
Don’t forget your roots: constant-time root
finding over F2m

Douglas Martins1, Gustavo Banegas2,3, and Ricardo Custódio1

1 Departamento de Informática e Estat́ıstica,
Universidade Federal de Santa Catarina

Florianópolis, SC, 88040-900, Brasil
marcelino.douglas@posgrad.ufsc.br, ricardo.custodio@ufsc.br

2 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
3 Chalmers University of Technology

Gothenburg, Sweden
gustavo@cryptme.in

Abstract. In the last few years, post-quantum cryptography has re-
ceived much attention. NIST is running a competition to select some
post-quantum schemes as standard. As a consequence, implementations
of post-quantum schemes have become important and with them side-
channel attacks. In this paper, we show a timing attack on a code-based
scheme which was submitted to the NIST competition. This timing at-
tack recovers secret information because of a timing variance in finding
roots in a polynomial. We present four algorithms to find roots that are
protected against remote timing exploitation.

Keywords: Side-channel Attack · Post-quantum Cryptography · Code-
based Cryptography · Roots Finding.

1 Introduction

In recent years, the area of post-quantum cryptography has received considerable
attention, mainly because of the call by the National Institute of Standards and
Technology (NIST) for the standardization of post-quantum schemes. On this
call, NIST did not restrict to specific hard problems. However, most schemes
for the Key Encapsulation Mechanism (KEM) are lattice-based and code-based.
The latter type is based on coding theory and includes one of the oldest unbroken
cryptosystems, namely the McEliece cryptosystem [15].

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Su-
perior - Brasil (CAPES) - Finance Code 001; through the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 643161; and
by Sweden through the WASP expedition project Massive, Secure, and Low-Latency Connectivity
for IoT Applications.

2 Douglas Martins, Gustavo Banegas, and Ricardo Custódio

One of the requirements for those proposals is that they are resistant to
all known cryptanalysis methods. However, even if a scheme is immune to such
attacks, it may be subject to attacks related to its implementation. In particular,
submissions need to avoid side-channel attacks.

There are different ways to apply side-channel attacks to a cryptosystem.
As an example, an attacker can measure the execution time of the operations
performed by an algorithm and, based on these measures, estimate some secret
information of the scheme. This approach is thriving even in a data communica-
tion network environment. Daniel J. Bernstein, for instance, demonstrated how
to recover AES keys by doing timing attacks on the cache “access speed” [5].

In code-based cryptography, timing attacks on the decryption process are
mostly done during the retrieval of the Error Locator Polynomial (ELP) as
shown by [20]. The attack is usually done during the polynomial evaluation
process, while computing its roots. This attack was demonstrated first in [20]
and later in an improved version in [10].

[21] demonstrates algorithms to find roots efficiently in code-based cryp-
tosystems. However, the author shows only timings in different types of imple-
mentations and selects the one that has the least timing variability. In other
words, the author does not present an algorithm to find the roots in constant
time and eliminate a remote timing attack as remarked in Section 6 of [22]. In
our work, we use strategies to make the execution time of those algorithms con-
stant. The first and most important one is to write the algorithms iteratively,
eliminating all recursions. We also use permutations and simulated operations
to uncouple possible measurements of the side effects of the data being mea-
sured. The implementation for finding roots in [12] uses Fast Fourier Transform
(FFT), which is efficient, but is built and optimized for F213 . In this paper, we
aim at developing a more generic implementation that does not require specific
optimization in the finite field arithmetic.

Contributions of this paper: In this paper, we show how to perform a timing
attack on a code-based key encapsulation mechanism called BIGQUAKE, which
was submitted to NIST [2]. The attack was based on timing leakage on root
finding process on the decoding step. The original implementation submitted to
NIST uses a variation of the Berlekamp Trace Algorithm (BTA) to find roots in
the ELP. We provide other methods to find roots and implement them avoiding
timing attacks. Moreover, we make a comparison between methods, showing the
number of CPU cycles required for our implementation.

Structure of this paper: In Section 2, we give a brief description of Goppa codes,
the McEliece cryptosystem and BIGQUAKE for an understanding about how
the cryptosystems work and the basic notation used in this paper. In Subsec-
tion 2.4, we show how to use a timing attack for recovering the error vector
in BIGQUAKE. In Section 3, the core of the paper, we present four methods
for finding roots over F2m . We also include countermeasures for avoiding timing
attacks. Section 4 provides a comparison of the number of cycles of the origi-

Don’t forget your roots: constant-time root finding over F2m 3

nal implementation and the implementation with countermeasures. At last, we
conclude and discuss open problems.

2 Preliminaries

In this section, we briefly introduce key concepts about Goppa codes and the
McEliece cryptosystem [15], relevant for this paper. For more details about alge-
braic codes, see [3]. After that, we introduce the BIGQUAKE submission, which
is the focus of a timing attack presented in Subsection 2.4.

Our focus is on binary Goppa codes since BIGQUAKE [2] and other McEliece
schemes use them in their constructions. Moreover, Goppa codes are being used
in other submissions in the Second Round of the NIST standardization process.

2.1 Goppa codes

Let m,n, t ∈ N. A binary Goppa code Γ (L, g(z)) is defined by a polynomial
g(z) =

∑t
i=0 giz

i over F2m with degree t and L = (α1, α2, . . . , αn) ∈ F2m with
αi 6= αj for i 6= j, such that g(αi) 6= 0 for all αi ∈ L and g(z) is square free. To
a vector c = (c1 . . . , cn) ∈ Fn2 we associate a syndrome polynomial such as

Sc(z) =

n∑
i=1

ci
z + αi

, (1)

where 1
z+αi

is the unique polynomial with (z + αi)
1

z+αi
≡ 1 mod g(z).

Definition 1. The binary Goppa code Γ (L, g(z)) consists of all vectors c ∈ Fn2
such that

Sc(z) ≡ 0 mod g(z). (2)

The parameters of a linear code are the size n, dimension k and minimum
distance d. We use the notation [n, k, d]−Goppa code for a binary Goppa code
with parameters n, k and d. If the polynomial g(z), which defines a Goppa code,
is irreducible over F2m , we call the code an irreducible Goppa code.

The length of a Goppa code is given by n = |L| and its dimension is k ≥
n−mt, where t = deg(g), and the minimum distance of Γ (L, g(z)) is d ≥ 2t+ 1.
The syndrome polynomial Sc(z) can be written as:

Sc(z) ≡
w(z)

σ(z)
mod g(z), (3)

where σ(z) =

l∏
i=1

(z + αi) is the product over those (z + αi), where there is an

error in position i of c. This polynomial σ(z) is called Error-Locator Polynomial
(ELP).

A binary Goppa code can correct a codeword c ∈ Fn2 , which is obscured by
an error vector e ∈ Fn2 with Hamming weight wh(e) up to t, i.e., the numbers

4 Douglas Martins, Gustavo Banegas, and Ricardo Custódio

of non-zero entries in e is at most t. The way to correct errors is using a decod-
ing algorithm. For irreducible binary Goppa codes, we have three alternatives:
Extended Euclidean Algorithm (EEA), Berlekamp-Massey algorithm and Pat-
terson algorithm [17]. The first two are out of the scope of this paper since they
need a parity-check matrix that has twice more rows than columns. The Patter-
son algorithm, which is the focus of this paper, can correct up to t errors with a
smaller structure.

2.2 McEliece Cryptosystem

In this section, we describe the three important algorithms of the McEliece cryp-
tosystem [15], i.e., key generation, message encryption, and message decryption.
To give a practical explanation, we describe the McEliece scheme based on bi-
nary Goppa codes. However, it can be used with any q-ary Goppa codes or
Generalized Srivastava codes with small modifications as shown by [16] and [1].

Algorithm 1 is the key generation of McEliece. First, it starts by generating
a binary Goppa polynomial g(z) of degree t, which can be an irreducible Goppa
polynomial. Second, it generates the support L as an ordered subset of F2m

satisfying the root condition. Third, it is the computation of the systematic
form of Ĥ is done using the Gauss-Jordan elimination algorithm. Steps four,
five, and six compute the generator matrix from the previous systematic matrix
and return secret and public key. Algorithm 2 shows the encryption process of

Algorithm 1: McEliece key generation.

Data: t, k, n,m as integers.
Result: pk as public key, sk as secret key.

1 Select a random binary Goppa polynomial g(z) of degree t over F2m ;
2 Randomly choose n distinct elements of F2m that are not roots of g(z) as the

support L;

3 Compute the k × n parity check matrix Ĥ according to L and g(z);
4 Bring H to systematic form: Hsys = [Ik−n|H ′];
5 Compute generator matrix G from Hsys;
6 return sk = (L, g(z)), pk = (G);

McEliece. The process is simple and efficient, requiring only a random vector e
with wh(e) ≤ t and a multiplication of a vector by a matrix.

Algorithm 2: McEliece encryption.

Data: Public key pk = G, message m ∈ Fk2 .
Result: c as ciphertext of length n.

1 Choose randomly an error vector e of length n with wh(e) ≤ t;
2 Compute c = (m ·G)⊕ e;
3 return c;

Don’t forget your roots: constant-time root finding over F2m 5

Algorithm 3 gives the decryption part of McEliece. This algorithm consists of
the removal of the applied errors using a decoding algorithm. First, we compute
the syndrome polynomial Sc(z). Second, we recover the error vector e from the
syndrome polynomial. Finally, we can recover the plaintext m computing c⊕ e,
i.e., the exclusive-or of the ciphertext and the error vector. Note that in modern
KEM versions of McEliece, m ∈ Fn2 is a random bit string used to compute a
session key using a hash function. Hence, there is no intelligible information in
seeing the first k positions of m with almost no error.

Algorithm 3: McEliece decryption.

Data: c as ciphertext of length n, secret key sk = (L, g(z)).
Result: Message m

1 Compute the syndrome Sc(z) =
∑ ci

z+αi
mod g(z);

2 Compute τ(z) =
√
S−1
c (z) + z;

3 Compute b(z) and a(z), so that b(z)τ(z) = a(z) mod g(z), such that

deg(a)≤ b t2c and deg(b)≤ b t−1
2 c;

4 Compute the error locator polynomial σ(z) = a2(z) + zb2(z) and deg(σ)
≤ t;

5 The position in L of the roots of σ(z) define the error vector e;
6 Compute the plaintext m = c⊕ e;
7 return m;

In the decryption algorithm, steps 2-5 are the description of Patterson’s al-
gorithm [17]. This same strategy can be used in schemes that make use of the
Niederreiter cryptosystem [11]. These schemes differ in their public-key struc-
ture, encryption, and decryption step, but both of them, in the decryption steps,
decode the message from the syndrome.

The roots of the ELP can be acquired with different methods. Although
these methods can be implemented with different forms, it is essential that the
implementations do not leak any timing information about their execution. This
leakage can lead to a side-channel attack using time differences in the decryption
algorithm, as we explore in a scheme in Subsection 2.4.

2.3 BIGQUAKE Key Encapsulation Mechanism

BIGQUAKE (BInary Goppa QUAsi-cyclic Key Encapsulation) [2] uses binary
Quasi-cyclic (QC) Goppa codes in order to accomplish a KEM between two
distinct parts. Instead of using binary Goppa codes, BIGQUAKE uses QC Goppa
codes, which have the same properties as Goppa codes but allow smaller keys.
Furthermore, BIGQUAKE aims to be IND-CCA [6], which makes the attack
scenario in Section 2.4 meaningful.

Let us suppose that Alice and Bob (A and B respectively) want to share a
session secret key K using BIGQUAKE. Then Bob needs to publishes his public
key and Alice needs to follow the encapsulation mechanism. F is a function that
maps an arbitrary binary string as input and returns a word of weight t, i.e
F : {0, 1}∗ → {x ∈ Fn2 |wh(x) = t}. The detailed construction of the function F

6 Douglas Martins, Gustavo Banegas, and Ricardo Custódio

can be found at subsection 3.4.4 in [2]. H : {0, 1}k → {0, 1}s is a hash function.
The function H in the original implementation is SHA-3. The encapsulation
mechanism can be described as:

1. A generates a random m ∈ Fs2;

2. Generate e← F(m);

3. A sends c← (m⊕H(e), H · eT ,H(m)) to B;

4. The session key is defined as: K ← H(m, c).

After Bob receives c from Alice, he initiates the decapsulation process:

1. B receives c = (c1, c2, c3);

2. Using the secret key, Bob decodes c2 to e′ with wh(e′) ≤ t such that c2 =
H · e′T ;

3. B computes m′ ← c1 ⊕H(e′);

4. B computes e′′ ← F(m′);

5. If e′′ 6= e′ or H(m′) 6= c3 then B aborts.

6. Else, B computes the session key: K ← H(m′, c).

After Bob executes the decapsulation process successfully, both parties of the
protocol agree on the same session secret key K.

2.4 Attack Description

In [20], the attack exploits the fact that flipping a bit of the error e changes the
Hamming weight w and per consequence the timing for its decryption. If we flip
a position that contains an error (ei = 1) then the error will be removed and the
time of computation will be shorter. However, if we flip a bit in a wrong position
(ei = 0) then it will add another error, and it will increase the decryption time.
The attack described in [10] exploits the root finding in the polynomial ELP. It
takes advantage of sending ciphertexts with fewer errors than expected, which
generate an ELP with degree less than t, resulting in less time for finding roots.
We explore both ideas applied to the implementation of BIGQUAKE.

Algorithm 4 is the direct implementation of the attack proposed in [20]. We
reused the attack presented to show that the attack still works in current imple-
mentations such as BIGQUAKE when the root finding procedure is vulnerable
to remote timing attacks.

After finding the position of the errors, one needs to verify if the error e′

found is the correct one, and then recover the message m. In order to verify for
correctness, one can check e′ by computing H(e)⊕H(e′)⊕m = m′ and if c3 is
equal to H(m′). As mentioned in Subsection 2.3, the ciphertext is composed by
c = (m⊕H(e), H · eT ,H(m)) or c = (c1, c2, c3).

Don’t forget your roots: constant-time root finding over F2m 7

Algorithm 4: Attack on ELP.

Data: n-bit ciphertext c, t as the number of errors and precision parameter M
Result: Attempt to obtain an error vector e hidden in c.

1 e← [0, . . . , 0];
2 for i← 0 to n− 1 do
3 T ← 0;
4 c′ ← c⊕ setBit(n, i);
5 timem ← 0;
6 for j ← 0 to M do
7 times ← time();
8 decrypt(c′);
9 timee ← time();

10 timem ← timem + (timee − times);
11 end
12 T ← timem/M ;
13 L← (T, i);

14 end
15 Sort L in descending order of T ;
16 for k ← 0 to t− 1 do
17 index← L[k].i;
18 e[index]← 1;

19 end
20 return e;

2.5 Constant-time F2m operations

In our analysis, we noticed that the original implementation of BIGQUAKE uses
log and antilog tables for computing multiplications and inversions. These look-
up tables give a speedup in those operations. However, this approach is subject
to cache attacks in a variation of [9], where the attacker tries to induce cache
misses and infer the data.

Since we want to avoid the use of look-up tables, we made a constant time
implementation for multiplication and inversion, using a similar approach as [12].
In order to illustrate that, Listing 1.1 shows the multiplication in constant-time
between two elements over F212 followed by the reduction of the result by the
irreducible polynomial f(x) = x12 +x6 +x4 +x+ 1. The inversion in finite fields
can be computed by raising an element a to the power 2m − 2, i.e., a2m−2, as
shown in Listing 1.1.

3 Root finding methods

As argued, the leading cause of information leakage in the decoding algorithm is
the process of finding the roots of the ELP. In general, the time needed to find
these roots varies, often depending on the roots themselves. Thus, an attacker
who has access to the decoding time can infer these roots, and hence get the

8 Douglas Martins, Gustavo Banegas, and Ricardo Custódio

vector of errors e. Next, we propose modifications in four of these algorithms to
avoid the attack presented in Subsection 2.4.

Strenzke [21] presents an algorithm analysis for fast and secure root finding
for code-based cryptosystems. He uses as a basis for his results the implemen-
tation of “Hymes ” [7]. Some of that implementation uses, for instance, log and
antilog tables for some operations in finite fields, which are known to be vulner-
able. Given that, we rewrote those operations without tables and analyzed each
line of code from the original implementations, taking care of modifying them
in order to eliminate processing that could indicate root-dependent execution
time. The adjustments were made in the following algorithms to find roots: ex-
haustive search, linearized polynomials, Berlekamp trace algorithm (BTA), and
successive resultant algorithm (SRA).

In this work, we use the following notation: given a univariate polynomial f ,
with degree d and coefficients over Fpn , one needs to find its roots. In our case,
we are concerned about binary fields, i.e., p = 2. Additionally, we assume that
all the factors of f are linear and distinct.

3.1 Exhaustive search

The exhaustive search is a direct method, in which the evaluation of f for all the
elements in F2m is performed. A root is found whenever the evaluation result is
zero. This method is acceptable for small fields and can be made efficient with
a parallel implementation. Algorithm 5 describes this method.

As can be seen in Algorithm 5, this method leaks information. This is because
whenever a root is found, i.e., dummy = 0, an extra operation is performed. In
this way, the attacker can infer from this additional time that a root was found,
thus providing ways to obtain data that should be secret.

Algorithm 5: Exhaustive search algorithm for finding roots of a univariate
polynomial over F2m .

Data: p(x) as univariate polynomial over F2m with d roots, A = [a0, . . . , an−1]
as all elements in F2m , n as the length of A.

Result: R as a set of roots of p(x).
1 R← ∅;
2 for i← 0 to n− 1 do
3 dummy ← p(A[i]);
4 if dummy == 0 then
5 R.add(A[i]);
6 end

7 end
8 return R;

One solution to avoid this leakage is to permute the elements of vector A.
Using this technique, an attacker can identify the extra operation, but without
learning any secret information. In our case, we use the Fisher-Yates shuffle [8] for
shuffling the elements of vector A. In [25], the authors show an implementation

Don’t forget your roots: constant-time root finding over F2m 9

of the shuffling algorithm safe against timing attacks. Algorithm 6 shows the
permutation of the elements and the computation of the roots.

Algorithm 6: Exhaustive search algorithm with a countermeasure for find-
ing roots of an univariate polynomial over F2m .

Data: p(x) as a univariate polynomial over F2m with d roots,
A = [a0, . . . , an−1] as all elements in F2m , n as the length of A.

Result: R as a set of roots of p(x).
1 permute(A);
2 R← ∅;
3 for i← 0 to n− 1 do
4 dummy ← p(A[i]);
5 if dummy == 0 then
6 R.add(A[i]);
7 end

8 end
9 return R;

Using this approach, we add one extra step to the algorithm. However, this
permutation blurs the sensitive information of the algorithm, making the usage
of Algorithm 6 slightly harder for the attacker to acquire timing leakage.

The main costs for Algorithm 5 and Algorithm 6 are the polynomial evalua-
tion and we define as Cpol eval. Since we need to evaluate each element in A, it
is safer to assume that the total cost is:

Cexh = n(Cpol eval). (4)

We can go further and express the cost for one polynomial evaluation by
the number of operations in finite fields. In our implementation4 the cost is
determined by the degree d of the polynomial and basic finite field operations
such as addition and multiplication. As a result, the cost for one polynomial
evaluation is:

Cpol eval = d(Cgf add + Cgf mul). (5)

3.2 Linearized polynomials

The second countermeasure proposed is based on linearized polynomials. The
authors in [14] propose a method to compute the roots of a polynomial over F2m ,
using a particular class of polynomials, called linearized polynomials. In [21],
this approach is a recursive algorithm which the author calls “dcmp-rf”. In
our solution, however, we present an iterative algorithm. We define linearized
polynomials as follows:

4 available in https://git.dags-project.org/gustavo/roots finding

10 Douglas Martins, Gustavo Banegas, and Ricardo Custódio

Definition 2. A polynomial `(y) over F2m is called a linearized polynomial if

`(y) =
∑
i

ciy
2i

, (6)

where ci ∈ F2m .

In addition, from [24], we have Lemma 1 that describes the main property of
linearized polynomials for finding roots.

Lemma 1. Let y ∈ F2m and let α0, α1, . . . , αm−1 be a standard basis over F2.
If

y =

m−1∑
k=0

ykα
k, yk ∈ F2 (7)

and `(y) =
∑
j cjy

2j

, then

`(y) =

m−1∑
k=0

yk`(α
k). (8)

We call A(y) over F2m as an affine polynomial if A(y) = `(y)+β for β ∈ F2m ,
where `(y) is a linearized polynomial.

We can illustrate a toy example to understand the idea behind finding roots
using linearized polynomials.

Example 1. Let us consider the polynomial f(y) = y2 +(α2 +1)y+(α2 +α+1)y0

over F23 and α are elements in F2[x]/x3 + x2 + 1. Since we are trying to find
roots, we can write f(y) as

y2 + (α2 + 1)y + (α2 + α+ 1)y0 = 0

or
y2 + (α2 + 1)y = (α2 + α+ 1)y0 (9)

We can point that on the left hand side of Equation 9, `(y) = y2 + (α2 + 1)y is
a linearized polynomial over F23 and Equation 9 can be expressed just as

`(y) = α2 + α+ 1 (10)

If y = y2α
2 + y1α+ y0 ∈ F23 then, according to Lemma 1, Equation 10 becomes

y2`(α
2) + y1`(α) + y0`(α

0) = α2 + α+ 1 (11)

We can compute `(α0), `(α) and `(α2) using the left hand side of Equation 9
and we have the following values

`(α0) = (α0)2 + (α2 + 1)(α0) = α2 + 1 + 1 = α2

`(α) = (α)2 + (α2 + 1)(α) = α2 + α2 + α+ 1 = α+ 1

`(α2) = (α2)2 + (α2 + 1)(α2) = α4 + α4 + α2 = α2.

(12)

Don’t forget your roots: constant-time root finding over F2m 11

A substitution of Equation 12 into Equation 11 gives us

(y2 + y0)α2 + (y1)α+ (y0)α0 = α2 + α+ 1 (13)

Equation 13 can be expressed as a matrix in the form

[
y2 y1 y0

] 1 0 0
0 1 1
1 0 0

 =
[
1 1 1

]
. (14)

If one solves simultaneously the linear system in Equation 14 then the results
are the roots of the polynomial given in Equation 9. From Equation 13, one
observes that the solutions are y = 110 and y = 011, which can be translated to
α+ 1 and α2 + α.

Fortunately, the authors in [14] provide a generic decomposition for finding
affine polynomials. In their work, each polynomial in the form F (y) =

∑t
j=0 fjy

j

for fj ∈ F2m can be represented as

F (y) = f3y
3 +

d(t−4)/5e∑
i=0

y5i(f5i +

3∑
j=0

f5i+2jy2j

) (15)

After that, we can summarize all the steps as Algorithm 7. The function “generate(m)”
refers to the generation of the elements in F2m using Gray codes, see [19] for more
details about Gray codes.

Algorithm 7 presents a countermeasure in the last steps of the algorithm,
i.e., we added a dummy operation for blinding if X[j] is a root of polynomial
F (x).

Using Algorithm 7, the predominant cost for its implementation is:

Clin = m(Cgf pow + Cpol eval) + 2m(Cgf pow + 2Cgf mul) (16)

3.3 Berlekamp Trace Algorithm – BTA

In [4], Berlekamp presents an efficient algorithm to factor a polynomial, which
can be used to find its roots. We call this algorithm Berlekamp trace algorithm
since it works with a trace function defined as Tr(x) = x+x2 +x22

+ · · ·+x2m−1

.
It is possible to change BTA for finding roots of a polynomial p(x) using β =
{β1, β2, . . . , βm} as a standard basis of F2m , and then computing the greatest
common divisor between p(x) and Tr(β0 · x). After that, it starts a recursion
where BTA performs two recursive calls; one with the result of gcd algorithm
and the other with the remainder of the division p(x)/ gcd(p(x), T r(βi ·x)). The
base case is when the degree of the input polynomial is smaller than one. In this
case, BTA returns the root, by getting the independent term of the polynomial.
In summary, the BTA is a divide and conquer like algorithm since it splits the
task of computing the roots of a polynomial p(x) into the roots of two smalls
polynomials. The description of BTA algorithm is presented in Algorithm 8.

12 Douglas Martins, Gustavo Banegas, and Ricardo Custódio

Algorithm 7: Linearized polynomials for finding roots over F2m .

Data: F (x) as a univariate polynomial over F2m with degree t and m as the
extension field degree.

Result: R as a set of roots of p(x).
1 `ki ← ∅; `is ← ∅; Ajk ← ∅; R← ∅; dummy ← ∅;
2 if f0 == 0 then
3 R.append(0);
4 end
5 for i← 0 to d(t− 4)/5e do
6 `i(x)← 0;
7 for j ← 0 to 3 do

8 `i(x)← `i(x) + f5i+2jx
2j ;

9 end
10 `is[i]← `i(x);

11 end
12 for k ← 0 to m− 1 do
13 for i← 0 to d(t− 4)/5e do
14 `ki ← `is(α

k);
15 end

16 end
17 A0

i ← ∅;
18 for i← 0 to d(t− 4)/5e do
19 A0

i ← f5i;
20 end
21 X ← generate(m);
22 for j ← 1 to 2m − 1 do
23 for i← 0 to d(t− 4)/5e do
24 A← Aj−1

i ;

25 A← A+ `
δ(X[j],X[j−1])
i ;

26 Aji ← A;

27 end

28 end
29 for j ← 1 to 2m − 1 do
30 result← 0;
31 for i← 0 to d(t− 4)/5e do
32 result = result+ (X[j])5iAji ;
33 end
34 eval = result+ f3(X[j])3;
35 if eval == 0 then
36 R.append(X[j]);
37 else
38 dummy.append(X[j]);
39 end

40 end
41 return R;

Don’t forget your roots: constant-time root finding over F2m 13

Algorithm 8: Berlekamp Trace Algorithm [21] – BTA(p(x), i)− rf .

Data: p(x) as a univariate polynomial over F2m and i.
Result: The set of roots of p(x).

1 if deg(p(x)) ≤ 1 then
2 return root of p(x);
3 end
4 p0(x)← gcd(p(x), T r(βi · x));
5 p1(x)← p(x)/p0(x) ;
6 return BTA(p0(x), i+ 1) ∪BTA(p1(x), i+ 1);

As we can see, a direct implementation of Algorithm 8 has no constant execu-
tion time. The recursive behavior may leak information about the characteristics
of roots in a side-channel attack. Additionally, in our experiments, we noted that
the behavior of the gcd with the trace function may result in a polynomial with
the same degree. Therefore, BTA will divide this input polynomial in a future
call with a different basis. Consequently, there is no guarantee of a constant
number of executions.

In order to avoid the nonconstant number of executions, here referred as
BTA− it, we propose an iterative implementation of Algorithm 8. In this way,
our proposal iterates in a fixed number of iterations instead of calling itself until
the base case. The main idea is not changed; we still divide the task of computing
the roots of a polynomial p(x) into two smaller instances. However, we change
the approach of the division of the polynomial. Since we want to compute the
same number of operations independent of the degree of the polynomial, we
perform the gcd with a trace function for all basis in β, and choose a division
that results in two new polynomials with approximate degree.

This new approach allows us to define a fixed number of iterations for our
version of BTA. Since we always divide into two small instances, we need t− 1
iterations to split a polynomial of degree t in t polynomials of degree 1. Algo-
rithm 9 presents this approach.

Algorithm 9 extracts a root of the polynomial when the variable current has
a polynomial with degree equal to one. If this degree is greater than one, then
the algorithm needs to continue dividing the polynomial until it finds a root.
The algorithm does that by adding the polynomial in a stack and reusing this
polynomial in a division.

As presented in the previous methods, the overall cost of Algorithm 9 is:

CBTA−it = t(mCgcd + CQuoRem). (17)

where Cgcd is the cost of computing the gcd of two polynomials, with d the
higher degree of those polynomials. In our implementation, the cost of Cgcd is:

Cgcd = d(Cgf inv + 3Cgf mul), (18)

14 Douglas Martins, Gustavo Banegas, and Ricardo Custódio

Algorithm 9: Iterative Berlekamp Trace Algorithm – BTA(p(x))− it.
Data: p(x) as an univariate polynomial over F2m , t as number of expected

roots.
Result: The set of roots of p(x).

1 g ← {p(x)}; // The set of polynomials to be computed

2 for k ← 0 to t do
3 current = g.pop();
4 Compute candidates = gcd(current, Tr(βi · x)) ∀ βi ∈ β;
5 Select p0 ∈ candidates such as p0.degree ' current

2
;

6 p1(x)← current/p0(x) ;
7 if p0.degree == 1 then
8 R.add(root of p0)
9 end

10 else
11 g.add(p0);
12 end
13 if p1.degree == 1 then
14 R.add(root of p1)
15 end
16 else
17 g.add(p1);
18 end

19 end
20 return R

and CQuoRem is the cost for computing the quotient and remainder between two
polynomials. The cost for this computation is:

CQuoRem = d(Cgf inv + (d+ 1)Cgf mul + Cgf add). (19)

3.4 Successive Resultant Algorithm

In [18], the authors present an alternative method for finding roots in Fpm . Later
on, the authors better explain the method in [13]. The Successive Resultant
Algorithm (SRA) relies on the fact that it is possible to find roots exploiting
properties of an ordered set of rational mappings.

Given a polynomial f of degree d and a sequence of rational maps K1, . . . ,Kt,
the algorithm computes finite sequences of length j ≤ t+ 1 obtained by succes-
sively transforming the roots of f by applying the rational maps. The algorithm
is as follows: Let {v1, . . . , vm} be an arbitrary basis of Fpm over Fp, then it is
possible to define m+ 1 functions `0, `1, . . . , `m from Fpm to Fpm such that

`0(z) = z
`1(z) =

∏
i∈Fp

`0(z − iv1)

`2(z) =
∏
i∈Fp

`1(z − iv2)

· · ·
`m(z) =

∏
i∈Fp

`m−1(z − ivm)

Don’t forget your roots: constant-time root finding over F2m 15

The functions `j are examples of linearized polynomials, as previously defined
in subsection 3.2. Our next step is to present the theorems from [18]. Check
original work for the proofs.

Theorem 1. a) Each polynomial `i is split and its roots are all elements of the
vector space generated by {v1, . . . , vi}. In particular, we have `n(z) = zp

m−z.
b) We have `i(z) = `i−1(z)p − ai`i−1(z) where a := (`i−1(vi))

p−1.
c) If we identify Fpm with the vector space (Fp)m, then each `i is a p-to-1 linear

map of `i−1(z) and a pi to 1 linear map of z.

From Theorem 1 and its properties, we can reach the following polynomial
system:

f(x1) = 0
xpj = ajxj = xj+1 j = 1, . . . ,m− 1

xpn − anxn = 0
(20)

where the ai ∈ Fpn are defined as in Theorem 1. Any solution of this system
provides us with a root of f by the first equation, and the n last equations
together imply this root belongs to Fpn . From this system of equations, [18]
derives Theorem 2.

Theorem 2. Let (x1, x2, . . . , xm) be a solution of the equations in Equation 20.
Then x1 ∈ Fpm is a solution of f . Conversely, given a solution x1 ∈ Fpm of f ,
we can reconstruct a solution of all equations in Equation 20 by setting x2 =
xp1 − a1x1, etc.

In [18], the authors present an algorithm for solving the system in Equation 20
using resultants. The solutions of the system are the roots of polynomial f(x).
We implemented the method presented in [18] using SAGE Math [23] due to the
lack of libraries in C that work with multivariate polynomials over finite fields.
It is worth remarking that this algorithm is almost constant-time and hence we
just need to protect the branches presented on it. The countermeasure adopted
was to add dummy operations, as presented in Subsection 3.2.

4 Comparison

In this section, we present the results of the execution of each of the methods
presented in Section 3. We used an Intel® Core(TM) i5-5300U CPU @ 2.30GHz.
The code was compiled with GCC version 8.3.0 and the following compilation
flags “-O3 -g3 -Wall -march=native -mtune=native -fomit-frame-pointer -ffast-
math”. We ran 100 times the code and got the average number of cycles. Table 1
shows the number of cycles of root finding methods without countermeasures,
while Table 2 shows the number of cycles when there is a countermeasure. In
both cases, we used d = {55, 65, 100} where d is the number of roots. We remark
that the operations in the tables are over F212 and F216 . We used two different
finite fields for showing the generality of our implementations and the costs for
a small field and a larger field.

16 Douglas Martins, Gustavo Banegas, and Ricardo Custódio

Nr. Roots Field Exhaustive Search Linearized polynomials BTA-rf SRA

55
F212 10.152 45.697 9.801 2, 301.663
F216 117.307 425.494 72.766 2, 333.519

65
F212 12.103 56.270 11.933 2, 711.318
F216 139.506 522.208 80.687 2, 782.838

100
F212 18.994 84.076 17.322 3, 555.221
F216 213.503 863.063 133.487 3, 735.954

Table 1: Number of cycles divided by 106 for each method of finding roots without
countermeasures.

Nr. Roots Field Exhaustive Search Linearized polynomials BTA-it SRA

55
F212 11.741 45.467 11.489 2, 410.410
F216 142.774 433.645 75.467 2, 660.052

65
F212 13.497 55.908 14.864 2, 855.899
F216 164.951 533.946 86.869 2, 929.608

100
F212 20.287 89.118 20.215 4.211.459
F216 238.950 882.101 138.956 4, 212.493

Table 2: Number of cycles divided by 106 for each method of finding roots with
countermeasures.

Figure 1 shows the number of cycles for random polynomials with degree 55,
65 and 100 and all the operations are over F216 . Figure 1a shows a time vari-
ation in the execution time of the exhaustive method, as expected, the average
time was increased. In 1b, note a variation of time when we did not add the
countermeasures, but when we add them, we see a constant behavior. In 1c, it
is possible to see a nonconstant behavior of BTA− rf . However, this is different
for BTA− it, which shows a constant behavior.

The main focus of our proposal was to find alternatives to compute roots of
ELP that has constant execution time. Figure 2 presents an overview between
the original implementations and the implementations with countermeasures. It
is possible that when a countermeasure is present on Linearized and on BTA ap-
proach, the number of cycles increases. However, the variance of time decreases.
Additionally, Figure 2 shows an improvement in time variance for SCA method,
without a huge increase on the average time. We remark that the “points” out
of range can be ignored since we did not run the code under a separated environ-
ment, and as such it could be that some process in our environment influenced
the result.

Don’t forget your roots: constant-time root finding over F2m 17

(a) Comparison between exhaustive search
with and without countermeasures.

(b) Comparison between linearized polyno-
mials with and without countermeasures.

(c) Comparison between BTA-rf and
BTA-it executions.

(d) Comparison between SRA and Safe
SRA executions.

Fig. 1: Plots of measurements cycles for methods presented in Section 3. Our
evaluation of SRA was made using a Python implementation and cycles mea-
surement with C. In our tests, the drawback of calling a Python module from C
has behavior bordering to constant.

6.38 · 108 6.4 · 108 6.42 · 108 6.44 · 108 6.46 · 108

Ours
Lin.

5.24 · 109 5.28 · 109 5.32 · 109 5.36 · 109

Ours
SCA

7.6 · 108 8 · 108 8.4 · 108 8.8 · 108 9.2 · 108

Ours
BTA

Fig. 2: Comparison of original implementation and our proposal for Linearized,
Successive resultant algorithm and Berlekamp trace algorithm with t = 100.

18 Douglas Martins, Gustavo Banegas, and Ricardo Custódio

5 Conclusion

In our study, we demonstrated countermeasures that can be used to avoid remote
timing attacks. In our empirical analysis, i.e, the results in Table 2, BTA-it
shows an advantage in the number of cycles which makes it a more efficient and
safer choice. However, the exhaustive search with shuffling shows the smallest
variation of time, which can be an alternative for usage. Still, the problem for
this method is that if the field is large, then it becomes costly to shuffle and
iterate all elements.

5.1 Open problems

We bring to the attention of the reader that we did not use any optimization in
our implementations, i.e., we did not use vectorization or bit slicing techniques
or any specific instructions such as Intel® IPP Cryptography for finite field
arithmetic in our code. Therefore, these techniques and instructions can improve
the finite fields operations and speed up our algorithms.

We remark that for achieving a safer implementation, one needs to improve
the security analysis, by removing conditional memory access and protecting
memory access of instructions. Moreover, one can analyze the security of the
implementations, by considering different attack scenarios and performing an
in-depth analysis of hardware side-channel attacks.

6 Acknowledgments

We want to thank the reviewers for the thoughtful comments on this work. We
would also like to thank Tanja Lange for her valuable feedback. We want to
extend the acknowledgments to Sonia Beläıd from Cryptoexperts for the discus-
sions about timing attacks.

References

1. Banegas, G., Barreto, P.S., Boidje, B.O., Cayrel, P.L., Dione, G.N., Gaj, K., Gu-
eye, C.T., Haeussler, R., Klamti, J.B., Ndiaye, O., Nguyen, D.T., Persichetti, E.,
Ricardini, J.E.: DAGS: Key encapsulation using dyadic GS codes. Journal of Math-
ematical Cryptology 12(4), 221–239 (2018)

2. Bardet, M., Barelli, E., Blazy, O., Torres, R.C., Couvreur, A., Gaborit, P., Otmani,
A., Sendrier, N., Jean-Pierre, T.: BIG QUAKE BInary Goppa QUAsi–cyclic Key
Encapsulation. Tech. rep., National Institute of Standards and Technology (NIST)
(2017)

3. Berlekamp, E.: Algebraic coding theory. World Scientific (2015)
4. Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of

computation 24(111), 713–735 (1970)
5. Bernstein, D.J.: Cache-timing attacks on AES (2005),

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf

Don’t forget your roots: constant-time root finding over F2m 19

6. Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint
Archive, Report 2018/526 (2018), https://eprint.iacr.org/2018/526

7. Biswas, B., Sendrier, N.: HyMES - an open source imple-
mentation of the McEliece cryptosystem (2008), http://www-
rocq.inria.fr/secret/CBCrypto/index.php?pg=hyme

8. Black, P.E.: Fisher-Yates shuffle. Dictionary of algorithms and data structures 19
(2005)

9. Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload -
A cache attack on the BLISS lattice-based signature scheme. In: Cryptographic
Hardware and Embedded Systems - CHES 2016 - 18th International Conference,
Santa Barbara, CA, USA, August 17-19, 2016, Proceedings. pp. 323–345 (2016).
https://doi.org/10.1007/978-3-662-53140-2 16

10. Bucerzan, D., Cayrel, P.L., Drağoi, V., Richmond, T.: Improved timing attacks
against the secret permutation in the McEliece PKC. International Journal of
Computers Communications & Control 12(1), 7–25 (2017)

11. Chor, B., Rivest, R.L.: A knapsack-type public key cryptosystem based on arith-
metic in finite fields. IEEE Transactions on Information Theory 34(5), 901–909
(1988)

12. Chou, T.: Mcbits revisited. In: Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings. pp. 213–231 (2017). https://doi.org/10.1007/978-3-319-66787-
4 11

13. Davenport, J.H., Petit, C., Pring, B.: A Generalised Successive Resultants Algo-
rithm. In: Duquesne, S., Petkova-Nikova, S. (eds.) Arithmetic of Finite Fields. pp.
105–124. Springer International Publishing, Cham (2016)

14. Fedorenko, S.V., Trifonov, P.V.: Finding roots of polynomials over finite fields.
IEEE Transactions on communications 50(11), 1709–1711 (2002)

15. McEliece, R.J.: A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report 44, 114–116 (Jan 1978)

16. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In:
Selected Areas in Cryptography, 16th Annual International Workshop, SAC 2009,
Calgary, Alberta, Canada, August 13-14, 2009, Revised Selected Papers. pp. 376–
392 (2009). https://doi.org/10.1007/978-3-642-05445-7 24

17. Patterson, N.: The algebraic decoding of Goppa codes. IEEE Transactions on In-
formation Theory 21(2), 203–207 (1975)

18. Petit, C.: Finding roots in GF(pn) with the successive resultant algorithm. IACR
Cryptology ePrint Archive 2014, 506 (2014)

19. Savage, C.: A survey of combinatorial Gray codes. SIAM review 39(4), 605–629
(1997)

20. Shoufan, A., Strenzke, F., Molter, H.G., Stöttinger, M.: A timing attack against
patterson algorithm in the McEliece PKC. In: Information, Security and Cryp-
tology - ICISC 2009, 12th International Conference, Seoul, Korea, December 2-4,
2009, Revised Selected Papers. pp. 161–175 (2009). https://doi.org/10.1007/978-
3-642-14423-3 12

21. Strenzke, F.: Fast and secure root finding for code-based cryptosystems. In:
Cryptology and Network Security, 11th International Conference, CANS 2012,
Darmstadt, Germany, December 12-14, 2012. Proceedings. pp. 232–246 (2012).
https://doi.org/10.1007/978-3-642-35404-5 18

22. Strenzke, F.: Efficiency and implementation security of code-based cryptosystems.
Ph.D. thesis, Technische Universität (2013)

20 Douglas Martins, Gustavo Banegas, and Ricardo Custódio

23. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
8.7) (2019), https://www.sagemath.org

24. Truong, T.K., Jeng, J.H., Reed, I.S.: Fast algorithm for computing the roots of error
locator polynomials up to degree 11 in Reed-Solomon decoders. IEEE Transactions
on Communications 49(5), 779–783 (2001)

25. Wang, W., Szefer, J., Niederhagen, R.: FPGA-based Niederreiter cryptosystem
using binary goppa codes. In: Post-Quantum Cryptography - 9th International
Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Pro-
ceedings. pp. 77–98 (2018). https://doi.org/10.1007/978-3-319-79063-3 4

A Implementation Code

#inc lude <s t d i n t . h>
typede f u i n t 1 6 t g f ;
g f gf q m mult (g f in0 , g f in1) {

u i n t 6 4 t i , tmp , t0 = in0 , t1 = in1 ;
// M u l t i p l i c a t i o n
tmp = t0 ∗ (t1 & 1) ;
f o r (i = 1 ; i < 12 ; i++)

tmp ˆ= (t0 ∗ (t1 & (1 << i))) ;
// reduct i on
tmp = tmp & 0x7FFFFF ;
// f i r s t s tep o f r educt ion
g f r educt ion = (tmp >> 12) ;
tmp = tmp & 0xFFF ;
tmp = tmp ˆ (reduct ion << 6) ;
tmp = tmp ˆ (reduct ion << 4) ;
tmp = tmp ˆ reduct ion << 1 ;
tmp = tmp ˆ reduct ion ;
// second step o f r educt ion
reduct ion = (tmp >> 12) ;
tmp = tmp ˆ (reduct ion << 6) ;
tmp = tmp ˆ (reduct ion << 4) ;
tmp = tmp ˆ reduct ion << 1 ;
tmp = tmp ˆ reduct ion ;
tmp = tmp & 0xFFF ;
re turn tmp ;

}
g f g f i n v (g f in) {

g f tmp 11 = 0 ;
g f tmp 1111 = 0 ;
g f out = in ;
out = g f s q (out) ; //aˆ2
tmp 11 = gf mult (out , in) ; //aˆ2∗a = aˆ3
out = g f s q (tmp 11) ; // (a ˆ3) ˆ2 = aˆ6
out = g f s q (out) ; // (a ˆ6) ˆ2 = aˆ12
tmp 1111 = gf mult (out , tmp 11) ; //aˆ12∗aˆ3 = aˆ15
out = g f s q (tmp 1111) ; // (a ˆ15) ˆ2 = aˆ30
out = g f s q (out) ; // (a ˆ30) ˆ2 = aˆ60
out = g f s q (out) ; // (a ˆ60) ˆ2 = aˆ120
out = g f s q (out) ; // (a ˆ120) ˆ2 = aˆ240
out = gf mult (out , tmp 1111) ; //aˆ240∗aˆ15 = aˆ255
out = g f s q (out) ; // (a ˆ255) ˆ2 = 510
out = g f s q (out) ; // (a ˆ510) ˆ2 = 1020
out = gf mult (out , tmp 11) ; //aˆ1020∗aˆ3 = 1023
out = g f s q (out) ; // (a ˆ1023) ˆ2 = 2046
out = gf mult (out , in) ; //aˆ2046∗a = 2047
out = g f s q (out) ; // (a ˆ2047) ˆ2 = 4094
return out ;

}

Listing 1.1: Multiplication of two elements in F212 and inversion of an element
in F212

