
P6V2G: A Privacy-Preserving V2G Scheme for Two-Way
Payments and Reputation

Rebecca Schwerdt
∗

Karlsruhe Institute of Technology

Department of Informatics

Karlsruhe, Germany

rebecca.schwerdt@kit.edu

Ma�hias Nagel
†

Karlsruhe Institute of Technology

Department of Informatics

Karlsruhe, Germany

ma�hias.nagel@kit.edu

Valerie Fetzer
‡

Karlsruhe Institute of Technology

Department of Informatics

Karlsruhe, Germany

valerie.fetzer@kit.edu

Tobias Gräf

Karlsruhe Institute of Technology

Department of Informatics

Karlsruhe, Germany

tobias.graef@student.kit.edu

Andy Rupp
†,‡

Karlsruhe Institute of Technology

Department of Informatics

Karlsruhe, Germany

andy.rupp@kit.edu

ABSTRACT
�e number of electric vehicles (EVs) is steadily growing. �is

provides a promising opportunity for balancing the smart grid of

the future, because vehicle-to-grid (V2G) systems can utilize the

ba�eries of plugged-in EVs as much needed distributed energy stor-

age: In times of high production and low demand the excess energy

in the grid is stored in the EVs’ ba�eries, while peaks in demand

are mitigated by EVs feeding electricity back to the grid. But the

data needed for managing individual V2G charging sessions as well

as for billing and rewards is of a highly personal and therefore sen-

sitive nature. �is causes V2G systems to pose a signi�cant threat

to the privacy of their users. Existing cryptographic protocols for

this scenario either do not o�er adequate privacy protection or fail

to provide key features necessary to obtain a practical system.

Based on the recent cryptographic toll collection framework

P4TC, this work introduces a privacy-preserving but e�cient V2G

payment and reward system called P6V2G. Our system facilitates

two-way transactions in a semi online and post-payment se�ing.

It provides double-spending detection, an integrated reputation

system, contingency traceability and blacklisting features, and is

portable between EVs. �e aforementioned properties are holisti-

cally captured within an established cryptographic security frame-

work. In contrast to existing protocols, this formal model of a

V2G payment and reward system allows us to assert all properties

through a comprehensive formal proof.

CCS CONCEPTS
•Security and privacy →Cryptography; Formal security models;
•Applied computing →Digital cash; Electronic funds transfer;

KEYWORDS
Vehicle-to-grid, Location Privacy, Provable Security, Electronic Pay-

ments, Reward System, Double-Spending Detection.

∗
�e author is supported by the German Research Foundation (DFG) as part of the

Research Training Group GRK 2153: Energy Status Data-Informatics Methods for its

Collection, Analysis and Exploitation.

†
�e author is supported by the German Federal Ministry of Education and Research

via the Competence Center for Applied Security Technology (KASTEL).

‡
�e author is supported by DFG grant RU 1664/3-1.

1 INTRODUCTION
In an e�ort to counter global warming and fossil fuel depletion,

energy transitions from fossil fuels to renewable energy sources are

expedited on a global scale. �is change from time-independent,

fully controllable power plants to highly volatile, seasonal and

distributed renewable power generation poses many challenges.

Foremost among them is balancing generation and demand to main-

tain stability of the energy distribution system and provide uniform

power quality. �is requires increased storage capacities and load

�exibility. One aspect of the energy transition—which has the po-

tential to solve at least part of this problem—is the introduction of

electric vehicles (EVs) as a means of private and public transporta-

tion. EVs do not require fossil fuels and can signi�cantly reduce

air and noise pollution, especially in urban areas. Most industrial

nations have started to subsidize EVs as well as set concrete objec-

tives on how many EVs they want to deploy by a certain year [25].

Target dates for complete bans on the sale of new cars with internal

combustion engines are as early as 2020 in some countries—with

many others planning to have phased them out by 2030 [11, 20, 39].

While EVs themselves pose a substantial and growing demand on

the system, they also have the capacity to contribute to a solution.

Privately owned vehicles remain parked for more than 95% of the

time [35]. During this time the EV’s ba�ery can be utilized in a

vehicle-to-grid (V2G) scheme, providing storage capacity and �exi-

bility in the recharging process to help balance power generation

and demand in the grid [35]: Surpluses from volatile renewable

power generation can be stored in parked EV’s ba�eries, which col-

lectively provide substantial distributed energy storage. Conversely,

energy stored in EVs can be used to mitigate peaks in demand and

drops in generation. In contrast to the bene�ts such a system pro-

vides it can also pose a signi�cant threat to the privacy of its users

[26, 36]. �e individual location data that may be gathered from

identifying or linkable transactions is highly sensitive and can be

maliciously exploited. To further participation in a voluntary V2G

system, privacy guarantees can be just as important as low e�ort

usability, as concerns arising from loss of personal information as

well as any e�ort required from the user could discourage its use.

Facilitating e�ortless payment for EV charging at a public charging

spot (EVSE) as well as rewards for ancillary services during the

charging session while keeping transactions privacy-preserving,

unidentifying, and unlinkable poses a big challenge.

�is paper introduces a novel and privacy-preserving V2G pay-

ment system called P6V2G. It was developed by adapting the re-

cently proposed cryptographic toll collection system P4TC [32]

to a V2G se�ing where multiple charging point operators provide

publicly accessible EVSEs for EVs. P6V2G facilitates two-way trans-

actions for EV charging, allowing both payment from the user to

the operator for having their vehicle charged as well as rewards for

providing the EV’s ba�ery as a bu�er to the grid. P6V2G is a post-

payment system where a user accumulates debt and rewards on a

wallet and gets periodic, e.g., monthly, bills from their e-mobility

operator (eMO). �erefore, P6V2G o�ers convenient low e�ort us-

ability, leading more people to make their EV’s ba�eries available

for ancillary services. Our protocols are designed to be e�cient

even when performed on low performance hardware that is realis-

tically present in EVs, EVSEs and wallets.
1

To further take realistic

technology restrictions into account, EVSEs are not required to

have permanent online capabilities; tasks can be conducted o�ine

without loss of any functionality. An integrated reputation scheme

records how reliable the user is, e.g., in leaving their EV plugged

in as long as they predicted at the start of a charging session. �is

enables EVSEs to be�er plan the charging of vehicles and, e.g., o�er

cheaper/higher rewarded long term charging to reliable users. To

ensure security, P6V2G provides a fraud detection mechanism that

not only detects fraudulent behavior and identi�es the misbehav-

ing user, but outputs a publicly veri�able proof of guilt to avert

the possibility of false accusations. With consent of a designated

authority, misbehaving users can have their wallets traced (con-
tingency traceability), blacklisted, or their debt recalculated—for

instance if the user fails to present their wallet for billing at the end

of a billing period. In addition, our system implements a mecha-

nism to blacklist EVs (independently of blacklisted wallets), so that

stolen vehicles can be traced or even detained at an EVSE. Since

EVs and wallets are modeled as two di�erent entities in P6V2G,

they may be combined arbitrarily, resulting in a portable system.

�is is particularly useful for users with multiple cars as well as

for renting or sharing EVs. �e whole system is formalized in a

comprehensive security model and validated by a rigorous proof

asserting system security as well as user privacy.

1.1 Related Work
In this section we �rstly give a summary of di�erent payment

and reward systems that were proposed for, or can be adapted to

a V2G se�ing. �is overview shows that while all of them have

their respective merits, none so far provides solutions for all the

challenges and restrictions posed by realistic V2G interactions. In

a second part, we give a more detailed introduction of the two

cryptographic systems (BBA+ [29] and P4TC [32]) that our own

V2G system P6V2G is based on.

1
Wallets might be realized on smart phones, but a separate device like a smart card

might be more desirable as it can be le� in the car. To handle the low performance of

currently available smart cards, we would assume wallets to act as a secure store of

the users secrets only and be able to outsource more costly computation to the EV.

Other (V2G) Payment and Reward Systems. �ere are several

previously published payment and reward systems that can be de-

ployed in a V2G scenario. Reward-only systems (without two-way

payments) include TPP [44], and PRAC [43]. Both systems are not

able to aggregate rewards. �is results in linkability unless rewards

are su�ciently uniform and redeemed individually. Furthermore

both systems require permanent online capabilities and very few

properties are proven in any formal way. For the remainder of this

paragraph we will focus on payment systems that o�er two-way

transactions. A terse comparison of the discussed systems, the

common options of (Chip-and-PIN) Debit/Credit Card and Paper
Cash, and our system is depicted in table 1. In a survey by Han and

Xiao [28] another overview of several V2G payment and reward

systems, as well as a general summary of challenges and methods

associated with privacy in the V2G environment can be found.

S
y

s
t
e
m

L
o

c
a
t
i
o

n
P

r
i
v
a
c
y

P
o

s
t
-
p

a
y

m
e
n

t

S
e
m

i
O

n
l
i
n

e

D
o

u
b
l
e
-
s
p

e
n

d
i
n

g
D

e
t
e
c
t
i
o

n

R
e
p

u
t
a
t
i
o

n

C
o

n
t
i
n

g
e
n

c
y

T
r
a
c
e
a
b
i
l
i
t
y

B
l
a
c
k

l
i
s
t
i
n

g

P
o

r
t
a
b
l
e

F
o

r
m

a
l

P
r
o

o
f

PRT [4] 3 7 7 n/a
1 7 3 7 3 3/7

PnC (ISO 15118) [21, 22] 7 3 3 n/a
2 7 n/a

2 3 7 7

E-Cash [7] 3 7 3 3 7 7 7 3 3/7

Debit/Credit Card 7 7/3 3 n/a
2 7 n/a

2 3 3 7

Paper Cash 3 7 3 n/a 7 7 7 3 7

P6V2G 3 3 3 3 3 3 3 3 3
1

Double-spending detection is not applicable in online systems.

2
Double-spending detection/traceability are not applicable in identifying systems.

Table 1: Comparison of Two-way Payment Systems

In 2012, Liu et al. [38] proposed a system designed to provide

privacy at the “right” time (PRT), which has been further improved

by Au et al. [4]. PRT facilitates two-way transactions between an

EV and a single operator running multiple EVSEs. Further parties

representing the operator include a grid management and a billing

server. User’s accounts are pre-paid and have to be topped up

regularly. �is excludes the possibility of problems arising from

users who do not pay their bills (on time) but requires more e�ort

on the user side and leads to users being stuck at EVSEs if they do

not have su�cient balance on their account to charge an empty

EV. Each EVSE needs a permanent connection to the operator’s

other parties as PRT is designed as an online system. In particular,

all-time access to the central billing server is essential to prevent

double-spending. Further assumptions are some read-only memory

on the EV that can not be removed from the vehicle. PRT provides

traceability that is facilitated by a judge authority and only possible

with the user’s consent. Via this traceability the system implements

lost protection, dispute resolution and tracing of stolen vehicles.

While neither [38] nor [4] provide any reputation system, [38]

describes the possibility of facilitating a portable mode where the

account is managed on some mobile device instead of the EV. �is,

2

however, excludes other features like correct tracing and the system

still relies on a read-only memory that now has to be available on

this mobile device. [4] includes two game-based proofs for cheating

prevention and location privacy. Unfortunately these proofs only

assert the impossibility of very speci�c a�acks on the system and

do not give any guarantees for a�acks that were not explicitly

considered.

�e International Electrotechnical Commission’s V2G standard

ISO 15118 [21, 22] allows for contract based charging called “Plug

& Charge” (PnC). In this system the EV shows a valid contract

certi�cate from its eMO to the EVSE at the start of a charging ses-

sion. At the end of each charging session, the EV signs the service

detail record (SDR) of this session and sends it to the EVSE. In

an online phase, the EVSE sends the SDR to the respective eMO

who collects and uses them to bill the contract owner at the end

of each billing period. Since the certi�cate includes the contract

ID, this system is fully identifying. Furthermore—since the sys-

tem is not portable between EVs—driver speci�c billing within EV

�eets (like car sharing or company �eets) is not possible while

simultaneously preserving the drivers privacy from the operator

of this �eet: the corresponding eMO has to provide the �eet oper-

ator with a detailed account of all the EV’s charging sessions so

they can match them to speci�c drivers. �e PnC system facili-

tates semi online post-payments and provides blacklisting. Please

also note that only minimal security is guaranteed in ISO 15118.

While o�-the-shelf cryptographic methods like encryption and

signatures are employed for EV authentication and to guarantee

privacy from eavesdropping but non-involved parties, EVSEs are

essentially assumed to be trustworthy and very li�le user security

is o�ered. Furthermore, no resulting privacy or security guarantees

are formalized, formally discussed or proven. In addition to the

PnC payment method, the ISO 15118 allows for alternative pay-

ment methods (like P6V2G) to be added in future. Although the ISO

15118 only deals with direct communication between the EV and

SDR—this inherently represents only a small part of our system,

namely Part I of Debt Accumulation (cf. �gs. 1 and 2)—much of our

protocol can be integrated into this standard in an intuitive way.

Details of how this might be done can be found in appendix B.

A privacy increasing modi�cation of PnC was proposed under

the name POPCORN [31]. POPCORN employs anonymous group

signatures and three di�erent trusted third parties to achieve anony-

mous one-way payments as long as no parties collude. It does not

hide individual transactions from the eMO, is not portable, its proof-

of-concept implementation is ine�cient and no security or privacy

proof is given. Some of POPCORN’s privacy properties were later

veri�ed in ProVerif [9] by Fazouane et al. [24], who simultaneously

identi�ed several weaknesses.

Lastly, we consider the option of anonymous e-cash for V2G

payments. One general drawback of e-cash is that it is a prepaid

and primarily one-way system. Hence parties need to always have

coins of exactly the right amount at hand for any transaction they

might want to participate in—which limits either pricing �exibility

or e�ciency. When trying to employ e-cash for two-way payments

in a V2G scenario there are several technical roadblocks. In stan-

dard o�ine e-cash (e.g., [14]), coins are not transferable without

consulting the bank. When the user receives e-coins from the

EVSE—which could be done by le�ing the EVSE participate in the

spending protocol as the payer and the user as the payee—they

�rst need to deposit those coins with the operator who originally

issued them. In case this operator and the EVSEs collude they learn

all the locations a user got rewards at. We also can not assume

that a user receives freshly issued coins directly from the operator

as rewards, as the corresponding e-cash withdrawal protocol is

not anonymous; only spending a coin protects the privacy of the

payer. Hence, the privacy guarantees that standard o�ine e-cash

provides do not �t our needs. Transferable e-cash such as [7] does

not achieve our goals either. Transferable e-cash schemes allow

to anonymously transfer an e-coin multiple times between parties

without consulting the bank. �us, in our scenario an EVSE could

transfer a coin received from the operator or another user to a user

who is eligible for a reward. Unfortunately, there is an impossibility

result regarding privacy that applies to this scenario. Canard and

Gouget’s work [15] implies, that if the parties representing the V2G

payment infrastructure collude, payment and reward transactions

of a user can be linked.

BBA+ and P4TC. At its core, our proposed scheme P6V2G facil-

itates a black-box accumulator (BBA+) [29]. �is building block

implements a personal wallet for anonymous, unlinkable point col-

lection and redemption. It ensures that a wallet can only be used by

its legitimate owner, protects against manipulation of the wallet’s

true value, provides double-spending detection and comes with a

mix of game-based and simulation-based proofs for user security

and privacy as well as system security. Ho�mann et al. [32] utilize

BBA+ to build a system called P4TC which applies BBA+ to a toll

collection scenario and o�ers anonymous, unlinkable tolling with

post-payments. In order to ful�ll all desired properties of a toll

collection scenario, the authors augmented BBA+ with additional

features like blacklisting, selective tracing of misbehaving users and

recalculation of debt in case of a dispute. Moreover, P4TC comes

with a full simulation-based security and privacy proof.

1.2 Our Contribution
�is work transfers, adjusts and expands P4TC to �t the V2G sce-

nario. �e resulting system P6V2G allows for unlinkable and e�-

cient V2G payments, rewards and reputation scores. It facilitates

post-payment two-way transactions in a semi online and portable

se�ing and includes double-spending detection as well as features

for blacklisting (of both EVs and users), recalculation of debt and

contingency traceability. To the best of our knowledge it is the �rst

system o�ering all these properties simultaneously and for some

properties it is the �rst to provide them at all. Furthermore, P6V2G

is privacy-preserving and secure against malicious adversaries. �is

was asserted in a comprehensive formal model and proof within an

established cryptographic framework, the Universal-Composability

(UC) se�ing [16, 17].
2

To achieve the above qualities we build upon the toll collec-

tion scheme P4TC [32]. Transferring this to the V2G scenario

already provides several of the required functions and properties,

e.g., privacy-preserving accumulation of debt, a veri�able fraud

detection feature and blacklisting for wallets. Some requirements

2
Although formal security proofs are not widely appreciated in application-oriented

communities yet, we consider it vital for security (especially of complex and necessarily

convoluted systems) that this changes in future.

3

of our system, like two-way payments, are not present in the toll

collection scenario where users only have to pay toll and clear their

wallet once, but do not collect rewards. Fortunately this important

feature is still achieved by the employed black-box accumulator

without any further modi�cations. �ere are, however, several char-

acteristics of our se�ing with either much simpler or no equivalent

aspects at all in P4TC, which call for novel solutions. First and

most challenging among them is the presence of multiple operators

instead of just one operating party in P4TC. �is introduces con-

siderable complexity as it yields additional potential for security

threats in the system which our protocols have to preclude. Similar

challenges arise from the user side of the system. Other than in

P4TC—where a user is represented by their car’s �xed on-board

unit—our system is designed to be portable. Hence, the user’s side

is divided into two separate parties: user accounts, containing the

users’ wallets, and EVs represented by their communication con-

troller. While user accounts have a similar role to on-board units

in P4TC, EV communication controllers introduce additional com-

plexity. Among other challenges, they require an additional but

likewise privacy-preserving blacklisting mechanism to deal with

stolen cars. Furthermore, P4TC does not include any reputation

scheme for the reliability of users. While our formal model and

proof largely follow the structure of [32], they are more complex

due to the existence of arbitrarily many operators (instead of just

one in P4TC) and EV communication controllers as entirely new

parties.

2 SYSTEM DEFINITION
�is section introduces the general type of V2G system we consider.

In addition to the overall se�ing this includes details on participat-

ing parties, required functions and desired features. An overview

can be found in �g. 1.

SECC UA DR

EVCC

OPR

C
ertify

SE
C

C

Issue Wallet,

Debt Clearance

Debt Accumulation

C
ertify

E
V

C
C

B
la

ck
li
st

U
A

,

B
la

ck
li
st

E
V

C
C

Double-Spending

Detection

Figure 1: Overview of Parties and�eir Interactions

We consider a se�ing in which multiple charging point operators

each provide publicly accessible EVSEs for EVs. Users can charge

their EVs at EVSEs as well as o�er their EV’s ba�ery capacity to pro-

vide ancillary services to the grid. For these bidirectional services

each user gets an accumulated bill from their own eMO at the end

of each billing period. We assume that charging point operators and

eMOs cooperate in a way that every user may use any of the EVSEs.

While the necessary information to manage operator accounting is

included in our system, the �nancial se�lement between operators

lies outside the scope of our system.

2.1 Parties
We now give a detailed description of the di�erent parties and their

roles. An operator (OPR) O is either the eMO of an EV, a charging

point operator maintaining EVSEs, or possibly both. Each EVSE

is represented by their supply equipment communication controller
(SECC) C and is assigned to one speci�c (charging point) OPR but

may be used by any (e-mobility) OPR’s customers. It is assumed to

have the capabilities for occasional database synchronization with

its OPR but does not require any permanent internet connection to

other parties. Di�erent OPRs are assumed to occasionally synchro-

nize their databases as well in order to catch double-spenders. An

EV is represented by its electric vehicle communication controller
(EVCC) E. It needs to be registered to be able to participate in the

protocols but is not associated with any other party, enabling multi-

ple users to share the same car or one person using several di�erent

cars. A user account (UA) A is a low performance electronic device

(we tend to think of it as a smart card) that is issued to a user upon

registration with their OPR. It contains the user’s wallet which is

used to collect debt and reputation during charging sessions and

is not bound to a speci�c EV. In addition to these mandatory par-

ties we assume existence of some regulatory dispute resolver (DR)

D. �is party mainly handles disputes and gives permission for

any exceptional measures that either limit a party’s access to the

system (like being blacklisted) or detract from their privacy (e.g.,

recalculating the debt on an uncooperative UA). A user is a physical

person using an EV, deciding where and when to charge it, owning

a UA, picking their eMO and paying the bills. �ey do not, however,

participate as a separate party in our protocols. �e only input

needed from a user are the charge targets at the start of a charging

session. As we assume this choice to be indicated via the EVSE’s

human machine interface, it is formally made by the SECC in our

protocols. Other than this input the user is represented by a UA

and an EVCC for the duration of a charging session.

2.2 Functions and Features
�e remainder of this section gives an overview of the functions

and features we require of a V2G system. In contrast to more

cumbersome prepaid and cash options, our aim is a post-payment

system where the user is able to charge their vehicle over the

course of a billing period and gets a combined bill for all their

charging sessions a�erwards. Basic functions of a post-payment

V2G system include the accumulation of debt on a personal wallet

and clearance of this wallet’s debt. Both should be conducted in a

privacy preserving way, keeping transactions anonymous as well

as unlinkable. As an additional feature, we want users to be able

to gain (or lose) reputation for, e.g., adhering to their predicted

behavior. �is way EVSEs might o�er special tari�s to reliable

users while not trusting the predictions of users who regularly end

their charging sessions sooner than promised. All other features of

the system deal with fraud and misbehaving users: As explained

in section 4.1, not all kinds of fraud can be prevented in the given

4

se�ing. But any fraud needs to at least be detected a�er the fact. To

protect users from false accusations, this fraud detection mechanism

has to provide a publicly veri�able proof of the user’s guilt. To

further protect the system from misbehaving users, we require the

possibility to blacklist UAs as well as EVs (independently of each

other) and a mechanism to recalculate the debt accumulated by

an uncooperative UA or lost wallet with the consent of the DR. In

extreme circumstances we also want the charging sessions of a UA

to become traceable.

3 PROTOCOL DESCRIPTION
�is section describes the main features and protocols of the P6V2G

system on a high level. To make these explanations more accessible,

we �rst give an intuition behind the basic cryptographic building

blocks utilized therein. But readers with a cryptographic back-

ground may want to skip section 3.1. A�er going into detail on how

wallets work in section 3.2, section 3.3 gives an overview of the

di�erent tasks P6V2G is composed of. Lastly, section 3.4 illustrates

the e�ciency of our system. For the complete protocol we refer the

reader to appendix E.

3.1 Cryptographic Background
In order to easily understand the following protocol descriptions,

familiarity with a few cryptographic primitives is essential.

Public Key Encryption. Encryption enables two parties to ex-

change messages such that no other party can read them. For

public key encryption, the party who wants to receive messages

�rst has to generate a public key and a secret key. �e public key is

then distributed to any prospective senders, while the secret key is

kept secret. When a sender wants to send a con�dential message,

they encrypt the message with the public key of the recipient and

send the resulting ciphertext instead. �e recipient uses their secret

key to decrypt the ciphertext and recover the message.

Digital Signatures. A digital signature is a means to verify the

authenticity and integrity of a received message. Just like public

key encryption, digital signatures use a public key infrastructure

where two keys correspond to each party: a secret signing key and a

public veri�cation key. �e sender uses their signing key to sign the

message and sends the resulting signature along with the message

to the receiver, who veri�es the signature using the sender’s public

veri�cation key.

Commitments. A commitment scheme enables one party to com-

mit themselves to a value towards another (receiving) party. �e

receiver is sent a commitment, inside which the value itself is safely

hidden. At a time of their choosing, the sending party can reveal the

value to the receiver by opening the commitment. But the sender

can only open the commitment to reveal the value they initially

commi�ed to and not alter the content in retrospect.

NIZK Proofs. NIZK stands for Non-Interactive Zero-Knowledge.
As with any proof, a NIZK proof enables one party (called the

prover) to convince a verifying party that a speci�c statement is

true. �e zero-knowledge property asserts that the receiver does not

learn why the statement is true, only that it is. In fact, the receiver

can infer nothing from the proof except the validity of the claim.

Non-interactive means only one message has to be send from the

prover to the veri�er—namely the proof itself. No further (back or

forth) interaction between the parties is necessary.

Pseudo-Random Functions. A pseudo-random function, intuitively,

is a function that is indistinguishable from one with truly random

output. At the same time it is e�ciently computable for anyone

with knowledge of the right input information.

Dynamic Cryptographic Accumulators. �e central idea of cryp-
tographic accumulators is the representation of a set of elements in

a single accumulation value of �xed size. On one hand this accu-

mulation value securely hides the elements within it. On the other

hand it must be possible to e�ciently prove that a given element

is indeed contained in the accumulator. Cryptographic accumula-

tors are called dynamic if elements can e�ciently be added to and

removed from the set over time.

3.2 Wallets
�e concepts of wallets and wallet states are central for our P6V2G

system. At the beginning of each billing period, the UA and corre-

sponding OPR create a new wallet for the UA. �is wallet is used

for one billing period and then cleared and exchanged for a new

one at the beginning of the next billing period.

A wallet is identi�ed by its wallet ID λ and its current status

described by a wallet state τ . �is wallet state is altered with each

transaction. It does not only store the current balance and repu-

tation of the wallet, but rather all information needed to conduct

a successful update a�er the next charging session. To be more

formal, a (simpli�ed
3
) wallet state τ is of the form

τ :=
(
s
��b, r ��xnext

�� certC︸ ︷︷ ︸
updatable part

�� λ, aλ , pkOλ︸ ︷︷ ︸
�xed part

)
.

It consists of an updatable part
(
s
��b, r ��xnext

�� certC) that changes

with each transaction and a �xed part
(
λ, aλ , pkOλ

)
that is created

once along with the wallet and stays the same for the whole life

cycle of this wallet. �e components of the updatable part are the

last used serial number s , the current balance b and reputation r ,

the transaction counter xnext
for the upcoming transaction and the

certi�cate certC of the last SECC that updated the wallet (con-

taining the SECC’s a�ributes and OPR ID). �e components that

pertain to the �xed part are the wallet ID λ, the wallet a�ributes

aλ and the public key pkOλ
of the OPR that issued this wallet.

At the beginning of a new billing period each UAA and its OPR

O create a new wallet by performing the task Issue Wallet (see

section 3.3). �e wallet’s initial state is

τ :=
(
s
��
0, r

��
1

�� certCO �� λ, aλ , pkO)
.

�e certi�cate certCO and public key pkO correspond to the issuing

OPR, who also assigns the initial reputation r (probably choosing

the reputation the UA had accumulated on their last wallet) and

wallet a�ributes aλ (for details about the choice of wallet a�ributes

see section 4.2). �e wallet ID λ and serial number s are jointly

3
For a cleaner presentation we omit some variables from the wallet state at this point.

�e le� out variables are only relevant for cryptographic details like creating an

anonymous NIZK proof for the validity of the wallet state which we do not explain in

detail here. �e complete wallet state can be found in appendix E.

5

computed randomness. Note, however, that λ is only known to the

UA and the OPR does not learn it.

Each time the user charges their EV, the wallet is updated via the

task Debt Accumulation (see section 3.3). Suppose at the beginning

of a charging session with an SECC C the wallet’s state was

τ ∗ :=
(
s∗

��b∗, r∗ ��x ��
certC∗

�� λ, aλ , pkOλ) .
�en a fresh random serial number s is jointly computed by the UA

and SECC and the transaction counter increased by one. Balance

and reputation are updated by respectively adding the total cost

(price minus rewards) p of the conducted charging and reputation

gain d . �is forms the new wallet state

τ :=
(
s
��b∗ + p, r∗ + d ��x + 1

�� certC �� λ, aλ , pkOλ),
which the UA saves at the end of the charging process.

At the end of each billing period, the wallet is turned over to the

UA’s OPR for billing purposes. �is is handled via the task Debt

Clearance (see section 3.3). �e OPR learns the �nal balance and

reputation of the wallet and can use this information to bill the user

accordingly. When this task is �nished, the UA discards the wallet

and initiates the task Issue Wallet again to get a new one.

So far we only described the wallet’s state and life cycle, but not

how they are used to guarantee several of our system’s properties.

On one hand, whenever a UA communicates with an SECC to

update a wallet, they do not want to be identi�ed or disclose the

content of their wallet. On the other hand, the SECC has to be

assured that the wallet they help updating is actually valid and

does not, e.g., contain a balance or a�ributes that were illicitly

manipulated by the user. �is is achieved by utilizing commitments,

digital signatures and NIZK proofs. Although the actual process

is a li�le more complicated, it generally works like this: Instead

of disclosing the old wallet state to the SECC, the UA proves the

(hidden) state’s validity by showing that the �xed part was created

and signed by its OPR (and could therefore not have been altered

since the wallet was issued) and that the updatable part was updated

and signed by a properly certi�ed SECC. Note that this previous

SECC is not identi�ed in the process. A�er checking these proofs,

the SECC provides the UA with the necessary information to update

the wallet in exactly the right way and signs the (still hidden) new

wallet state so the UA can assure the next SECC of its validity. �is

way, both privacy and system security can be achieved.

3.3 Tasks
�is section illustrates the di�erent tasks (like registering parties

or issuing wallets) our V2G system is composed of. While most of

our tasks have similar counterparts in P4TC, some are entirely new

(like Certify EVCC and Blacklist EVCC), and some tasks (like Debt

Accumulation) contain a core part that is similar to the correspond-

ing task in the toll collection se�ing but have been modi�ed and

extended to encompass the additional requirements of our scenario.

Due to space restrictions, we describe the main task of Debt Accu-

mulation in detail but sketch the other tasks on a high level only.

Figure 1 depicts an overview of the tasks and the parties involved in

them. �e only tasks missing in �g. 1 are the registration task every

party conducts on their own before participating in the system

and the task Guilt Veri�cation, which can be performed by anyone

(even from outside the system) as our double-spending proofs are

publicly veri�able.

Registration. Before participating in the system, every party has

to register. �is registration entails the generation of their respec-

tive cryptographic keys (used for encryption, digital signatures,

etc.).

Certi�cation. Each SECC has to get a certi�cate from its OPR.

Main part of this certi�cate are a digital signature on the public key

and the a�ributes of the SECC. It is renewed each billing period and

used to ensure that the SECC is not corrupted. In addition to the

actual SECCs, each OPR certi�es themselves as an SECC as well.
4

EVCCs have to also be certi�ed, but by the DR. �e core part

of their certi�cate is a revocation value rev. �is value is drawn

randomly and stored by the DR. In case the EV containing the

EVCC gets, for example, stolen, the DR adds the corresponding

revocation value to a blacklist blEVCC that each SECC has access to.

Apart from the revocation value, the certi�cate contains a digital

signature from the DR on the EVCC’s revocation value, a�ributes

and public key.

Issue Wallet. �e task Issue Wallet is executed by a UA and its

OPR at the start of each billing period. �e UA obtains a new wallet

λ, allowing it to take part in the task Debt Accumulation, and the

OPR obtains a hidden trapdoor htdλ , allowing the DR to blacklist

the wallet and recover its debt if necessary.

Debt Accumulation. �e Debt Accumulation task is special in

that it requires the interaction of three di�erent parties (all other

require at most two). An SECC, UA and an EV represented by

its EVCC interact to realize the charging process of the EV. Note

that the task is only identifying for the SECC while the identities

of the UA and EVCC remain hidden from the SECC. Since Debt

Accumulation is the main task and in many ways representative of

our system, we describe it in some detail.

�e task can be split into two parts: �e �rst part, prior to

charging the EV, consists of the SECC interacting with the EVCC

to determine its authenticity, ba�ery characteristics and the user’s

charging choices. In the second part—reminiscent of P4TC’s Debt

Accumulation—the SECC and UA facilitate the billing a�er charging

took place. Overviews of both parts can be found in �gs. 2 and 3

respectively.

�e �rst part starts with the SECC sending a list blEVCC of black-

listed EVCC’s revocation values to the participating EVCC. �e

EVCC computes a NIZK proof that shows its own revocation value

is not contained in this list. Additionally, it sends its ba�ery’s char-

acteristics β , its a�ributes aE , and a NIZK proof that these a�ributes

are correct. �e SECC veri�es both proofs and selects charge tar-

gets
5

based on this information. For bookkeeping purposes and

dispute cases, information about the selected targets is sent to the

EVCC, which marks the end of the �rst part.

�e second part starts with the SECC authenticating itself to

the UA by sending its certi�cate certC . �e UA checks this and

4
�ey need an SECC certi�cate so wallets that are freshly issued by the OPR can not

be distinguished from wallets updated by an SECC.

5
�e possibilities for target se�ing are intended to be communicated via the human

machine interface of the SECC and selected by the (physical) user. Since we do not

model the user as an explicit party, the targets are formally set by the SECC in this

protocol.

6

EVCC SECC

blacklist

a�ributes, proofs

verify

charging choice

Figure 2: Overview of Task Debt Accumulation Part I

UA SECC

certi�cate

verify

a�ributes, proof

verify

jointly compute parameters

update information

update wallet

Figure 3: Overview of Task Debt Accumulation Part II

calculates the proper next fraud detection ID φ. Fraud detection

IDs are similar to a transaction’s serial number and essential for

the detection of double-spending in the task Double-Spending De-

tection. �ey are computed by applying a pseudo-random function

PRF to the UA’s wallet ID λ and current transaction counter x , taken

from the latest recorded wallet state τ ∗, i.e., φ := PRF(λ,x). �is

assures that fraud detection IDs are random and unique if and only

if no double-spending is commi�ed. �e UA sends φ over to the

SECC, together with its wallet a�ributes aλ and a NIZK proof that

the wallet state which all this information was taken from was

valid. �e SECC veri�es that the UA is not blacklisted by check-

ing φ against the UA blacklist blUA and veri�es the NIZK proof.

Note that since the UA has to stay anonymous, it can not simply

send its wallet state over in the clear. Instead, it proves the wallet

state’s validity without revealing anything about the state itself. In

particular, the so far accumulated debt b∗ and reputation r∗ stay

secret, as this information could infringe upon the UA’s anonymity

and privacy. �en both parties jointly choose a fresh random serial

number s using a Blum coin toss.
6

A double-spending tag t (see

task Double-Spending Detection) is jointly computed as well. �e

SECC then sends all information that the UA needs to correctly

update its wallet. �is update information includes the price p and

6
A Blum coin toss is a two-party protocol that—using commitments—results in a

mutually known truly random value as long as at least one party is honest.

reputation gain d . �e UA ensures that its new wallet state τ is valid

and saves it. �e SECC creates two database entries ω
bl

:= (φ,p,d)
andω

ds
:= (φ, t), whereω

bl
is used again in the task Blacklist UA to

recompute the overall debt and reputation of a blacklisted and un-

cooperative UA and ω
ds

is used again in the task Double-Spending

Detection to convict a UA of double-spending. We assume that each

SECC periodically sends these database entries to the corresponding

OPRs.

Debt Clearance. �e task Debt Clearance is executed between a

UA and its OPR at the end of each billing period. It is similar to the

interaction of an SECC and a UA in Debt Accumulation. �e main

di�erences are that the UA is not anonymous in Debt Clearance,

no new wallet state is created and the OPR learns the balance and

reputation accumulated on the UAs wallet. �e goal of this task is

for both parties to calculate the debt the user owes its OPR, so that

they can be billed out-of-band.

Double-Spending Detection. �e task Debt Accumulation and

Debt Clearance are always conducted with the assumption that the

UA presents its most recent wallet and wallet state. Due to the semi

online se�ing of the SECCs, this can not be enforced during the

tasks themselves, but any misbehavior has to be detected a�erwards.

�is kind of fraud that consists of the UA reusing and old wallet

state is called double-spending (see also the paragraph on security

in section 4.1). During the Debt Accumulation task, the SECC

learns a unique fraud detection ID φ. If an OPR detects two entries

ω
ds

, ω∗
ds

in his database (which the SECCs regularly send their

collected data to) featuring the same fraud detection ID φ, double-

spending occurred. �e OPR can now calculate the identity of the

UA by combining the two (otherwise non-identifying) database

entries that contain the same fraud detection ID φ, because they

will contain di�erent double-spending tags t , t∗. �e output of

this algorithm is the identity of the UA along with a proof of guilt

π that shows the UA is indeed guilty of double-spending. A�er

learning the identity of the fraudulent UA, appropriate measures

can be taken by the OPR out-of-band.

Guilt Veri�cation. Whether a UA is guilty of double-spending

can be veri�ed using the Guilt Veri�cation task. �is algorithm may

be run by any party. Essentially, the algorithm checks if a proof of

guilt π asserts the guilt of a given UA’s identity.

Blacklist UA. An OPR and the DR cooperate in the scope of

the task Blacklist UA to provide the OPR with the data necessary

to blacklist a certain UA. �e OPR loads the set HTDλ of hidden

trapdoors from its storage and selects the entries htdλ for all wallets

of the UA that is to be blacklisted. �e DR is the only party able

to decrypt the ciphertexts contained in hidden trapdoors and is

assumed to only cooperate in blacklisting tasks if the OPR has

valid reason (such as proven fraud) to suspend the users privacy.

�e DR veri�es that the htdλ originate from the UA it wants to

be blacklisted to ensure the OPR handed over the correct hidden

trapdoors. Using htdλ , the DR can calculate the (as of yet secret)

wallet ID λ. Since the UA uses a pseudo-random function PRF to

calculate the fraud detection IDs φ from the wallet ID λ in each

run of Debt Accumulation, the DR can use its knowledge of λ to

precompute all fraud detection IDs the UA might use in the current

billing period. �is yields fraud detection IDs {φ0, . . . ,φxbl
} =

7

{PRF(λ, 0), . . . , PRF(λ, x
bl
)} for each wallet which are collected in a

set ΦA . By adding ΦA to the blacklist blUA, this wallet is not able

to partake in a successful run of Debt Accumulation again. �e

OPR can use the set ΦA to identify the corresponding entries of his

database Ω
bl

and recompute the current overall debt and reputation

of the blacklisted UA.

Blacklist EVCC. With the help from the DR an OPR is able to

revoke the access of a speci�c EVCC. To this end they run the

task Blacklist EVCC. Note that we require our system to be able

to blacklist EVCCs independently from any UAs they might con-

jointly be used with and that the Blacklist UA method—disclosing

otherwise unpredictable fraud detection IDs—is not applicable to

EVCCs. Hence the design of a separate and di�erent mechanism

was required to complete our P6V2G system. Using cryptographic

accumulators we were able to achieve this in a way that makes

adding EVCCs to the existing blacklist very e�cient: �e OPR sends

the EVCCs public key pkE to the DR who assures itself that this

EVCC should legitimately be banned from the system. �e DR then

uses pkE to look up the EVCC’s revocation value rev and returns

it to the OPR. �is value can now be added to the blacklist blEVCC

on which the cryptographic accumulator is computed during Debt

Accumulation.

3.4 E�ciency
To obtain a practical real world system it is paramount protocols

perform e�ciently under the hardware restrictions of the given

se�ing. In this section we show this to be the case for P6V2G.

Instead of discussing each task of the system in turn, we present

the runtime analysis for the task Debt Accumulation in detail. Not

only is this by far the computationally most extensive task of our

system, but it is (partly) conducted in the presence of a waiting user

and therefore time-sensitive.

�e e�ciency of our protocols is heavily determined by the cost

of cryptographic operations, i.e., creating commitments, signing

messages, computing NIZK proofs and so on. Any other factors

only contribute to a negligible fraction of the overall runtime and

are therefore not considered in our analysis. �e individual cryp-

tographic operations are constructed from atomic operations in

the underlying pairing group se�ing. More precisely, every crypto-

graphic operation is a combination of G1/G2 exponentiations and

pairing evaluations. �is enables us to computationally determine a

reliable upper bound on the runtime of our protocols: We calculate

an upper bound on the number of respective atomic operations

performed by each party, measure runtimes of single operations on

the type of hardware parties would realistically employ, and com-

bine those values to a�ain an overall runtime estimation. Another

relevant aspect for the runtimes of our system are precomputations.

From the detailed protocol description in appendix E it is appar-

ent that many of the more complicated operations can easily be

precomputed before the start of the actual protocol. We therefore

distinguish between online and o�ine operations: Operations that

can be conducted before the start of the actual protocol are denoted

as o�ine operations. For Part I of Debt Accumulation, these may

be performed at any point before the EV is plugged into an SECC;

for Part II the parties compute them during the charging process

itself, before the user returns to retrieve their car. All operations

that depend on inputs of the protocol and can therefore only be

computed at the proper time are denoted as online operations. By

precomputing as much as possible the online runtime of the actual

protocol can be signi�cantly shortened and o�ine runtimes �exibly

scheduled to convenient time slots. Table 2 shows the number of

atomic operations in the Debt Accumulation task, di�erentiated by

parties and o�ine and online computations.

Party

o�ine online

G1 G2 Pairing G1 G2 Pairing

Part I

EVCC 91 82 0 42+2v 33 0

SECC v 0 0 0 0 140+y

Part II

UA 240 228 0 4 0 z+9

SECC 4 0 252+2j 3 9 10

Here, j := |aλ |, y := |aE |, z := |aC | and v := |blEVCC |.

Table 2: Upper Bound on G1/G2 Exponentiations and Pair-
ing Evaluations in Debt Accumulation

For the veri�cation of NIZK proofs, we assume batch veri�ca-

tion techniques from [30] to signi�cantly speed up the veri�cation

process. Also note, that the number of operations needed for veri�-

cation was generously estimated. �erefore, the values in table 2

are upper bounds for the computational costs rather than exact

�gures.

To get a more tangible measurement of runtimes, we need to

make assumptions about the hardware used in a realization of our

system. For an EVCC we consider a conventional on-board unit,

like the Savari MobiWAVE-1000 [42], to be a realistic choice. We

therefore measured the runtime of G1/G2 exponentiations and

pairing evaluations on the type of processor present in this on-

board unit: An i.MX6 Dual-Core processor running at 800MHz

with 1GB DDR3 RAM and 4GB eMMC Flash. �e processor runs an

embedded Linux and is ARM Cortex-A9 based (32-bit). For the bi-

linear group se�ing, we use the Barreto-Naehrig curves Fp254BNb
and Fp254n2BNb [8, 34] (with 254-bit order) and the optimal Ate

pairing [40]. �e resulting benchmarks for single exponentiations

inG1 andG2 and for pairing evaluations are 6.07 ms, 15.52 ms and

32.19 ms respectively.

For use in SECCs the Sitara AM335x processor—based on an

ARM Cortex-A8 (32-bit) running at up to 1GHz—has been sug-

gested [33]. Since this processor has a similar core to the ones of

the i.MX6, we use the same benchmarks to estimate runtimes for

the SECC.
7

To realize UAs we propose to use either smart phones or

a smart card plugged into the EVCC to utilize its computing power.

Since the la�er yields slower runtimes, we choose this option to

obtain an upper bound on the realistic runtime. We therefore use

the above benchmarks to calculate the runtimes for the EVCC and

SECC, as well as the UA. Combining the �gures from table 2 with

the benchmarks we can now calculate upper bounds on the run-

time of both parts of the task Debt Accumulation. �e results are

depicted in table 3.

7
Note that they were indeed measured on a single thread only.

8

Party

Party Runtimes Total Runtime

o�ine online o�ine online

Part I

EVCC 1825 ms 1374 ms 2129 ms 5945 ms
SECC 304 ms 4571 ms

Part II

UA 4995 ms 346 ms 13389 ms 826 ms
SECC 8394 ms 480 ms

Here, j := |aλ | = 4, y := |aE | = 1, z := |aC | = 1 and v := |blEVCC | = 50.

Table 3: Upper Bound on Runtimes of Debt Accumulation

�ese results show that the only time-critical part—the online

part of Part II—takes signi�cantly less than one second to complete.

All other parts do not compel the user to wait for completion and

with roughly 2, 6 and 13 seconds they lie well within acceptable

timeframes. Although these times are already su�cient to not im-

pede a user’s experience with our system, we note that they are

still upper bounds in several ways: �ey were obtained assuming a

very naive implementation without any computational optimiza-

tions, the number of group operations for proof veri�cation was

generously overestimated and runtimes were calculated using a sin-

gle core only, when realistically multiple cores would be available.

Hence, we assume real runtimes to be even be�er than the �gures

given in this section.

4 SECURITY AND PRIVACY
�is section discusses the security and privacy properties of our

P6V2G protocol. A�er reviewing the inherent limitations implied

by the underlying scenario, we individually detail the security and

privacy properties our protocol was proven to provide. Finally we

sketch how the formal proof was conducted.

4.1 Inherent Privacy and Security Limitations
To assess the level of security and privacy our protocol provides,

we �rst discuss which security limitations and privacy losses are

inherent in the chosen se�ing and what levels of security and

privacy an optimal solution might be able to yield.

Privacy. Although ideally we would like OPRs to learn nothing

at all, there are things we can not hope to hide from them due to

their control over the EVSEs. Information they will always obtain

for a charging session are the ID and location of the EVSE, time

and duration of charging, charge targets put in by the (anonymous)

user, the EV’s ba�ery properties, and the actual SDR
8

of the session.

A privacy-optimal solution would not give away anything more

than those parameters.

Security. Some security limitations are imposed by post-payments

paired with the semi online se�ing of SECCs. Facilitating this in a

privacy preserving manner requires users to collect their debt on a

wallet instead of trusting the OPR with their information. In this

se�ing it is always possible for a user to reuse an old wallet state

for upcoming charging sessions. Without instant synchronization

the participating SECC has no way of knowing the old wallet state

8
Of course, this SDR should only contain details of the conducted charging, but no

identifying information.

has already been used before. �is kind of misbehavior is called

double-spending and is a widely accepted drawback of semi online

payment systems like bitcoin or e-cash—regardless of application.

An optimal solution will detect this unavoidable fraud a�er the fact,

identify the misbehaving user if required, and be able to recalculate

the debt missing from the user’s wallet. �is feature is also required

in case a fraudulent user refuses to present their wallet for billing or

claims to have lost it, which can not be prevented either. Another

inherent limitation is that a maliciously colluding user and SECC

are always able to agree on updating the wallet in a way that is not

re�ective of any charging session that physically took place. Due to

this gap between the digital communication captured by our model

and the real, physical world, we had to omit the case of collusions

between the user side (UA, EVCC) and operator side (OPR, SECC)

from our security proof. We suggest mitigating the e�ects of cor-

rupted SECCs by adding timestamps to their a�ributes so that keys

of corrupted SECCs expire. Note also that the corrupt behavior of

a colluding user and SECC (or OPR) has no more consequences for

the security and privacy of honest users than if only the SECC/OPR

were corrupted, which is covered by our proof.

4.2 Proven Privacy Properties
A�er listing some scenario speci�c impossibilities, let us discuss

how P6V2G can yield nearly optimal privacy in this se�ing. Our

proof of user privacy asserts that in addition to the necessary infor-

mation listed in section 4.1, the only thing SECCs (and therefore

OPRs) learn from each charging session are the wallet’s, EV’s and

previous SECC’s a�ributes as well as the certifying OPRs. Content

of these a�ributes is a subject of choice in implementation and

fully determines the level of privacy provided by the system. While

empty a�ributes yield complete privacy, it would also be possible

to, e.g., include the users/EVs/EVSEs identities in their respective

a�ributes, and hence implement a fully identifying system. �e

important point is that this level of privacy is explicit and easy

to check upon registration and charging.
9

Realistically, wallet’s

a�ributes might contain the billing period (e.g., month) they are

valid for and information on whether the user has a business or

private contract with his operator. EV’s a�ributes might di�erenti-

ate between standard cars and busses. An SECC’s a�ributes should

consist of the current billing period only, leaving all honest SECCs

with the same a�ributes. Simple properties like these yield that any

recorded transaction can only be a�ributed to a group of k di�erent

and indistinguishable pairs of UAs/EVs—with k being the number

of UAs with the same wallet a�ributes and OPR multiplied by the

number of EVs of the same type—but not to any speci�c user in

this group.

Assuming this kind of a�ributes we formally prove the fol-

lowing privacy properties, even under participation of malicious

OPRs/SECCs or UAs/EVs in the system:

4.3 Proven Security Properties
We consider static corruption (and collusion) of an arbitrary number

of either UAs and EVCCs or of SECCs and OPRs (for an explanation

9
Once the system is implemented with a speci�c form of a�ributes, checking the

content of a�ributes is easily automated (and we would advise to do so), saving users

the e�ort of checking the system’s privacy level themselves.

9

(P1) Charging sessions of honest UAs/EVs are anonymous and

unlinkable.

(P2) Tracing of an honest UA and recalculation of its accu-

mulated debt are impossible without cooperation of the

DR.

(P3) Tracing of a misbehaving UA has no more implications

for the privacy of all other UAs/EVs than if the traced UA

had never participated in the system at all.

on UAs/EVCCs colluding with SECCs/OPRs, see section 4.1). Any

corrupted party may maliciously deviate from the protocol instead

of just acting in an honest-but-curious manner.

Under this kind of corruption we prove the following security

properties:

(S1) A UA can only use wallets that were legitimately issued

to this UA.

(S2) If a UA commits double-spending (see section 4.1), it will

be identi�ed.

(S3) A UA which does not commit double-spending can not lie

about or modify the debt or reputation on its wallet.

(S4) An OPR is able to blacklist a speci�c UA with cooperation

from the DR. An SECC will know that a UA is blacklisted

before its wallet is used for payment.

(S5) An OPR is able to recalculate a speci�c UA’s debt with

cooperation from the DR.

(S6) A UA that does not clear its wallet’s debt will be detected.

(S7) Only registered EVs can take part in Debt Accumulation.

(S8) An OPR is able to blacklist speci�c EVs with cooperation

from the DR. An SECC will know that an EV is blacklisted

at the start of a charging session.

(S9) No party can lie about or modify their a�ributes.

4.4 Proof Sketch
We conducted a simulation-based proof following the real/ideal

paradigm. For this type of proof the execution of the real world

protocol is compared to the execution of an ideal model where all

computation is done by an uncorruptible ideal functionality. �e

idea is for the ideal functionality to be designed in a way that it

obviously guarantees the desired security and privacy properties.

A proof of indistinguishability of the real world and ideal model

yields that the protocol provides these properties as well. �e

advantage over game-based approaches is that all security proper-

ties and restrictions are explicit. However, the traditional notion

of simulation-based security only captures security requirements

in a standalone se�ing, where a single protocol instance runs in

isolation. If multiple protocol instances run concurrently, this ap-

proach fails to guarantee security. �e Universal Composability

(UC) framework [16] on the other hand does not only capture par-

allel execution of multiple protocol instances, but also the use of

protocols in an arbitrary context.

For our protocol πP6V2G, we prove in the UC {FCRS,GBB
}-hybrid

model (cp. [18, 19]) that it securely realizes the ideal V2G function-

ality FV2G under common hardness assumptions for cryptographic

building blocks. Further information on the ideal functionality is

provided in appendix C while additional details of the proof can be

found in appendix D.

5 CONCLUSION AND FUTUREWORK
Based on the cryptographic toll collection framework P4TC [32] we

were able to develop the privacy-preserving V2G payment and repu-

tation scheme P6V2G. Our system facilitates two-way transactions

between EV users and EVSEs as well as reputation scores. In o�er-

ing post-payment functionality—with, e.g., monthly billing—P6V2G

is a highly convenient system with low e�ort usability. We achieve

real world practicality by o�ering double-spending detection and

guilt veri�cation features, contingency traceability (with the con-

sent of a designated authority) as well as blacklisting of EVs and

users. All the systems functions are subject to explicit and formally

proven privacy and security guarantees. Furthermore SECCs do

not require permanent online capabilities, as P6V2G is designed to

be operated in a semi online se�ing. Our runtime analysis demon-

strates the P6V2G protocols to be e�cient enough for the low

performance hardware that is realistically present in the V2G set-

ting. With EVs and users modeled as two separate entities, the

system is fully portable between EVs and hence supports users

with multiple cars as well as car sharing between multiple users.

Although the P6V2G system is a complete and practical V2G pay-

ment scheme, there are several directions where further expansion

might prove bene�cial. Modelling the EV and the actual charging

process in more detail could yield additional features, e.g., an au-

tomated pricing check and continuous monitoring of the SECC’s

charging instructions. Another direction with potential for further

development would be the �nancial se�lement between charging

point and e-mobility OPRs. At the moment each SECC needs to

learn the user’s eMO during a charging session to realistically pro-

vide OPRs with the means for �nancial se�lement between them.

Appending P6V2G with a cryptographic protocol for �nancial set-

tlement between OPRs could remove the need for this information

and thus further improve privacy.

ACKNOWLEDGMENTS
We would like to thank Max Ho�mann (Ruhr Universität Bochum)

for providing us with benchmarks for single group exponentiations

and pairing evaluations.

10

REFERENCES
[1] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. 2011.

Optimal structure-preserving signatures in asymmetric bilinear groups. In An-
nual Cryptology Conference. Springer, 649–666.

[2] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takeya Tango. 2014. Converting

Cryptographic Schemes from Symmetric to Asymmetric Bilinear Groups. In

Advances in Cryptology – CRYPTO 2014, Part I (Lecture Notes in Computer Science),
Juan A. Garay and Rosario Gennaro (Eds.), Vol. 8616. Springer, Heidelberg, 241–

260.

[3] Masayuki Abe, Markulf Kohlweiss, Miyako Ohkubo, and Mehdi Tibouchi. 2015.

Fully structure-preserving signatures and shrinking commitments. In Annual In-
ternational Conference on the�eory and Applications of Cryptographic Techniques.
Springer, 35–65.

[4] Man Ho Au, Joseph K Liu, Junbin Fang, Zoe L Jiang, Willy Susilo, and Jianying

Zhou. 2014. A new payment system for enhancing location privacy of electric

vehicles. IEEE transactions on vehicular technology 63, 1 (2014), 3–18.

[5] Man Ho Au, Patrick P Tsang, Willy Susilo, and Yi Mu. 2009. Dynamic uni-

versal accumulators for DDH groups and their application to a�ribute-based

anonymous credential systems. In Cryptographers’ Track at the RSA Conference.
Springer, 295–308.

[6] Man Ho Au, Patrick P. Tsang, Willy Susilo, and Yi Mu. 2009. Dynamic Universal

Accumulators for DDH Groups and �eir Application to A�ribute-Based Anony-

mous Credential Systems. In Topics in Cryptology – CT-RSA 2009 (Lecture Notes in
Computer Science), Marc Fischlin (Ed.), Vol. 5473. Springer, Heidelberg, 295–308.

[7] Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and Markulf Kohlweiss.

2015. Anonymous Transferable E-Cash. In Public-Key Cryptography – PKC 2015,

Jonathan Katz (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 101–124.

[8] Paulo S. L. M. Barreto and Michael Naehrig. 2006. Pairing-Friendly Elliptic

Curves of Prime Order. In SAC 2005Annual International Workshop on Selected
Areas in Cryptography (Lecture Notes in Computer Science), Bart Preneel and

Sta�ord Tavares (Eds.), Vol. 3897. Springer, Heidelberg, 319–331.

[9] Bruno Blanchet. 2016. Modeling and Verifying Security Protocols with the

Applied Pi Calculus and ProVerif. Foundations and Trends in Privacy and Security
1, 1-2 (2016), 1–135.

[10] Dan Boneh and Xavier Boyen. 2004. E�cient Selective-ID Secure Identity-Based

Encryption Without Random Oracles. In Advances in Cryptology - EUROCRYPT
2004, Christian Cachin and Jan L. Camenisch (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 223–238.

[11] Isabella Burch and Jock Gilchrist. 2018. Survey of Global Activity to Phase Out

Internal Combustion Engine Vehicles. Center for Climate Protection. (September

2018).

[12] Jan Camenisch, Ra�k Chaabouni, and others. 2008. E�cient protocols for set

membership and range proofs. In International Conference on the �eory and
Application of Cryptology and Information Security. Springer, 234–252.

[13] Jan Camenisch, Kristiyan Haralambiev, Markulf Kohlweiss, Jorn Lapon, and

Vincent Naessens. 2011. Structure Preserving CCA Secure Encryption and

Applications. In Advances in Cryptology – ASIACRYPT 2011 (Lecture Notes in
Computer Science), Dong Hoon Lee and Xiaoyun Wang (Eds.), Vol. 7073. Springer,

Heidelberg, 89–106.

[14] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. 2005. Compact

E-Cash. In Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the �eory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings. 302–321.

[15] Sébastien Canard and Aline Gouget. 2008. Anonymity in Transferable E-cash. In

Applied Cryptography and Network Security, 6th International Conference, ACNS
2008, New York, NY, USA, June 3-6, 2008. Proceedings. 207–223.

[16] Ran Cane�i. 2001. Universally Composable Security: A New Paradigm for

Cryptographic Protocols. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. 136–145.

[17] Ran Cane�i, Yevgeniy Dodis, Rafael Pass, and Shabsi Wal�sh. 2007. Universally

Composable Security with Global Setup. In �eory of Cryptography, 4th �eory
of Cryptography Conference, TCC 2007, Amsterdam, �e Netherlands, February
21-24, 2007, Proceedings. 61–85.

[18] Ran Cane�i and Marc Fischlin. 2001. Universally Composable Commitments.

In Advances in Cryptology — CRYPTO 2001, Joe Kilian (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 19–40.

[19] Ran Cane�i, Daniel Shahaf, and Margarita Vald. 2016. Universally composable

authentication and key-exchange with global PKI. In IACR InternationalWorkshop
on Public Key Cryptography. Springer, 265–296.

[20] Department of Public Expenditure and Reform. 2019. Project Ireland 2040:

National Development Plan 2018-2027. Government Declaration. (January 2019).

[21] DIN-Normenausschuss Automobiltechnik. 2015. Road vehicles – Vehicle to grid
communication interface – Part 1: General information and use-case de�nition.

Deutsches Institut für Normung e.V., Berlin. DIN EN ISO 15118-1.

[22] DIN-Normenausschuss Automobiltechnik. 2016. Road vehicles – Vehicle to grid
communication interface – Part 2: Network and application protocol requirements.
Deutsches Institut für Normung e.V., Berlin. DIN EN ISO 15118-2.

[23] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A veri�able random function

with short proofs and keys. In International Workshop on Public Key Cryptography.

Springer, 416–431.

[24] Marouane Fazouane, Henning Kopp, Rens Wouter van der Heijden, Daniel Le

Métayer, and Frank Kargl. 2015. Formal Veri�cation of Privacy Properties in

Electric Vehicle Charging. In ESSoS (Lecture Notes in Computer Science), Vol. 8978.

Springer, 17–33.

[25] Aoife Foley, Ian Winning, and Brian O Gallachoir. 2010. State-of-the-art in

electric vehicle charging infrastructure. In 2010 IEEE Vehicle Power and Propulsion
Conference (VPPC). IEEE, 1–6.

[26] Philippe Golle and Kurt Partridge. 2009. On the Anonymity of Home/Work

Location Pairs. In Pervasive Computing, Hideyuki Tokuda, Michael Beigl, Adrian

Friday, A. J. Bernheim Brush, and Yoshito Tobe (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 390–397.

[27] Jens Groth and Amit Sahai. 2008. E�cient non-interactive proof systems for

bilinear groups. In Annual International Conference on the�eory and Applications
of Cryptographic Techniques. Springer, 415–432.

[28] Wenlin Han and Yang Xiao. 2016. Privacy preservation for V2G networks in

smart grid: A survey. Computer Communications 91 (2016), 17–28.

[29] Gunnar Hartung, Max Ho�mann andCryptographic AccumulatorsNg

Ma�hias Nagel, and Andy Rupp. 2017. BBA+: Improving the Security and

Applicability of Privacy-Preserving Point Collection. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017. 1925–1942.

[30] Go�fried Herold, Max Ho�mann, Michael Klooß, Carla Ràfols, and Andy Rupp.

2017. New Techniques for Structural Batch Veri�cation in Bilinear Groups

with Applications to Groth-Sahai Proofs. In ACM Conference on Computer and
Communications Security. 1547–1564.

[31] Christina Höfer, Jonathan Petit, Robert Karl Schmidt, and Frank Kargl. 2013.

POPCORN: privacy-preserving charging for emobility. In CyCAR@CCS. ACM,

37–48.

[32] Max Ho�mann, Valerie Fetzer, Ma�hias Nagel, Andy Rupp, and Rebecca Schw-

erdt. 2018. P4TC—Provably-Secure yet Practical Privacy-Preserving Toll Collec-

tion. Cryptology ePrint Archive, Report 2018/1106. (2018). h�ps://eprint.iacr.

org/2018/1106.

[33] Texas Instruments. 2017. TI Designs: TIDEP-0087. Human Machine Interface

(HMI) for EV Charging Infrastructure Reference Design. h�p://www.ti.com/lit/

ug/tidude7/tidude7.pdf. (2017). [Online; accessed 09-January-2019].

[34] Yuto Kawahara, Tetsutaro Kobayashi, Michael Sco�, and Akihiro Kato. 2016.

Barreto-Naehrig Curves. Internet Dra�. Internet Engineering Task Force. Work

in Progress.

[35] Wille� Kempton and Steven E. Letendre. 1997. Electric vehicles as a new power

source for electric utilities. Transportation Research Part D: Transport and Envi-
ronment 2, 3 (1997), 157 – 175.

[36] John Krumm. 2007. Inference A�acks on Location Tracks. In Pervasive Computing,

Anthony LaMarca, Marc Langheinrich, and Khai N. Truong (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 127–143.

[37] Zi Lin and Nicholas Hopper. 2010. Jack: Scalable accumulator-based nymble

system. Proceedings of the ACM Conference on Computer and Communications
Security (01 2010), 53–62.

[38] Joseph K Liu, Man Ho Au, Willy Susilo, and Jianying Zhou. 2012. Enhancing

location privacy for electric vehicles (at the right time). In European Symposium
on Research in Computer Security. Springer, 397–414.

[39] Stefan Löfven. 2019. Regeringsförklaring. Government Declaration. (January

2019).

[40] Dustin Moody, Rene C. Peralta, Ray A. Perlner, Andrew R. Regenscheid, Allen L.

Roginsky, and Lidong Chen. 2015. Report on Pairing-based Cryptography. In

Journal of Research of the National Institute of Standards and Technology, Vol. 120.

National Insititute of Standards and Technology, Gaithersburg, MD, USA, 11–27.

[41] Lan Nguyen. 2005. Accumulators from Bilinear Pairings and Applications. In

Topics in Cryptology – CT-RSA 2005 (Lecture Notes in Computer Science), Alfred

Menezes (Ed.), Vol. 3376. Springer, Heidelberg, 275–292.

[42] Savari.net. 2017. MobiWAVE On-Board-Unit (OBU). h�p://savari.net/

wp-content/uploads/2017/05/MW-1000 April2017.pdf. (2017). [Online; accessed

05-February-2018].

[43] Zhiguo Wan, Wen-Tao Zhu, and Guilin Wang. 2016. PRAC: E�cient privacy

protection for vehicle-to-grid communications in the smart grid. Computers &
Security 62 (2016), 246–256.

[44] Huaqun Wang, Bo Qin, Qianhong Wu, Li Xu, and Josep Domingo-Ferrer.

2015. TPP: Traceable privacy-preserving communication and precise reward

for vehicle-to-grid networks in smart grids. IEEE Transactions on Information
Forensics and Security 10, 11 (2015), 2340–2351.

11

https://eprint.iacr.org/2018/1106
https://eprint.iacr.org/2018/1106
http://www.ti.com/lit/ug/tidude7/tidude7.pdf
http://www.ti.com/lit/ug/tidude7/tidude7.pdf
http://savari.net/wp-content/uploads/2017/05/MW-1000_April2017.pdf
http://savari.net/wp-content/uploads/2017/05/MW-1000_April2017.pdf

A NOTATION
Tables 4 and 5 provide an alphabetically ordered look-up table for

the notation used in our protocol and ideal model.

Notation Description

1G Neutral element of a group G

A A UA

ACC Cryptographic accumulator scheme

aP A�ributes of a party P
base Base used to represent a wallet ID

b Balance, i.e., amount of debt on wallet

bbill
Debt of a user at the end of a billing period

blEVCC List of revocation values, used to blacklist EVCCs

blUA List of fraud detection IDs, used to blacklist UAs

β Ba�ery a�ributes of an EV

C Commitment scheme

C A SECC

CO �e SECC played by the OPR O itself

c(P) Commitment (made by party P)

certC = (pksig

C , aC , pk
cert

OC
,σ cert

OC
)

Certi�cate of a SECC issued by OC
certE = (rev, aE , c, d,σ)

Certi�cate of an EVCC

CRS Common reference string

D �e DR

d Reputation gained during the charging session

d(P) Decommitment (made by party P)

E Encryption scheme

E An EVCC

e Encryption of secrets under the key of the DR

F Ideal functionality

FCRS Ideal CRS functionality

fΦ Mapping of wallet IDs and transaction counters to

fraud detection IDs

fΠ Mapping of double-spending proofs to UA IDs

frev Mapping of EVCC IDs to their revocation value rev
Φ Space of fraud detection IDs

φ Fraud detection ID

G Group

g Generator of group G

G
BB

Ideal bulletin board functionality

HTDλ Set of hidden trapdoors

htdλ Hidden trapdoor to blacklist wallet λ
idP ID of a party P
L(i) Language used in proof scheme Pi
λ Wallet ID

λi ith digit of the base-base representation of λ
λ′, λ′′ Shares of wallet IDs, created by parties to jointly

chose a wallet ID

m(P) Message content (from party P)

µ Choice of charging program

Table 4: Notation Used in this Paper

Notation Description

O An OPR

OP �e OPR of a party P (or wallet λ)

out Output

P Proof scheme

P A party

p Price of a charging session

pk
pur

P Public key of party P for purpose pur

PRF Pseudo-random function

π NIZK proof

r Reputation accumulated on a wallet

rbill
Reputation on a wallet at the end of a billing period

rand Randomness used to encrypt secrets for the DR

rev Revocation value of an an EVCC

S Signature scheme

S Simulator

S Space of serial numbers

s Serial number of a transaction

s ′, s ′′ Shares of serial numbers, created by parties to jointly

chose a serial number

sk
pur

P Secret key of party P for purpose pur

stmnt Statement

σ(P) Signature (of party P)

t Double-spending tag

td Trapdoor

TRDB Database of transaction records trdb
trdb = (sprev, s,φ,x , λ, idA , idC ,b, r ,p,d)

Transaction record in the transaction database

τ =
(
s
��b, r ��xnext,unext

1

��(c, d,σ)C , certC ��
λ, aλ , (c, d,σ)Oλ , pk

sig

Oλ
)

Wallet state at the end of the transaction with serial

number s
ui Randomness to mask secrets in double-spending tags

v Accumulator value

w Witness needed to prove a revocation value is not

blacklisted

wit Witness for a statement stmnt
wl Whitelist of UA public keys

Ω
bl

Database of blacklisting information ω
bl

ω
bl

= (φ,p,d)
Database entry for debt and reputation recalculation

Ω
ds

Database of double-spending information ω
ds

ω
ds

= (φ, t ,u2)
Database entry used to detect double-spending

x Transaction counter of a wallet

x
bl

Upper bound of transactions in one billing period

Z Environment

Table 5: Continuation of Notation Used in this Paper

12

B INTEGRATION OF P6V2G INTO ISO 15118
In addition to the PnC payment method discussed in section 1.1,

the international standard ISO 15118 [21, 22] allows for alternative

payment methods to be added in future. In this section we will

discuss the integration of our P6V2G system into this standard,

following its communication structure of functional groups A-H.

�e elementary use cases needed for P6V2G within those func-

tional groups follow the examples of use cases de�ned for a similar

purpose in the post-payment method PnC.

As ISO 15118 only deals with communication between EVCC and

SECC, the only part of our system it inherently applies to is Debt

Accumulation Part I—which would naturally be implemented as an

elementary use case of functional group D “Identi�cation, Authen-

tication and Authorisation”. It is, however, possible to integrate the

complete tasks of Certify EVCC, Issue Wallet, Debt Accumulation

and Debt Clearance into the ISO 15118 in an intuitive way. Note

that apart from EVCCs and SECCs, these tasks are conducted with

participation of the DR, OPRs and UAs, so there is a party mismatch

to be considered.

Certify EVCC. �is task is executed by the EVCC and DR to

obtain a certi�cate containing vehicle a�ributes and a revocation

value for blacklisting. It is conducted only once and has to take

place prior to the �rst charging session that is to be payed for with

a P6V2G contract. We therefore propose this to be done at the

original equipment manufacturer (OEM), who should be in direct

contact with the DR to have all their vehicles certi�ed. In this case

it would behave like the bootstrap or OEM provisioning certi�-

cate, but without the need to be replaced by a contract certi�cate

later on. Alternatively—to remove the need for trusting the OEM

with anything more than provisioning certi�cation—we propose to

conduct the protocol for this task within an elementary use case

C3 “EVCC Certi�cate Installation” in functional group C “Certi�-

cate Handling”, resembling the current example of C2 “Certi�cate

Installation”. �is elementary use case C3 would only apply to

the situation where the EVCC has not been certi�ed before and is

connected to an SECC controlled by the DR.

Debt Accumulation. �is task is the most complicated to inte-

grate into ISO 15118, because parts of it are conducted prior to

and other parts a�er charging. Our system’s portability, with UAs

separated from EVCCs, further complicates the ma�er. While ISO

15118 provides the possibility for external identi�cation methods

like our UA in functional group D “Identi�cation, Authentication

and Authorisation”, it does not allow for keeping this identi�cation

method physically �xed to interact with again a�er charging. By

plugging the UA (as a smart card) directly into the EVCC, however,

and having the EVCC relay (encrypted) messages between SECC

and UA, this shortcoming could be bypassed without loosing porta-

bility of our system. Hence the UA could be construed as part of

the EVCC for the duration of the charging session. For Part I of the

Debt Accumulation protocol (communication between EVCC and

SECC), we propose an elementary use case D5 “Authorization of

EVCC performed at the EVSE” in functional group D “Identi�cation,

Authentication and Authorisation” following the example of D1

“Authorization using Contract Certi�cates performed at the EVSE”.

Part II of the Debt Accumulation protocol (communication between

UA and SECC) needs to be split up between two functional groups:

Authorization of the UA
10

should be conducted within an elemen-

tary use case D6 “Authorization of UA performed at the EVSE”,

again resembling D1. �e remainder of the protocol would then

form an elementary use case G3 “Wallet Update” within functional

group G “Value-added Services” resembling the elementary use

case G2 “Charging Details” which is used for creating the SDR for

PnC.

IssueWallet andDebt Clearance. In addition to an external method

(e.g., direct communication between the UA smart card and the

user’s eMO via an NFC reader at the users home computer), the

tasks Issue Wallet and Debt Clearance could be conducted in the

scope of a charging session.
11

Even though they are more com-

plicated and provide more functionality, wallets in P6V2G ful�ll a

similar role to contract certi�cates in PnC. We therefore propose to

realize the Issue Wallet and Debt Clearance protocols as use cases

C4 “Issue Wallet” and C5 “Debt Clearance” within functional group

C “Certi�cate Handling”—resembling the use case C1 “Certi�cate

Update” for PnC. C4 and C5 should be conducted automatically

within the �rst charging session of a new billing period.

C IDEAL FUNCTIONALITY
For a simulation-based proof following the real/ideal paradigm we

need an ideal model to compare our protocol to. �is type of ideal

model comes in the form an ideal functionality F , which can be

thought of as an imaginary trusted third party incorruptibly per-

forming all functions we desire in the given scenario. If a protocol

π is proven to be indistinguishable from the ideal functionality F ,

it necessarily yields the same properties and guarantees. Before

explaining the extensive and more complicated ideal V2G payment

and reputation functionality FV2G, we want to illustrate the work-

ings of an ideal functionality with a small example.

Example. Imagine a scenario where two mutually distrusting

parties P1 and P2 want to jointly compute the result of a function

f . Each party Pi is allowed to choose a part xi of the input that f
is supposed to be evaluated on. While both parties want to learn

the output f (x1,x2) and be sure that what they learn is actually the

correct result (security), neither wants the other to learn anything

more about their respective input than the result itself discloses

(privacy). �e ideal functionality Ff in this context would know the

function f , get the inputs x1 and x2 from P1 and P2 respectively,

compute f (x1,x2), and send this result back to both parties.

Ff guarantees security since it is uncorruptible and f is �xed

within its description. No party can in�uence the computation of

the result f (x1,x2) in any other way than by choosing their own

input. Due to its outputs, Ff also yields obvious privacy. All any

party learns in an execution of Ff is the result f (x1,x2) as there

are no other outputs the ideal functionality makes (note that in

the ideal model no party can read, intercept or otherwise meddle

with message between the ideal functionality and another party).

In particular, no further information about the other parties input

is obtained.

10
�is includes everything up to the blacklisting check φ ∈ blUA in �g. 32.

11
Please note, that this requires an online connection from the participating SECC to

the eMO.

13

�is example illustrates three main ways an ideal functionality

is able to yield security and privacy guarantees: Firstly, any infor-

mation that is needed, but that no party should be able to choose,

lie about or unduly in�uence (e.g., the function f) is stored within

the ideal functionality. Secondly, All computations are correctly

performed by the ideal functionality, not by any party. And thirdly,

the ideal functionality only outputs information to a party that this

speci�c party is supposed to learn and nothing else.

In the rest of this section we illustrate how the above principles

can be applied to get an ideal functionality FV2G for the scenario

described in section 2.

We divide the description of FV2G up into two parts. �e �rst

part consists of the state of the ideal functionality (containing all

information parties should not be able to lie about), the second

details its behavior in all the di�erent tasks of a V2G payment

system. An overview can be found in �g. 4 and we will explain

both in more detail below.

Functionality FV2G
I. State

�e ideal functionality FV2G records:

• (Partial) Mapping a that maps a parties ID
a

idP to their respective

a�ributes aP .

• (Partial) Mapping O that maps a UA’s or SECC’s ID idP to their

respective OPR’s public key OP .

• (Partial) Mapping frev that maps an EVCCs ID idE to a revocation

value.

• Transaction database TRDB = {trdb} with entries

trdb = (sprev, s, φ, x, λ, idA, idC, b, r, p, d).
• (Partial) Mapping fΦ that maps a wallet ID λ and a counter x to

a fraud detection ID φ .

• (Partial) Mapping fΠ that maps a proof π to a UAs ID idA .

a
For UAs, potentially di�erent a�ributes are assigned to each wallet rather

than the UA.

II. Behavior – Tasks

• Register DR

• Register OPR

• Register SECC

• Register EVCC

• Register UA

• Certify SECC

• Certify EVCC

• Issue Wallet

• Debt Accumulation

• Debt Clearance

• Double-Spending Detection

• Guilt Veri�cation

• Blacklist UA

• Blacklist EVCC

Figure 4: �e Ideal Functionality FV2G

C.1 State
To assure the right information (e.g., a parties’ a�ributes or previ-

ous amount of debt) is used in computations, the ideal functionality

FV2G stores everything parties should not be able to freely choose

or lie about during the tasks of this system. It keeps track of all con-

ducted charging sessions by maintaining a comprehensive database

TRDB and several (partial) mappings for parties’ a�ributes, OPRs,

revocation values, fraud detection IDs and double-spending proofs

(cp. �g. 4). �is global state is used and amended when conducting

individual tasks with participating parties.

Information on all conducted charging sessions is kept in the

database TRDB. Its entries

trdb = (sprev, s,φ,x , λ, idA , idC ,b, r ,p,d)

are uniquely identi�ed by a serial number s . Another serial number

sprev
links back to the logically previous charging session that was

payed for with the same wallet. Each database entry contains

all information pertinent to one charging session. It notes the

identities idA and idC of participating parties as well as the wallet

ID λ. Balance b and reputation r give the state of the wallet λ
a�er charging, price p and reputation gain d indicate by how much

these values changed during this charging session. �e counter x
indicates the number of charging sessions conducted to arrive at the

current state of the wallet. Lastly trdb contains a fraud detection

ID φ which is a random number assigned to each pair (λ,x) of

wallet ID and counter and is used to detect double spending by

misbehaving users. �is value is (slightly redundantly) stored in

the mapping fΦ as well: For every entry trdb with values λ, x and

φ the equation φ = fΦ(λ,x) holds.

In addition to this basic information, FV2G keeps track of some

information that is only relevant to feature tasks: �e mapping fΠ
stores proofs π that indicate double spending by a UA idA = fΠ(π)
has been detected. �e mapping frev stores a revocation value for

every registered EVCC that can be used to blacklist this car, e.g.,

because is was reported stolen.

C.2 Behavior
An overview of the tasks provided by our system was given in

section 3. �e ideal functionality FV2G o�ers the same tasks with

the same interfaces (otherwise the protocols could not be indistin-

guishable from the ideal world): A number of setup tasks, three

basic tasks (Issue Wallet, Debt Accumulation and Debt Clearance),

and four additional feature tasks. In this section we explain the

ideal version of them by mostly summarizing what FV2G does, but

to be�er illustrate the inner workings of the ideal functionality, the

central task of Debt Accumulation is shown in more detail.

Setup Tasks. Setup tasks include registration and certi�cation of

parties. Upon registration, the ideal functionality checks a party has

not been registered before and supplies it with the necessary keys

to participate in the system. Registered EVCCs and SECCs have to

be certi�ed as well. Certi�cation of an EVCC by the DR entails a

check if this EVCC has already been certi�ed or even blacklisted

before and otherwise assigns a revocation value to the EVCCs ID

to enable blacklisting in the future. Each SECC is certi�ed by the

OPR maintaining it to provide it with the credentials necessary to

participate in charging sessions and update balance and reputation

of wallets in the name of this OPR.

Issue Wallet. In the task Issue Wallet FV2G creates a new wallet

for a UA and OPR. It checks the UA against the OPRs whitelist and

initializes a new wallet λ with an entry

trdb = (⊥, s,φ,x , λ, idA , idO , 0, r , 0, r).
14

�e mappings a and fΦ are appended as well. A�ributes and initial

reputation are provided by the OPR. �e OPR only receives the

serial number s as output, the UA obtains its new wallets a�ributes

and reputation and the OPR’s ID as well.

Debt Accumulation. �e ideal functionality’s behavior during the

Debt Accumulation task can be found in �g. 5.
12

Again, FV2G checks

blacklisting and looks up the EVCC’s a�ributes before facilitating

the exchange of the EV’s ba�ery a�ributes β and the charging

choice µ between the SECC and EVCC. In the second part, FV2G

looks up the transaction trdbprev
corresponding to the wallet state

sprev
that the UA indicates they want to continue from.

13
It correctly

computes s , φ, x , b, and r for the new transaction entry

trdb = (sprev, s,φ,x , λ, idA , idC ,b, r ,p,d),

which is inserted into TRDB. Price p and reputation gain d are

provided by the SECC.

As output the SECC receives the transactions serial number s ,
fraud detection ID φ and the a�ributes and OPR IDs of the wallet

and the previous SECC. �e UA on the other hand learns the serial

number s , its wallet’s current balance b and reputation r as well as

the price p and reputation gain d of this charging session.

Debt Clearance. �e Debt Clearance task in the ideal model works

very much like the second part of Debt Accumulation. Di�erences

are that the price of the new transaction entry is set to p = −bbill

and there is no reputation gain. �e OPR additionally learns the

UA’s ID and the �nal balance bbill
and reputation rbill

of the cleared

wallet. �e UA in turn only learns this balance and reputation, but

does not get any further information. �is ensures the UA can not

use it’s wallet again (without commi�ing double-spending) a�er it

has been cleared.

Feature Tasks. �e most important feature task is Double-Spending

Detection. On request of an OPR the ideal functionality checks its

database TRDB for double-spending, i.e., for two separate entries

with the fraud detection ID φ. If such entries exist, the correspond-

ing UAs ID and a proof of its guilt are appended to fΠ as well as

output to the OPR. If any party wants to check the validity of such

a proof, they can do so by means of the task Guilt Veri�cation.

On input (idA ,π) the ideal functionality checks if it previously

recorded fΠ(π) = idA and returns the result.

�e other two feature tasks pertain to blacklisting and are joint

tasks of an OPR and the DR. In both cases the DR only has to give

its permission while the OPR has to supply the ID of the party that

is supposed to be blacklisted. For EVCCs the ideal functionality

returns its recorded revocation value, for UAs all used and upcoming

fraud detection IDs are returned as well as the current balance and

reputation of the UAs wallet. �is information can then be added

to the respective blacklists as well as being used for billing the UA

in question.

12
Please note that for ease of presentation, some special behavior in case of various

corruption cases has been omi�ed from this �gure.

13
Cp. double-spending in section 4.1. Without the o�ine se�ing, it would be su�cient

to look up the last transaction of the UA’s wallet.

Functionality FV2G
II. Behavior – Task Debt Accumulation
2. Upon receiving (blUA, blEVCC) from C:

– Leak blEVCC to the adversary.

5. Upon receiving (β) from E:

– If frev(idE) ∈ blEVCC,

Output blacklisted to both parties and abort.

– Look up the EVCCs a�ributes aE .

10. Upon receiving (OK) from E:

– Look up the SECC’s a�ributes aC and OPR idOC .

13. Upon receiving (sprev) from A:

– Select entry

(·, sprev, ·, xprev, λ, idA, idCprev, bprev, r prev, ·, ·)
from the database TRDB.

– Pick previously unused serial number s
R← S .

– Increase counter x := xprev + 1.

– If fΦ(λ, x) is already de�ned

Set φ := fΦ(λ, x).
Else

Pick previously unused fraud detection ID φ
R← Φ.

Append fΦ(λ, x) := φ to fΦ.

– If φ ∈ blUA,

Output blacklisted to both parties and abort.

– Look up the wallet’s a�ributes aλ and OPR idOλ .

– Look up the previous SECC’s a�ributes aCprev and OPR

idOCprev
.

16. Upon receiving (p, d) from C:

– b := bprev + p .

– r := r prev + d .

– Append entry

(sprev, s, φ, x, λ, idA, idC, b, r, p, d)
to TRDB.

C A E

1. blUA, blEVCC

3. helo

4. β

6. aE , β

7. µ

8. µ

9. OK

11. aC , idOC

12. sprev

14. s , φ , aλ ,

idOλ , aCprev ,

idOCprev

15. p , d

17. s , b ,

r , p , d

Figure 5: Task Debt Accumulation of FV2G
15

D PROOF
Following the example of [32], we conducted our proof in three

di�erent stages. Firstly, the database maintained by the ideal func-

tionality is construed as a transaction graph and several structural

properties of this graph are shown. Secondly, for each corruption

case a simulator is constructed with which we can, thirdly, prove

indistinguishability of executions of the real protocol and ideal

functionality.

D.1 Transaction Graphs
�e database TRDB maintained by the ideal functionality FV2G

can be visualized as a directed graph. We call this graph the ideal
transaction graph of the system. Each node in the graph corresponds

to the state of the participating wallet a�er a transaction. �erefore

nodes are labeled with the tuple

(s,φ,x , λ, idA ,b, r),
containing all information relevant to the wallet’s state. �e serial

number s serves as a unique identi�er of the node, so we o�en

think of the nodes being the set of all serial numbers with the

other information a�ached to it. �e directed edges (sprev, s) of

the Ideal Transaction Graph describe the link between a wallet’s

state before and a�er a single transaction. Hence edges correspond

to transactions themselves and, are labeled with the information

(idC ,p,d). An example for an ideal transaction graph can be seen

in �g. 6; node s2 and s3 illustrate what happens if double-spending

occurs.

s0

s1

s2

idC2
, p2, d2

s3

idC3
, p3, d3

idC1
, p1, d1

φ0, x, λ,
idA, b0, r0

φ1, (x + 1), λ,
idA, b1, r1

φ2, (x + 2), λ,
idA, b2, r2

φ2, (x + 2), λ,
idA, b3, r3

Figure 6: Visualization of an Ideal Transaction Graph

�e �rst step towards our proof is to show di�erent structural

lemmas about the ideal transaction graph. As an example we give

the �rst of these lemmas and its proof in full detail.

Lemma D.1. �e ideal transaction graph TRDB is a directed forest.

Proof. A directed graph is a forest if and only if it is cycle-

free and every node has in-degree at most one. We prove these

properties by induction. On initialization of the system the graph

is empty and the statement trivially satis�ed. Now consider how

each task modi�es the graph. Tasks that insert a new entry into

TRDB create a new node. �e only tasks to do so are Issue Wallet,

Debt Accumulation and Debt Clearance. Assuming that TRDB is

a forest before inserting a new node, we can assert that TRDB is

still a forest a�erwards by looking at these tasks in detail. Issue

Wallet adds an entry trdb = (⊥, s, . . .) to TRDB and hence adds a

node s but no new edge. Note that s is indeed a new node as it is

chosen from the set of idle serial numbers. �erefore s is the root

of a new tree and TRDB is still a forest. Debt Accumulation and

Debt Clearance insert a new entry trdb = (sprev, s, . . .) each. Again

s is chosen from the set of idle serial numbers and hence a new

node in our graph. �e only edge inserted is (sprev, s) which gives s
in-degree one, does not change the in-degree of any other node and

can not close a cycle as s has no outgoing edges yet. Hence TRDB
remains a forest. Every other task only queries the ideal transaction

graph, but does not change it. �

�ere are several other statements we prove about the ideal

transaction graph. At this point we will only list them and omit the

proofs.

Lemma D.2.

(1) On each tree of TRDB, the UA idA is constant.
(2) �ere is a one-to-one and onto correspondence between trees in

TRDB and wallets.
(3) Let (s∗, . . . ,b∗, r∗) and (s, . . . ,b, r) be two nodes in TRDB with

an edge (idC ,p,d) from s∗ to s . �en

b = b∗ + p and r = r∗ + d .

(4) Let s be a node in TRDB with counter x a�ached to it. �en s has
depth x with respect to its tree in TRDB.

(5) Every node with the same depth in the same tree of TRDB has
the same fraud detection ID φ. Conversely, nodes with the same
fraud detection ID are in the same tree and have the same depth.

In a next step, we add in and out commitments, decommitments

and commitment contents

(c, d, m)inOλ , (c, d, m)
in

C

(c, d, m)out

Oλ , (c, d, m)
out

C

from the real protocols to each node in the ideal transaction graph.

�ese commitments are from the �xed and updateable part of the

wallet state before and a�er the transaction that created this wallet

state (cp. section 3). �is information gives a second set of edges

where two nodes s∗ and s are connected if and only if the out-

information of s∗ matches the in-information of s:(
(c, d, m)out

Oλ

)∗
= (c, d, m)inOλ(

(c, d, m)out

C

)∗
= (c, d, m)inC .

We call the resulting graph the augmented transaction graph (cp.

�g. 7).

Lemma D.3. �e graph structures of the ideal and the augmented
transaction graph coincide with overwhelming probability.

D.2 Simulator
In this section we �rst explain the function of a simulator in the

ideal/real paradigm, before showing the simulator for the task of

16

s∗ s(
(c, d, m)out

Oλ
(c, d, m)out

C

)∗
=
(c, d, m)inOλ
(c, d, m)inC

(c, d, m)out

Oλ
(c, d, m)out

C

φ, x, λ,
idA, b, r

Figure 7: Entry of an Augmented Transaction Graph

Debt Accumulation with corrupted OPRside as an example of the

simulators in our proof.

�e general idea of a simulator is that it functions as the ideal

world counterpart of a malicious real world adversary. We show

that for every real world adversary a�acking the real protocol, there

exists a simulator in the ideal world achieving the same things in

an execution of the ideal model. But since the ideal model is triv-

ially secure and privacy preserving, the simulator can not gain any

advantage and so neither can a real world adversary. “Achieving

the same things” in this case means that an outside party can not

distinguish between a protocol execution in the real world with the

real adversary and the ideal model with the simulator, not even if

it may choose parties inputs and learns their outputs. �is rather

complicated setup is simpli�ed by combining the real world ad-

versary and the distinguishing outside party to form one entity,

the so-called environment Z .
14

�is environment controls all cor-

rupted parties completely—including malicious deviations from the

protocol—and chooses inputs for all honest parties as well as learn-

ing their outputs. Now either all parties run an instance of the real

world protocol πP6V2G (see �g. 8), or all honest parties participate

in the ideal model and the simulator has to provide the interface

between the ideal functionality FV2G expecting inputs from the

corrupted parties and the corrupted parties who still run the real

protocol and expect protocol messages from the honest parties in

return (see �g. 9). Now the protocol πP6V2G securely realizes the

ideal functionality FV2G, if we can construct a simulator S in such

a way that the environment Z can not distinguish between the

two cases, i.e., between the real world and the ideal model in �gs. 8

and 9 respectively.

To do this we need to de�ne a separate simulator for every

corruption case and their behavior in each of our systems tasks. As

an example we take a closer look at the simulator for user security

and privacy performing the task Debt Accumulation (see �g. 10).

In this case, the participating EVCC and UA are honest, while the

SECC may be corrupted. �erefore the simulator S has to provide a

SECC’s input to the ideal functionality FV2G and protocol messages

the SECC expects from an EVCC and UA running the real protocol

πP6V2G. To achieve this, it utilizes the SECC’s output it gets from

the ideal functionality, the real protocol messages the SECC sends to

the EVCC and UA as well as its ability to, e.g., extract commitments

or simulate proofs with the trapdoor td it knows from choosing

the CRS.

14
Note that this simpli�cation gives the adversary more power and therefore only

strengthens our security and privacy statement.

P · · · P
P · · · P

πP6V2G

Z

Figure 8: Real World

P · · · P
P · · · P

FV2G

S

Z

Figure 9: Ideal Model

D.3 Indistinguishability
As a last step we have to prove that the environment’s views in

the real world and ideal model (cp. �gs. 8 and 9) are actually indis-

tinguishable. �is is done by de�ning a series of hybrids between

those two worlds. �e �rst hybrid H0 is equal to executing the

real protocol while the last hybridHmax equals an execution of the

ideal model. Each hybrid is of the form

Hi = Exec(πi ,Si ,Z),

where πi and Si are incremental modi�cations of πi−1 and Si−1

respectively. While π0 = πP6V2G is our real world protocol, the last

version πmax equals the ideal functionality FV2G. �e simulator

progresses in the other direction with Smax = S being the original

simulator de�ned in appendix D.2 and S0 being a dummy simulator

17

Simulator S
Task Debt Accumulation

If the SECC is honest, do nothing, else do:

• Load the recorded pk
sig

D , pkacc

D for idD .

• Upon receiving (blEVCC) from Z in the name of C:

– Call FV2G in the name of C with input (∅, blEVCC).
– Obtain SECC output (aE, β) from FV2G.

– (crev, drev) := C6.Com(CRS, 0).
– stmnt1 := (aE, crev, pksig

D).
– π1 := P31.SimProof(CRS, td, stmnt1).
– Compute v := ACC.Evaluate(pkacc

D , blEVCC).
– stmnt2 := (crev, v).
– π2 := P32.SimProof(CRS, td, stmnt2).
– Output (β, aE, crev, π1, π2) to Z as message from E to C.

• Upon receiving (µ) from Z in the name of C:

– Output (OK) to Z as message from E to C.

– Call FV2G in the name of C with input (µ, pkcert

OC
).

– Obtain SECC output (s, φ, aλ, idOλ , aCprev, idOCprev
).

• Upon receiving (certC, c′′ser
, u2) from Z in the name of C:

– Parse (pksig

C , aC, pkcert

OC
, σ cert

OC
) := certC .

– If S4.Vfy(pkcert

OC
, σ cert

OC
, (pksig

C , aC)) = 0, let FV2G abort.

– s′′ ← C4.Extract(CRS, c′′
ser
).

– Set s′ := s · s′′−1
.

– If a record (φ, (pkcert

OC
)∗, t ∗, u∗

2
) ∈ Ω

ds
exists, set

t := t ∗ + skid

A · (u2 − u∗2).

Else set t
R← Zq .

– Insert (φ, pkcert

OC
, t, u2) into Ω

ds
.

– (c′C, d
′
C) := C2.Com(CRS, (0, 0, 0, 0, 0)).

– stmnt := (φ, t, u2, aλ, aCprev, c′C, pk
sig

Oλ
, pkcert

OCprev

).
– π := P4.SimProof(CRS, td, stmnt).
– Output (π , s′, φ, t, c′C, aλ, aCprev, pk

sig

Oλ
, pkcert

OCprev

) to Z as

message from A to C.

• Upon receiving (s′′, d′′
ser
, cC, d′′C, σC, p, d) from Z in the name

of C:

– Set dC := d′C · d
′′
C .

– If C2.Open(CRS, (1G, g
p
1
, gd

1
, 1G, g1), cC, dC) = 0, let FV2G

abort.

– If S1.Vfy(pksig

C , σC, (cC, s)) = 0, let FV2G abort.

– Call FV2G in the name of C with input (p, d).

Figure 10: User Security Simulator for Debt Accumulation

that does nothing but relay all messages. Instead of proving indis-

tinguishability between the real protocol and ideal model in one go,

it is now possible to do this stepwise by proving indistinguishability

between each pair of consecutive hybrids.

As an example lets look at one of the hybrid hops in our proof

of user security. �e incremental di�erence between the hybrids

H9 and H10 in this case is the following: H10 modi�es the task

DebtAccumulation. S10 replaces c′C in the message to the SECC

(cp. �g. 32) by a commitment containing only zeros. Everything

else remains the same. �e proof of indistinguishability between

the hybridsH9 andH10 is a reduction to the cryptographic prop-

erties of the commitment scheme used for c′C and its underlying

hardness assumption; assuming we had an environment Z that

could distinguish betweenH9 andH10, we construct an adversary

who would be able to e�ectively violate the hiding property of the

commitment scheme.

E P6V2G PROTOCOL
�is section contains our concrete instantiation and complete proto-

col πP6V2G. Firstly, we show how the abstractly used cryptographic

building blocks (e.g., encryption and commitments) may be instan-

tiated to implement our system. Secondly, our protocol πP6V2G is

given.

E.1 Instantiation
Our P6V2G protocol πP6V2G uses cryptographic primitives like

commitments and digital signatures in an abstract fashion. Our

security proofs state what properties they need to have, but another

requirement is only stated implicitly. �e languages for which NIZK

proofs are generated contain statements about primitives. �erefore

these statements need to be compatible with the NIZK proof system

that is used. In the following paragraphs we provide an example

for an instantiation of the protocol πP6V2G. �e security of the

instantiations relies on the SXDH assumption [27], the q-strong DH
assumption [5] and the n-DDHI assumption [10].

NIZK Proof System. �e proof systems P1, P2, P31, P32, P4 and

P5 can be instantiated with the SXDH-based variant of the Groth-

Sahai (GS) proof system [27]. It is de�ned for languages Lgp that

contain statements described by the conjunction of pairing-product

equations, multi-scalar equations over G1, multi-scalar equations

over G2 and quadratic equations over Zq . �e GS proof system

is perfectly complete, perfectly sound and Fgp-extractable for the

language Fgp that maps group elements to group elements and

elements x ∈ Zq to gxi . Moreover, it is known to be composable

zero-knowledge under certain restrictions. �ese are met by the

language considered in the protocol.

�e language L(1) of P1 contains range proofs to show that

λ′i ∈ {0, . . . , base − 1}.

�ey can be implemented using the signature-based technique of

Camenisch and Chabounni [12].

Commitment Schemes. Two di�erent commitment schemes are

used throughout our protocol. �e shrinking l-message-commitment

scheme from Abe et al. [3] with message space Zlq , commitment

spaceG2 and opening value spaceG1 is correct, statistically hiding,

additively homomorphic, equivocal and Fgp
′
-Binding for

Fgp
′(m1, . . . ,ml) := (gm1

1
, . . . ,g

ml
1
)

under the SXDH-assumption. It has to be Fgp
′
-binding, because

statements about commitments from this scheme are proven and

the GS proof system is only Fgp-extractable. We use instantiations

of this scheme for C1, C2, C3 and C6 with l equal to two, �ve, two

and one respectively.

18

�e extractable commitment scheme introduced by Groth and

Sahai [27] has message space G1 commitment space G2

1
and open-

ing value space Z2

q . It is correct, hiding, equivocal, extractable and

binding under the SXDH assumption. We use this to instantiate C4.

Cryptographic Accumulator. We instantiate the cryptographic

accumulator with a construction that has originally been proposed

by Nguyen [41] for symmetric pairings. It can accumulate up to

kACC elements, with kACC being a public, pre-determined system

parameter. Au et al. [6] extended this construction with proofs

of non-memberships and Lin and Hopper [37] adopted it to asym-

metric pairings. Security holds under the q-SDH assumption. �e

accumulator is sound for any choice kACC ≤ q. �e space of accu-

mulatable elements is Zq \ {−skacc} with skacc ∈ Zq denoting the

accumulator’s trapdoor. �e value space of the accumulator equals

G1.

Digital Signatures. �e signature schemes S1 to S4 can be in-

stantiated with the structure-preserving signature scheme of Abe

et al. [1]. It is EUF-CMA secure in the generic group model. �e

message space M = Gν
1
×Gµ

2
is de�ned by the two parameters

ν , µ ∈ N0. �en σ ∈ G1 ×G2

2
, sk ∈ Zν+µ+2

q and pk ∈ Gµ+2

1
×Gν

2

holds. We use instantiations of this scheme for S1, S2, S3, and S4
with (ν , µ) equal to (1, 1), (0,y + 1), (0, j + 1), (2l + 4, 0) and (3, z + 1),
respectively. Here, y := |aE |, j := |aλ | and z := |aC |.

Pseudo-Random Function. �e PRF used to generate the fraud

detection IDs can be instantiated with the PRF introduced by Dodis

and Yampolsky [23]. It is an algebraic, group-based construction

and allows to prove that the function was evaluated correctly. �is

function, de�ned by

PRF(λ,x) : Z2

q → G1, (λ,x) 7→ g
1

λ+x
1

with key λ ∈ Zq , is secure for inputs x ∈ {0, . . . ,n} ⊂ Zq under

the n-DDHI assumption.

Asymmetric Encryption. �e protocol uses an adopted variant of

the structure-preserving, IND-CCA secure encryption scheme by

Camenish et al. [13]. �e original encryption scheme is formalized

for a symmetric Type-1 pairing, but we need a scheme that is secure

in the asymmetric Type-3 case. For the conversion we followed a

transformation procedure as proposed by Abe et al. [2] with some

additional, manual optimizations. �e transformed scheme can

encrypt vectors in G1 and is secure under the DLIN assumption.

�e scheme is used as E in the task Issue Wallet to encrypt the hid-

den trapdoor of the wallet. Some explanations are in order on this

choice. Ideally, one would want to encrypt the wallet ID λ ∈ Zq in

order to enable blacklisting. Moreover, the wallet must prove to the

OPRthat it honestly encrypted the correct wallet ID. For practical

reasons the Groth-Sahai NIZK is used (see �g. 39). �erefore an

encryption scheme with message space Zq that is compatible with

the Groth-Sahai NIZK-scheme is required. As we are not aware

of such a scheme, the encryption scheme with message space G1

is used instead. But if the wallet would only encrypt gλ
1

, the DR

would not be able to recover λ from the decryption of e, because

the CDH-assumption holds in G1. To get around this obstacle, the

wallet picks its own share of the seed λ′ by randomly picking a

“digit representation” λ′i in the base-base system:

λ′ =
∑̀
i=0

λ′i · base
i

If base is chosen in a way that it is e�ciently possible to compute

the discrete logarithm for the elements λ′i < base, it is possible to

recover λ′ (see �g. 36). �e wallet encrypts all λ′i chunks, the OPR’s

share λ′′ and its own public key pkid

A inside a single vector. As the

OPR’s share λ′′ is known to the OPRanyway, it can additionally be

stored in the clear alongside the encryption and thus does not need

to be split into chunks. Nonetheless, it is still required that the OPR’s

share λ′′ is part of the encryption such that none of the components

of the wallet ID is malleable. Otherwise an malicious OPRcould try

to evaluate the PRF at ineligible points and thus blacklist a di�erent

(innocent) user. For the same reason, the wallet’s public key must

be bound to the encryption.

E.2 Full Protocol
Finally, we include our complete P6V2G protocol πP6V2G in this

section. An overview of each party’s locally saved state as well as all

tasks supported by the system can be found in �g. 11. For readability

purposes most tasks are then given in two parts: a wrapper and

a core protocol. In the wrapper protocol the participating parties

mainly load and save internally stored information needed for the

current task. All interaction between parties is conducted in the

core protocol which is invoked by the wrapper. Lastly, if a protocol

includes a NIZK proof, the corresponding language (i.e., properties

this proof asserts) is given at the very end.

19

UC-Protocol πP6V2G
I. Local State

�e DR D internally records:

• Its public and private key (skD, pkD).
• A mapping pkE 7→ (aE, rev).

An OPR O internally records:

• Its public and private key (skO, pkO).
• A self-signed certi�cate certCO .

• A mapping pkC 7→ aC .

• A set HTDλ of hidden trapdoors for wallets.

• Sets Ω
bl

and Ω
ds

containing blacklisting information and double-

spending detection information.

A SECC C internally records:

• Its public and private key (skC, pkC).
• Its certi�cate certC validated by an OPR.

• Sets Ω
bl

and Ω
ds

containing blacklisting information and double-

spending detection information.

An EVCC E internally records:

• Its public and private key (skE, pkE).
• Its certi�cate certE validated by the DR.

A UA A internally records:

• Its public and private key (pkid

A, sk
id

A).
• A set {τ } of all its recorded tokens.

II. Behavior – Tasks

• Register DR (�g. 12)

• Register OPR (�g. 12)

• Register SECC (�g. 12)

• Register EVCC (�g. 12)

• Register UA (�g. 12)

• Certify SECC (�g. 13)

• Certify EVCC (�g. 14)

• Issue Wallet (�g. 15)

• Debt Accumulation (�g. 17)

• Debt Clearance (�g. 16)

• Double-Spending Detection (�g. 18)

• Guilt Veri�cation (�g. 19)

• Blacklist UA (�g. 20)

• Blacklist EVCC (�g. 21)

Figure 11: Protocol πP6V2G

UC-Protocol πP6V2G – Task Register Party
Party input: (register)

(1) If a key pair (pkP, skP) has already been recorded, output ⊥
and abort.

(2) Obtain CRS from FCRS.

(3) Run (pkP, skP) ← RegisterParty(CRS) (see �gs. 22 to 26).

(4) Record (pkP, skP) internally and call G
BB

with input

(register, pkP).
Party output: (pkP)

Figure 12: Protocol for Task Register Party

UC-Protocol πP6V2G – Task Certify SECC
SECC input: (certify)
OPR input: (certify, aC)

(1) For the SECC side:

• Load the internally recorded pk
sig

C .

• Retrieve pkcert

O from G
BB

for ID idO .

(2) For the OPR side:

• Load the internally recorded (pkcert

O , skcert

O).
• Retrieve pk

sig

C from G
BB

for ID idC .

• Check that no mapping pk
sig

C 7→ a∗C has been registered

before, else ouput ⊥ and abort.

(3) Run CertifySECC (see �g. 27) for the SECC and the OPR:((certC)
(OK)

)
← CertifySECC

〈
C

(
pk

sig

C ,pkcert

O

)
O

(
pkcert

O ,skcert

O ,pk
sig

C ,aC
) 〉

(4) For the SECC side:

• Record certC internally.

• Parse (pksig

C , aC, pkcert

O , σ cert

O) := certC .

• Retrieve idO from G
BB

for public key pkcert

O .

(5) For the OPR side:

• Record pk
sig

C 7→ aC internally.

SECC output: ((aC, idO))
OPR output: (OK)

Figure 13: Protocol for Task Certify SECC

UC-Protocol πP6V2G – Task Certify EVCC
EVCC input: (certify)
DR input: (certify, aE)

(1) For the EVCC side:

• Load the internally recorded (pkid

E , sk
id

E).
• Retrieve pk

sig

D from G
BB

for ID idD .

(2) For the DR side:

• Load the internally recorded (pksig

D , sk
sig

D).
• Check that no mapping pkid

E 7→ (a
′
E, rev

′) has been registered

before, else ouput ⊥ and abort.

(3) Run CertifyEVCC (see �g. 28) for the EVCC and the DR:((certE)
(rev)

)
← CertifyEVCC

〈
E
(
pkid

E ,sk
id

E ,pk
sig

D
)

D
(
sk

sig

D ,aE
) 〉

(4) For the EVCC side:

• Record certE internally.

• Parse (rev, aE, c, d, σ) := certE .

(5) For the DR side:

• Record pkid

E 7→ (aE, rev) internally.

EVCC output: (aE)
DR output: (OK)

Figure 14: Protocol for Task Certify EVCC

20

UC-Protocol πP6V2G – Task Issue Wallet
UA input: (issue)
OPR input: (issue, a, r, wl)

(1) For the UA side:

• Load the internally recorded (pkid

A, sk
id

A).
• Retrieve pkenc

D from G
BB

for ID idD .

• Retrieve pk
sig

O from G
BB

for ID idO .

(2) For the OPR side:

• Load the internally recorded sk
sig

O and sk
sig

CO
.

• Load the internally recorded certCO .

• Retrieve pkenc

D from G
BB

for ID idD .

(3) Run IssueWallet (see �g. 29) for the UA and the OPR:((τ)
(s,htdλ)

)
← IssueWallet

〈
A

(
pkenc

D ,pk
sig

O ,pkid

A,skid

A
)

O
(
pkenc

D ,sk
sig

O ,sk
sig

CO
,certCO ,a,r ,wl

) 〉
(4) For the UA side:

• If VerifyWallet(pkid

A, τ) (see �g. 35) returns NOK, output ⊥
and abort.

• Record τ internally.

• Parse (s, aλ, r) from τ .

(5) For the OPR side:

• Insert htdλ into HTDλ .

UA output: (s, aλ, idO, r)
OPR output: (s)

Figure 15: Protocol for Task Issue Wallet

UC-Protocol πP6V2G – Task Debt Clearance
UA input: (clear, sprev)
OPR input: (clear)

(1) For the UA side:

• Load the internally recorded (pkid

A, sk
id

A).
• Load the internally recorded τ prev

for sprev
.

(2) For the OPR side:

• Load the internally recorded pk
sig

O .

(3) Run DebtClearance (see �g. 34) for the UA and OPR:

©­­«
(bbill

,r
bill)(

pkid

A,aλ ,ωbl
,ω

ds
,r bill,

aCprev ,pkcert

OCprev

) ª®®¬← DebtClearance

〈
A

(
pkid

A,skid

A,τ prev

)
O

(
pk

sig

O

) 〉
(4) For the OPR side:

• Record ω
bl

and ω
ds

internally.

• Parse (φ, −b
bill

, 0) := ω
bl

.

• Retrieve idA from G
BB

for pkid

A .

• Retrieve idOCprev
from G

BB
for pkcert

OCprev

.

UA output: (b
bill

, r
bill
)

OPR output: (φ, idA, aλ, bbill
, r

bill
, aCprev, idOCprev

)

Figure 16: Protocol for Task Debt Clearance

UC-Protocol πP6V2G – Task Debt Accumulation
SECC input: (charge, blUA, blEVCC, µ)
EVCC input: (charge, β)
UA input: (charge, sprev)

(1) For the SECC side:

• Retrieve pk
sig

D , pkacc

D for ID idD .

(2) For the EVCC side:

• Load the internally recorded (pkid

E , sk
id

E).
• Load the internally recorded certE .

• Retrieve pk
sig

D , pkacc

D from G
BB

for ID idD .

(3) Run CheckEVCC (see �g. 31) for the EVCC and SECC:((µ)
(aE ,β)

)
← CheckEVCC

〈
E
(
pkid

E ,sk
id

E ,pk
sig

D ,pkacc

D ,certE ,β
)

C
(
pk

sig

D ,pkacc

D ,bl
EVCC

,µ
) 〉

(4) For the SECC side:

• Conduct charging.

• Determine p and d .

• Load the internally recorded (pkC, skC).
• Load the internally recorded certC .

(5) For the UA side:

• Load the internally recorded (pkid

A, sk
id

A).
• Load the internally recorded τ prev

for sprev
.

(4) Run DebtAccum (see �g. 32) for SECC and UA:(
(τ ,p,d)(

aλ ,pk
sig

Oλ
,s,ω

bl
,ω

ds

)) ← DebtAccum

〈
A

(
pkid

A,skid

A,τ prev

)
C

(
sk

sig

C ,certC,bl
UA

,p,d
) 〉

(6) For the SECC side:

• Record ω
bl

and ω
ds

internally.

• Parse φ from ω
bl

.

• Retrieve idOλ from G
BB

for public key pk
sig

Oλ
.

(7) For the UA side:

• If VerifyWallet(pkid

A, τ) (see �g. 35) returns NOK, output ⊥
and abort.

• Record τ internally.

• Parse (aC, s, b, r) from τ .

SECC output: (aλ, idOλ , aE, β, s, φ)
EVCC output: (aλ, idOλ , µ)
UA output: (aC, s, b, r, p, d)

Figure 17: Protocol for Task Debt Accumulation

UC-Protocol πP6V2G – Task Double-Spending Detection
OPR input: (detect, φ)

(1) Load the recorded set Ω
ds

of all double spending transaction

information.

(2) Pick ω
ds
, ω∗

ds
∈ Ω

ds
with ω

ds
= (φ, t, u2) and ω∗

ds
=

(φ, t ∗, u∗
2
), such that u2 , u∗

2
.

(3) Set skid

A := (t − t ∗) · (u2 − u∗
2
)−1

mod q.

(4) Set pkid

A := g
skid

A
1

.

(5) Retrieve idA from G
BB

for pkid

A .

(6) Set π := skid

A .

OPR output: (idA, π)

Figure 18: Protocol for Task Double-Spending Detection

21

UC-Protocol πP6V2G – Task Guilt Veri�cation
Party input: (verify, idA, π)

(1) Retrieve pkid

A from G
BB

for idA .

(2) If gπ
1
= pkid

A then out := OK, else out := NOK.

Party output: (out)

Figure 19: Protocol for Task Guilt Veri�cation

UC-Protocol πP6V2G – Task Blacklist UA
DR input: (blacklistUA, idAD)
OPR input: (blacklistUA, idAO)

(1) For the DR side:

• Load the internally recorded skenc

D .

• Retrieve pkid

AD
from G

BB
for idAD .

(2) For the OPR side:

• Load internally recorded set HTDλ and set HTDAλ =

{htdλ |(idA, htdλ) ∈ HTDλ }.
(3) Run BlacklistUA (see �g. 36) for OPR and DR:((OK)

(ΦA)
)
← BlacklistUA

〈
D

(
skenc

D ,pkid

AD

)
O

(
HTDAλ

)
〉

(4) For the OPR side:

• Load the internally recorded set Ω
bl

.

• Let ΩA
bl

be the subset of blacklist database entries (φ, p, d) ∈
Ω

bl
with fraud detection ID φ ∈ ΦA .

• (bbill, r bill) :=
∑
(·, ·,p,d)∈ΩA

bl

(p, d)

DR output: (OK)
OPR output: (bbill, r bill, ΦA)

Figure 20: Protocol for Task Blacklist UA

UC-Protocol πP6V2G – Task Blacklist EVCC
DR input: (blacklistEVCC)
OPR input: (blacklistEVCC, idE)

(1) For the DR side:

• Load the mapping {pkid

E∗ } → ({aE∗ } × {rev }) and call it

frev.

(2) For the OPR side:

• Retrieve pkid

E from G
BB

for idE .

(3) Run BlacklistEVCC (see �g. 37) for the OPR and DR:(
(OK)
(rev)

)
← BlacklistEVCC

〈
D(frev)
O

(
pkid

E
) 〉

DR output: (OK)
OPR output: (rev)

Figure 21: Protocol for Task Blacklist EVCC

RegisterDR(CRS)

(pksig

D , sk
sig

D) ← S2.Gen(CRS)
(pkenc

D , skenc

D) ← E.Gen(CRS)
(pkacc

D , skacc

D) ← ACC.Gen(CRS)

(pkD, skD) := ((pksig

D , pkenc

D , pkacc

D), (sk
sig

D , skenc

D , skacc

D))
return (pkD, skD)

Figure 22: Core Protocol RegisterDR

RegisterOPR(CRS)

(pksig

O , sk
sig

O) ← S3.Gen(CRS)
(pkcert

O , skcert

O) ← S4.Gen(CRS)

(pksig

CO
, sk

sig

CO
) ← S1.Gen(CRS)

(pkO, skO) := ((pksig

O , pkcert

O , pk
sig

CO
), (sksig

O , skcert

O , sk
sig

CO
))

return (pkO, skO)

Figure 23: Core Protocol RegisterOPR

RegisterSECC(CRS)

(pksig

C , sk
sig

C) ← S1.Gen(CRS)

return (pksig

C , sk
sig

C)

Figure 24: Core Protocol RegisterSECC

RegisterEVCC(CRS)

x
R← Zq

(pkid

E , sk
id

E) := (gx
1
, x)

return (pkid

E , sk
id

E)

Figure 25: Core Protocol RegisterEVCC

RegisterUA(CRS)

x
R← Zq

(pkid

A, sk
id

A) := (gx
1
, x)

return (pkid

A, sk
id

A)

Figure 26: Core Protocol RegisterUA

22

C(pksig

C , pkcert

O) O(pkcert

O , skcert

O , pk
sig

C , aC)

σ cert

O := S4.Sign(skcert

O , (pksig

C , aC))

certC := (pksig

C , aC, pk
cert

O , σ cert

O)

certC

parse ((pksig

C)
∗, aC, (pkcert

O)
∗, σ cert

O) := certC

if S4.Vfy(pkcert

O , σ cert

O , (pksig

C , aC)) = 0

return (⊥)
return (certC) return (OK)

Figure 27: Core Protocol CertifySECC

E(pkid

E , sk
id

E , pk
sig

D) D(sksig

D , aE)

aE

(c′, d′) := C3.Com(CRS, (0, skid

E))

stmnt := (c′, pkid

E)

wit := (d′, g
skid

E
2
)

π := P2.Prove(CRS, stmnt, wit)

π , c′, pkid

E

stmnt := (c′, pkid

E)
if P2.Vfy(CRS, stmnt, π) = 0

return (⊥)

rev
R← Z∗q

(c′′, d′′) := C3.Com(CRS, (rev, 0))
c := c′ · c′′

σ := S2.Sign(sksig

D , (c, aE))

d′′, c, σ , rev

d := d′ · d′′

if C3.Open(CRS, (Rev, pkid

E), c, d) = 0

∨ S2.Vfy(pksig

D , σ , (c, aE)) = 0

return (⊥)
certE := (rev, aE, c, d, σ)
return (certE) return (rev)

Figure 28: Core Protocol CertifyEVCC

23

A(pkenc

D , pk
sig

O , pkid

A, sk
id

A) O(pkenc

D , sk
sig

O , sk
sig

CO
, certCO , a, r, wl)

s′
R← S s′′

R← S

for i ∈ {0, . . . , ` }

λ′i
R← {0, . . . , base − 1}

Λ′i := g
λ′i
1

λ′ =
∑̀
i=0

λ′i · basei λ′′
R← Zq

Λ′ := gλ
′

1
Λ′′ := gλ

′′
1

(c′
ser
, d′

ser
) ← C4.Com(CRS, s′)

(c′
pre-seed

, d′
pre-seed

) ← C5.Com(CRS, λ′)

pkid

A, c
′
ser
, c′

pre-seed

if pkid

A < wl

return (notwhitelisted)

a, r, s′′, λ′′, certCO

parse (pksig

CO
, aO, pk

cert

O , σ cert

O) := certCO

if S4.Vfy(pkcert

O , σ cert

O , (pksig

CO
, aO)) = 0

return (⊥)
s := s′ · s′′

λ := λ′ + λ′′

Λ′′ := gλ
′′

1

unext

1
, rand1, rand2

R← Zq

e := E.Enc(pkenc

D , (Λ′
0
, . . . , Λ′`, Λ

′′, pkid

A); rand1, rand2)

(cO, dO) := C1.Com(CRS, (λ, skid

A))
(cCO , dCO) := C2.Com(CRS, (λ, 0, r, unext

1
, 1))

stmnt := (pkid

A, pk
enc

D , e, cO, cCO , c
′
pre-seed

, Λ′′, r)

wit := (rand1, rand2, λ, λ′, λ′0, . . . , λ
′
`, g

unext

1

1
,

gλ
1
, gλ

′
1
, g

λ′
0

1
, . . . , g

λ′
`

1
, dO, dCO , d

′
pre-seed

, g
skid

A
2
)

π := P1.Prove(CRS, stmnt, wit)

π , cO, cCO , d
′
ser
, s′, e

if C4.Open(CRS, s′, c′
ser
, d′

ser
) = 0

return (⊥)
s := s′ · s′′

stmnt := (pkid

A, pk
enc

D , e, cO, cCO , c
′
pre-seed

, Λ′′, r)
if P1.Vfy(CRS, stmnt, π) = 0

.

.

. return (⊥)

Figure 29: First Part of Core Protocol IssueWallet

24

A(pkenc

D , pk
sig

O , pkid

A, sk
id

A) O(pkenc

D , sk
sig

O , sk
sig

CO
, certCO , a, r, wl)

.

.

. σO := S3.Sign(sksig

O , (cO, a))

σCO := S1.Sign(sksig

CO
, (cCO , s))

σCO , σO

φ := PRF(λ, 0)

τ :=
(
s
��
0, r

��
1, unext

1

�� (c, d, σ)CO , certCO �� λ, a, (c, d, σ)O, pksig

O
)

htdλ := (pkid

A, s, λ
′′, e)

return (τ) return (s, htdλ)

Figure 30: Continuation of Core Protocol IssueWallet

E(pkid

E , sk
id

E , pk
sig

D , pkacc

D , certE, β) C(pksig

D , pkacc

D , blEVCC, µ)

blEVCC

parse (rev, aE, c, d, σ) := certE

if rev ∈ blEVCC

return (blacklisted)
v := ACC.Evaluate(pkacc

D , blEVCC)
w := ACC.InitWit(pkacc

D , rev, blEVCC)
(crev, drev) := C6.Com(CRS, rev)

stmnt1 := (aE, crev, pksig

D)

wit1 := (pkid

E , g
rev
1

, d, drev, g
skid

E
2

, c, σ)
π1 = P31.Prove(CRS, stmnt1, wit1)
stmnt2 := (crev, v)
wit2 = (rev, grev1

, drev, w)
π2 = P32.Prove(CRS, stmnt2, wit2)

β, aE, crev, π1, π2

stmnt1 := (aE, crev, pksig

D)
if P31.Vfy(CRS, stmnt1, π1) = 0

return (⊥)
v := ACC.Evaluate(pkacc

D , blEVCC)
stmnt2 := (crev, v)
if P32.Vfy(CRS, stmnt2, π2) = 0

return (blacklisted)

µ

OK

return (µ) return (aE, β)

Figure 31: Core Protocol CheckEVCC

25

A(pkid

A, sk
id

A, τ
prev) C(sksig

C , certC, blUA, p, d)

s′′
R← S

u2

R← Zq

(c′′
ser
, d′′

ser
) := C4.Com(CRS, s′′)

certC, c
′′
ser
, u2

s′
R← S

parse (pksig

C , aC, pk
cert

OC
, σ cert

OC
) := certC

if S4.Vfy(pkcert

OC
, σ cert

OC
, (pksig

C , aC)) = 0

return (⊥)
parse

(
sprev

��bprev, r prev
��x, u1

��(c, d, σ)Cprev, certCprev

��
λ, aλ, (c, d, σ)Oλ , pk

sig

Oλ

)
:= τ prev

t := skid

A · u2 + u1 mod q

unext

1

R← Zq

(c′C, d
′
C) := C2.Com(CRS, (λ, bprev, r prev, unext

1
, x))

φprev
:= PRF(λ, x − 1)

φ := PRF(λ, x)

parse (pksig

Cprev
, aCprev, pkcert

OCprev

, σ cert

OCprev

) := certCprev

stmnt := (φ, t, u2, aλ, aCprev, c′C, pk
sig

Oλ
, pkcert

OCprev

)

wit := (λ, u1, x, skid

A, s
prev, φprev, pkid

A, g
λ
1
, g

u1

1
, g

unext

1

1
,

gx
1
, gb

prev

1
, gr

prev

1
, d′C, (c, d, σ)Cprev, σ cert

OCprev

, pk
sig

Cprev
,

(c, d, σ)Oλ)
π := P4.Prove(CRS, stmnt, wit)

π , s′, φ, t, c′C, aλ,

aCprev, pk
sig

Oλ
, pkcert

OCprev

stmnt := (φ, t, u2, aλ, aCprev, c′C, pk
sig

Oλ
, pkcert

OCprev

)

if P4.Vfy(CRS, stmnt, π) = 0

return (⊥)
if φ ∈ blUA

return (blacklisted)
s := s′ · s′′

(c′′C, d
′′
C) := C2.Com(CRS, (0, p, d, 0, 1))

cC := c′C · c
′′
C

σC := S1.Sign(sksig

C , (cC, s))

s′′, d′′
ser
, cC, d

′′
C, σC, p, d

if C4.Open(CRS, s′′, c′′
ser
, d′′

ser
) = 0

return (⊥)
.
.
.

Figure 32: First Part of Core Protocol DebtAccum

26

A(pkid

A, sk
id

A, τ
prev) C(sksig

C , certC, blUA, p, d)

s := s′ · s′′
.
.
.

dC := d′C · d
′′
C

b := bprev + p

r := r prev + d

τ :=
(
s
��b, r ��(x + 1), unext

1

��(c, d, σ)C, certC �� ω
bl

:= (φ, p, d)

λ, aλ, (c, d, σ)Oλ , pk
sig

Oλ

)
ω

ds
:= (φ, t, u2)

return (τ , p, d) return (aλ, pk
sig

Oλ
, s, ω

bl
, ω

ds
)

Figure 33: Continuation of Core Protocol DebtAccum

A(pkid

A, sk
id

A, τ
prev) O(pksig

O)

u2

R← Zq

u2

parse
(
sprev

��bprev, r prev
��x, u1

��(c, d, σ)Cprev, certCprev

��
λ, aλ, (c, d, σ)Oλ , pk

sig

Oλ

)
:= τ prev

t := skid

A · u2 + u1 mod q

φprev
:= PRF(λ, x − 1)

φ := PRF(λ, x)

parse (pksig

Cprev
, aCprev, pkcert

OCprev

, σ cert

OCprev

) := certCprev

stmnt := (φ, t, u2, aλ, aCprev, pkid

A, pk
sig

Oλ
, pkcert

OCprev

,

gb
prev

1
, gr

prev

1
)

wit := (λ, u1, x, skid

A, φ
prev, Λ, U1, X , sprev,

(c, d, σ)Cprev, σ cert

OCprev

, pk
sig

Cprev
, (c, d, σ)Oλ)

π := P5.Prove(CRS, stmnt, wit)

π , φ, t, bprev, r prev, pkid

A,

aλ, aCprev, pkcert

OCprev

stmnt := (φ, t, u2, aλ, aCprev, pkid

A, pk
sig

O , pkcert

OCprev

,

gb
prev

1
, gr

prev

1
)

if P5.Vfy(CRS, stmnt, π) = 0

return (⊥)

OK

ω
bl

:= (φ, −bprev, 0)
ω

ds
:= (φ, t, u2)

return (bprev, r prev) return (pkid

A, aλ, ωbl
, ω

ds
, r prev, aCprev, pkcert

OCprev

)

Figure 34: Core Protocol DebtClearance

27

A(pkid

A, τ)

parse
(
s
��b, r ��xnext, unext

1

��(c, d, σ)C, certC ��λ, aλ, (c, d, σ)Oλ , pksig

Oλ

)
:= τ

parse (pksig

C , aC, pk
cert

OC
, σ cert

OC
) := certC

if
(
C1.Open(CRS, (gλ

1
, g

aλ
1
, pkid

A), cOλ , dOλ) = 1 ∧ C2.Open(CRS, (gλ
1
, gb

1
, gr

1
, g

u1

1
, gx

1
), cC, dC) = 1

∧ S3.Vfy(pksig

Oλ
, σOλ , (cOλ , aλ)) = 1 ∧ S1.Vfy(pksig

C , σC, (cC, s)) = 1 ∧ S4.Vfy(pkcert

OC
, σ cert

OC
, (pksig

C , aC)) = 1

)
return (OK)

else

return (NOK)

Figure 35: Core Protocol VerifyWallet

D(skenc

D , pkid

AD) O(HTDλ)

HTDλ

ΦA := ∅
for htdλ ∈ HTDλ

parse (pkid

AO
, s, λ′′, e) := htdλ

(Λ′
0
, . . . , Λ′`, Λ

′′, pkid

AO
) ← E.Dec(skenc

D , e)

if encryption fails ∨ Λ′′ , gλ′′
1
∨ pkid

AD , pkid

AO
return (⊥)

λ := λ′′ +
∑̀
i=0

DLOG(Λ′i) · basei

ΦA := ΦA ∪ {PRF(λ, 0), . . . , PRF(λ, x
bl
)}

ΦA

return (OK) return (ΦA)

Figure 36: Core Protocol BlacklistUA

D(frev) O(pkid

E)

pkid

E

(aE, rev) := frev(pkid

E)

rev

return (OK) return (rev)

Figure 37: Core Protocol BlacklistEVCC

28

L(2) :=


(
c

pkid

E

)> �������
∃ d ∈ G1; Skid

E ∈ G2 :

C3.Open(CRS, (1G1
, pkid

E), c, d) = 1,

e(pkid

E , g2) = e(g1, Skid

E)


Figure 38: Language used in Core Protocol CertifyEVCC

L(1) :=



©­­­­­­­­­­­­«

pkid

A
pkenc

D
e
cO
cCO

c′
pre-seed

Λ′′,
R

ª®®®®®®®®®®®®¬

>

�����������������������������

∃ rand1, rand2, λ, λ′, λ′
0
, . . . , λ′

`
∈ Zq ;

U next

1
, Λ, Λ′, Λ′

0
, . . . , Λ′

`
, dO, dCO , d

′
pre-seed

∈ G1;

Skid

A ∈ G2 :

C1.Open(CRS, (Λ, pkid

A), cO, dO) = 1,

C2.Open(CRS, (Λ, 1G1
, R, U next

1
, 1G1

), cCO , dCO) = 1,

C5.Open(CRS, Λ′, c
pre-seed

, d
pre-seed

) = 1,

e(pkid

A, g2) = e(g1, Skid

A),
Λ = Λ′ · Λ′′, Λ = gλ

1
, Λ′ = gλ

′
1
,

λ′ =
∑`
i=0

λ′i · base
i ,

e = E.Enc(pkenc

D , (Λ′
0
, . . . , Λ′

`
, Λ′′, pkid

A); rand1, rand2),
∀i ∈ {0, . . . , ` } :

λ′i ∈ {0, . . . , base − 1},
Λ′i = g

λ′i
1


Figure 39: Language used in Core Protocol IssueWallet

L(31) :=


©­­«
aE
crev

pk
sig

D

ª®®¬
>

�����������
∃ pkid

E , Rev, d, drev ∈ G1; Skid

E , c ∈ G2;σ ∈ G1 ×G2

2
:

C3.Open(CRS, (Rev, pkid

E), c, d) = 1,

C6.Open(CRS, Rev, crev, drev) = 1,

S2.Vfy(pksig

D , σ , (c, aE)) = 1,

e(pkid

E , g2) = e(g1, Skid

E)


L(32) :=


(
crev
v

)> ��������
∃ rev ∈ Zq ; Rev, drev ∈ G1;w ∈ G1 ×Zq
C6.Open(CRS, Rev, crev, drev) = 1,

Rev = grev
1

,

Ω(w, rev, v) = 1


Figure 40: Languages used in Core Protocol CheckEVCC

L(4) :=



©­­­­­­­­­­­­­«

φ
t
u2

aλ
aCprev

c′C
pk

sig

Oλ
pkcert

OCprev

ª®®®®®®®®®®®®®¬

>

����������������������������������

∃ λ, u1, x, skid

A ∈ Zq ;

sprev, φprev, pkid

A, Λ, U1, U next

1
, X , Bprev, Rprev, d′C, dO, dCprev ∈ G1;

cOλ , cCprev ∈ G2;

σOλ , σCprev, σ cert

OCprev

∈ G1 ×G2

2
;

pk
sig

Cprev
∈ G3

1
×G2 :

C2.Open(CRS, (Λ, Bprev, Rprev, U next

1
, X), c′C, d

′
C) = 1,

C1.Open(CRS, (Λ, pkid

A), cOλ , dOλ) = 1,

C2.Open(CRS, (Λ, Bprev, Rprev, U1, X), cCprev, dCprev) = 1,

S3.Vfy(pksig

Oλ
, σOλ , (cOλ , aλ)) = 1,

S1.Vfy(pksig

Cprev
, σCprev, (cprev

C , sprev)) = 1,

S4.Vfy(pkcert

OCprev

, σ cert

OCprev

, (pksig

Cprev
, aCprev)) = 1,

φprev = PRF(λ, x − 1), φ = PRF(λ, x),
t = skid

A · u2 + u1 mod q,

Λ = gλ
1
, U1 = g

u1

1
, X = gx

1
, pkid

A = g
skid

A
1


Figure 41: Language used in Core Protocol DebtAccum

29

L(5) :=



©­­­­­­­­­­­­­­­­­«

φ
t
u2

aλ
aCprev

pkid

A
pk

sig

Oλ
pkcert

OCprev

Bprev

Rprev

ª®®®®®®®®®®®®®®®®®¬

>

�������������������������������

∃ λ, u1, x, skid

A ∈ Zq ;

φprev, Λ, U1, X , dOλ , dCprev ∈ G1;

cOλ , cCprev, sprev ∈ G2;

σOλ , σCprev, σ cert

OCprev

∈ G1 ×G2

2
;

pk
sig

Cprev
∈ G3

1
×G2 :

C1.Open(CRS, (Λ, pkid

A), cOλ , dOλ) = 1,

C2.Open(CRS, (Λ, Bprev, Rprev, U1, X), cCprev, dCprev) = 1,

S3.Vfy(pksig

Oλ
, σOλ , (cOλ , aλ)) = 1,

S1.Vfy(pksig

Cprev
, σCprev, (cCprev, sprev)) = 1,

S4.Vfy(pkcert

OCprev

, σ cert

OCprev

, (pksig

Cprev
, aCprev)) = 1,

φprev = PRF(λ, x − 1), φ = PRF(λ, x),
t = skid

A · u2 + u1 mod q,

Λ = gλ
1
, U1 = g

u1

1
, X = gx

1
, pkid

A = g
skid

A
1

,


Figure 42: Language used in Core Protocol DebtClearance

30

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 System Definition
	2.1 Parties
	2.2 Functions and Features

	3 Protocol Description
	3.1 Cryptographic Background
	3.2 Wallets
	3.3 Tasks
	3.4 Efficiency

	4 Security and Privacy
	4.1 Inherent Privacy and Security Limitations
	4.2 Proven Privacy Properties
	4.3 Proven Security Properties
	4.4 Proof Sketch

	5 Conclusion and Future Work
	Acknowledgments
	References
	A Notation
	B Integration of P6V2G into ISO 15118
	C Ideal Functionality
	C.1 State
	C.2 Behavior

	D Proof
	D.1 Transaction Graphs
	D.2 Simulator
	D.3 Indistinguishability

	E P6V2G Protocol
	E.1 Instantiation
	E.2 Full Protocol

