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Abstract

We construct a 2-message publicly verifiable witness indistinguishable argument system for
NP assuming that the Learning with Errors (LWE) problem is subexponentially hard. Moreover,
the protocol is “delayed input”; that is, the verifier message in this protocol does not depend
on the instance. This means that a single verifier message can be reused many times.

We construct two variants of this argument system: one variant is adaptively sound, while
the other is public-coin (but only non-adaptively sound).

We obtain our result via a generic transformation showing that the correlation intractable
hash families constructed by Canetti et al. (STOC 2019) and Peikert and Shiehian (CRYPTO
2019) suffice to construct such 2-message WI arguments when combined with an appropriately
chosen “trapdoor Σ-protocol.” Our construction can be seen as an adaptation of the Dwork-
Naor “reverse randomization” paradigm (FOCS ’00) for constructing ZAPs to the setting of
computational soundness rather than statistical soundness. Our adaptation of the Dwork-Naor
transformation crucially relies on complexity leveraging to prove that soundness is preserved.
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1 Introduction
In this note, we consider the question of constructing 2-message witness indistinguishable (WI)
arguments for NP that are publicly verifiable; that is, the argument system consists of a single
verifier message followed by a single prover message, and anyone can verify a proof given only the
transcript.

In a seminal work, Dwork and Naor [DN00] showed that such argument systems can be con-
structed given any non-interactive zero knowledge (NIZK) proof system in the common random
string model; given the state-of-the-art on NIZK, this yields constructions assuming the hardness
of factoring [FLS99] as well as under falsifiable assumptions on bilinear maps [CHK03,GOS06].

In recent work, Canetti et al. [CCH+19] and Peikert and Shiehian [PS19] gave constructions
of NIZK argument systems from lattice assumptions1; however, the [DN00] transformation cannot
be directly applied to these constructions in order to obtain 2-message WI arguments. The issue
is that both of these works construct NIZKs that are either (1) statistically sound, but requiring
a structured common reference string, or (2) using a uniformly random CRS, but only satisfying
soundness against computationally bounded provers. On the other hand, the [DN00] transformation
crucially assumes that the underlying NIZK satisfies statistical soundness and uses a uniformly
random CRS.

In this work, we show that a slight modification of the [DN00] transformation can be applied to
the [CCH+19,PS19] NIZKs in order to obtain 2-message publicly verifiable WI arguments for NP.
Unlike the [DN00] construction, we rely on complexity leveraging in order to prove soundness of
the 2-message argument system, so we must rely on the subexponential hardness of LWE in order
to prove security. As a result, we obtain the following theorem.

Theorem 1.1. Assuming the subexponential hardness of LWE, there exist two-message publicly
verifiable WI arguments for NP.

We construct two variants of such an argument system: in one variant, soundness is adaptive
(that is, soundness holds even when the cheating prover is allowed to choose the false statement
that he wants to prove), while in the other, the protocol is public-coin (that is, the verifier message
is a uniformly random string). Both variants are “delayed-input” protocols – meaning that the
verifier message does not depend on the instance x – so in either variant, the verifier message can
be reused across many executions (even for different statements).

While our construction can be seen as a new variant of the [DN00] transformation from NIZKs
to 2-message arguments, we choose to present the construction as a compiler from (sufficiently
structured) “trapdoor Σ-protocols” [CCH+19] to 2-message arguments, combining a special-purpose
instantiation of the Fiat-Shamir heuristic with a [DN00]-like transformation. More specifically, we
give a construction combining dual Regev encryption with the correlation intractable hash families
of [CCH+19,PS19].

1.1 Concurrent Work

In concurrent and independent work, Badrinarayan et al. [BFJ+19] note essentially the same con-
struction of 2-message WI arguments from LWE. Moreover, they give an exciting extension of the

1 [CCH+19] gave a construction from a circular-secure variant of the learning with errors (LWE) assumption,
while [PS19] weakened the assumption to plain LWE.

1



result that yields a 2-message (publicly verifiable) WI argument system satisfying statistical wit-
ness indistinguishability. Such argument systems were not previously known under any standard
cryptographic assumption, and we do not give such a construction in this note.

2 Preliminaries
We say that a function µ(λ) is negligible if µ(λ) = O(λ−c) for every constant c, and that two
distribution ensembles X = {Xλ} and Y = {Yλ} are computationally indistinguishable (X ≈c Y )
if for all polynomial-sized circuit ensembles {Aλ},∣∣∣Pr [Aλ(Xλ) = 1]− Pr [An(Yλ) = 1]

∣∣∣ = negl(λ).

2.1 Witness Indistinguishable Arguments

Definition 2.1. A witness indistinguishable arugment system Π for an NP relation R consists of ppt
interactive algorithms (P, V ) with the following syntax.

• P (x,w) is an interactive algorithm that takes as input an instance x and witness w that
(x,w) ∈ R.

• V (x) is an interactive algorithm that takes as input an instance x. At the end of an inter-
action, it outputs a bit b. If b = 1, we say that V accepts, and otherwise we say that V
rejects.

The proof system Π must satisfy the following requirements for every polynomial function n =
n(λ). Recall that L(R) denotes the language {x : ∃w s.t. (x,w) ∈ R} and Rn denotes the set
R ∩ ({0, 1}n × {0, 1}∗).

• Completeness. For every (x,w) ∈ R, it holds with probability 1 that V accepts at the end
of an interaction 〈P (x,w), V (x)〉.

• Soundness. For every
{
xn ∈ {0, 1}n \ L(R)

}
and every polynomial size P ∗ = {P ∗λ}, there is

a negligible function ν such that V accepts with probability ν(λ) at the end of an interaction
〈P ∗(x), V (x)〉.

• Witness Indistinguishability. For every ppt (malicious) verifier V ∗ and every ensemble{
(xn, (w0,n, w1,n), zn) : (xn, w0,n), (xn, w1,n) ∈ Rn

}
, the distribution ensembles

viewV ∗〈P (x,w0), V ∗(x,w0, w1, z)〉

and
viewV ∗〈P (x,w1), V ∗(x,w0, w1, z)〉

are computationally indistinguishable.

In the work, we focus on obtaining two message WI arguments for NP. A (two message) WI
argument system can also satisfy various stronger properties. We list some important variants
below.
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• Publicly Verifiable: A WI argument system is publicly verifiable if the verifier’s ac-
cept/reject algorithm is an efficiently computable function of the transcript (independent
of the verifier’s internal state).

• Public Coin: A WI argument system is public coin if all (honest) verifier messages are
uniformly random strings (sampled independently of the protocol so far). Note that any
public coin protocol is publicly verifiable.

• Delayed Input: A two-message WI argument system is delayed input if the (honestly sam-
pled) verifier message does not depend on the instance x.

• Adaptive Soundness: A two-message, delayed-input protocol Π is adaptively sound if for
every polynomial size algorithm P ∗ = {P ∗λ}, there is a negligible function ν such that for all
λ,

Pr
crs←V (x)

(x,π):=P ∗λ (crs)

[x /∈ L(R) ∧ V (crs, x, π) = 1] ≤ ν(λ).

3 Correlation Intractable Hash Families
In this section, we recall the notion of correlation intractability [CGH04], specialization to “efficiently-
searchable relations” [CCH+19], and LWE-based instantiation [PS19].
Definition 3.1. For a pair of efficiently computable functions (n(·),m(·)), a hash family with input
length n and output length m is a collection H = {hλ : {0, 1}s(λ) × {0, 1}n(λ) → {0, 1}m(λ)}λ∈N of
keyed hash functions, along with a pair of p.p.t. algorithms:

• H.Gen(1λ) outputs a hash key k ∈ {0, 1}s(λ).

• H.Hash(k, x) computes the function hλ(k, x). We may use the notation h(k, x) to denote hash
evaluation when the hash family is clear from context.

We cay that H is public-coin2 if H.Gen outputs a uniformly random string k ← {0, 1}s(λ).
Definition 3.2 (Correlation Intractability). For a given relation ensemble R = {Rλ ⊆ {0, 1}n(λ)×
{0, 1}m(λ)}, a hash family H = {hλ : {0, 1}s(λ) ×{0, 1}n(λ) → {0, 1}m(λ)} is said to be R-correlation
intractable with security (s, δ) if for every s-size A = {Aλ},

Pr
k←H.Gen(1λ)
x←A(k)

[(
x, h(k, x)

)
∈ R

]
= O(δ(λ)).

We say that H is R-correlation intractable with security δ if it is (λc, δ)-correlation intractable for
all c > 1. Finally, we say that H is R-correlation intractable if it is (λc, 1

λc )-correlation intractable
for all c > 1.

If R is a collection of relation ensembles, then H is said to be uniformly R-correlation intractable
if for every polynomial-size A, there exists a function ν(λ) = negl(λ) such that for every R ∈ R,

Pr
k←H.Gen(1λ)
x←A(k)

[
(x, h(k, x)) ∈ R

]
≤ ν(λ).

2Sometimes “public-coin” hash families are defined to be hash families whose security properties hold even when
the adversary is given the random coins used to sample k ← H.Gen(1λ). For our purposes (e.g. ignoring compactness),
this definition is equivalent to ours.
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3.1 Efficiently Searchable Relations

As in [CCH+19,PS19] we make use of hash functions that are correlation intractable for relations R
with a unique output y = f(x) associated to each input x, and such that y = f(x) is an efficiently
computable function of x.

Definition 3.3 (Unique Output Relation). We say that a relation R is a unique output relation
if for every input x, there exists at most one output y such that (x, y) ∈ R.

Definition 3.4 (Efficiently Searchable Relation, [CLW18]). We say that a (necessarily unique-
output) relation ensemble R is searchable in (non-uniform) time T if there exists a function f =
fR : {0, 1}∗ → {0, 1}∗ computable in (non-uniform) time T such that for any input x, if (x, y) ∈ R
then y = f(x); that is, f(x) is the unique y such that (x, y) ∈ R, provided that such a y exists. We
say that R is efficiently searchable if it is searchable in time poly(n).

In this work, we make use of the hash functions of [PS19], which are correlation-intractable for
efficiently searchable relations under the LWE assumption (with polynomial modulus). Moreover,
we use the fact that under subexponential LWE, the [PS19] hash family is in fact 2−mδ -correlation
intractable for some δ > 0.

Theorem 3.5 ( [PS19]). Assume the subexponential hardness of LWE. Then, there exists some
δ > 0 such that for all polynomial functions (n(·),m(·), T (·)), there is a hash family H = {hλ :
{0, 1}s × {0, 1}n → {0, 1}m} that is 2−m(λ)δ -correlation intractable for all relations searchable in
time T .

4 Reverse Randomization-Compatible Trapdoor Σ-Protocols
In this section, we present a variant of “trapdoor Σ-protocols” [CCH+19] that suffice for our trans-
formation. The key differences as compared to the trapdoor Σ-protocols of [CCH+19] are as follows.

• We require that the honestly generated CRS is uniformly random and that the “fake CRS”
distribution is statistically close to uniform.

• We require malicious-verifier witness indistinguishability rather than just honest-verifier zero
knowledge (these two properties are equivalent for protocols with polynomial-size challenge
spaces and their parallel repetitions).

As we will explain, this can be achieved by instantiating the generic commitment scheme used
in the [Blu86,FLS99] Σ-protocols using dual Regev encryption.

Definition 4.1 (Reverse Randomization-Compatible Trapdoor Σ-Protocol). We say that a 3-
message protocol Π = (Gen, P, V ) in the CRS model is a reverse randomization-compatible trapdoor
Σ-protocol if there are p.p.t. algorithms TrapGen,BadChallenge with the following syntax.

• TrapGen(1λ) takes as input the security parameter. It outputs a common reference string
crs ∈ {0, 1}` along with a trapdoor td.

• BadChallenge(td, crs, x,a) takes as input a trapdoor td, common reference string crs, instance
x, and first message a. It outputs a challenge e.
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We additionally require the following properties.

• Witness Indistinguishability with Uniform CRS.

• CRS Indistinguishability: The crs distribution output by TrapGen(1λ) is statistically in-
distinguishable from the uniform distribution U`.

• Efficient Special Soundness: for every instance x 6∈ L and for all (crs, td)← TrapGen(1λ),
if (crs, x,a, e, z) is a valid transcript for Π, then e = BadChallenge(td, crs, x,a).

Remark 4.1. Assuming the (polynomial) hardness of LWE, there is a reverse randomization-
compatible trapdoor Σ-protocol for all of NP.

Proof. We instantiate Blum’s Hamiltonicity protocol [Blu86] (or the [FLS99] Hamiltonicity proto-
col) in the CRS model using dual Regev encryption [GPV08]. The fact that these schemes satisfy
efficient special soundness was already argued in [CCH+19]. Since dual Regev public keys are
statistically indistinguishable from uniformly random, we are done.

5 Constructing 2-Message WI
In this section, we show that correlation intractable hash functions for efficiently searchable re-
lations (Section 3) can be combined with reverse randomization-compatible trapdoor Σ-protocols
(Section 4) to obtain 2-message publicly verifiable WI arguments.

As we described in the introduction, this can be seen as an extension of the Dwork-Naor “reverse
randomization” paradigm to the setting of comptuational soundness.

Construction 5.1 (2-Message WI Protocol). Let Π be a reverse randomization-compatible trapdoor
Σ-protocol with the following three efficiency properties:

• Common reference strings have length `(λ).

• Challenges have length m(λ) for some polynomial function m(·).

• The algorithm BadChallenge(τ, crs, x,a) is computable by a size T circuit for some polynomial
function T (λ, n(λ)).

Moreover, let H denote a hash family that is 2−`negl(λ)-correlation intractable for relations
searchable in time T . We then define the following 2-message protocol Π̃, which is a combination
of the Fiat-Shamir transform (using H) and [DN00]-style “reverse randomization.”

• Verifier message: the verifier samples λ common random strings crs1, . . . , crst
$← {0, 1}` (for

t = 2`) along with a hash key k ← H.Gen(1λ).

• Prover message: given an instance x, witness w, and verifier message (crs1, . . . , crst, k), the
prover does the following.

– Sample a random string crsP
$← {0, 1}` and set c̃rsi = crsP ⊕ crsi.

– For 1 ≤ i ≤ t, compute ai ← Π.P (c̃rsi, x, w), ei = h(k, x||ai), z = Π.P (c̃rsi, x, w,ai, ei).
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– Output (ai, ei, zi)ti=1.

• The verifier accepts a transcript
(
(crsi)i≤t, k, x, crsP , (ai, ei, zi)i≤t

)
if for all i, ei = h(k, x||ai)

and Π.V (c̃rsi, x,ai, ei, zi) = 1.

We claim that this construction yields a 2-message (publicly verifiable) WI argument system
for NP. Completeness and public verifiability are clear by construction, so we proceed to prove
that this protocol is both WI and sound.

Lemma 5.2. Assuming that Π is WI, Π̃ is also WI.

Proof. This is identical to the [DN00] proof of witness indistinguishability, which we sketch here.
Fix a malicious verifier V ∗ along with a statement, pair of witnesses, and auxiliary information
(x,w1, w2, z). Then, consider the following views view(j) for 0 ≤ j ≤ t: for every j, let

τ (j) =
(
(crsi)i≤t, k, x, crsP , (ai, ei, zi)i≤t

)
and view(j) = (τ (j), r), where:

• r is the internal randomness of V ∗, and
(
(crsi)i≤t, k

)
= V ∗(x,w1, w2, z; r).

• For every i, (ai, ei, zi) is computed using c̃rsi := crsi ⊕ crsP . Moreover, it is computed using
witness w1 if and only if j ≥ i (and witness w2 otherwise).

By construction, view(0) is the view of V ∗ in an interaction with an honest prover using w1,
and view(t) is the interaction between V ∗ and an honest prover using w2. The computational
indistinguishability of view(j) and view(j+1) for every j follows from the (malicious verifier) witness
indistinguishability of Π.

Lemma 5.3. Assuming that H is 2−`negl(λ)-correlation intractable for all relations searchable in
time T (λ, n(λ)), Π̃ is adaptively sound.

Proof. Suppose that P ∗ is an efficient cheating prover that breaks the adaptive soundness of Π̃
with non-negligible probability, meaning that

Pr
(crs1,...,crst),k

(x,crsP ,π̃)←P (crs1,...,crst,k)

[x 6∈ L ∧ V accepts (x, crs1, . . . , crst, k, crsP , π̃)] = ε(λ)

for some non-negligible function ε(·). We proceed to define a sequence of hybrid experiments where
we change the underlying distributions and win conditions. Let crs∗ ← {0, 1}` denote a uniformly
random string of length ` sampled independently of the above random variables. Then, we have
that

Pr
crs∗,(crs1,...,crst),k

(x,crsP ,π̃)←P (crs1,...,crst,k)

[x 6∈ L ∧ V accepts (x, crs1, . . . , crst, k, crsP , π̃) ∧ crsP = crs∗] = ε(λ)2−`.

Next, in order to invoke correlation intractability, we need to argue that P ∗ must win while some
c̃rsi has a valid trapdoor. In order to have a uniform security reduction, we argue as follows. Since
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the CRS distribution output by TrapGen(1λ) is statistically close to uniform, we know that there
exists a set S ⊂ {0, 1}` of size 1

22` such that for every crs ∈ S, TrapGen(1λ) outputs crs with
probability at least 1

22−`. By independence, we conclude that for every fixed string crs∗,

Pr
crs1,...,crst

[crs∗ ⊕ crsi 6∈ S for all i] = 2−t = 2−2`,

so we have that

Pr
crs∗,(crs1,...,crst),k

(x,crsP ,π̃)←P (crs1,...,crst,k)

[x 6∈ L ∧ V accepts ∧ crsP = crs∗ ∧ c̃rsi ∈ S for some i] ≥ ε2−` − 2−2`.

Picking a uniformly random i∗
$← [t], we further see that

Pr
i∗,crs∗,(crs1,...,crst),k

(x,crsP ,π̃)←P (crs1,...,crst,k)

[x 6∈ L ∧ V accepts ∧ crsP = crs∗ ∧ c̃rsi∗ ∈ S] ≥ 1
4`ε2

−`.

We next consider an alternate experiment in which the uniformly random crsi∗ is replaced by the
string crs∗ ⊕ crsi∗ for (crsi∗ , tdi∗) ← TrapGen(1λ). Since every string in S has weight at least 1

22−`
in the TrapGen crs distribution, we see that

Pr
i∗,crs∗,crsi∗ ,(crs1,...,crst),k

(x,crsP ,π̃)←P (crs1,...,crs∗⊕crsi∗ ,...,crst,k)

[x 6∈ L ∧ V accepts ∧ crsP = crs∗ ∧ c̃rsi∗ ∈ S] ≥ 1
8`ε2

−`.

Finally, we claim that this violates the 2−`negl(λ)-correlation intractability of H. Formally, an
adversary A′ can sample i∗, (crsi∗ , tdi∗) and declare the relation

Rcrsi∗ ,tdi∗ = {(x||a, e) : e = BadChallenge(tdi∗ , crsi∗ , x,a).}

Then, upon receiving a hash key k, A′ can sample crs∗ and (crs1, . . . , crst) itself and call (x, crsP , π̃)←
P ∗(crs1, . . . , crs∗⊕crsi, . . . , crst). Finally, A′ outputs the pair (x,ai∗). Whenever x 6∈ L, crsP = crs∗,
and V accepts the output of P ∗ in the above experiment, by the efficient special soundness of Π,
we will have that (x,ai∗) ∈ Rcrsi∗ ,tdi∗ , completing the reduction.

5.1 Parameter Settings and Instantiation

Combining Section 5 with Theorem 3.5 and Remark 4.1, we obtain the following LWE-based in-
stantiation of 2-message publicly verifiable WI. Assume that LWE is 2−λδ · negl(λ)-hard for some
fixed δ > 0.

• Using dual Regev encryption and the [Blu86] proof system for Hamiltonicity (repeated λ
2
δ

times in parallel), there is a reverse randomization-compatible trapdoor Σ-protocol Π with a
crs of size λ and challenges of length λ

2
δ .

• Using Theorem 3.5, there is a hash family that is 2−λ2 · negl(λ)-correlation intractable for
all relations that are searchable in time T (λ) sufficient to compute the BadChallenge function
associated to Π.
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• Applying Section 5, we conclude that the protocol Π̃ in Construction 5.1 (using these building
blocks) is a 2-message publicly verifiaible WI argument system for NP. Moreover, it satisfies
adaptive soundness (again by Section 5). Finally, since hash keys in the hash family H
are pseudorandom, we conclude that another variant of Π̃ (in which the verifier message is
uniformly random) is a non-adaptively sound publicly-verifiable WI argument.
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