTLCNo, x, h, CltvExpiry,M) to pchid

counterparty

18: Upon receiving (fulfillOnChain) from E :
19: send (read) to GLedger and assign largest block number to t
20: toSubmit← ∅
21: for all channels do
22: if there exists an HTLC in latest localComn for which we have sent

both updateFulfillHtlc and commitmentSigned to a transaction without
that HTLC to counterparty, but have not received the corresponding
revokeAndAck AND the HTLC expires within [t, t+ (2 + r) windowSize]
then

23: add localComn of the channel and all corresponding valid
HTLC-successes and HTLC-timeouts (for both localComn and remoteComna),
along with their signatures to toSubmit

24: end if
25: end for
26: send (submit, toSubmit) to GLedger

a Ensures funds retrieval if counterparty has gone on-chain

Protocol ΠLN - push

Fig. 35.

54

1: Upon receiving (closeChannel, receipt, tid) from E :
2: ensure receipt corresponds to an open channel ∈ channels with ID tid
3: assign latest channel sequence number to n
4: HTLCs← ∅
5: for every HTLC output ∈ localComn with number i do
6: sig← SignIBS (localHTLCn,i, shhtlc,n)
7: add

(
sig, HTLCSigsn,i, localHTLCn,i

)
to HTLCs

8: end for
9: sig← SignDS (localComn, shF)
10: add receipt(channel) to closedChannels
11: remove channel from channels
12: send (submit, (sig, remoteSign, localComn) ,HTLCs) to GLedger

Protocol ΠLN - close

Fig. 36.

J The Ledger, Clock and Network Functionality

We next provide the complete description of the ledger functionality as well as
the clock and network functionalities that are drawn from the UC formalisation
of [10,11].

The key characteristics of the functionality are as follows. The variable state
maintains the current immutable state of the ledger. An honest, synchronised
party considers finalised a prefix of state (specified by a pointer position pti
for party Ui below). The functionality has a parameter windowSize such that
no finalised prefix of any player will be shorter than |state| − windowSize.
On any input originating from an honest party the functionality will run the
ExtendPolicy function that ensures that a suitable sequence of transactions will
be “blockified” and added to state. Honest parties may also find themselves in
a desynchronised state: this is when honest parties lose access to some of their
resources. The resources that are necessary for proper ledger maintenance and
that the functionality keeps track of are the global random oracle GRO, the clock
Gclock and network FN-MC. If an honest party maintains registration with all
the resources then after Delay clock ticks it necessarily becomes synchronised.

The progress of the state variable is guaranteed via the ExtendPolicy function
that is executed when honest parties submit inputs to the functionality. While
we do not specify ExtendPolicy in our paper (we refer to the citations above for
the full specification) it is sufficient to note that ExtendPolicy guarantees the
following properties:

1. in a period of time equal to maxTimewindow, a number of blocks at least
windowSize are added to state.

2. in a period of time equal to minTimewindow, no more blocks may be added to
state if windowSize blocks have been already added.

55

3. each window of windowSize blocks has at most advBlckswindow adversarial
blocks included in it.

4. any transaction that (i) is submitted by an honest party earlier than Delay
2

rounds before the time that the block that is windowSize positions before
the head of the state was included, and (ii) is valid with respect to an honest
block that extends state, then it must be included in such block.

Given a synchronised honest party, we say that a transaction tx is finalised
when it becomes a part of state in its view.

Proposition 1. Consider a synchronised honest party that submits a transac-
tion tx to the ledger functionality by the time the block indexed by h is added
to state in its view. Then tx is guaranteed to be included in the block range
[h+1, h+(2+r)windowSize], where r = d(maxTimewindow+ Delay

2)/minTimewindowe.

Proof. Consider τUh to be the round that a party U becomes aware of the h-th
block in the state. It follows that τh ≤ τUh where τh is the round block h enters
state. Note that by time τh + maxTimewindow another windowSize blocks are
added to state and thus τUh ≤ τh + maxTimewindow.

Suppose U submits the transaction tx to the ledger at time τUh . Observe that
as long as τh + maxTimewindow is Delay/2 before the time that block with index
h+ t−2windowSize enters state, then tx is guaranteed to enter the state in a
block with index up to h+t where since advBlckswindow < windowSize. It follows
we need τh+ maxTimewindow < τh+t−2windowSize− Delay

2 . Let r = d(maxTimewindow +
Delay

2)/minTimewindowe. Recall that in a period of minTimewindow rounds at most
windowSize blocks enter state. As a result r · windowSize blocks require at
least r · minTimewindow ≥ maxTimewindow + Delay

2 rounds. We deduce that if t ≥
(2 + r)windowSize the inequality follows.

General: The functionality is parameterized by four algorithms, Validate,
ExtendPolicy, Blockify, and predict-time, along with three parameters:
windowSize, Delay ∈ N, and SinitStake := {(U1, s1), . . . , (Un, sn)}. The functionality
manages variables state (the immutable state of the ledger), NxtBC (a list of
transaction identifiers to be added to the ledger), buffer (the set of pending
transactions), τL (the rules under which the state is extended), and τ state (the
time sequence where all immutable blocks where added). The variables are
initialized as follows: state := τ state := NxtBC := ε, buffer := ∅, τL = 0. For each
party Up ∈ P the functionality maintains a pointer pti (initially set to 1) and a
current-state view statep := ε (initially set to empty). The functionality also
keeps track of the timed honest-input sequence in a vector ITH (initially ITH := ε).

Party Management: The functionality maintains the set of registered parties P,
the (sub-)set of honest parties H ⊆ P, and the (sub-set) of de-synchronized honest
parties PDS ⊂ H (as discussed below). The sets P,H,PDS are all initially set to ∅.

Functionality Gledger

56

When a (currently unregistered) honest party is registered at the ledger, if it is
registered with the clock and the global RO already, then it is added to the party
sets H and P and the current time of registration is also recorded; if the current
time is τL > 0, it is also added to PDS . Similarly, when a party is deregistered, it
is removed from both P (and therefore also from PDS or H). The ledger maintains
the invariant that it is registered (as a functionality) to the clock whenever H 6= ∅.

Handling initial stakeholders: If during round τ = 0, the ledger did not
received a registration from each initial stakeholder, i.e., Up ∈ SinitStake, the
functionality halts.

Upon receiving any input I from any party or from the adversary, send
(clock-read, sidC) to Gclock and upon receiving response (clock-read, sidC , τ)
set τL := τ and do the following if τ > 0 (otherwise, ignore input):

1. Updating synchronized/desynchronized party set:
(a) Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have

been registered (continuously) to the ledger, the clock, and the GRO since
time τ ′ < τL − Delay. Set PDS := PDS \ P̂.

(b) For any synchronized party Up ∈ H \ PDS , if Up is not registered to the
clock, then consider it desynchronized, i.e., set PDS ∪ {Up}.

2. If I was received from an honest party Up ∈ P:
(a) Set ITH := ITH ||(I, Up, τL);
(b) Compute

N = (N1, . . . ,N `) := ExtendPolicy(ITH , state, NxtBC, buffer, τ state) and if
N 6= ε set state := state||Blockify(N1)|| . . . ||Blockify(N `) and
τ state := τ state||τ `L, where τ `L = τL|| . . . , ||τL.

(c) For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0 then delete BTX
from buffer. Also, reset NxtBC := ε.

(d) If there exists Uj ∈ H \ PDS such that |state| − ptj > windowSize or
ptj < |statej |, then set ptk := |state| for all Uk ∈ H \ PDS .

3. If the calling party Up is stalled or time-unaware (according to the defined
party classification), then no further actions are taken. Otherwise, depending
on the above input I and its sender’s ID, Gledger executes the corresponding
code from the following list:
• Submitting a transaction:

If I = (submit, sid, tx) and is received from a party Up ∈ P or from A (on
behalf of a corrupted party Up) do the following
(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, Up)
(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (submit, BTX) to A.

• Reading the state:

57

If I = (read, sid) is received from a party Up ∈ P then set
statep := state|min{ptp,|state|} and return (read, sid, statep) to the
requester. If the requester is A then send (state, buffer,ITH) to A.

• Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party
Up ∈ P and (after updating ITH as above) predict-time(ITH) = τ̂ > τL then
send (clock-update, sidC) to Gclock. Else send I to A.

• The adversary proposing the next block:
If I = (next-block, hFlag, (txid1, . . . , txid`)) is sent from the adversary,
update NxtBC as follows:
(a) Set listOfTxid← ε

(b) For i = 1, . . . , ` do: if there exists
BTX := (x, txid,minerID, τL, Uj) ∈ buffer with ID txid = txidi then set
listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output
(next-block, ok) to A.

• The adversary setting state-slackness:
If I = (set-slack, (Ui1 , p̂ti1), . . . , (Ui` , p̂ti`)), with
{Upi1 , . . . , Upi`} ⊆ H \ PDS is received from the adversary A do the
following:
(a) If for all j ∈ [`] : |state| − p̂tij ≤ windowSize and p̂tij ≥ |stateij |, set

pti1 := p̂ti1 for every j ∈ [`] and return (set-slack, ok) to A.
(b) Otherwise set ptij := |state| for all j ∈ [`].

• The adversary setting the state for desychronized parties:
If I = (desync-state, (Ui1 , state′i1), . . . , (Ui` , state′i`)), with
{Ui1 , . . . , Ui`} ⊆ PDS is received from the adversary A, set
stateij := state′ij for each j ∈ [`] and return (desync-state, ok) to A.

The functionality manages the set P of registered identities, i.e., parties
Up = (pid, sid). It also manages the set F of functionalities (together with their
session identifier). Initially, P := ∅ and F := ∅.
For each session sid the clock maintains a variable τsid. For each identity
Up := (pid, sid) ∈ P it manages variable dUp . For each pair (F, sid) ∈ F it manages
variable d(F,sid) (all integer variables are initially 0).

Synchronization:

– Upon receiving (clock-update, sidC) from some party Up ∈ P set dUp := 1;
execute Round-Update and forward (clock-update, sidC , Up) to A.

Functionality Functionality Gclock

58

– Upon receiving (clock-update, sidC) from some functionality F in a session
sid such that (F, sid) ∈ F set d(F,sid) := 1, execute Round-Update and return
(clock-update, sidC ,F) to this instance of F.

– Upon receiving (clock-read, sidC) from any participant (including the
environment on behalf of a party, the adversary, or any ideal—shared or
local—functionality) return (clock-read, sid, τsid) to the requestor (where sid
is the sid of the calling instance).

Procedure Round-Update: For each session sid do: If d(F,sid) := 1 for all F ∈ F and
dUp = 1 for all honest parties Up = (·, sid) ∈ P, then set τsid := τsid + 1 and reset
d(F,sid) := 0 and dUp := 0 for all parties Up = (·, sid) ∈ P.

The functionality is parameterized with a set possible senders and receivers P.
Any newly registered (resp. deregistered) party is added to (resp. deleted from) P.

– Honest sender multicast. Upon receiving (multicast, sid,m) from some
Up ∈ P, where P = {U1, . . . , Un} denotes the current party set, choose n new
unique message-IDs mid1, . . . ,midn, initialize 2n new variables
Dmid1 := DMAX

mid1 . . . := Dmidn := DMAX
midn

:= 1, set
M := M ||(m,mid1, Dmid1 , U1)|| . . . ||(m,midn, Dmidn , Un), and send
(multicast, sid,m, Up, (U1,mid1), . . . , (Un,midn)) to the adversary.

– Adversarial sender (partial) multicast. Upon receiving
(multicast, sid, (mi1 , Ui1), . . . , (mi` , Ui`) from the adversary with
{Ui1 , . . . , Ui`} ⊆ P, choose ` new unique message-IDs midi1 , . . . ,midi` ,
initialize ` new variables Dmidi1

:= DMAX
midi1

:= . . . := Dmidi`
:= DMAX

midi`
:= 1, set

M := M ||(mi1 ,midi1 , Dmidi1
, Ui1)|| . . . ||(mi` ,midi` , Dmidi`

, Ui`), and send
(multicast, sid, (mi1 , Ui1 ,midi1), . . . , (mi` , Ui` ,midi`) to the adversary.

– Honest party fetching. Upon receiving (fetch, sid) from Up ∈ P (or from A
on behalf of Up if Up is corrupted):
1. For all tuples (m,mid, Dmid, Up) ∈M , set Dmid := Dmid − 1.
2. Let MUp

0 denote the subvector M including all tuples of the form
(m,mid, Dmid, Up) with Dmid = 0 (in the same order as they appear in M).
Delete all entries in MUp

0 from M , and send MUp

0 to Up.
– Adding adversarial delays. Upon receiving

(delays, sid, (Tmidi1
,midi1), . . . , (Tmidi`

,midi`)) from the adversary do the
following for each pair (Tmidij

,midij):
If DMAX

midij
+ Tmidij

≤ ∆ and mid is a message-ID registered in the current M ,
set Dmidij

:= Dmidij
+ Tmidij

and set DMAX
midij

:= DMAX
midij

+ Tmidij
; otherwise,

ignore this pair.
– Adversarially reordering messages. Upon receiving (swap, sid,mid,mid′)

from the adversary, if mid and mid′ are message-IDs registered in the current

Functionality F∆N-MC

59

M , then swap the triples (m,mid, Dmid, ·) and (m,mid′, Dmid′ , ·) in M . Return
(swap, sid) to the adversary.

K Security Proof

1: Upon receiving any message M from Alice:
2: if M is a valid FPayNet message from a player then
3: send (M,Alice) to S
4: end if

5: Upon receiving any message (M,Alice) from S:
6: if M is a valid FPayNet message from S then
7: send M to Alice
8: end if

Functionality FPayNet,dummy

Fig. 37.

Expects the same messages as the protocol, but messages that the protocol expects
to receive from E , the simulator expects to receive from FPayNet,dummy with the
name of the player appended. The simulator internally executes one copy of the
protocol per player. Upon receiving any message, the simulator runs the relevant
code of the protocol copy tied to the appended player name. Mimicking the
real-world case, if a protocol copy sends a message to another player, that message
is passed to A as if sent by the player and if A allows the message to reach the
receiver, then the simulator reacts by acting upon the message with the protocol
copy corresponding to the recipient player. A message sent by a protocol copy to E
will be routed by S to FPayNet,dummy instead. To distinguish which player it comes
from, S also appends the player name to the message. Corruption messages in the
backdoor tapes of simulated parties are also forwarded to FPayNet,dummy.

Simulator SLN

Fig. 38.

Lemma 4. ExecGLedger
ΠLN,Ad,E = ExecFPayNet,dummy,GLedger

SLN,E

Proof. Consider a message that E sends. In the real world, the protocol ITIs
produce an output. In the ideal world, the message is given to SLN through

60

FPayNet,dummy. The former simulates the protocol ITIs of the real world (along
with their coin flips) and so produces an output from the exact same distri-
bution, which is given to E through FPayNet,dummy. Thus the two outputs are
indistinguishable.

1: For messages register, registerDone, toppedUp and corrupted, act like
FPayNet, but skip lines that call checkClosed().

2: Upon receiving any other message M from Alice:
3: if M is a valid FPayNet message from a player then
4: send (M,Alice) to S
5: end if

6: Upon receiving any other message (M,Alice) from S:
7: if M is a valid FPayNet message from S then
8: send M to Alice
9: end if

Functionality FPayNet,Reg

Fig. 39.

Like SLN, but it does not accept (toppedUp) from FPayNet,Reg. Additional
differences:
1: Upon receiving (register, Alice, delay, relayDelay, lastPoll) from FPayNet,Reg:
2: delay of Alice ITI ← delay
3: relayDelay of Alice ITI ← relayDelay
4: lastPoll of Alice ITI ← lastPoll
5: (pkAlice, skAlice) of Alice ITI ← KeyGen()
6: send (registerDone, Alice, pkAlice) to FPayNet,Reg

7: Upon receiving (corrupt) on the backdoor tape of Alice’s simulated ITI:
8: add Alice to corrupted
9: for the rest of the execution, upon receiving any message for Alice, bypass

normal execution and simply forward it to Alice
10: send (corrupted, Alice) to FPayNet,Reg

Simulator SLN−Reg

Fig. 40.

61

Lemma 5. ExecFPayNet,dummy,GLedger
SLN,E = ExecFPayNet,Reg,GLedger

SLN−Reg,E

Proof. When E sends (register, delay, relayDelay) to Alice, it receives as a
response (register, Alice, delay, relayDelay, pkAlice) where pkAlice is a public
key generated by KeyGen() both in the real (c.f. Fig. 19, line 9) and in the ideal
world (c.f. Fig. 40, line 5).

Furthermore, one (read) is sent to GLedger from Alice in both cases (Fig. 19,
line 8 and Fig. 9, line 9).

Additionally, SLN−Reg ensures that the state of Alice ITI is exactly the same
as what would have been in the case of SLN, as lines 6-9 of Fig. 19 change the
state of Alice ITI in the same way as lines 2-5 of Fig. 40.

Lastly, the fact that the state of the Alice ITIs are changed in the same
way in both worlds, along with the same argument as in the proof of Lemma 4
ensures that the rest of the messages are responded in an indistinguishable way
in both worlds.

1: For messages register, registerDone, toppedUp, openChannel,
channelAnnounced and checkForNew, act like FPayNet, but skip lines
that call checkClosed().

2: Upon receiving any other message M from Alice:
3: if M is a valid FPayNet message from a player then
4: send (M,Alice) to S
5: end if

6: Upon receiving any other message (M,Alice) from S:
7: if M is a valid FPayNet message from S then
8: send M to Alice
9: end if

Functionality FPayNet,Open

Fig. 41.

Lemma 6. ExecFPayNet,Reg,GLedger
SLN−Reg,E = ExecFPayNet,Open,GLedger

SLN−Reg−Open,E

Proof. When E sends (openChannel, Alice, Bob, x, fchid, tid) to Alice, the in-
teraction of Figures 20-24 will be executed in both the real and the ideal world.
In more detail, in the ideal world the execution of the honest parties will be simu-
lated by the respective ITIs run by SLN−Reg−Open, so their state will be identical
to that of the parties in the real execution. Furthermore, since SLN−Reg−Open
executes faithfully the protocol code, it generates the same messages as would
be generated by the parties themselves in the real-world setting.

62

Like SLN−Reg. Differences:
1: Upon receiving (openChannel, Alice, Bob, x, fchid, tid) from FPayNet,Open:
2: if both Alice and Bob are honest then
3: Simulate the interaction between Alice and Bob in their respective ITI,

as defined in Figures 20-24. All messages should be handed to and received
from A, as in the real world execution.

4: After sending (fundingSigned) as Bob to Alice, send
(channelAnnounced,Bob, pAlice,F , pBob,F , fchid, pchid, tid) to FPayNet,Open.

5: After submitting F to GLedger as Alice, send
(channelAnnounced,Alice, pAlice,F , pBob,F , fchid, pchid) to FPayNet,Open.

6: else if Alice is honest, Bob is corrupted then
7: Simulate Alice’s part of the interaction between Alice and Bob in

Alice’s ITI, as defined in Figures 20, 22, and 24.All messages should be handed
to and received from A, as in the real world execution.

8: After submitting F to GLedger as Alice, send
(channelAnnounced,Alice, pAlice,F , pBob,F , fchid, pchid) to FPayNet,Open.

9: else if Alice is corrupted, Bob is honest then
10: send (openChannel, Alice, Bob, x, fchid, tid) to simulated (corrupted)

Alice
11: Simulate Bob’s part of the interaction between Alice and Bob in Bob’s

ITI, as defined in Figures 21 and 23. All messages should be handed to and
received from A, as in the real world execution.

12: After sending (fundingSigned) as Bob to Alice, send
(channelAnnounced,Bob, pAlice,F , pBob,F , fchid, pchid) to FPayNet,Open.

13: else if both Alice and Bob are corrupted then
14: forward message to A // A may open the channel or not
15: end if

16: Upon receiving (fundingLocked, Alice, ΣAlice, fchid) from FPayNet,Open:
17: execute lines 5-9 of Fig. 25 with Alice’s ITI, using ΣAlice from message
18: if Bob is honest then
19: expect the delivery of Alice’s (fundingLocked) message from A
20: send (fundingLocked, fchid) to FPayNet,Open
21: upon receiving (fundingLocked, Bob, ΣBob, fchid) from FPayNet,Open:
22: simulate Fig. 26 with message from Alice in Bob’s ITI, using ΣBob from
FPayNet,Open’s message

23: end if

24: Upon receiving the (fundingLocked) message with the simulated Alice ITI:
25: simulate Fig. 26 receiving the message with Alice’s ITI
26: send (channelOpened, fchid) to FPayNet,Open

Simulator SLN−Reg−Open

Fig. 42.

63

We observe that the input validity check executed by FPayNet,Open (Fig. 10,
line 2) filters only messages that would be ignored by the real protocol as well
and would not change its state either (Fig. 20, line 2).

We also observe that, upon receiving the message openChannel or chan-
nelAnnounced, FPayNet,Open does not send any messages to parties other than
SLN−Reg−Open, so we don’t have to simulate those.

When E sends (checkForNew, Alice, Bob, tid) to Alice in the real world,
line 2 of Fig. 25 will allow execution to continue if there exists an entry with
temporary id tid in pendingOpen marked as “broadcast”. Such an entry can
be added either in Fig. 20, line 7 or in Fig. 21, line 6. The former event can
happen only in case Alice received a valid openChannel message from Bob with
temporary id tid, which in turn can be triggered only by a valid openChannel
message with the same temporary id from E to Bob, whereas the latter only
in case Alice received a valid openChannel message from E with the same
temporary id. Furthermore, in the first case the “broadcast” mark can be added
only before Alice sends (fundingSigned, pchid, sig) to Bob (Fig. 23, line 12)
(which needs a valid Alice-Bob interaction up to that point), and in the second
case the “broadcast” mark can be added only before Alice sends (submit, (sig,
F)) to GLedger (Fig. 24, line 8) (which also needs a valid Alice-Bob interaction
up to that point)

When E sends (checkForNew, Alice, Bob, tid) to Alice in the ideal world,
line 10 of Fig. 10 will allow execution to continue if there exists an entry
with temporary ID tid and one member Alice, marked as “Alice announced” in
pendingOpen(fchid) for some fchid. This can only happen if line 8 of Fig. 10 is
executed, where pendingOpen(fchid) contains tid as the temporary ID. This line
in turn can only be executed if FPayNet,Open received (channelAnnounced,
Alice, pAlice,F , pBob,F , fchid, pchid, tid) from SLN−Reg−Open such that the entry
pendingOpen(fchid) exists and has temporary ID tid, as mandated by line 7 of
Fig. 10. Such a message is sent by SLN−Reg−Open of Fig. 42 either in lines 5/8,
or in lines 4/12. One of the first pair of lines is executed only if SLN−Reg−Open
receives (openChannel, Alice, Bob, x, fchid, tid) from FPayNet,Open and the
simulated A allows a valid Alice-Bob interaction up to the point where Alice
sends (submit) to GLedger, whereas one of the second pair of lines is executed
only if SLN−Reg−Open receives (openChannel, Bob, Alice, x, fchid, tid) from
FPayNet,Open and the simulated A allows a valid Alice-Bob interaction up to the
point where Alice sends (fundingSigned) to Bob.

The last two points lead us to deduce that line 10 of Fig. 10 in the ideal
and line 2 of Fig. 25 in the real world will allow execution to continue in the
exact same cases with respect to the messages that E and A send. Given that
execution continues, Alice subsequently sends (read) to GLedger and performs
identical checks in both the ideal (Fig. 10, lines 13-14) and the real world (Fig. 25,
lines 3-4).

Moving on, in the real world lines 5-9 of Fig. 25 are executed by Alice and,
given that A allows it, the code of Fig. 26 is executed by Bob. Likewise, in
the ideal world, the functionality executes lines 15-16 of Fig. 25 and as a result

64

it (always) sends (fundingLocked, Alice, ΣAlice, fchid) to SLN−Reg−Open. In
turn SLN−Reg−Open simulates lines 5-9 of Fig. 25 with Alice’s ITI and, if A allows
it, SLN−Reg−Open simulates the code of Fig. 26 with Bob’s ITI. Once more we
conclude that both worlds appear to behave identically to both E and A under
the same inputs from them.

1: For messages register, registerDone, toppedUp, openChannel,
channelAnnounced, checkForNew, poll, pay, pushAdd, pushFulfill,
fulfillOnChain and commit, act like FPayNet, but skip lines that call
checkClosed().

2: Upon receiving any other message M from Alice:
3: if M is a valid FPayNet message from a player then
4: send (M,Alice) to S
5: end if

6: Upon receiving any other message (M,Alice) from S:
7: if M is a valid FPayNet message from S then
8: send M to Alice
9: end if

Functionality FPayNet,Pay

Fig. 43.

65

Like SLN−Reg−Open. Differences:
1: Upon receiving (fulfillOnChain, t,Alice) from FPayNet,Pay:
2: execute lines 20-26 of Fig. 35 as Alice, using t from message

3: Upon receiving
(
pay,Alice,Bob, x,−−→path, receipt, payid

)
from FPayNet,Pay:

4: add (−−→path, payid) to payids
5: strip payid, simulate receiving the message with Alice ITI and further

execute the parts of ΠLN that correspond to honest parties (Fig. 29- Fig. 31)
6: if any “ensure” in ΠLN fails until Bob processes updateAddHtlc then //

payment failed
7: add (⊥, payid) to charged(Alice)
8: remove (−−→path, payid) from payids
9: end if

10: Upon receiving (poll, ΣAlice, Alice) from FPayNet,Pay:
11: simulate Fig. 27, lines 3-28 receiving (poll), using ΣAlice from the

message, with Alice’s ITI

Simulator SLN−Reg−Open−Pay - pay

Fig. 44.

1: Upon receiving (pushFulfill, pchid, Alice) from FPayNet,Pay:
2: simulate Fig. 35, lines 1-12 on input (pushFulfill, pchid) with Alice’s ITI

and handle subsequent messages by simulating respective ITIs of honest
players or sending to A the messages for corrupted players

3: Upon receiving (pushAdd, pchid, Alice) from FPayNet,Pay:
4: simulate Fig. 35, lines 13-17 on input (pushAdd, pchid) with Alice’s ITI

and handle subsequent messages by simulating respective ITIs of honest
players or sending to A the messages for corrupted players

5: Upon receiving (commit, pchid, Alice) from FPayNet,Pay:
6: simulate Fig. 32 on input (commit, pchid) with Alice’s ITI and handle

subsequent messages by simulating respective ITIs of honest players or sending
to A the messages for corrupted players

7: if during the simulation above, line 10 of Fig. 34 is simulated in Alice’s ITI
then

8: send (update, receipt, Alice) to FPayNet,Pay, where receipt is the
receipt just added to the simulated updatesToReport (Fig. 34, line 10)

9: upon receiving (continue) from FPayNet,Pay, carry on with the
simulation

10: end if

Simulator SLN−Reg−Open−Pay - push

Fig. 45.

66

1: Upon receiving any message with a concatenated (state, Σ) part from
FPayNet,Pay: // pay, pushFulfill, pushAdd, commit

2: handle first part of the message normally
3: if at the end of the simulation above, control is still held by
SLN−Reg−Open−Pay then

4: for all ΣAlice ∈ Σ do
5: for all (−−→path, payid) ∈ payids : Alice ∈ −−→path do
6: if Alice sent updateFulfillHtlc to a corrupted player and

either (got the fulfillment of the HTLC irrevocably committed OR fulfilled the
HTLC on-chain (i.e. HTLC-success is in ΣAlice)), AND the next honest player
Bob down the line successfully timed out the HTLC on-chain (i.e.
HTLC-timeout is in ΣBob) then // no or bad communication with Bob’s
previous player

7: add to charged(Alice) a tuple (corrupted, payid) where
corrupted is set to one of the corrupted parties between Alice and Bob

8: remove (−−→path, payid) from payids
9: else if ΣAlice contains an old remoteComm of the channel before

Alice (closer to payer) on the −−→path that does not contain the relevant HTLC
and a tx that spends the delayed output of remoteComm∨ ((ΣAlice contains the
most recent remoteComn or localComn of the channel before Alice and the
HTLC-success of the relevant HTLC ∨ Alice’s latest irrevocably committed
remoteComn for the channel before Alice does not contain the HTLC) ∧ΣAlice
contains the most recent remoteComl or localComl and (the HTLC-timeout or
an HTLC-success that pays the counterparty) for HTLC of the channel after
Alice) then // Alice did not fulfill in time

10: add (Alice, payid) to charged(Alice)
11: remove (−−→path, payid) from payids
12: else if Alice is the payer in −−→path AND ((she has received

updateFulfillHtlc AND has subsequently sent commit and
revokeAndAck) OR player after Alice has irrevocably fulfilled the HTLC
on-chain (i.e. his HTLC-success is in ΣAlice) then // honest payment
completed

13: add (Alice, payid) to charged(Alice)
14: remove (−−→path, payid) from payids
15: end if
16: end for
17: end for
18: end if
19: clear charged and send (resolvePays, charged) to FPayNet,Pay

Simulator SLN−Reg−Open−Pay - resolve payments

Fig. 46.

67

Lemma 7.

∀k ∈ N, PPT E ,

|Pr[ExecFPayNet,Open,GLedger
SLN−Reg−Open,E = 1]− Pr[ExecFPayNet,Pay,GLedger

SLN−Reg−Open−Pay,E = 1]| ≤

nm · E-ds(k) + 3np · E-ibs(k)+
nmp · E-share(k) + E-prf(k) + nm · E-master(k) .

Proof. Before focusing on individual messages sent by E , we will first prove that
four particular forgery events happen with negligible probability. Let P be the
event in which at some point during the execution a transaction that has the
following two characteristics appears in ΣAlice, for some honest player Alice: it
spends a funding transaction of a channel that contains Alice (and thus has
a pAlice,F public key) and it was never signed by Alice. Suppose that m is the
maximum number of channels that a player can open and ∃ PPT EP : Pr[P] = a.
We show in Proposition 3 that ∀E ,Pr[P] ≤ nm · E-ds(k).

Let Q be the event in which at some point during the execution a transac-
tion that has the following two characteristics appears in ΣAlice, for some hon-
est player Alice: it spends a simple output, delayed output or htlc output tied
with a public key that was created by Alice (pAlice,pay,n, pAlice,dpay,n, pAlice,htlc,n
respectively) and it was never signed by Alice. Suppose that p is the maxi-
mum total number of opens and updates that a player can perform and that
∃ PPT EQ : Pr[Q] = b. We show in Proposition 4 that ∀E ,Pr[Q] ≤ 3np ·E-ibs(k).

Let R be the event in which at some point during the execution a transaction
that has the following characteristic appears in ΣAlice, for some honest player
Alice: it spends the revocation output of a local (for Alice) commitment trans-
action for a channel that contains Alice and Bob (and thus has a pBob,rev,n key).
Observe that, since Alice is honest and according to both the real and the ideal
execution, if Alice submits her local commitment transaction localComn to the
ledger, under no circumstances does she subsequently go on to send sAlice,com,n
to any party. (This secret information could be used by Bob to efficiently com-
pute sBob,rev,n with CombineKey(pbBob,rev, sbBob,rev, pAlice,com,n, sAlice,com,n).)
Suppose that p is the maximum total number of opens and updates that a
player can perform, m is the maximum number of opens a player can per-
form and ∃ PPT ER : Pr[R] = c. We show in Proposition 5 that ∀E ,Pr[R] ≤
nmp · E-share(k) + E-prf(k).

Lastly, let S be the event in which at some point during the execution a trans-
action that has the following two characteristics appears in ΣAlice, for some hon-
est player Alice: (a) it spends the revocation output of a remote (for Alice) com-
mitment transaction for a channel that contains Alice (and thus has a pAlice,rev,n
key) and (b) it was never signed by Alice. Observe that, since Alice is honest, she
has never sent sAlice,rev,n to any party. Suppose that m is the maximum total
number of opens and updates that a player can perform and that ∃ PPT ES :
Pr[S] = d. We show in Proposition 6 that ∀E ,Pr[S] ≤ nm · E-master(k).

We can now move on to treating individual messages sent by E during the
execution. When E sends

(
pay,Bob, x,−−→path, payid

)
to Alice in the ideal world,

68

SLN−Reg−Open is always notified (Fig. 11, line 4) and simulates the relevant
execution of the real world (Fig. 44, line 5). No messages to GLedger or E that differ
from the real world are generated in the process. At the end of this simulation,
no further messages are sent (and the control returns to E). Therefore, when E
sends pay, no opportunity for distinguishability arises.

When E sends any message of (pushAdd, pchid), (pushFulfill, pchid),
(commit, pchid) to Alice in the ideal world, it is forwarded to SLN−Reg−Open
(Fig. 17, lines 2, 4, 6 respectively), who in turn simulates Alice’s real-world
execution with her simulated ITI and the handling of any subsequent messages
sent by Alice’s ITI (Fig. 45, lines 2, 4, 6). Neither FPayNet,Pay nor SLN−Reg−Open
alter their state as a result of these messages, apart from the state of Alice’s
simulated ITI and the state of other simulated ITIs that receive and handle
messages that were sent as a result of Alice’s ITI simulation. The states of these
ITIs are modified in the exact same way as they would in the real world. We
deduce that these three messages do not introduce any opportunity for E to
distinguish the real and the ideal world.

When E sends (fulfillOnChain) to Alice in the real world, lines 18-26 of
Fig. 35 are executed by Alice. In the ideal world on the other hand, FPayNet,Pay
sends (read) to GLedger (Fig. 17, line 8) as Alice and subsequently instructs
SLN−Reg−Open to simulate the receiving of (fulfillOnChain) with Alice’s ITI
(Fig. 44, lines 1-2). Observe that during this simulation a second (read) message
to GLedger (that would not match any message in the real world) is avoided
because SLN−Reg−Open skips line 19 of Fig. 35, using as t the one received from
FPayNet,Pay in the message (fulfillOnChain, t, Alice). Since FPayNet,Pay sends
(read) to GLedger as Alice and given that after GLedger replies, control is given
directly to SLN−Reg−Open, the t used during the simulation of Alice’s ITI is
identical to the one that Alice would obtain in the real-world execution. The
rest of the simulation is thus identical with the real-world execution, therefore
fulfillOnChain does not introduce any opportunity for distinghuishability.

When E sends (poll) to Alice, the first action is sending (read) as Alice to
GLedger both in the ideal (Fig. 16, line 4) and the real (Fig. 27, line 2) worlds. Sub-
sequently, in the real world lines 3-28 of Fig. 27 are executed by Alice, whereas
in the ideal world, given that the checks of lines 10 and 5 do not lead to a bad
event (and thus given that the functionality does not halt in lines 11 or 6), a
(poll) message is sent to SLN−Reg−Open. We will prove later that FPayNet,Pay
does not halt here. Upon receiving (poll), SLN−Reg−Open simulates receiving
(poll) with Alice’s ITI (Fig. 44, line 11), but does not read from GLedger and
uses instead the ΣAlice provided along with the message. A reasoning identical
to that found in the previous paragraph shows that this ΣAlice is exactly the
same as that which Alice’s ITI would obtain had it executed line 2 of Fig. 27
and thus the simulation of Alice’s ITI is identical to what would happen in the
same case in the real world, up to and including line 28 of Fig. 27.

The event E in which FPayNet,Pay executes line 6 of Fig. 16 and halts can only
happen if there is a non-commitment transaction that contains a valid signature
by the pAlice,F key that is needed to spend the funding transaction of an open

69

channel. According to ΠLN , Alice signs with her sAlice,F key only commitment
transactions. Therefore E ⊂ P ⇒ Pr[E|¬P] = 0.

Let E′ the “bad” event in which FPayNet,Pay executes line 11 of Fig. 16 and
halts. We will now prove that, during ExecFPayNet,Pay,GLedger

SLN−Reg−Open−Pay,E , it is Pr[E|¬P ∧
¬Q ∧ ¬R ∧ ¬S] = 0. The condition of Fig. 16, line 10 is triggered if the
delayed output (that of the malicious party) of tx1 has been spent by the
transaction tx2 in ΣAlice (event E′1) and polls(Alice) contains an element in
[h1, h1 + delay (Alice)− 1], where h1 is the block height where tx1 is (event
E′2). Observe that E′ = E′1 ∧ E′2. We note that the elements in polls(Alice)
correspond to the block heights of ΣAlice at the moments when Alice polls
(Fig. 16, line 3). Consider the following two events: E′1,1 : tx2 spends the de-
layed output with a signature valid by the delayed payment public key after the
locktime expires. E′1,2 : tx2 spends the delayed output with a signature valid by
the revocation public key pAlice,rev. Note that E′1 = E′1,1 ∨ E′1,2 and E′1,1, E

′
1,2

are mutually exclusive (since the same output cannot be spent twice). Observe
that E′1,2 ⊂ S, thus Pr

[
E′1,2|¬S

]
= 0. We now concetrate on the event E′1,1. Due

to the fact that tx2 spends an output locked with a relative timelock of length
delay (Alice) + (2 + r) windowSize, the commitment transaction tx1 can reside
in a block of maximum height h1 ≤ h2 − delay (Alice) − (2 + r) windowSize,
where h2 is the block height where tx2 is. If Alice polls on a moment when
|ΣAlice| ≥ h1, ΣAlice necessarily contains tx1. Furthermore, if Alice polls on a
moment when |ΣAlice| ≤ h1 + delay (Alice)− 1 ≤ h2 − (2 + r) windowSize− 1,
she sees tx1 and directly submits the punishment transaction tx3 (which she
has, given that a maliciously closed channel is defined as one where the non-
closing party has the punishment transaction) (Fig. 28, lines 19-21). Given
that tx3 is broadcast when |ΣAlice| ≤ h2 − (2 + r) windowSize, it is guaran-
teed to be on-chain in a block h3 ≤ h2 (according to Proposition 1). Since
tx3 spends the same funds as tx2, the two cannot be part of the chain simul-
taneously. Since E′1,1 ⇒ ΣAlice contains tx2 and E′2 ⇒ ΣAlice contains tx3,
E′1,1 and E′2 are mutually exclusive. Therefore, assuming ¬P ∧ ¬Q ∧ ¬R ∧
¬S, it is Pr [E′] = Pr

[(
E′1,1 ∨ E′1,2

)
∧ E′2

]
= Pr

[(
E′1,1 ∧ E′2

)
∨
(
E′1,2 ∧ E′2

)]
≤

Pr
[
E′1,1 ∧ E′2

]
+ Pr

[
E′1,2 ∧ E′2

]
= Pr

[
E′1,2 ∧ E′2

]
≤ Pr

[
E′1,2

]
= 0. We conclude

that, given ¬P∧¬Q∧¬R∧¬S poll introduces no opportunity for distinghuisha-
bility.

We now treat the effects of the (state, Σ) message that FPayNet,Pay sends
to SLN−Reg−Open, appended to pay, pushFulfill, pushAdd and commit mes-
sages. We first observe that the (state) message is handled after handling the
first message (which is of one of the four aforementioned types) (Fig. 46, line 2).
It may be the case that at the end of the handling of line 2, SLN−Reg−Open does
not have control of the execution. That can happen if a simulated ITI sends a
message to a corrupted player and that player does not respond (e.g. in Fig. 29,
line 6, when the first message is

(
pay,Bob, x,−−→path

)
and Bob is corrupted), or

if the handling of the message results in sending (submit) to GLedger (e.g. in
Fig. 35, line 11 when the first message is (pushFulfill, pchid) and counter-

70

party has gone on-chain). In that case, the (state) message is simply ignored
(Fig. 46, line 3) and does not influence execution in any way.

In the case when (state, Σ) is handled, SLN−Reg−Open attempts to specify
who was charged for each pending payment, based on the information that the
potentially paying party sees in its view of the GLedger state (Fig. 46, lines 4-
17). The resolution is then sent to FPayNet,Pay with the message (resolvePays,
charged). FPayNet,Pay handles this message in Fig. 12 and 13, where, if it does
not halt (Fig. 12, lines 12, 15 and 24 and Fig. 13, line 10), it updates the state
of each affected channel (Fig. 13, line 4) and does not send any message, thus
control returns to E . We will prove that, under ¬P ∧¬Q∧¬R∧¬S, FPayNet,Pay
does not halt and thus conclude that the handling of a (state) message does
not introduce opportunity for distinguishability.
FPayNet,Pay halts in line 12 of Fig. 12 if the honest player Dave was charged

for a payment over a channel that was closed without using a commitment
transaction. Like E, this event is a subset of P , thus cannot happen given ¬P .
FPayNet,Pay halts in line 15 of Fig. 12 if the player Dave charged is an honest

member of the payment path, has polled in time to catch a malicious closure
(eventA) but a malicious closure succeeded (eventB). FPayNet,Pay halts in line 24
of Fig. 12 if Dave is not the payer, no malicious closure succeeded (¬B) and
Dave has polled in time twice to learn the preimage of the HTLC early enough
(event C) and has attempted to fulfill on chain at the right moment (event D).
FPayNet,Pay also halts if the two expiries do not have the expected distance (event
F) – i.e. halts in the event (A∧B)∨(¬B∧(F ∨(C∧D))). SLN−Reg−Open decides
that Dave is charged if his previous counterparty did a malicious closure to a
channel version without the HTLC and spent their (delayed) output (B), or if
his next counterparty fulfilled (event G) and his previous counterparty timed
out the HTLC (event H) (Fig. 46, line 9), – i.e. Dave is charged in the event
B ∨ (G ∧H).

We will now show that Pr[A∧B|¬P ∧¬Q∧¬R∧¬S] = 0∧Pr[(C∧D)∧ (G∧
H)|¬P ∧¬Q∧¬R∧¬S] = 0∧Pr[F ∧(G∧H)|¬P ∧¬Q∧¬R∧¬S] = 0, from which
we can deduce that Pr[(A∧B)∨((F ∨(C∧D))∧(G∧H))|¬P ∧¬Q∧¬R∧¬S] = 0
and thus Pr[((A∧B)∨(¬B∧(F∨(C∧D))))∧(B∨(G∧H))|¬P∧¬Q∧¬R∧¬S] = 0.
This last step holds because (A ∧ B) ∨ ((F ∨ (C ∧D)) ∧ (G ∧H)) = (A ∧ B) ∨
((F ∨ (C ∧D)∧G∧H) and ((A∧B)∨ (¬B ∧ (F ∨ (C ∧D))))∧ (B ∨ (G∧H)) =
(A∧B)∨ (¬B ∧ (F ∨ (C ∧D))∧G∧H) and the latter is a subset of the former.

The analysis of the event A ∧B is identical to the one we did previously for
the events E′1, E′2, with A corresponding to E′2 and B to E′1. We thus deduce
that Pr[A ∧B|¬P ∧ ¬Q ∧ ¬R ∧ ¬S] = 0.

Event F is true only if IncomingCltvExpiry − OutgoingCltvExpiry <
relayDelay(Alice) + (2 + r) windowSize. This cannot happen however for any
honest Alice, since S will simulate line 10 of Fig.30 with Alice’s ITI before having
her agree to participate as an intermediary in the multi-hop payment. Therefore
Pr[F ∧ (G ∧H)|¬P ∧ ¬Q ∧ ¬R ∧ ¬S] = 0.

The only way for event C to be true is if E sends (poll) to Dave during the
prescribed time period (Fig. 16, line 3) – note that the addition to polls(Dave)

71

during registration (Fig. 9, line 9) cannot be within the desired range due to the
fact that OutgoingCltvExpiry is not smaller than the chain height when the
corresponding (invoice) was received (Fig. 29, line 19), registration happens
necessarily before handling (invoice) (Fig. 9, line 21) and the element added
to polls(Dave) at registration is the chain height at that time (Fig. 9, line 9).
When Dave receives (poll), FPayNet,Pay always sends (getClosedFunds) to
SLN−Reg−Open (Fig. 16, line 17) (since, as we saw earlier, FPayNet,Pay never halts).

Event H happens only when the previous counterparty successfully appends
HTLC-timeout to ΣDave, which is a valid transaction only from the block of
height IncomingCltvExpiry+1 and on, or if the previous counterparty learns the
preimage of the HTLC and forges a signature valid by Dave’s public HTLC key,
or if the previous counterparty forges a signature valid by Dave’s public revoca-
tion key; the two latter scenarios can never happen. Thus, given that G happens
until a moment when |ΣDave| ≤ IncomingCltvExpiry − (2 + r) windowSize,
Dave has the time to successfully fulfill the HTLC. Given C, Dave has polled
at two moments h1, h2 ∈ [OutgoingCltvExpiry, IncomingCltvExpiry - (2 +
r)windowSize], such that h2 ≥ h1 + (2 + r) windowSize. If ΣDave contains the
preimage at moment h1 or h2, then Dave may try to update the previous channel
off-chain if he receives a (pushFulfill) for that channel (Fig. 35, lines 1-11),
and if the off-chain update is never attempted (because (pushFulfill) and
(commit) are not received) or fails (because the previous counterparty does not
send (revokeAndAck)), then the (fulfillOnChain) that he receives accord-
ing to D will make him submit HTLC-success (Fig. 35, lines 18-26) and have
it on-chain by block of height IncomingCltvExpiry (Proposition 1). Further-
more, in the case that the HTLC-success is not found at the (poll) of h1, Dave
immediately submits HTLC-timeout (Fig. 28, line 9), which either ends up in
ΣDave by block height h1 + (2 + r) windowSize (Proposition 1) or is rejected
because the counterparty managed to append HTLC-success before it. In the
first case, Dave is not charged for the payment. In the second case, the second
(poll) (at block height h2) necessarily reveals the HTLC-success to Dave and
subsequently the (fulfillOnChain) causes Dave to fulfill the HTLC with the
previous counterparty, as argued above. Therefore in no case Dave is charged
for the payment, i.e. Pr[(C ∧D) ∧ (G ∧H)|¬P ∧ ¬Q ∧ ¬R ∧ ¬S] = 0.

It remains to be proven that the halt of line 10 in Fig. 13 does not occur
with non-negligible probability. Indeed, S only reports the payment as resolved
in resolvePays if a party has been irrevocably charged for it (Fig. 46, lines 6, 9,
or 12). In all three cases, all channels that follow the charged party on the −−→path
have either been closed or irrevocably updated to a newer version that includes
the new balance. Since FPayNet may only halt for a channel that has not been
declared or confirmed as closed (Fig. 13, lines 1 and 9), all channels that can cause
a halt are channels that have the update of this payment irrevocably committed.
This only happens when both sides send a revokeAndAck that updates the
channel from a version that contains the relevant HTLC to a version that doesn’t;
and when an honest party receives such a revokeAndAck message, it logs the
update in updatesToReport (Fig. 34, line 10) which causes S to report the

72

update to FPayNet (Fig. 45, line 8). We therefore conclude that FPayNet never
halts on line 10 of Fig. 13.

To conclude, given ¬P ∧ ¬Q ∧ ¬R ∧ ¬S, it is ExecFPayNet,Open,GLedger
SLN−Reg−Open,E =

ExecFPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E . If we allow for forgeries again, i.e. if we allow the event

P ∨Q∨R∨S, we observe that Pr[P ∨Q∨R∨S] ≤ nm ·E-ds(k)+3np ·E-ibs(k)+
nmp ·E-share(k)+E-prf(k)+nm ·E-master(k), where n is the number of players,
m is the maximum channels a player can open and p is the maximum number
of updates a player can perform. We thus deduce that

∀k ∈ N, PPT E ,

|Pr[ExecFPayNet,Open,GLedger
SLN−Reg−Open,E = 1]− Pr[ExecFPayNet,Pay,GLedger

SLN−Reg−Open−Pay,E = 1]| ≤

nm · E-ds(k) + 3np · E-ibs(k)+
nmp · E-share(k) + E-prf(k) + nm · E-master(k) .

Like SLN−Reg−Open−Pay. Differences:
1: Upon receiving (closeChannel, receipt, tid, Alice) from FPayNet:
2: simulate Fig. 36 receiving (closeChannel, receipt, tid) with Alice’s ITI

3: every time closedChannels of Alice is updated with data from a channel
(Fig. 36, line 10 and Fig. 28, line 23), send (closedChannel, channel, Alice)
to FPayNet and expect (continue) from FPayNet to resume simulation

Simulator S

Fig. 47.

Lemma 8.

∀k ∈ N, PPT E ,

|Pr[ExecFPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E = 1]− Pr[ExecFPayNet,GLedger

S,E = 1]| ≤

nm · E-ds(k) + 3np · E-ibs(k)+
nmp · E-share(k) + E-prf(k) + nm · E-master(k) .

Proof. Like in the previous proof, we here also assume that ¬P ∧¬Q∧¬R∧¬S
holds.

When E sends (closeChannel, receipt, tid) to Alice, in the ideal world, if
it is not the first closing message to Alice the message is ignored (Fig. 14, line 5).
Similarly in the real world, if there has been another such message, Alice ignores
it (Fig.36, lines 11 and 2).

73

In the case that it is indeed the first closing message, in the ideal world
FPayNet takes note that this close is pending (Fig. 14, lines 3-4) and stops serving
more requests for this channel (line 5), before asking S to carry out channel
closing. S then simulates the response to the original message from E with Alice’s
ITI (Fig. 47). Observe that, since FPayNet has ensured that this is the first request
for closing this particular channel, the simulated check of line 2 in Fig. 36 always
passes and the rest of Fig. 36 is executed. In the real world, the check also
passes (since we are in the case where this is the first closing message) and
Fig. 36 is executed by the real Alice in its entirety. Therefore, when E sends
closeChannel, no opportunity for distinguishability arises.

When E sends (getNews) to Alice, in the ideal world FPayNet sends (news,
newChannels(Alice), closedChannels(Alice), updatesToReport
(Alice)) to E and empties these fields (Fig. 17, lines 15-16). In the real world,
Alice sends (news, newChannels, closedChannels, updatesToReport) to E and
empties these fields as well (Fig. 27, lines 29-30). newChannels(Alice) in the ideal
world is populated in two cases: First, when FPayNet receives (channelOpened)
after Alice has previously received (checkForNew) (Fig. 10, line 30). This hap-
pens when the simulated Alice ITI handles a fundingLocked message from
Bob (Fig. 42, line 26). In the real world Alice would have modified her new-
Channels while handling Bob’s fundingLocked (Fig. 26, line 13), thus as far
as this case is concerned, newChannels has the same contents in the real world as
does newChannels(Alice) in the ideal. The other case when newChannels(Alice)
is populated is when FPayNet receives (fundingLocked) after Bob has pre-
viously received (checkForNew) (Fig. 10, line 22). This (fundingLocked)
can only be sent by S if Alice is honest and right before the receiving of
(fundingLocked) is simulated with her ITI (Fig. 42, lines 17-22). In the
real world, Alice’s newChannels would be populated upon handling the same
(fundingLocked). Therefore the newChannels part of the message is identical
in the real and the ideal world at every moment when E can send (getNews).

Moving on to closedChannels(Alice), we observe that FPayNet adds channel
information when it receives (closedChannel, channel, Alice) from S (Fig. 17,
line 13), which in turn happens exactly when the simulated Alice ITI adds the
channel to her closedChannels (Fig. 47, line 3). Therefore the real and ideal
closedChannels are always synchronized.

Regarding updatesToReport, in the real world it is populated exclusively in
line 10 of Fig. 34. In the ideal world on the other hand, it is updated in line 6
of Fig. 11, which is triggered only by an (update) message by S. This message
is sent only when line 10 of Fig. 34 is simulated by S (Fig. 45, line 8). In the
real world, this happens only after receiving a valid (revokeAndAck) mes-
sage from the channel counterparty and after first having sent a corresponding
(commitmentSigned) message (Fig. 34, line 2 and Fig. 33, lines 5 and 17),
which happens only after receiving (commit) from E . In the ideal world a sim-
ulation of the same events can only happen in the exact same case, i.e. when
E sends an identical (commit) to the same player. Indeed, FPayNet simply for-
wards this message to S (Fig. 17, line 6), who in turn simply simulates the

74

response to the message with the simulated ITI that corresponds to the player
that would receive the message in the real world (Fig. 45, line 6). We conclude
that the updatesToReport sent to E in either the real or the ideal world are
always identical.

Lastly, in the ideal world, whenever (read) is sent to GLedger and a reply
is received, the function checkClosed (Fig.15) is called with the reply of the
GLedger as argument. This function does not generate new messages, but may
cause the FPayNet to halt. We will now prove that this never happens.
FPayNet halts in line 15 of Fig. 15 in case a channel is closed without using

a commitment transaction. Similarly to event E in the proof of Lemma 7, this
event is a subset of P and thus is impossible to happen given that we assume
¬P .
FPayNet halts in line 18 of Fig. 15 in case a malicious closure by the coun-

terparty was successful, in spite of the fact that Alice polled in time to apply
the punishment. A (poll) message to Alice within the prescribed time frame
(line 17) would cause FPayNet to alert S (Fig. 16, line 17), who in turn would
submit the punishment transaction in time to prevent the counterparty from
spending the delayed payment (Fig. 28, lines 19-21). Therefore the only way
for a malicious counterparty to spend the delayed output before Alice has the
time to punish is by spending the punishment output themself. This however
can never happen, since this event would be a subset of either R, if remoteComn
(i.e. the counterparty closed the channel) is in ΣAlice, or Q, if localComn is in
ΣAlice (i.e. Alice closed the channel).
FPayNet halts in line 25 of Fig. 15 in case E has asked for the channel to close,

but too much time has passed since. This event cannot happen, for two reasons.
First, regarding elements in pendingClose(Alice), because FPayNet forwards a
(closeChannel) message to S (Fig. 14, line 6) for every element that it adds to
pendingClose (Fig 14, line 4) and this causes S to submit the closing transaction
to GLedger (Fig. 36, line 12). This transaction is necessarily valid, because there is
no other transaction that spends the funding transaction of the channel, accord-
ing to the first check of line 24 of Fig. 15. FPayNet halts in this case only if it is sure
that the chain has grown by (2 + r) windowSize blocks, and thus if the closing
transaction had been submitted when (closeChannel) was received, it should
have been necessarily included (Proposition 1). Second, every element added to
closedChannels (Fig. 36, line 10 and Fig. 28, line 23) corresponds to a submis-
sion of a closing transaction for the same channel (Fig. 36, line 12), or to a channel
for which the closing transaction is already in the ledger state (Fig. 28, line 1).
In both cases, the transaction has been submitted at least (2 + r) windowSize
blocks earlier, thus again by Proposition 1 it is impossible for the transaction
not to be in the ledger state. Therefore FPayNet cannot halt in line 25 of Fig. 15.
We deduce that, given ¬P ∧¬Q∧¬R, the execution of checkClosed by FPayNet
does not contribute any increase to the probability of distinguishability. Put oth-
erwise, given ¬P ∧¬Q∧¬R, it is ExecFPayNet,Pay,GLedger

SLN−Reg−Open−Pay,E = ExecFPayNet,GLedger
S,E .

FPayNet halts in line 30 of Fig. 15 in case all Alice’s channels are closed
on-chain and either Alice’s off-chain balance is not equal to zero, or if her on-

75

chain balance is not the expected one, as reported by S. This event can never
happen for the following reasons. Firstly, as we have seen, S reports all up-
dates with an (update) message (Fig. 45, line 8) and a (resolvePays) mes-
sage; upon receiving the latter and given that it doesn’t halt, FPayNet updates
offChainBalance(Alice) if she is the payer or payee of one of the resolved pay-
ments (Fig. 12, lines 9, 31 and 32). Secondly, upon closure of each channel,
FPayNet would have halted if the closing balance were not the expected one
(Fig. 15, line 17), an event that cannot happen as we have already proven. Lastly,
upon each channel opening and closing, FPayNet updates offChainBalance(Alice)
and onChainBalance(Alice) to reflect the event (Fig. 10, lines 26 and 27 and
Fig. 15, lines 6 or 8 respectively). Therefore, it is impossible for FPayNet to halt
here.

Similarly to the previous proof, if we allow for forgeries again, i.e. if we allow
the event P ∨Q ∨ R ∨ S, we observe that Pr[P ∨Q ∨ R ∨ S] ≤ nm · E-ds(k) +
3np · E-ibs(k) + nmp · E-share(k) + E-prf(k) + nm · E-master(k), where n is the
number of players, m is the maximum channels a player can open and p is the
maximum number of updates a player can perform. We thus deduce that

∀k ∈ N, PPT E ,

|Pr[ExecFPayNet,Pay,GLedger
SLN−Reg−Open−Pay,E = 1]− Pr[ExecFPayNet,GLedger

S,E = 1]| ≤

nm · E-ds(k) + 3np · E-ibs(k)+
nmp · E-share(k) + E-prf(k) + nm · E-master(k) .

Proof of Theorem 1. The theorem is a direct result of Lemmas 4-8.

K.1 Forgery algorithms

Proposition 2. Let k ∈ N, p a polynomial an arbitrary distribution T and the
uniform distribution U over a set A of size p(k). It is

Pr[T = U] = 1
p(k)

Proof.

Pr[T = U] =
∑
a∈A

Pr[T = a ∧ U = a] =
∑
a∈A

1
p(k) Pr[U = a] =

= 1
p(k)

∑
a∈A

Pr[U = a] = 1
p(k)

Proposition 3. ∀E ,Pr[P] ≤ nm · E-ds(k)

76

Ads(init, pk):

– Choose uniformly at random Alice from the set of players P of an execution
ExecGLedger

ΠLN,Ad,E
– Choose uniformly at random i from {1, . . . ,m}
– Simulate internally ExecGLedger

ΠLN,Ad,E with EP
– When Alice opens her i-th channel, replace pF of KeyGen() in Fig. 19, line 20

with pk
– Whenever SignDS(M, sF) is called, ask challenger for the signature σ with

(unknown) sk on M and use that instead
– If event P takes place and the forged signature is valid by pk, retrieve forged

signature σ∗ and the corresponding transaction m∗ and output (m∗, σ∗)
– If the simulated execution completes and Alice has opened less than i channels,

or if no forgery happened, or if a forgery for another player/channel happened,
return fail

Algorithm EUF-CMA forgery

Fig. 48. wins EUF-CMA game

Proof. Let Pr[P] = a for an unmodified execution. Ads simulates faithfully
ExecGLedger

ΠLN,Ad,E , since it does the following two changes. The first is to replace
one pF public key with the public key pk given by the challenger. Both keys
are generated by KeyGen(), thus their distribution is identical. The second is
to replace signatures done by sF with signatures done by the challenger with
sk. Both signatures are generated with SignDS() and thus their distribution is
identical. We deduce that, within the simulated execution, Pr[P] = a.

At the beginning of an execution, Alice and i are chosen uniformly at random,
therefore given P , by Proposition 2 we have that

Pr[Ads chooses correct keypair] = 1
nm

.

Since the selection happens independently from the forgery, we deduce that

Pr[Ads wins EUF-CMA] = a

nm

Since the Digital Signatures scheme used during the execution is assumed to
be EUF-CMA-secure, it is

Pr[Ads wins EUF-CMA] ≤ E-ds(k)⇒ ∀E , a ≤ nm · E-ds(k) .

Proposition 4. ∀E ,Pr[Q] ≤ 3np · E-ibs(k)

Proof. Let Pr[Q] = b for an unmodified execution. Aibs simulates faithfully
ExecGLedger

ΠLN,Ad,E , since it does the following two changes. The first is to replace

77

Aibs(init, mpk):

– Choose uniformly at random Alice from the set of players P of an execution
ExecGLedger

ΠLN,Ad,E
– Choose uniformly at random i from {1, . . . , p}
– Choose uniformly at random j from {pay, dpay, htlc}
– Simulate internally ExecGLedger

ΠLN,Ad,E with EQ
– When Alice performs her i-th opening or update, replace the phj,n output of

KeyDer(phbj , shbj , phcom,n) with pk ← PubKeyDer(mpk, phcom,n)
– Whenever SignIBS(M, shj,n) is called, ask challenger for the signature σ with

(unknown) sk ← KeyDer(mpk,msk, phcom,n) on M and use that instead
– If event Q takes place and the forged signature is valid by pk, retrieve forged

signature σ∗ and the corresponding transaction m∗ and output
(m∗, phcom,n, σ

∗)
– If the simulated execution completes and Alice has updated or opened a

channel less than i times, or if no forgery happened, or if a forgery for another
player/opening/update happened, return fail

Algorithm IBS-EUF-CMA forgery

Fig. 49. wins IBS-EUF-CMA game

one phj,n public key with pk ← PubKeyDer(mpk, phcom,n), where mpk is
given by the challenger. Both mpk and the normally used phbj are gener-
ated by KeyDer(), thus their distribution is identical. The second is to re-
place signatures done by shj,n with signatures done by the challenger with
sk ← KeyDer(mpk,msk, phj,n. Both signatures are generated with SignIBS()
and thus their distribution is identical. We deduce that, within the simulated
execution, Pr[Q] = b.

At the beginning of an execution, Alice, i and j are chosen uniformly at
random, therefore given Q, by Proposition 2 we have that

Pr[Aibs chooses correct keypair] = 1
3np .

Since the selection happens independently from the forgery, we deduce that

Pr[Aibs wins IBS-EUF-CMA] = b

3np

Since the Identity Based Signatures scheme used during the execution is
assumed to be IBS-EUF-CMA-secure, it is

Pr[Aibs wins IBS-EUF-CMA] ≤ E-ibs(k)⇒
∀E , b ≤ 3np · E-ibs(k) .

78

Ashare(init):

– Choose uniformly at random Alice from the set of players P of an execution
ExecGLedger

ΠLN,Ad,E
– Choose uniformly at random i from {1, . . . ,m}
– Choose uniformly at random j from {1, . . . , p}
– Simulate internally ExecGLedger

ΠLN,Ad,E with ER
– When Alice opens a channel for the i-th time, save (phbrev, shbrev) (generated

from MasterKeyGen() in Fig. 19, line 25) as (mpk,msk) and send (mpk, 1)
to challenger, to receive key pk

– The j-th time Alice calls KeyShareGen() to produce a per commitment pair
(phcom,j , shcom,j) for the chosen channel (either during opening or during an
update), replace its output with the next unused pk

– If Alice attempts to update the chosen channel once more and has to send
shcom,j to the counterparty, stop simulation and return fail

– If event R takes place and the forged signature is valid by pk, retrieve forged
signature σ∗ and the corresponding transaction m∗ and output (m∗, σ∗)

– If the simulated execution completes and Alice has opened less than i channels,
or if no forgery happened, or if a forgery for another player/channel happened,
return fail

Algorithm share-EUF forgery

Fig. 50. wins share-EUF game

Proposition 5. ∀E ,Pr[R] ≤ nmp · E-share(k) + E-prf(k)

Proof. First we observe that the halting of the simulation on an additional up-
date does not interfere with the probability of the desired forgery taking place
because such a forgery can only occur if Alice has broadcast localCom, which
prevents her from further updating the channel. Therefore such halts happen
only after an event that extinguishes the hope for a successful forgery.

Let Pr[R] = c for the unmodified execution. While doing the simulation of
ExecGLedger

ΠLN,Ad,E , Ashare does the following change to the execution. It replaces
a single phcom,j public key with the public key pk which is given by the chal-
lenger. pk is generated by KeyShareGen() with fresh randomness, whereas in
an unmodified execution phcom,j is generated by KeyShareGen(), using as its
randomness prand ← prf(seed, j). Given though that prand is not used any-
where else and the fact that the computational distance of an output of a prf
from true randomness is at most E-prf(k), we deduce that the computational
distance of an unmodified and the modified executions are at most E-prf(k),
therefore for the modified execution it is Pr[R] ∈ [c− E-prf(k), c+ E-prf(k)].

At the beginning of an execution, Alice, i and j are chosen uniformly at
random, therefore given R, by Proposition 2 we have that

Pr[Ashare chooses correct keypair] = 1
nmp

.

79

Since the selection happens independently from the forgery, we deduce that

Pr[Ashare wins share-EUF] ∈
[
c− E-prf(k)

nmp
,
c+ E-prf(k)

nmp

]
.

Since the Combined Signatures scheme used is assumed to be share-EUF-
secure, it is

Pr[Ashare wins share-EUF] ≤ E-share(k)⇒
∀E , c ≤ nmp · E-share(k) + E-prf(k) .

Amaster(init,mpk):

– Choose uniformly at random Alice from the set of players P of an execution
ExecGLedger

ΠLN,Ad,E
– Choose uniformly at random i from {1, . . . ,m}
– Simulate internally ExecGLedger

ΠLN,Ad,E with ES
– When Alice opens a channel for the i-th time, replace phbrev (generated from

MasterKeyGen() in Fig. 19, line 25) with mpk
– Ignore calls to CombineKey() that need the missing msk and assume that the

resulting combined secret key is known (to satisfy line 18 of Fig. 28 if needed).
– Whenever SignCS(M, shrev,n) is called within this channel, ask challenger for

the signature σ with signing key
csk ← CombineKey(mpk,msk, ptcom,n, stcom,n) on M by sending them
(ptcom,n, stcom,n,M) and use that instead

– If event S takes place and the forged signature is valid by
cpk ← CombinePubKey(mpk, ptcom,n) for some ptcom,n of the channel, retrieve
forged signature σ∗ and the corresponding transaction m∗ and output (m∗, σ∗)

– If the simulated execution completes and Alice has opened less than i channels,
or if no forgery happened, or if a forgery for another player/channel happened,
return fail

Algorithm master-EUF-CMA forgery

Fig. 51. wins master-EUF-CMA game

Proposition 6. ∀E ,Pr[S] ≤ nm · E-master(k)

Proof. Let Pr[S] = d hold for the unmodified execution. When it is simulating
ExecGLedger

ΠLN,Ad,E , Ashare does the following two changes to the execution. Firstly,
it replaces a single phbrev public master key with mpk which is given by the
challenger. Both mpk and phbrev are generated by KeyShareGen() with fresh
randomness, thus their distribution is identical. Secondly, it replaces signatures

80

done by the secret key shrev,n ← CombineKey(phbrev, shbrev, ptcomn, stcom,n)
with signatures created by the challenger with the secret key resulting from ex-
ecuting CombineKey(mpk,msk, ptcomn, stcom,n), thus the distribution of the
two signatures is identical. We deduce that for the modified execution it is
Pr[S] = d.

At the beginning of an execution, Aliceand i are chosen uniformly at random,
therefore given S, by Proposition 2 we have that

Pr[Ashare chooses correct keypair] = 1
nm

.

Since the selection happens independently from the forgery, we deduce that

Pr[Amaster wins master-EUF-CMA] ≥ d

nm

Since the Combined Signatures scheme used during the execution is assumed
to be master-EUF-CMA-secure, it is

Pr[Amaster wins master-EUF-CMA] ≤ E-master(k)⇒
∀E , d ≤ nm · E-master(k) .

References

1. Croman K., Decker C., Eyal I., Gencer A. E., Juels A., Kosba A., Miller A., Saxena
P., Shi E., Sirer E. G., et al.: On scaling decentralized blockchains. In International
Conference on Financial Cryptography and Data Security: pp. 106–125: Springer
(2016)

2. Nakamoto S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
3. Garay J., Kiayias A., Leonardos N.: The Bitcoin Backbone Protocol: Analysis

and Applications. Cryptology ePrint Archive, Report 2014/765: https://eprint.
iacr.org/2014/765 (2014)

4. Pass R., Seeman L., Shelat A.: Analysis of the Blockchain Protocol in Asyn-
chronous Networks. IACR Cryptology ePrint Archive: vol. 2016, p. 454: URL
http://eprint.iacr.org/2016/454 (2016)

5. Garay J. A., Kiayias A., Leonardos N.: The Bitcoin Backbone Protocol with
Chains of Variable Difficulty. In J. Katz, H. Shacham (editors), Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I: vol.
10401 of Lecture Notes in Computer Science: pp. 291–323: Springer: ISBN 978-
3-319-63687-0: doi:10.1007/978-3-319-63688-7_10: URL https://doi.org/10.
1007/978-3-319-63688-7_10 (2017)

6. Pass R., Shi E.: Hybrid Consensus: Efficient Consensus in the Permissionless
Model. In A.W. Richa (editor), 31st International Symposium on Distributed
Computing, DISC 2017, October 16-20, 2017, Vienna, Austria: vol. 91 of LIPIcs:
pp. 39:1–39:16: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik: ISBN 978-3-
95977-053-8: doi:10.4230/LIPIcs.DISC.2017.39: URL https://doi.org/10.4230/
LIPIcs.DISC.2017.39 (2017)

81

https://eprint.iacr.org/2014/765
https://eprint.iacr.org/2014/765
http://eprint.iacr.org/2016/454
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.4230/LIPIcs.DISC.2017.39
https://doi.org/10.4230/LIPIcs.DISC.2017.39

7. Micali S.: ALGORAND: The Efficient and Democratic Ledger. CoRR: vol.
abs/1607.01341: URL http://arxiv.org/abs/1607.01341 (2016)

8. Poon J., Dryja T.: The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments. https://lightning.network/lightning-network-paper.pdf (2016)

9. Pass R., Shi E.: Thunderella: Blockchains with Optimistic Instant Confirmation.
In J.B. Nielsen, V. Rijmen (editors), Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II: vol. 10821 of Lecture Notes in Computer Science: pp. 3–33: Springer:
ISBN 978-3-319-78374-1: doi:10.1007/978-3-319-78375-8_1: URL https://doi.
org/10.1007/978-3-319-78375-8_1 (2018)

10. Badertscher C., Maurer U., Tschudi D., Zikas V.: Bitcoin as a transaction ledger: A
composable treatment. In Annual International Cryptology Conference: pp. 324–
356: Springer (2017)

11. Badertscher C., Gaži P., Kiayias A., Russell A., Zikas V.: Ouroboros genesis: Com-
posable proof-of-stake blockchains with dynamic availability. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security: pp.
913–930: ACM (2018)

12. Nicolosi A., Krohn M. N., Dodis Y., Mazières D.: Proactive Two-Party Signatures
for User Authentication. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2003, San Diego, California, USA: The Internet So-
ciety: ISBN 1-891562-16-9: URL http://www.isoc.org/isoc/conferences/ndss/
03/proceedings/papers/15.pdf (2003)

13. Spilman J.: Anti dos for tx replacement. https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2013-April/002433.html (2013)

14. Decker C., Wattenhofer R.: A Fast and Scalable Payment Network with Bit-
coin Duplex Micropayment Channels. In A. Pelc, A.A. Schwarzmann (editors),
Stabilization, Safety, and Security of Distributed Systems - 17th International
Symposium, SSS 2015, Edmonton, AB, Canada, August 18-21, 2015, Proceed-
ings: vol. 9212 of Lecture Notes in Computer Science: pp. 3–18: Springer: ISBN
978-3-319-21740-6: doi:10.1007/978-3-319-21741-3_1: URL https://doi.org/
10.1007/978-3-319-21741-3_1 (2015)

15. Dziembowski S., Eckey L., Faust S., Malinowski D.: Perun: Virtual Payment Hubs
over Cryptocurrencies. In 2019 2019 IEEE Symposium on Security and Privacy
(SP): pp. 344–361: IEEE Computer Society, Los Alamitos, CA, USA: ISSN 2375–
1207: doi:10.1109/SP.2019.00020: URL https://doi.ieeecomputersociety.org/
10.1109/SP.2019.00020 (2019)

16. Lind J., Naor O., Eyal I., Kelbert F., Pietzuch P. R., Sirer E. G.: Teechain: Re-
ducing Storage Costs on the Blockchain With Offline Payment Channels. In Pro-
ceedings of the 11th ACM International Systems and Storage Conference, SYSTOR
2018, HAIFA, Israel, June 04-07, 2018: p. 125: ACM: doi:10.1145/3211890.3211904:
URL https://doi.org/10.1145/3211890.3211904 (2018)

17. Miller A., Bentov I., Kumaresan R., Cordi C., McCorry P.: Sprites and State
Channels: Payment Networks that Go Faster than Lightning. ArXiv preprint
arXiv:1702.05812 (2017)

18. Malavolta G., Moreno-Sanchez P., Kate A., Maffei M., Ravi S.: Concurrency
and Privacy with Payment-Channel Networks. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security: CCS ’17: pp.
455–471: ACM, New York, NY, USA: ISBN 978-1-4503-4946-8: doi:10.1145/
3133956.3134096: URL http://doi.acm.org/10.1145/3133956.3134096 (2017)

82

http://arxiv.org/abs/1607.01341
https://doi.org/10.1007/978-3-319-78375-8_1
https://doi.org/10.1007/978-3-319-78375-8_1
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/15.pdf
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/15.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00020
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00020
https://doi.org/10.1145/3211890.3211904
http://doi.acm.org/10.1145/3133956.3134096

19. Green M., Miers I.: Bolt: Anonymous Payment Channels for Decentralized Cur-
rencies. In Thuraisingham et al. [36]: pp. 473–489: doi:10.1145/3133956.3134093:
URL https://doi.org/10.1145/3133956.3134093 (2017)

20. Heilman E., Alshenibr L., Baldimtsi F., Scafuro A., Goldberg S.: TumbleBit:
An Untrusted Bitcoin-Compatible Anonymous Payment Hub. In 24th An-
nual Network and Distributed System Security Symposium, NDSS 2017, San
Diego, California, USA, February 26 - March 1, 2017: The Internet Soci-
ety: URL https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
tumblebit-untrusted-bitcoin-compatible-anonymous-payment-hub/ (2017)

21. Khalil R., Gervais A.: Revive: Rebalancing Off-Blockchain Payment Networks. In
Thuraisingham et al. [36]: pp. 439–453: doi:10.1145/3133956.3134033: URL https:
//doi.org/10.1145/3133956.3134033 (2017)

22. Prihodko P., Zhigulin S., Sahno M., Ostrovskiy A.: Flare: An Approach to Routing
in Lightning Network: White Paper. https://bitfury.com/content/downloads/
whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_
2016.pdf (2016)

23. Sivaraman V., Venkatakrishnan S. B., Alizadeh M., Fanti G. C., Viswanath P.:
Routing Cryptocurrency with the Spider Network. CoRR: vol. abs/1809.05088:
URL http://arxiv.org/abs/1809.05088 (2018)

24. Dziembowski S., Faust S., Hostáková K.: General State Channel Networks. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018: pp. 949–966:
doi:10.1145/3243734.3243856: URL https://doi.org/10.1145/3243734.3243856
(2018)

25. Canetti R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA: pp. 136–145: doi:10.1109/
SFCS.2001.959888: URL https://eprint.iacr.org/2000/067.pdf (2001)

26. Canetti R., Dodis Y., Pass R., Walfish S.: Universally Composable Security with
Global Setup. In Theory of Cryptography, 4th Theory of Cryptography Confer-
ence, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceed-
ings: pp. 61–85: doi:10.1007/978-3-540-70936-7_4: URL https://doi.org/10.
1007/978-3-540-70936-7_4 (2007)

27. Shamir A.: Identity-Based Cryptosystems and Signature Schemes. In Advances in
Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August
19-22, 1984, Proceedings: pp. 47–53: doi:10.1007/3-540-39568-7_5: URL https:
//doi.org/10.1007/3-540-39568-7_5 (1984)

28. Paterson K. G., Schuldt J. C. N.: Efficient Identity-Based Signatures Secure in the
Standard Model. In Information Security and Privacy, 11th Australasian Confer-
ence, ACISP 2006, Melbourne, Australia, July 3-5, 2006, Proceedings: pp. 207–222:
doi:10.1007/11780656_18: URL https://doi.org/10.1007/11780656_18 (2006)

29. Danezis G., Goldberg I.: Sphinx: A compact and provably secure mix format. In
Security and Privacy, 2009 30th IEEE Symposium on: pp. 269–282: IEEE (2009)

30. Katz J., Lindell Y.: Introduction to Modern Cryptography, Second Edition. CRC
Press: ISBN 9781466570269 (2014)

31. Bellare M., Sandhu R. S.: The Security of Practical Two-Party RSA Signature
Schemes. IACR Cryptology ePrint Archive: vol. 2001, p. 60: URL http://eprint.
iacr.org/2001/060 (2001)

32. Boyd C.: Digital Multisignatures. Cryptography and Coding: pp. 241–246: URL
https://ci.nii.ac.jp/naid/10013157942/en/ (1986)

83

https://doi.org/10.1145/3133956.3134093
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/tumblebit-untrusted-bitcoin-compatible-anonymous-payment-hub/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/tumblebit-untrusted-bitcoin-compatible-anonymous-payment-hub/
https://doi.org/10.1145/3133956.3134033
https://doi.org/10.1145/3133956.3134033
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitfury.com/content/downloads/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://arxiv.org/abs/1809.05088
https://doi.org/10.1145/3243734.3243856
https://eprint.iacr.org/2000/067.pdf
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/11780656_18
http://eprint.iacr.org/2001/060
http://eprint.iacr.org/2001/060
https://ci.nii.ac.jp/naid/10013157942/en/

33. Ganesan R.: Yaksha: augmenting Kerberos with public key cryptography. In
1995 Symposium on Network and Distributed System Security, (S)NDSS ’95, San
Diego, California, USA, February 16-17, 1995: pp. 132–143: doi:10.1109/NDSS.
1995.390639: URL https://doi.org/10.1109/NDSS.1995.390639 (1995)

34. MacKenzie P. D., Reiter M. K.: Two-Party Generation of DSA Signatures. In
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceed-
ings: pp. 137–154: doi:10.1007/3-540-44647-8_8: URL https://doi.org/10.
1007/3-540-44647-8_8 (2001)

35. Ganesan R., Yacobi Y.: A secure joint signature and key exchange system. Bellcore
TM: vol. 24531 (1994)

36. Thuraisingham B. M., Evans D., Malkin T., Xu D. (editors): Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017: ACM: ISBN 978-1-4503-
4946-8: doi:10.1145/3133956: URL https://doi.org/10.1145/3133956 (2017)

84

https://doi.org/10.1109/NDSS.1995.390639
https://doi.org/10.1007/3-540-44647-8_8
https://doi.org/10.1007/3-540-44647-8_8
https://doi.org/10.1145/3133956

	A Composable Security Treatment of the Lightning Network

