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Abstract. For enabling post-quantum cryptanalytic experiments on a
meaningful scale, there is a strong need for low-memory algorithms. We
show that the combination of techniques from representations, multiple
collision finding, and the Schroeppel-Shamir algorithm leeds to improved
low-memory algorithms.
For random subset sum instances (a1, . . . , an, t) defined modulo 2n, our
algorithms improve over the Dissection technique for small memory
M < 20.02n and in the mid-memory regime 20.13n < M < 20.2n.
An application of our technique to LPN of dimension k and constant error
p yields significant time complexity improvements over the Dissection-
BKW algorithm from Crypto 2018 for all memory parameters M <

20.35 k
log k .
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1 Introduction

We are now in a transition phase to post-quantum cryptography, where we have
to determine reliably strong parameters for prospective schemes (e.g. for the
2nd round candidates of NIST’s post-quantum standardization process [1]). This
requires mid-scaled cryptanalytic experiments from which we can safely extrapo-
late to the desired security levels. However, a major drawback for cryptanalytic
analysis of most post-quantum systems, for example in comparison to their
number-theoretic counterparts, is the large memory consumption of today’s best
attack algorithms.

For instance, the famous BKW algorithm [10] for attacking coding/lattice-
based schemes [3, 15, 17,22] as well as lattice sieving [2, 8] require huge memory,
which prevents their application even for medium-sized parameters. Thus, there
is a strong need for developing general techniques that sacrifices a bit of run time
at the sake of having a manageable memory consumption. These time-memory
trade-offs are well-studied for the subset sum problem [4,6, 7, 13], which usually
serves as a meta-problem to sharpen our tools and techniques. Then, these
techniques are often transferred to the coding and lattice world [5,8,9,24], where
we solve similar vectorial versions of the subset sum problem.

In the subset sum context, the best memory-saving techniques are Schroeppel-
Shamir [27] and the elegant Dissection technique from Dinur, Dunkelman, Keller,
Shamir [13]. The Schroeppel-Shamir algorithm is a remarkable technique that
allows to save memory without sacrificing time at all. Namely, solving subset sum
via the usual Meet-in-the-Middle technique using the Horowitz-Sahni algorithm
[19] requires time and space Õ(2n/2), whereas the Schroeppel-Shamir algorithm
needs the same time but only Õ(2n/4) memory. The Dissection technique can be
seen as a natural generalization of Schroeppel-Shamir, where Schroeppel-Shamir
is the special case of a 4-Dissection. Indeed, one of the original applications
of Dissection in [13] is the today’s best time-memory trade-off for subset sum.
More recently, Esser et al. [14] used Dissection for also designing time-memory
trade-offs for the LPN (and LWE) problem.

Without memory restrictions, the currently best algorithm for solving random
subset sum instances a = (a1, . . . , an) ∈ Zn2n , t ∈ Z2n — with some weight-n2
solution e ∈ {0, 1}n satisfying 〈a, e〉 = t mod 2n — is the Becker-Coron-Joux
algorithm [7] with time and space complexity 20.291n. The core idea of this
algorithm is the so-called representation technique, where the search space for
e is enhanced by R redundant representations of e. Then one enumerates a
1
R -fraction of the search space such that on expectation one representation
survives.

Moreover, Becker, Coron and Joux also provide a polynomial memory algo-
rithm that solves random subset sum instances in time 20.72n. This low-memory
algorithm represents e = e1+e2 with weight-n4 vectors and samples (via a random
walk) weight-n4 vectors e′1, e′2 until one finds a collision 〈a, e′1〉 = t−〈a, e′2〉. Thus,
the low-memory algorithm uses collision finding to recover a 2-sum representation
e′1 + e′2 = e of the solution.
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Our contribution. First, we show that multiple collision finding easily provides
a time-memory trade-off for the low-memory 2-sum Becker-Coron-Joux algorithm.
We benefit basically from the well-known fact that multiple collision finding
algorithms like Parallel Collision Search (PCS) [29] provide 2m collisions for an
r-bit function f : Fr2 → Fr2 in time only 2 r+m

2 instead of the trivial 2m · 2 r2 for
2m applications of simple collision finding.

Second, we develop a more involved 4-sum subset sum algorithm that rep-
resents e = e1 + . . . + e4 with weight-n8 vectors ei, thereby profiting from the
increased amount of representations. We sample all candidates e′i for ei via PCS
as the sum of two weight- n16 vectors, again exploiting the benefits of represen-
tations. When having sampled sufficiently many candidate tuple (e′1, . . . , e′4),
one of them is a representation of e with high probability. We then efficiently
construct this solution e using the Schroeppel-Shamir algorithm.

Our improved algorithms time-memory behaviours are depicted in Figure 1.
Our 2-sum subset sum algorithm provides some improvement in the small memory
regime M < 20.02n, whereas our 4-sum algorithm improves on the Dissection
technique in the mid-size memory regime 20.13n < M < 20.2n.
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Fig. 1: Comparison of our trade-offs and the previous best trade-offs. The dotted line
represent the trade-off obtained via Dissection [13], while the dashed one was obtained
in [20] using representations. Our new trade-offs are depicted as solid lines.

Third, for the LPN problem with dimension k and constant error probability
p, we build on the Dissection-BKW algorithm proposed by Esser et al. [14]. The
authors of [14] show that any algorithm for a certain c-sum problem can be turned
into an LPN algorithm. The c-sum problem is solved in [14] via the Dissection
framework to obtain efficient time-memory trade-offs.

In this work, we express the c-sum problem from [14] as a multiple collision
problem of two c

2 -sums, which again is solved via sampling collisions with PCS.
This results in quite significant time improvements for the whole memory region
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M < 20.35 k
log k when compared to the Dissection technique (see Figure 2). For

small memory regimes, the time complexity of our new PCS-BKW algorithm even
comes close to the best quantum algorithm Quantum-BKW, which makes use of a
highly memory-efficient Grover search.
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Fig. 2: The dotted marks depict our trade-off PCS-BKW, which improves for memory
M < 20.35 k

log k on the so far best classical algorithm Dissection-BKW from [14]. The
triangle marks depict the best known quantum trade-off [14].

In the commonly used time-memory notion, we achieve the results from
Table 1. Notice that our PCS-BKW algorithm has the same linear dependency on c
as Quantum-BKW.

Tradeoff 2log c· k
log k =

PCS-BKW T ·M c−2
4

Dissection-BKW [14] T ·M
√
c

Quantum-BKW [14] T ·M c−2
2

Table 1: Our LPN-trade-off PCS-BKW in comparison to [14].

Related work. Parallel Collision Search (PCS), introduced by van Oorschot
and Wiener [29], is a widely applied tool in cryptanalysis for achieving good
time-memory trade-offs [12, 16, 21, 25, 26]. It has been thoroughly analyzed in the
context of finding multiple collisions [16,23,28].

Nikolić and Sasaki [25] applied PCS sampling in a similar scenario to ours,
namely for constructing improved time-memory trade-offs for the Generalized
Birthday Problem based on Wagners k-tree algorithm [30]. Dinur [12] later
generalized the Nikolić-Sasaki approach using the Dissection technique.
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2 Preliminaries

Let us denote by Zq the ring of integers modulo q. US is the uniform distribution
over a finite set S. Berp is the Bernoulli distribution with parameter p, i.e. for
X ∼ Berp we have Pr [X = 1] = p and Pr [X = 0] = 1− p. We denote by Geop
the geometric distribution with parameter p, which is the amount of independent
Bernoulli trials needed for the first success.

We define lists L = {`1, `2, . . . , `n} as multisets over some universe S. For
x ∈ {0, 1}n we refer to the i-th coordinate of x by xi. By wt(x) we refer to the
Hamming weight of x.

For complexity statements we use soft-Oh notation, where Õ(f(k)) is a
shorthand for O(log(f(k))i · f(k)) for some constant i. An algorithm succeeds
with high probability p(n) if p(n) ≥ 1− 1

poly(n) .
We refer to the binary entropy function by H(α), α ∈ [0, 1] . We also make

use of the approximation of binomial coefficients derived from Stirlings formula,
which is

(
n
m

)
' 2n·H(mn ), where ' is used to suppress polynomial factors in n.

More precisely we have

2n·H(mn )
n+ 1 ≤

(
n

m

)
≤ 2n·H(mn ).

For finding multiple collisions between functions f, g : Fr2 → Fr2 we apply
the Parallel Collision Search algorithm [29], denoted PCS. We call procedure
PCS(f, g, αr) for finding 2αr, 0 ≤ α ≤ 1 distinct collisions. The following theorem
states PCS’s complexities.

Theorem 2.1 (Parallel Collision Search). Let r ∈ N, 0 ≤ α ≤ 1, and
m := αr. Given two independent random functions f : {0, 1}r → {0, 1}r and
g : {0, 1}r → {0, 1}r, Parallel Collision Search returns 2m distinct collisions
between f and g using expected time T = Õ

(
2 r+m

2

)
and memory M = Õ (2m) .

For more details on PCS the reader is referred to [28,29]. A complexity analysis
for multiple collisions is given in [16, 23, 28]. We apply PCS on random subset
sum, defined as follows.

Definition 2.1 (Random Subset Sum). Let a ∈ (Z2n)n be chosen uniformly
at random. For a random e ∈ Fn2 with wt(e) = n

2 compute t = 〈a, e〉 mod 2n.
Then (a, t) ∈ (Z2n)n+1 is called a random subset sum instance, while each e′ ∈ Fn2
with 〈a, e′〉 = t is called a solution.

Following Howgrave-Graham and Joux [20], we represent a subset sum solution
in a redundant manner as sums of vectors, called representations.

Definition 2.2 (Representation). Let e ∈ {0, 1}n with wt(e) = βn. Any
tuple (e1, e2, . . . , ek) ∈

(
{0, 1}n

)k with wt(ei) = βn
k for all i = 1, . . . , k is called

a representation of e if e = e1 + e2 + . . .+ ek.
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The Schroeppel-Shamir Algorithm [27]. We use the algorithm by Schroeppel and
Shamir to solve the following problem: Given four lists L1, . . . , L4 of equal size
2m containing uniformly at random drawn elements from Z2n together with a
target t ∈ Z2n , compute the solution set

C = {(xi1 , . . . , xi4) ∈ L1 × . . .× L4 | xi1 + . . .+ xi4 = t mod 2n} .

While the original algorithm uses involved data structures to guarantee worst
case complexities, we use a heuristic simplification by Howgrave-Graham and
Joux [20] at the cost of obtaining only expected complexities. However, we still
refer to the algorithm as Schroeppel-Shamir.

Schroeppel-Shamir merges two lists at a time. The lists L1 and L2 are
merged into a new list

L12 = {x+ y | x ∈ L1, y ∈ L2, x+ y = R mod 2m} for some R ∈ Z2m .

The constraint R enforces expected size |L12| = 2m. Similarly, we merge L3, L4
into L34 with the constraint t−R mod 2m. Eventually, we merge L12, L34 such
that their elements sum up to t mod 2n. To compute the complete solution set C
the algorithm iterates over all R ∈ Z2m .

Since the elements in L1, . . . , L4 are uniformly distributed, we have E[|C|] =
24m−n. Thus E[|C|] ≤ 2m if n ≥ 3m. Since each merge can be performed in
expected time and memory Õ(2m) the total expected time complexity by iterating
over all constraints is Õ(22m), while the expected memory complexity is Õ(2m).

Lemma 2.1 (Schroeppel-Shamir). Let m,n ∈ N with n ≥ 3m. Given four
lists L1, . . . , L4 of equal size 2m containing uniformly at random drawn elements
from Z2n together with a target t ∈ Z2n , Schroeppel-Shamir returns the solution
set C in expected time Õ

(
22m) and memory Õ (2m).

We also apply multiple collision search to the LPN problem, which is defined
as follows.

Definition 2.3 (Search LPN Problem). Let k ∈ N, s ∈ Fk2 and p ∈ [0, 1
2 ) be

a constant. Let Sample denote an oracle that, when queried, samples a ∼ UFk2 ,
e ∼ Berp and outputs a sample of the form (a, b) := (a, 〈a, s〉 + e). The LPNk
problem consists of recovering s given access to Sample.

3 New Subset-Sum Trade-Offs Using PCS

We introduce two new trade-offs for the random subset sum problem from
Definition 2.1. The first one, SS-PCS, uses the representation technique together
with the PCS algorithm and provides time improvements in the sparse memory
area with memoryM < 20.02n. The second one, SS-PCS4, combines representations
with Schroeppel-Shamir and PCS to achieve time improvements in the (quite
large) memory regime 20.13n < M < 20.2n. Notice that a memory M = 20.291n is
sufficient to run the best algorithm by Becker-Coron-Joux [7] with time T = M .
All in all, we achieve improvements in a large parameter range of M (for roughly
a third of the meaningful exponents).

5



3.1 Algorithm SS-PCS

Our algorithm SS-PCS builds on the memoryless BCJ-algorithm [7] for which we
replace its simple collision search procedure by PCS.

The idea of the BCJ-algorithm is to split the solution vector e with wt(e) = n
2

in two vectors e1, e2 ∈ Fn2 each of weight n
4 . Let (a, t) be a random subset sum

instance and T := {x ∈ Fn2 | wt(x) = n
4 }, where |T | ' 2H( 1

4 )n and define the
two functions

g, gt : T → Z2H(1/4)n , where

g(x) =
n∑
i=1

xiai mod 2H( 1
4 )n and gt(x) = t−

n∑
i=1

xiai mod 2H( 1
4 )n .

Note that any representation (e1, e2) of our solution e satisfies g(e1) = gt(e2).
The algorithm now simply searches for collisions (e′1, e′2) between g and gt until
e′1 + e′2 yields a solution to the subset sum instance.

We expect to have 2H(1/4)n collisions between g and gt, whereas the number
of representations (e1, e2) is

(
n/2
n/4
)
' 2n2 . Thus, a random collision solves the

subset sum instance with probability p = 21/2−H(1/4)n. Equivalently, we need
to compute on expectation 2(H(1/4)−1/2)n = 20.31n collisions before we find the
solution. The BCJ-algorithm uses standard cycle-finding for computing a collision
in 2H(1/4)n2 , resulting in total run time 2

3H(1/4)−1
2 n = 20.717n.

Since we have to compute an exponential amount of collisions, obviously PCS
can be utilized to improve on run time if we are willing to spend some memory.
In the following, we show that (under some mild heuristic assumption) algorithm
SS-PCS (Algorithm 1) solves random subset sum instances in time 2(0.717− γ2 )n

using memory Õ(2γn).

Algorithm 1 SS-PCS((a, t), γ)
Input: subset sum instance (a, t), memory parameter γ
Output: solution e ∈ Fn2 to instance (a, t) or ⊥
1: for i = 1 to n3 · 2(H( 1

4 )− 1
2−γ)n do

2: L← PCS(g, gt, γn)
3: if ∃(e1, e2) ∈ L, such that e = e1 + e2 ∈ {0, 1}n and 〈a, e〉 = t then
4: return e
5: return ⊥

Notice that for rigorously analyzing the time complexity of SS-PCS, we have to
lower bound the probability p for success in each iteration. This in turn requires
an upper bound on the number of collisions between g and gt, which is shown in
the following lemma.
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Lemma 3.1 (Number of collisions between g and gt). Let n ∈ N and
(a, t) be a random subset sum instance. Then with high probability the number of
collisions between g and gt is at most n · 2H(1/4)n .

Proof. Given in Appendix A.

Assumptions of the analysis. For the proof of the complexity of SS-PCS we
rely on commonly used heuristics in the context of PCS [13, 29] and collision
search [7].

Heuristic 1.
1) PCS returns uniformly random collisions.
2) PCS behaves on input functions g and gt as on independent random functions.

We validate Heuristic 1 experimentally in Appendix C.

Theorem 3.1 (Complexity of SS-PCS). Let (a, t) be a random subset sum
instance and let 0 ≤ γ ≤ 0.31. Then under Heuristic 1 with high probability
SS-PCS finds a solution to (a, t) in expected time 2(0.717− γ2 )n and memory Õ(2γn).

Proof. The time complexity of one iteration of the loop is dominated by the
execution of PCS. By Theorem 2.1 PCS finds 2γn collisions between g and gt in
expected time Õ

(
2
H(1/4)+γ

2 n
)
. Therefore the overall expected time complexity is

T = n3 · 2
2H(1/4)−1−2γ

2 n · Õ
(

2
H(1/4)+γ

2 n
)

= Õ
(

2
3H( 1

4 )−1−γ
2 n

)
= 2(0.717− γ2 )n .

Here, the restriction γ ≤ 0.31 ensures that the exponent H( 1
4 ) − 1

2 − γ of the
number of iterations of the for-loop is positive. Regarding memory, we need to
store |L| = 2γn elements.

It remains to show that SS-PCS succeeds with high probability. An iteration
is successful whenever list L contains a representation (e1, e2) of the desired
solution e. Let us denote by Rn

2 ,2 the number of representations of e with weight
n
2 as a decomposition in two vectors (e1, e2). Via Definition 2.2 and Stirling’s
formula we obtain

Rn
2 ,2 =

(
n/2
n/4

)
≥ 2n2

n
.

By construction, each representation (e1, e2) forms a collision between g and
gt. Thus, a collision sampled uniformly at random from the whole set of collisions
Cg,gt is a solution with probability

q :=
Rn

2 ,2

|Cg,gt |
.
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Since by Lemma 3.1 with high probability the total amount of collisions is
|Cg,gt | ≤ n · 2H( 1

4 )n, we obtain

q ≥ 1
n2 · 2

−(H( 1
4 )− 1

2 )n .

Let Y denote the amount of sampled collisions until we hit a solution, where
Y ∼ Geoq. Then

E[Y ] = 1
q
≤ n2 · 2(H( 1

4 )− 1
2 )n .

In total, SS-PCS samples 2γn · n3 · 2(H( 1
4 )− 1

2−γ)n = n3 · 2(H( 1
4 )− 1

2 )n collisions.
Under Heuristic 1 these are independently and uniformly at random drawn from
the whole set of collisions.

Thus, by Markov’s inequality SS-PCS does not recover the solution with
probability at most

Pr
[
Y > n3 · 2(H( 1

4 )− 1
2 )n
]
≤ E[Y ]
n3 · 2(H( 1

4 )− 1
2 )n ≤

1
n
.

ut
The achieved trade-off is illustrated in Figure 3. As discussed before, it

contains as special case the memoryless algorithm by Becker et al. [7] and is
superior to the previously best trade-off based on a combination of PCS and the
Dissection framework [13] for any memory M ≤ 20.0174n.
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Fig. 3: Comparison of our trade-off and the previous best trade-off for small available
memory. The dotted line represents the trade-off obtained in [13], while the solid line is
our trade-off achieved by using PCS.

3.2 Algorithm SS-PCS4

In this section we introduce a more involved trade-off based on a combination of
PCS, the representation technique and the Schroeppel-Shamir algorithm that
achieves time improvements for an available memory of 20.13n < M < 20.2n.
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Idea of SS-PCS4. We represent our solution e as a sum of four vectors e =
e1 + · · · + e4, such that wt(ej) = n

8 for all j. We choose random restrictions
R1, R2, R3 ∈ Z2λn and R4 = t− (R1 +R2 +R3) mod 2λn, for some 0 < λ < 1.

Using PCS, we compute four lists Li ⊆ Zi, i = 1, . . . , 4, where

Zi =
{
ui = 〈a, e′i〉 | wt(e′i) = n

8 , ui = Ri mod 2λn
}

.

Note that by construction every (u1, u2, u3, u4) ∈ L1 × L2 × L3 × L4 satisfies
u1 + u2 + u3 + u4 = t mod 2λn. We now use the Schroeppel-Shamir algorithm to
search for (u1, u2, u3, u4) ∈ L1×L2×L3×L4, such that also u1 +u2 +u3 +u4 =
t mod 2n, which yields

〈a, e′1〉+ 〈a, e′2〉+ 〈a, e′3〉+ 〈a, e′4〉 = 〈a, e′1 + e′2 + e′3 + e′4〉 = t mod 2n.

This implies that e′1 +e′2 +e′3 +e′4 ∈ {0, 1, 2, 3, 4}n solves our subset sum instance
iff it defines a vector in {0, 1}n. We iterate our process until we find a solution.

Remark 3.1. In order to be able to reconstruct the solution, the Schroeppel-
Shamir algorithm has to keep track of the vectors e′i that were used to produce
the corresponding list elements ui ∈ Li. For ease of notation, we ignore this in
the following.

Let us elaborate a bit on how we construct L1, . . . , L4 using PCS. We denote
by S the set S := {x ∈ Fn2 | wt(x) = n/16} with |S| =

(
n

n/16
)
' 2H(1/16)n and

define the function f as

f : S → Z2H(1/16)n

x 7→
n∑
i=1

xiai mod 2H(1/16)n = 〈a,x〉 mod 2H(1/16)n .

Analogously, given an arbitrary value R ∈ Z2H(1/16)n we define

fR : S → Z2H(1/16)n

x 7→ R−
n∑
i=1

xiai mod 2H(1/16)n = R− 〈a,x〉 mod 2H(1/16)n .

Thus, any collision (x,y) ∈ S2 between f and fR satisfies

f(x) = fR(y)⇔
n∑
i=1

xiai = R−
n∑
i=1

yiai mod 2H(1/16)n

⇔
n∑
i=1

(xi + yi)ai = R mod 2H(1/16)n .

Since eventually we look for a solution e ∈ {0, 1}n, we filter out non-binary
vectors x + y in every iteration of our algorithm.
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Algorithm 2 SS-PCS4((a, t), γ)
Input: subset sum instance (a, t), memory parameter γ
Output: solution e ∈ Fn2 to instance (a, t) or ⊥
1: for i = 1 to n4 · 2(3·H(1/16)−1)n do
2: choose R1, R2, R3 ∈ Z2H(1/16)n uniformly at random
3: R4 ← t−R1 −R2 −R3 mod 2H(1/16)n

4: for i = 1 to n9 · 2(4H(1/16)− 1
2−4γ)n do

5: Li ← PCS(f, fRi , γn) for i = 1, 2, 3, 4
6: Filter(Li) for i = 1, 2, 3, 4 . Filter out inconsistent vectors.
7: L← Schroeppel-Shamir(L1, L2, L3, L4, t)
8: if ∃(u1, u2, u3, u4) ∈ L, such that e = e′1 + e′2 + e′3 + e′4 is in {0, 1}n then
9: return e
10: return ⊥

Definition 3.1. Let x,y ∈ {0, 1}n. We call (x,y) consistent if x + y ∈ {0, 1}n,
otherwise we call (x,y) inconsistent.

Notice that for consistent (x,y) we have wt(x + y) = wt(x) + wt(y).
Now, our algorithm proceeds as follows (see also Figure 4). We fill all lists

Li with collisions provided by PCS, where we filter out inconsistent collisions
immediately. Notice that this filter does not discard any representation of the
desired solution, since representations are consistent by definition. The whole
algorithm is summarized in Algorithm 2.

PCS

f fR4

f(x4) = fR4 (y4)

filter

R4

〈a, x4 + y4〉
...

PCS

f fR3

f(x3) = fR3 (y3)

filter

R3

〈a, x3 + y3〉
...

PCS

f fR2

f(x2) = fR2 (y2)

filter

R2

〈a, x2 + y2〉
...

PCS

f fR1

f(x1) = fR1 (y1)

filter

R1

〈a, x1 + y1〉
...

Schroeppel-Shamir

〈a, e〉 = t

Fig. 4: One iteration of the SS-PCS4 Algorithm.

For the analysis, we use a heuristic similar to Heuristic 1, where we additionally
assume that representations of a solution are sufficiently uniform, as commonly
done in the context of the representation technique [7, 18,20].
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Heuristic 2.
1) PCS returns uniformly random collisions.
2) PCS behaves on input functions f and fR as on independent random functions.
3) Let (e1, . . . , e4) be a representation of the solution e of a random subset

sum instance (a, t). Then the values of 〈a, ei〉 mod 2H(1/16)n, i = 1, 2, 3, are
independently and uniformly distributed.

Theorem 3.2 (Complexity of SS-PCS4). Let (a, t) be a random subset sum
instance and let 1

8 ≤ γ ≤ 0.21. Then under Heuristic 2 with high probability
SS-PCS4 finds a solution to (a, t) in expected time 2(0.849−2γ)n and memory
Õ(2γn).

Proof. Given in Appendix B.

Our new trade-offs are illustrated in Figure 5. By Theorem 3.2, SS-PCS4
gives us for memory 2γn within the interval 1

8 ≤ γ ≤ 0.21 a line with slope −2
(solid line in Figure 5). For γ ≥ 0.132 our algorithm improves on the trade-off
based on the Dissection framework obtained in Dinur et al. [13] (dotted lines
in Figure 5). Moreover, for γ ≤ 0.2, our algorithm improves on a trade-off by
Howgrave-Graham and Joux [20] (dashed line in Figure 5).
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Fig. 5: Comparison of our trade-offs and the previous best trade-offs. The dotted line
represent the trade-off obtained in [13], while the dashed one was obtained in [20]. Our
new trade-offs are depicted as solid lines.

Remark 3.2. We also generalized our 4-sum algorithm SS-PCS4 to a 7- and 11-
sum algorithm in a natural way, thereby replacing Schroeppel-Shamir with a 7-
respectively 11-Dissection. While our 7-sum algorithm gave us an additional (tiny)
improvement, the 11-sum algorithm could no longer provide any improvements.

4 Application to LPN

The results from Section 3 show that the subset sum problem formulated as a 4-
sum problem in combination with PCS leads to improved time-memory trade-offs.
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This technique is even superior to the quite involved time-memory Dissection
framework for many parameter sets.

Since c-sum applications appear quite often in cryptanalysis, it is natural to
ask whether other problems enjoy similar advantages. At Crypto ’18, Esser et
al. [14] proposed time-memory trade-offs for the LPN problem of dimension k
using c-sums in combination with Dissection. In the following, we show that the
combination of c-sums with PCS also for LPN provides significant improvements
for the whole memory region M < 20.35 k

log k .
The BKW algorithm [10] achieves for LPNk time and memory complexity of

2
k

log k (1+o(1)) using 2-sums. Esser et al. [14] achieved time-memory trade-offs for
LPNk by using BKW in combination with c-sums for c > 2 and the Dissection
technique. The resulting algorithm is called Dissection-BKW in [14]. Let us define
the c-sum problem underlying LPNk more formally.

Definition 4.1 (The c-Sum-Problem (c-SP)). Let b, c,N ∈ N with c ≥ 2.
Let L := {`1, . . . , `N}, where each list element `i ∼ UFb2 . A single-solution of the
c-SPb is a size-c set L ⊂ {1, . . . , N} such that∑

j∈L
`j = 0b .

A solution is a set of at least N distinct single-solutions. The c-sum-problem
c-SPb consists in finding a solution when given L.

Hence, we have to find N different combinations of c out of all N b-bit vectors
in L such that each of them sums up to the all-zero vector. In the BKW algorithm
applied to LPNk, the block-size b is chosen as b := log c · k

log k . Esser et al [14]
showed that the running time of their Dissection-BKW on LPNk is dominated by
the time to solve the c-SPb, as formulated in the next theorem.

Here, we use the following heuristic from Esser et al [14] for analyzing c-sum
algorithms. This heuristic is backed up theoretically for c = 2 by results in [11]
and experimentally for c > 2 in [14].

Independence Heuristic. [14] We treat c-sums as independent in the run
time analysis.

Theorem 4.1. [14, Theorem 3.2] Let k, c ∈ N and 0 < ε < 1. Let us define
b := log c

1−ε ·
k

log k . Under the Independence Heuristic the following holds: If there is
an algorithm solving the c-SPb for an input list of size N in expected time T and
memory M , then it is possible to solve the LPNk problem with high probability in
time T 1+o(1) and memory M1+o(1) using N1+o(1) samples, as long as log(N) ≥
b+c log c+1

c .

Theorem 4.1 states that N (roughly) denotes the number of samples from
our LPNk oracle. By Definition 2.3, N can be freely chosen, since we are given
full access to Sample. However, Theorem 4.1 provides a lower bound on N ,
which basically guarantees the existence of a solution to the c-SPb as specified in
Definition 4.1.

12



Algorithm 3 c-sum-PCS(L)
Input: list L = {`1, . . . `N} with `i ∈ Fb2, where N = c · 2 2b

c

Output: solution S to the c-SPb instance L
1: split L in c lists Li of equal size 2 2b

c

2: S ← PCS(f0, f1, logN)
3: return S

4.1 Computing c-sums with PCS

We choose list size N = |L| = c · 2 2b
c , which satisfies the constraint from

Theorem 4.1. For simplicity of notation, we assume in the following that c ∈ N
is even. We first split L in c lists of equal size |Li| = 2 2b

c , i = 1, . . . , c. Let us
denote by Li[k] the kth element in list Li. For j = 0, 1 we define the functions

fj :
(
F

2b
c

2

) c
2
→ Fb2,

(x1, . . . , x c2 ) 7→ L1+j c2 [x1] + L2+j c2 [x2] . . .+ L(1+j) c2 [x c
2
].

Hence, f0 maps c
2 indices to a c

2 -sum over the first half of all lists, where f1
computes a c

2 -sum over the second half. Therefore a collision f0(x1, . . . , x c2 ) =
f1(x c

2 +1, . . . , xc) yields a c-sum satisfying

L1[x1] + . . .+ Lc[xc] = 0b ,

as desired for a single-solution in Definition 4.1. A solution to the c-SPb requires
according to Definition 4.1 N distinct single-solutions. Thus, we apply PCS to
find N = c · 2 2b

c different collisions between f0 and f1. The resulting procedure is
given in Algorithm 3.

Lemma 4.1 (Complexity of c-sum-PCS). Let c be even, and let L be a c-SPb-
instance with |L| = N := c · 2 2b

c . Under the Independence Heuristic c-sum-PCS

solves the c-SPb in expected time T = Õ
(

2( 1
2 + 1

c )b
)
and memory M = Õ(2 2b

c ).

Proof. The time complexity of c-sum-PCS is dominated by the application of PCS.
Since list elements from L are from UFb2 , under the Independence Heuristic the
functions f0 and f1 behave like independent random functions. By Theorem 2.1
the PCS algorithm finds N = c · 2 2b

c collisions between f0 and f1 with range Fb2
using memory M = Õ(N) = Õ(2 2b

c ) and expected time

T = Õ(N 1
2 · 2 b2 ) = Õ(2 bc · 2 b2 ) = Õ(2( 1

2 + 1
c )b) .

Since PCS by definition returns N distinct collisions, this solves the c-SPb. ut

Putting Theorem 4.1 with its choice b := log c
1−ε ·

k
log k and Lemma 4.1 together,

we immediately obtain the following LPN trade-off.
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Theorem 4.2 (PCS-BKW). Let ε > 0, c ∈ N be even and k ∈ N be sufficiently
large. Under the Independence Heuristic LPNk can be solved with high probability
in time

T = 2( 1
2 + 1

c )·log c· k
log k (1+ε) using M = 2

2
c ·log c· k

log k (1+ε)

memory and samples.

0 0.2 0.4 0.6 0.8 1

1

2

3

4

log M in k
log k

lo
gT

in
k

lo
g

k

PCS-BKW
Dissection-BKW
Quantum-BKW

Fig. 6: The dotted marks depict our trade-off PCS-BKW, which improves for memory
M < 20.35 k

log k on the so far best classical algorithm Dissection-BKW from [14]. The
triangle marks depict the best known quantum trade-off [14].

In Figure 6, we compare our new trade-off, called PCS-BKW, to Dissection-BKW
and Quantum-BKW from Esser et al. [14]. In comparison to the so far best classi-
cal trade-off Dissection-BKW, based on the Dissection technique, our PCS-BKW
improves on the run-time for any memory less than 20.35 k

log k , or in other words
it improves over any Dissection larger than an 11-Dissection. For very small
memory we even come close to the time requirement of the quantum version
Quantum-BKW with its highly memory-efficient Grover search.

Tradeoff 2log c· k
log k =

PCS-BKW T ·M c−2
4

Dissection-BKW [14] T ·M
√
c

Quantum-BKW [14] T ·M c−2
2

Table 2: Our LPN-trade-off PCS-BKW in comparison to [14].

In the commonly used time-memory trade-off notation, we obtain Table 2. We
see that PCS-BKW shares with Quantum-BKW the linear dependency on c, whereas
the previously best classical trade-off Dissection-BKW had only a square root
dependency on c. In comparison with Quantum-BKW, for fixed T our algorithm
needs only a square of the space requirement.
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A Proof of Lemma 3.1

Lemma 3.1 (Number of collisions between g and gt) Let n ∈ N and (a, t)
be a random subset sum instance. Then with high probability the number of
collisions between g and gt is at most n · 2H(1/4)n .

Proof. By definition a collision between g and gt is a tuple (x1,x2) ∈ T 2 with
g(x1) + g(x2) = t mod 2H(1/4)n. Let us define indicator variables Xi,j with
Xi,j = 1 iff g(xi) + g(xj) = t mod 2H(1/4)n and let X =

∑
1≤i,j≤|T |Xi,j .

Let i 6= j and c = xi + xj ∈ {0, 1, 2}n. Then c contains at least one 1-
coefficient, wlog c1 = 1. By the randomness of a in our subset sum instance we
have

Pr [Xi,j = 1 | i 6= j] = Pr
[
〈a, c〉 = t mod 2H(1/4)n

]
= Pr

[
a1 = t−

n∑
i=2

ciai mod 2H(1/4)n

]
= 1

2H(1/4)n .

Thus, Xi,j ∼ Ber2−H(1/4)n for i 6= j. Using |T | =
(
n
n/4
)
≤ 2H(1/4)n, we obtain

E[X] ≤ (|T |2 − |T |) · 2−H(1/4)n + |T | ≤ 2H(1/4)n+1 .

An application of Markov’s inequality yields

Pr
[
X > n2H(1/4)n

]
≤ E[X]
n2H(1/4)n ≤

2
n
.

ut

B Proof of Theorem 3.2

Theorem 3.2 (Complexities of SS-PCS4) Let (a, t) be a random subset sum
instance and let 1

8 ≤ γ ≤ 0.21. Then under Heuristic 2 with high probability
SS-PCS4 finds a solution to (a, t) in expected time 2(0.849−2γ)n and memory
Õ(2γn).

Proof. We start by analyzing the time complexity of the algorithm. The running
time Tit of each iteration of the second for-loop of Algorithm 2 (steps 5–9)
is dominated by creating L1, . . . , L4 via PCS and checking for a solution with
Schroeppel-Shamir. In the following we show that by our choice of γ the run
time Tit is solely dominated by Schroeppel-Shamir.

According to Theorem 2.1, computing 2γn collisions between f and fRi can
be done in expected time

TPCS = Õ(2
(H(1/16)+γ)n

2 ) .
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By Heuristic 2, PCS gives us random collisions (x,y) ∈R S2, where S := {x ∈
Fn2 | wt(x) = n/16}. We obtain

Pr
[
(x,y) ∈R S2 is consistent

]
=

( 15
16n
1

16n

)(
n

1
16n

) = Θ̃
(

2( 15
16H(1/15)−H(1/16))n

)
.

Let δ = (H(1/16)− 15
16H(1/15))n. Thus, the input lists for Schroeppel-Shamir

have expected size Õ(2(γ−δ)n). An easy calculation shows that the prerequi-
site of Lemma 2.1 is met. Therefore, an application of Lemma 2.1 yields that
Schroeppel-Shamir takes expected time TSS = Õ(22(γ−δ)n). One also easily veri-
fies that our restriction γ ≥ 1

8 from Theorem 3.2 implies TSS ≥ TPCS, which entails
that TSS dominates Tit. Moreover, the prerequisite γ ≤ 0.21 guarantees that the
exponent 4H(1/16)− 1

2 − 4γ of the number of iterations of the second for-loop
is positive.
Therefore, the total expected time complexity is

T = Õ(2(7·H(1/16)−3/2−4γ)n · Tit) = Õ(2(7·H(1/16)−3/2−2γ−2δ)n) = 2(0.849−2γ)n.

Concerning memory, we require to store |Li| = 2γn elements.
It remains to show that Algorithm 2 succeeds with high probability. Let us

define the event E1 that we find within the first for-loop a choice of R1, . . . , R3
for which a representation (e1, . . . , e4) of our solution e exists. Further, let E2
be the event that (e1, . . . , e4) is found within the second for-loop. We show that
E1 ∩ E2 happens with high probability in at least one of the iterations of the
algorithm.

Let us start with event E1. Let Rn
2 ,4 denote the number of representations

of a vector with weight n
2 into four vectors, i.e.

Rn
2 ,4 =

(
n/2

n/8, n/8, n/8, n/8

)
≥ 2n

n3 .

By Heuristic 2 for a representation (e1, e2, e3, e4) the values 〈a, ei〉 mod 2H(1/16)n,
for i = 1, 2, 3 are independently and uniformly distributed over Z2H(1/16)n . Thus,
a fixed choice of R1, R2, R3 ∈ Z2H(1/16)n does not yield a representation with
probability

Pr [R1, R2, R3 bad] = (1− 2−3H(1/16)n)Rn
2 ,4 ≤ (1− 2−3H(1/16)n)

2n
n3 .

Using 1 − x ≤ e−x, in all n4 · 2(3·H(1/16)−1)n iterations of the first for-loop
we find no representation with probability

Pr
[
Ē1
]
≤ (1− 2−3H(1/16)n)n·2

3H(1/16)n
≤ e−n .

It remains to show that E2|E1 happens with high probability. As we condi-
tion on E1, we already fixed R1, R2, R3 for which there exist a representation
(e1, . . . , e4) with 〈a, ei〉 = Ri mod 2H(1/16)n for i = 1, 2, 3. We now have to lower
bound the probability that (e1, . . . , e4) ∈ L1 × . . .× L4.
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Each element from Li is constructed via PCS, where by Heuristic 2 PCS returns
independently and uniformly at random drawn collisions. Let us represent ei as
(e(1)
i , e(2)

i ), which can be done in Rn
8 ,2 =

(
n/8
n/16

)
≥ 1

n · 2
n
8 many ways.

Moreover, similar to the proof of Lemma 3.1 we know that with high probabil-
ity the number of collisions between f and fRi is upper-bounded by n · 2H(1/16)n.
Hence, a random collision from PCS yields ei with probability

q ≥
Rn

8 ,2

n · 2H(1/16)n ≥
1
n2 · 2

(−H(1/16)+1/8)n .

As an execution of PCS provides us 2γn collisions we obtain

p := Pr [Li contains ei] = 1− (1− q)2γn .

It follows that

Pr [(e1, . . . , e4) ∈ L1 × . . .× L4] = p4 =
(

1− (1− q)2γn
)4

.

Let Y ∼ Geop4 be a random variable for the number of iterations until (e1, . . . , e4) ∈
L1 × . . .× L4. Using Bernoulli’s inequality (1− x)n ≥ 1− xn we obtain

E[Y ] = 1
((1− q)2γn − 1)4 ≤

1
(1− q · 2γn − 1)4 ≤ n

8 · 2(4H(1/16)− 1
2−4γ)n .

Using Markov’s inequality, SS-PCS4 does not succeed to find a solution to the
random subset sum instance (a, t) in its n9 · 2(4H(1/16)− 1

2−4γ)n iterations of the
second for-loop with

Pr
[
Ē2 | E1

]
= Pr

[
Y > n9 · 2(4H(1/16)− 1

2−4γ)n
]
≤ E[Y ]
n9 · 2(4H(1/16)− 1

2−4γ)n ≤
1
n
.

ut

C Experimental Verification of Heuristic 1

In this section we present experimental results that verify the used heuristic
assumptions.

Distribution of Collisions. Our analyses assume that collision sampling via
PCS yields independently and uniformly distributed collisions. Let C be the set
of all collisions of some function g and let S ⊆ C be a distinguished subset. By
our assumption we hit S with probability p = |S|

|C| .
We tested this heuristic for functions with domain size 2n, where n ∈

{14, 18, 22} by measuring the amount of collisions until we hit S for the first time,
which exactly determines the running time of our algorithms in Section 3 and
should be geometrically distributed with parameter p. To this end we generated a
random subset sum instance (a, t) and constructed a function g mapping x ∈ Fn2
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to 〈a,x〉 mod 2n. We then enumerated all collisions C of g and randomly chose
S ⊆ C.

We experimentally observed that the distribution of required collisions until
we first hit S is indeed geometric. Moreover, for various different functions gi we
compared the experimentally observed geometric parameters pi to the expected p.
Let `i = p

pi
denote their quotient, so `i should be close to 1. In Figure 7 we show

the distribution of the `i in our experiments, where the dots represent the relative
frequencies of the `i. The `i closely follow a logarithmic-normal distribution –
depicted as a solid line – centered around the desired value of one. Moreover,
we see that for increasing n the variance of the distribution decreases. Thus, `i
becomes sharply centred around one.
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(a) n = 14, |S| = 16, E[`i] = 1.312,
Var[`i] = 0.598. Parameters of log-normal
distribution µ = 0.118, σ2 = 0.311. Sample
size 10,000
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(b) n = 18, |S| = 32, E[`i] = 1.214,
Var[`i] = 0.236. Parameters of log-normal
distribution µ = 0.120, σ2 = 0.147. Sample
size 10,000

0 1 2 3

0.00

0.01

0.02

0.03

0.04

0.05

(c) n = 22, |S| = 64, E[`i] = 1.252,
Var[`i] = 0.128. Parameters of log-normal
distribution µ = 0.186, σ2 = 0.076. Sample
size 5,000

Fig. 7: Distribution of the `i for (n, log |S|) ∈ {(14, 4), (18, 5), (22, 6)}.
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Complexity of PCS Algorithm Applied to Subset Sum Functions. Ac-
cording to Theorem 2.1, the PCS algorithm performs on independent random
functions (roughly) 2 r+m

2 evaluations for finding 2m collisions. This implies on
average 2 r−m

2 evaluations per collision.
We verify this asymptotic behaviour experimentally for our subset sum

functions g and gt from Section 3.1. We implemented g, gt for n ∈ {28, 40} and
measured the average amount of function evaluations to obtain a specific number
of collisions via PCS. Figure 8 shows the results in logarithmic scale, where the
dots represent the experimental data averaged over multiple executions. The solid
line represents the asymptotic prediction of r−m

2 (shifted by a small additive
constant that stems from the Õ-notion). We see that the average cost of multiple
collision finding in g and gt closely matches the prediction from Theorem 2.1,
and thus g, gt behave with respect to multiple collision finding like independent
random functions.
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Fig. 8: Average number of function evaluations per collision (in logarithmic scale,
y-axis) for generating 2m collisions (x-axis) for n ∈ {28, 40}.
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