
Crisis: Probabilistically Self Organizing Total Order in

Unstructured P·2·P Networks

? Mirco Richter ?
(mirco.richter@mailbox.org)

July 14, 2019

1 Introduction

In their pioneering, but largely ignored work ”Byzan-
tine-Resistant Total Ordering Algorithms” [10], the
authors Moser & Melliar-Smith established total or-
der on network events utilizing a concept, best de-
scribed as virtual voting. This simple yet ingenious
insight achieves full asynchrony and close to optimal
communication overhead as almost no additional in-
formation has to be send, besides the actual payload.
Instead messages acknowledging other messages are
just interpreted as virtual processes executing some
consensus algorithm to decide the total order.

Unfortunately, Moser & Melliar-Smith’s approach
is based on a byzantine fault tolerant protocol, that
inevitably depends on the number of participants, or
the overall voting weight in the system. Those al-
gorithms are therefore useless when it comes to fully
local, unstructured Peer-to-Peer networks and their
ever changing number of participants, or potentially
unbounded voting power.

However, in ”Byzantine Agreement, Made Triv-
ial” [9], Micali described a so called player replace-
able consensus protocol, that is able to execute each
step of the computation inside an entirely different
set of processes. Player replaceability is therefore a
real paradigm shift when it comes to agreement in
open systems. In particular, it allows for previously
unknown solutions to the BFT-CUP problem as de-
scribed by Alchieri et al. in [1].

It is true, that Micali’s protocol needs some level
of synchronism, but this is where the full power of
virtual voting really shows up:

Inside the virtual setting, synchronism can be sim-
ulated, while keeping the actual system fully asyn-
chronous from the outside. In fact such a behavior
can be achieved, by simply interpreting messages as
clock ticks of even length, regardless of the amount
of real world time it took them to arrive. We call
this phenomena virtual synchrony and point out, that
it appears pretty straight forward from the internal
logic of Lamport clocks.

With all this in mind, a combination of Micali’s
player replaceability and Moser & Melliar-Smith’s
idea of virtual voting seems quite obvious, provided
the goal is total order on messages in unstructured
Peer-to-Peer networks.

The Crisis protocol family follows this line of
thought and presents a framework for asynchronous,
signature free, fully local and probabilistically con-
verging total order algorithms, that may survive
in high entropy, unstructured Peer-to-Peer networks
with near optimal communication efficiency. Regard-
ing the natural boundaries of the CAP-theorem, Cri-
sis chooses different compromises for consistency and
availability, depending on the severity of the attack.

The family is parameterized by a few constants
and external functions called voting-weight, incenti-
vation & punishement, difficulty oracle and quorum-
selector. These functions are necessary to fine tune
the dynamics and very different long term behav-
ior might appear, depending on any actual choice.
Since proper function design is highly important, Ci-
sis should be seen more as a total order framework,
than as an actual algorithm.

1



Historical note

It is a concerning and somewhat wired incident in
history that no reference to the foundational work of
Moser & Melliar-Smith [10] seems to appear in any
of the modern literature on virtual voting based ap-
proaches like hashgraph [2], parsec [5], or blockmania
[6] at the time of this writing. In contrast, some of
the later references make it look like virtual voting is
a new invention. However it is neither new, nor is it
an invention at all:

To the best of the authors knowledge, the ability
to execute agreement protocols ’virtually’ (by which
we mean that ”[..] votes are not contained explicitly
in the messages, but are deduced from the causal rela-
tionships between messages [..]” [10, p.84]), was first
observed by Moser & Melliar-Smith in 1993. The
authors showed, that such a property is inherent in
any so called byzantine partial order, which are more
or less just cryptographically secured Lamport times-
tamps, that appear naturally whenever a message ac-
knowledges another message. Virtual voting is there-
fore not a new invention, but an emergent mathemat-
ical phenomena on certain graphs, that have a struc-
ture similar to the one used in the Lamport clocks.

Remark. This strange glitch in time might exist, at
least partially, due to monetary interest. It shines
a scary light on the fragility of scientific standards,
when huge econimic interest are suddenly involved.
The antidote is proper education and any reader in-
terested in historical correctness is encouraged to look
at the origins of those ideas as started by Lamport
[8] back in 1978.

After all, the work of Moser & Melliar-Smith [10]
deserves all the credits, when it comes to virtual vot-
ing on byzantine partial order graphs. That paper
has the potential to be seminal, despite the fact that
it appears not referenced at all in most modern ap-
proaches, at the time of this writing.

License

This work is published under version 4.0 of the cre-
ative commons license cb. For further questions,
please contact the author.

Donations

If you would like to support the continuous produc-
tion of content like this, please donate via one of the
following channels, or contact the author for addi-
tional solutions:
Bitcoin:
1B5DNwRGC3Kb2MbPuJB4cQX9UsChPUvUWf
PayPal: mirco.richter@mailbox.org

2 Model of Computation

2.1 Random oracle model

We work in the random oracle model, e.g. we assume
the existence of a cryptographic hash function, that
behaves like a random oracle. We write

H : {0, 1}∗ → {0, 1}p (1)

for such a function, as it maps binary strings of ar-
bitrary length onto binary strings of fixed length p.
As usual, we call H(b) the digest value of the binary
string b and assume H to be collision-, preimage- and
second preimage-resistant.

2.2 Network model

The protocol is executed in a dynamic, distributed
system, where processes might join or leave at any
time. We therefore have to assume some sort of sim-
ple message-oriented transport protocol, such that
each participating processes is eventually able to send
or receive data packages. In addition, the system is
considered fully asynchronous in that no bound can
be placed on the time required for a computation or
for communication of any message.

A process is called honest at time t, if it executes
the protocol according to the rules at that time and
it is called faulty if it deviates from the protocol in
one way or another.

2



3 Data Structures

3.1 Messages

Messages distribute payload across the network and
the purpose of the present paper is to establishe a
total order on those messages, that respects causal-
ity and is probabilistically invariant among all honest
participants.

The system is open and anyone is able to inject an
arbitrary amount of messages at any given moment
in time. However we crucially require the existence
of a function, that assigns a weight factor to any such
message. The purpose of this weight is both to pre-
vent Sybil and system scale DOS attacks and to pro-
vide any message with a certain amount of voting
power to influence the generated order.

Proper weight function design is therefore of major
importance when it comes to behavior control and
self-organization. Different dynamics might appear
relative to any weight function, some of which are
stable and some of which are not.

To define our message type, we expand the ideas
of Lamport [8] as well as Moser & Melliar-Smith [10]
and use additional insight from blockmania [6] and
Bitcoin [11]. Giving three fixed protocol constants
c1, c2, c3 ∈ N, a message is then nothing but a byte
string of variable length, subject to the following in-
terpretation:

struct Message{
byte [ c1 ] nonce ,
byte [ c2 ] id ,
byte [ c3 ] num digests ,
byte [ p ∗ num digests ] d i g e s t s ,
byte [ ] payload

}

In this definition, the nonce is a general purpose
byte field of fixed length. It might be required to
compute the weight function in an actual incarnation
of the protocol. For example, if a protocol weight
function is similar to Hashcashs Proof-of-Work [11],
the nonce is necessary to probe the search space of
hash values. If, on the other hand, the protocol uses
a Proof-of-Stake or Proof-of-Authority style weight
function, the nonce might contain a signature of the
message to verify ownership of some staked voting
weight.

In addition, payload can be anything, that is prop-
erly serializeable into a bytefield. Other then that,
Crisis makes no assumptions on its internal struc-
ture. In any case, the outcome of the protocol is a
total order, e.g. a chain of payload chunks.

Moreover, id is a binary string used to group mes-
sages into what we call virtual processes. Its neither
a unique identifier of a message, nor must it represent
an actual process. Its main purpose is to clearify how
the ideas of BFT-CUP [1] emerge in our virtualized
setting. The last messages of a virtual round with
an identical id will be considered as votes from the
virtual process. However, depending on the weight
function, it might be possible that different real world
processes collaborate under the same virtual process
id.

The num digests field is just a standard way
to represent the length of the following byte array
digests, the latter of which contains digest values
that acknowledge the existence of other messages,
or the empty string, in case the message does not
acknowledge any other message1. We assume, that
digests contains any digest only once, which implies
that we work with graphs not with multi-graphs, later
on.

The key insight here is, that a message that ac-
knowlede other messages defines an inherent natural
causality. To the best of the authors knowledge, this
by now standard mechanism was derived in great de-
tail by Lamport in his paper [8] from 1978 and we
encourage the interested reader to look at the origi-
nal source for further explanations.

In any case, if m and ḿ are two messages, we write

m→ ḿ , (2)

if and only m acknowledges ḿ, that is the digest
H(ḿ) of ḿ is contained in the field m.digests. We
then say that m is a direct effect of ḿ, or that ḿ
is a direct cause of m and that both are in a direct
causal relation2.

1Acknowledgement of the empty string is straight forward
and easily definable as the hash of the empty string H({}).

2We chose this arrow convention to be more in line with the
ideas of BFT-CUP [1]. The arrow can be interpreted as ”has
knowledge of”.

3



In what follows, we write message for the set
of all messages and postulate a special non-message
� ∈ message3. Moreover we assume the existence
of a string metric d : message × message → R like
the Levenshtein distance, such that (message, d) is
a metric space and we are able to talk about the dis-
tance d(m, ḿ) between two messages.

3.1.1 Weight systems

The protocol assumes the existence of a so called
weight system, which assigns a certain value to any
given message and defines a way to combine the
weight of different messages. It also provides a mini-
mum threshold on message weight for the prevention
of Sybil attacks. The choice of such a system is cru-
cial and the overall dynamic of the system depend on
it.

Definition 3.1 (Weight system). Let (message, d)
be the metric space of all messages and (W,≤) a to-
tally ordered set. Then the tuple (W, w,⊕, cmin) is a
weight system, if w is a function

w : message→W (3)

that assigns a an element of W to any message, called
the weight function, cmin ∈W is a constant, called
the weight threshold and ⊕ is a function

⊕ : W×W→W (4)

called the weight sum, such that the following char-
acteristic properties are satisfied:
– Tamper proof: Let m ∈ message be a message,
with weight w(m) ≥ cmin and let ḿ 6= m be an-
other message, close to m in the metric d. Then
w(ḿ) < cmin, with high probability.
– Uniqueness: If there are two messages m and ḿ
with m 6= ḿ, then w(m) 6= w(ḿ) with high probabil-
ity.
– Summability: (W,⊕) is a totally ordered, abelian
group.

3In what follows, this message will indicate the inability of
the system to agree on any actual message in a given voting
period.

Remark. If (W, w,⊕, cmin) is a weight system, we
sometimes write 	x to indicate the inverse of an ele-
ment x in the group (W,⊕) and x	y for the sum with
such an inverse. Moreover, if M a set of messages,
we write

w(M) :=
⊕

m∈M w(m) (5)

for the sum of the individual weights of all messages
from M and call it the (overall) weight of M . In
addition we use the convention w(∅) = 0, where 0 is
the neutral element in W.

Given any message m ∈ message, the value w(m)
is interpreted as the amount of voting power, m holds
to influence total order generation. The temper proof
property assures, that processes can not change mes-
sages easily, without dropping their weight below a
certain threshold. As explained by Beck in his 2002
paper [3] on Hashcash, such an approach ensures re-
sistance against Sybil and certain DOS attacks with-
out the need for any Signature scheme. It is famously
utilized in the Nakamoto consensus family [11].

However in contrast to Nakamoto consensus, the
present protocols are leaderless and voting is a col-
lective process, where the overall voting weight is a
combination of individual weights. The system there-
fore needs a way to actually execute this combination.
This is reflected in the weight sum operation ⊕4.

3.1.2 Causality

Messages may contain digests of other messages,
which in turn contain digest of yet other messages
and so on. This represents quite literally a partial
order of causality: For a message m, to incorporate
an acknowledgement of another message ḿ, message
ḿ must have existed before m, which implies that
we can talk about the past and the future of any
given massage. However a message might neither be
in the past nor in the future of another message and
those ’spacelike’ messages are therefore not compara-
ble. The purpose of a total order algorithm is then to
extend the causal order into a total order, such that
all messages become comparable.

4Weight systems might use ordinary addition or multipli-
cation as their weight sum definition, however other ways to
combine individual weights might be more realistic in certain
setups.

4



To the best of the authors knowledge, this natural
idea appeared for the first time in 1978 as part of
Lamports seminal paper [8] under the term happens-
before relation. Another frequently used term is
’spacetime’ diagram, because the causal partial order
between messages behaves very much like a spacetime
diagram in special relativity. It is famously used in
Lamport timestamps and was later adopted by Moser
& Melliar-Smith, as foundation for what we might
now call virtual agreement or virtual voting5. The
following definition provides our incarnation of Lam-
ports original ideas, adopted to our messages type:

Definition 3.2 (Causality). Let m, ḿ ∈ message be
two messages. Then ḿ is said to happen before m,
if m = ḿ or if there is a (possibly empty) sequence of
messages m1, · · · ,mk, such that m → mk → · · · →
m1 → ḿ. In that case we write ḿ ≤ m, call m an
effect of ḿ and ḿ an cause of m and say that there
is a causality chain from ḿ to m.

Comparable messages are moreover called time-
like, while incomparable messages are called space-
like. If messages ḿ and m are timelike, ḿ is said to
be in the past of m and m is said to be in the future
of ḿ, if ḿ ≤ m.

3.1.3 Vertices

To establish our total order, messages have to be ex-
tended by a small amount of local voting data, that is
not transmitted to other processes. In fact, no votes
are send through the network at all, but are deduced
from the causal relation between messages. This is
a key characteristic of virtual voting based systems,
explicitly stated by Moser & Melliar-Smith in [10].
We call such an extension a vertex :

struct Vertex{
Message m,
Option<uint> round ,
Option<boolean> i s l a s t ,
Option<TotalOrderSet<uint>> svp ,
Option<(Message , Option<boolean>)>[ ] vote ,
Option<uint> t o t a l p o s i t i o n

}

5Much later, algorithms like hashgraph [2], parsec [5], or
blockmania [6] adopted this in one way or another, unfortu-
nately without any reference to the original ideas.

We write vertex for the set of all vertices and as-
sume that any entry of option type is initialized with
the default value, which we symbolize as ⊥. Prop-
erties of messages are then easily extended to corre-
sponding properties of vertices and we write:

w(v)← w(v.m),
v.nonce← v.m.nonce,
v.id← v.m.id,
v.num digests← v.m.num digests,
v.digests← v.m.digests,
v.payload← v.m.payload

(6)

If v is a vertex, v.m is called the underlying message
of v. It is important to note, that equal messages
might not result in equal vertices, as the appropri-
ate vertices might have otherwise different entries.
We therefore have to loosen the rigidity of equality
a bit and use the following definition of equivalence
instead.

Definition 3.3 (Equivalence of vertices). Let v and
v́ be two vertices with equal underlying messages, i.e.
v.m = v́.m. Then v and v́ are said to be equivalent
and we write v ≡ v́.

The causal relation (3.2) between messages can
then be extended to a causal relation between ver-
tices.

Definition 3.4 (Vertex causality). Let v, v́ ∈
Vertex be two vertices. Then v́ is said to happen
before v, iff v́.m ≤ v.m. In that case we call v an
effect of v́ and v́ an cause of v and say that there
is a causality chain from v́ to v. Comparable ver-
tices are moreover called timelike, while incompara-
ble vertices are called spacelike. If vertices v́ and v
are timelike, v́ is said to be in the past of v and v is
said to be in the future of v́, if and only if v́ ≤ v.

3.2 Lamport graphs

As partially ordered sets are more or less the same
thing as directed acyclic graphs by the categori-
cal dag |= poset adjunction [12, sec 5.1], sets of
causaly ordered vertices have a natural graph struc-
ture, which we call a Lamport graph. As implic-
itly understood by Moser & Melliar-Smith [10], those
graphs are well suited for the generation of total order
on network events.

5



Nevertheless, care must be taken when it comes to
an actual set of vertices, as such a set might not be
ordered at all, if it contains a vertex without all its
acknowledging vertices. This motivates our definition
of Lamport graphs as a vertex set, closed under the
causality relation:

Definition 3.5 (Lamport Graph). Let V ⊂ Vertex
be a finite set of vertices, such that V contains all
vertices v́ with v́ ≤ v for all v ∈ V , but no two vertices
in V are equivalent. Then the graph G = (V,A) with
(v, v́) ∈ A, if and only if v → v́ is called a Lamport
graph. Moreover, if v is a vertex in a Lamport graph
G, the subgraph Gv of G that contains all causes of
v is called the past of v.

Two Lamport graphs are said to be equivalent, if
they are isomorphic as graphs and their vertex sets
are equivalent, that is every vertex in one graph has
an equivalent vertex in the other and vice versa.

Lamport graphs are directed and acyclic for all
practical purposes, because the inducing causality re-
lation (3.4) between vertices is a partial order, with
very high probability. The proof of the following
proposition makes this precise.

Proposition 3.6. Let G be a Lamport graph. Then,
for all practical purposes, G is directed and acyclic.

Proof. The proof is based on the assumption, that
our hash function practically prevents causality
loops, in other words, it is infeasible to generate ver-
tices v1, . . . , vk, such that v1 → v2 → · · · → vk, but
v1 = vk for some k ≥ 2. Under this assumption,
definition (3.4) provides a partial order on a vertex
set V and the proposition follows from the categor-
ical adjunction between posets and directed acyclic
graphs.

To see the partial order on V in detail, first ob-
serve that reflexivity is immediate, since any vertex
causally follows itself by definition (3.4). Transitivity
is deduced from (3.4) in a similar fashion, as v ≤ v́
and v́ ≤ ṽ implies the existence of causal chains v́ →
vk → · · · → v1 → v and ṽ → wj → · · · → w1 → v́,
which combine into a causal chain from ṽ to v, hence
v ≤ ṽ.

We proof antisymmetry by contradiction and as-
sume v 6= v́, but v ≤ v́ as well as v́ ≤ v. Then

there are causal chains v́ → vk → · · · → v1 → v and
v → wj → · · · → w1 → v́, which implies that there is
a causal chain loop v → wj → · · · → v1 → v. This
however violates our assumption on the infeasibility
of generating those loops.

Since the geometric structure of a Lamport graph
is fully determined by its underlying set of messages,
the past of equivalent vertices is the same in any
graph. This key feature is crucial in the generation
of an invariant total order and the following key the-
orem makes this precise.

Theorem 3.7 (Invariance of the past). Let v ∈ G
and v́ ∈ Ǵ be two equivalent vertices in two Lam-
port graphs. Then the past of v in G is a Lamport
graph, equivalent to the past of v́ in Ǵ, for all prac-
tical purposes and Gv and Ǵv́ have equal cardinality,
i.e. |Gv| = |Ǵv́|.

Proof. Recall that the cardinality of a finite graph
is equal to the number of its vertices. We start our
proof with the simple observation, that the past of
a vertex in a Lamport graph is a Lamport graph,
since it trivially contains all elements from its past.
It therefore remains to show, that the vertex sets from
Gv and Ǵv́ are equivalent and of equal size.

To see that, first observe that v.digests and
v́.digests actually contain the same digests, as v.m =
v́.m follows from our definition of equivalence (3.3).
Since G is a Lamport graph, it must contain a set
of v’s direct causes Sv := {x ∈ G | H(x.m) ∈
v.digests} and since Ǵ is a Lamport graph too, it
must also contain a set of v́’s direct causes Sv́ :=
{y ∈ Ǵ | H(y.m) ∈ v́.digests}. However, since H is
a cryptographic hash function, we know that x.m is
equal to y.m with very high probability for all x ∈ Sv
and y ∈ Sv́, due to the second preimage resistance of
our hash function H. This implies that all vertices
in Sv and Sv́ are equivalent, with very high probabil-
ity. Moreover Sv and Sv́ are of equal size, since no
Lamport graph contains equivalent vertices.

The same argument can then be applied to all pair-
wise equivalent vertices x ∈ Sv and x́ ∈ Śv́ with
x ≡ x́, which proofs the proposition by induction,
since both Gv and Ǵv́ are finite.

6



Remark. In our incarnation, Lamport graphs do not
necessarily represent actual network communication.
All they represent is causal order between messages.
Crisis therefore allows for ’ghost processes’, which
just route & distribute data without ever generat-
ing messages themselves. Those processes are en-
tirely transparent from the inside of any Lamport
graph and are forbidden per definition in ’gossip-over-
gossip’ style adaptations of Lamports original ideas
as used in [2], or [5]. We believe that our approach
is more general and works better under sophisticated
byzantine behavior in fully local and unstructured
Peer-2-Peer networks.

4 Communication

Crisis is build on top of two simple push&pull gossip
protocols, that are used for the distribution of mes-
sages and to keep local knowledge of neighbors up
to date. Such gossip algorithms are well suited for
the communication in unstructured Peer-2-Peer net-
works, as seen in real world applications like Bitcoin.
However, a developer is free to choose any other ap-
proach, if necessary. All the system needs, is a way
to distribute messages in a byzantine prone environ-
ment.

4.1 Message generation

All network communication starts with the genera-
tion of messages which are then distributed using the
protocols delivery system. However messages must
satisfy a certain structure to be redistributed by any
honest process. This is an effective first measure
against the easily detectable part of faulty behavior.
Algorithm (2) shows how a honest process generates
a valid message m, assuming that nonce is chosen in
such a way, that w(m) > cmin:

Algorithm 1 Generate message
1: procedure message(id, nonce:n, load:p, lamport graph:G)
2: Find a last vertex v with v.id = id in G
3: Choose Ś ⊂ {v́.m | v́ ∈ G ∧ v́ 6∈ Gv}, such that

all elements of Ś have different id’s
4: return [n, id, |Ś ∪ {v.m}|, {H(ḿ) | ḿ ∈ Ś ∪ {v.m}}, p]
5: end procedure

According to algorithm (2), a honest process gen-
erates a message by including a digest of the last mes-
sage that it knows with the same id. A message is
called a last message of a given id, if it is not in the
past of any other message under the same id. In ad-
dition a set of digests from messages is incorporated,
that are not in the past of the already included last
message with the same id. This latter set is other-
wise undetermined by the protocol and any choice is
valid.

Remark. In an actual application, a honest process
might just incorporate acknowledgements to a ran-
dom subset of all messages that it received after the
generation of the previous message m with the same
id. Those messages can not be in the past of m, due
to the definition of Lamport graphs and are therefore
valid. However the same process might as well ap-
ply a more sophisticated strategy for the inclusion of
messages, depending on the incentivation and pun-
ishment strategy of the system.

If a valid message is generated, the appropriate
process should generate an new vertex and write it
into its own Lamport graph for further distribution.
The following section describes the proper way to
handle this situation.

4.2 Lamport graph extension

After some process obtains a byte string that might
be a message, it has to rule out all immediately ob-
servable faulty behavior and then check the integrity
of that message against its own Lamport graph. If
everything works out, the Lamport graph is extended
with a vertex including the new message, if not, the
message is deleted.

If the message is not already known, the proce-
dure starts with a low level check against the basic
structure of a massage, including bound checks and
things like that. We abstract this as a boolean valued
function bytelevel correctness. After that, the
process checks the weight of the message to see if it is
above the minimum threshold bound cmin. To check
the payload, we assume the existence of a boolean
function payload correctness that compares the
payload against the system rules.

7



If all this works out properly, the process checks
the entries in m’s field of digests m.digests. All ref-
erenced messages must have exactly one correspond-
ing vertex in the current Lamport graph and all of
theses vertices must have different id’s. The process
then looks for vertices with the same id as the one in
the message. If there are some in the current Lam-
port graph, the process makes sure that one of these
messages is referenced in m.digests.

If any of this does not work out, the message is con-
sidered faulty and is deleted. If on the other hand,
everything is ok, the Lamport graph is extended with
a new vertex that contains the message and new edges
that points from the vertex to all vertices with mes-
sages referenced in m.digests. Algorithm (2) shows
the details:

Algorithm 2 Message integrity
1: procedure integrity(message:m, lamport graph:G)
2: if bytelevel correctness(m) and

w(m) > cmin and
payload correctness(m.payload) and
there is no vertex v ∈ G, with v.m = m and
every H ∈ m.digests references a vertex in G and
all referenced vertices have different id’s

3: then
4: if there is a vertex v ∈ G with v.id = m.id then
5: v is referenced in m.digests
6: No referenced vertex is in the past of v
7: return true
8: end if
9: end if

10: return false
11: end procedure

To be more precise, we call a graph Ǵ an extension
of a Lamport graph G, by a vertex v, if and only
if Ǵ − G = v, e.g if G and Ǵ differ by v, only. As
the following proposition shows, any extension of a
Lamport graph, is itself a Lamport graph.

Proposition 4.1 (Lamport graph extensions). Sup-
pose that G is a Lamport graph and m a byte string
with Integrity(m,G) = true. Then the extension
Ǵ of G by a vertex v with v.m = m is a Lamport
graph.

Proof. The message integrity function implies
that there is no other vertex in Ǵ that is equivalent
to v and that all direct causes v → v́ of v are elements
of G, hence of Ǵ.

Message integrity detects most faulty behavior.
However there is a kind of fault, called a mutation,
that can not be ruled out in this way, because it is not
strictly local and therefore undetectable from the out-
side of any Lamport graph. Such a mutation occurs,
if a set of messages, all with the same id, properly ref-
erence one and the same previous message with that
id in a Lamport graph. The set then mutates the
causal chain of messages with the same id and these
errors are mapped into the Lamport graph. They are
the reasons for byzantine agreement to appear in the
first place.

No message integrity check can rule this out, as
such a failure occures only relative to other messages
and those messages might arrive at different processes
during different times. Moreover since we assume no
signature scheme, every process can generate muta-
tions for any id that it knows6.

Definition 4.2 (Mutation). Let G be a Lamport
graph. Then two vertices v and v́ in G are called
a mutation of a virtual process, if they have the same
id and are spacelike, i.e neither v ≤ v́ nor v́ ≤ v
holds.

Remark. Mutations like this are called forks in the
hashgraph consensus paper [2], which describes the
situation quite nicely. However we stick to the origi-
nal term as defined by the actual providers Moser &
Melliar-Smith to properly honor their contribution as
it should be.

The possibility of mutations is the true reason, why
total order algorithms from the Moser & Melliar-
Smith family need byzantine fault tolerance. Mes-
sages are considered as votes from virtual processes
and mutations mimic byzantine behavior in actual
voting systems, where an actor might deliver differ-
ent votes to different processes. This is exactly the
situation, that byzantine fault tolerant protocols deal
with.

6However the system might be designed in such a way that
certain id’s a economically favored over others, for example if
a reward is associate to it that can only be accessed by the
original creator of that id.

8



4.3 Member discovery gossip

We view the system as a dynamic, directed graph,
where vertices are processes and an edge indicates
the current ability of a process to send a message
to another process. We follow [1] in their notation
and write Π(t) for this graph, as it would appear to
an omnipotent outside observer. However no process
must know the entire system and each j ∈ Π(t) might
have a partial view Πj(t) only. By definition, process
j is then able to send data to any member k of its
local view, but to no other participant. Our system
therefore meets the criteria of a proper, unstructured
Peer-to-Peer network.

Assuming a solution to the bootstrapping problem,
every honest process j, knows a partial view, strictly
larger then itself. The first gossip protocol is then a
classic process discovery gossip.

It consists of a standard push&pull gossip, which
means, that any honest process will choose another
process periodically (but asynchronous, i.e. clock
ticks are entirely local) at random and sends it a
list of processes that it thinks are currently partic-
ipating in the protocol and a list of processes, that it
thinks have (temporally) left the system. In addition
it will choose a random process, to ask it for a list
of participating and leaving peers. In turn, if a hon-
est process receives such a request, it sends a list of
members that it thinks are currently participating in
the network and a list of leaving processes in return.
Algorithm (3) gives an example way to realize this
protocol.

Algorithm 3 Process discovery
run the following two loops in parallel forever

1: loop discovery push&pull
2: wait for Poisson clock tick
3: send subset of Πj to random process k ∈ Πj

4: send discovery requests to random process k′ ∈ Πj

5: end loop

6: loop
7: wait for data package
8: if data is a set of processes then
9: update Πj

10: else if data is process discovery requests then
11: respond with subset of Πj

12: end if
13: end loop

As this goes on forever each process j will have an
ever changing partial view Πj(t) into the system and
it is free to restrict the amount of neighbors |Πj(t)| it
knows, to not store to much data. No stop argument
is involved and the network load must be regulated
by the participating processes them self.

Depending on the actual churn, the frequency of
the communication, that is the rate of the local clock
ticks might be rather low, for example in the range of
minutes. The purpose of this protocol is just to keep
Πj(t) up to date, which enables a process to send and
receive data from other processes.

Remark. A system engineer might incorporate addi-
tional stragegies to make communication etween hon-
est processes more likely. However we leave this ques-
tion open for further development.

4.4 Message gossip

Assuming that a process has a partial view Πj(t) into
the network that is not completely wrong, it partic-
ipates in the message gossip, which is the second
asynchronous push&pull gossip. Its purpose is to
distribute messages through the current population
Π(t).

Algorithm 4 Message gossip
run the following loops in parallel forever

1: loop send push&pull . On many threads
2: wait for Poisson clock tick
3: send S ⊂ {v.m | v ∈ G ∧ v.total position = ⊥}

to random process k ∈ Πj

4: send request for missing messages to random
process k′ ∈ Πj

5: end loop

6: loop receive
7: wait for data package m
8: if message integrity(m,G) then
9: expand G with vertex v, such that v.m = m

10: else if data is message requests then
11: respond with appropriate set of messages
12: end if
13: end loop

Messages are retransmitted via push gossip, only
if they don’t have a total order yet. This is the
’stop’ criterion, required by high frequency push gos-
sip protocols in general. Already ordered messages
are pushed only as a response to a pull request.

9



However, despite such a stop criteria, message gos-
sip never really stops, even if the production of new
messages comes to a hold. This happens because
without new messages, some of the previous ones
might not achieve an order and are therefore retrans-
mitted forever. For the system to be live we therefore
have to make the assumption that new messages ap-
pear forever.

5 Total Order

Crisis extends the timelike causality between mes-
sages into a probabilistically converging total order,
that enables comparison of spacelike messages in an
invariant way.

Convergence happens as long as the network is able
to estimate the overall amount of voting weight per
time and the majority of processes behind that weight
are interested in a stable order. We call this estima-
tion a difficulty oracle, because it might behave very
much like Bitcoins difficulty function in certain im-
plementations. Fortunately, proper behavior is incen-
tivizeable and deviation can be punished. The sys-
tem therefore utilizes economical interest to achieve
convergence.

Total order is then generated in four basic steps:
The Lamport graph is divided into rounds and each
round is tested for the occurrence of a so called safe
voting pattern. Every time such a pattern appears,
a next step in Micali’s player replaceable agreement
protocol BA∗ is executed to locally decide a virtual
round leader vertex.

Under partitioning, this leader might not be unique
and a selection process similar to Bitcoins longest
chain rule is applied such that all Lamport graphs
eventually converge on the same round leader. In
any case, the past of these round leader vertices is
ordered concurrently to the rest of the system, using
some kind of topological sorting, like Kahn’s algo-
rithm in combination with the voting weight to de-
cide spacelike vertices. As the virtual round leader
converges to a fixed value, so does the order.

5.1 Votes

As pioneered by Moser & Melliar-Smith [10], total
order is achieved, if vertices vote on other vertices
in some kind of virtual byzantine agreement process.
Therefore, each vertex v has a field v.vote, where the
entry v.vote(r) = (l, b) describes v’s vote (l, b) on
some message l ∈ message, together with a possibly
undecided binary value b ∈ {⊥, 0, 1} in a so called
round r.

5.2 Virtual communication

To appreciate the idea of virtual voting and to see
how algorithm (7) works, we need to understand the
information flow between so called virtual processes
inside any given Lamport graph. In fact some virtual
process id is able to pull information from another
virtual process id′, if and only if there are appropriate
vertices v and v́, such that v.id = id, v́.id = id′ and
v́ is in the past of v. In that case, we say that virtual
process id received votes v́.vote from virtual process
id′ and that there is a communication channel from
v to v́.

Simulated communication channels like this are of
course tamper proof and invariant among all Lam-
port graphs, due to the invariance of the past the-
orem (3.7). However byzantine behavior might still
appear in the form of mutations and strategic, non
random, message distribution.

Strategic message dissemination occurs, because
any real world process is able to deviate from ran-
dom gossip and send certain messages to certain
peers only. In addition carefully mutated vertices
might show different votes from the same virtual pro-
cess, because any message creator is relatively free in
choosing the past of any message. The overall effect
is a virtual voting equivalent to the well known phe-
nomena of byzantine actors sending different votes to
different processes. A situation well suited for byzan-
tine agreement protocols.

Although we have to accept such a behavior to
some degree, it is nevertheless possible to prohibit
strategic message distribution from any bounded ad-
versary, who is able to manipulate an overall amount
of voting weight k only.

10



One way to achieve this is by sending virtual votes
through vertex disjoint path, only if the combined
weight of their leightest vertices is greater then k.
Such a strategy would be a weighted virtual interpre-
tation of the message dissemination algorithm from
[1].

However counting disjoint paths is computation-
ally expensive and not really necessary in our setting,
because virtual communication channels are already
tamper proof from the inside. All we need is some in-
surance, that information flows through enough ver-
tices from different real world processes. Such a re-
quirement makes proper message distribution likely
and counteracts any partition tendency to some de-
gree. In a addition, it can be measured efficiently by
just counting the overall weight in all path between
two vertices.

Definition 5.1 (k-reachability). Let k be a positive
number, G a Lamport graph and v, v́ ∈ G two ver-
tices. Then v́ is said to be k-reachable from v, if the
overall weight of all vertices in all path from v to v́ is
greater then k. In that case we write v́ ≤k v.

If we interpret a Lamport graph such that a byzan-
tine resistant virtual communication channel exists
from v́ to v only if v́ ≤k v, we ensure that k-bounded
collaborations can not influence virtual communica-
tion channels by strategic message distribution.

5.3 Virtual synchronism

Lamport graphs represent a timelike order between
vertices, that we interpret as virtual communication
channels. Going one step further, we can forget about
the outside world altogether and just think from the
inside of a Lamport graph to define a virtual clock
tick as a transition from one vertex to another.

This simple idea allows for internal synchronism,
that enables us to execute strongly synchronous
agreement protocols like Feldman & Micali’s algo-
rithm BA∗ [9] virtually, but without any compromise
in external asynchronism.

Remark. Again this insight was already present in
the work of Moser & Melliar-Smith [10] under the
term ’stage’. In fact it appears quite natural from
the perspective of the well known Lamport clocks.

Any byzantine resistant protocol is based on the
assumption that the amount of faulty behavior does
not exceed a certain fraction of the overall voting
weight and Crisis utilizes such a threshold too. How-
ever in contrast to most approaches, consistency does
not depend on it, e.g. the order does not fork, even
if the bound gets broken from time to time. Crisis
therefore favors consistency over availability in such
a scenario.

In any case, we need a way to approximate the
voting weight, that is generated in a round and we
must assume, that from time to time, not more then
1/3 of this weight is faulty.

We call such an approximation a difficulty oracle,
because it might behave very much like Bitcoins diffi-
culty function in certain Proof-Of-Work based incar-
nations. In any case, it is considered as an external
parameter and different choices might lead to differ-
ent behavior.

Definition 5.2 (Difficulty oracle). Suppose that the
tuple (W, w, cmin,⊕) is a weight system of the proto-
col. Then the function

d : N→W (7)

that maps natural numbers onto weights, is called a
difficulty oracle w.r.t. the weight system and the
value dr := d(r) is called the round r difficulty of
the system.

Example 1. The most simple example would be to
just use a fixed constant that does not change over
time as the systems difficulty oracle. This however
might be way to simple for certain choices of weight
systems, as we know from protocols like Bitcoin, that
the overall voting weight per time (hash power for
that matter) might fluctuate considerably. The over-
all goal is to compute a difficulty oracle such that
equation (8) holds approximately.

Example 2. A more flexible difficulty oracle would
hardcode its value for the first few rounds and then
base the computation on the overall voting weight in
the past of converged virtual round leader vertices
later on. That past is invariant and therefore every
process would compute exactly the same function.

11



With such a difficulty oracle at hand, we can look
at algorithm BA∗ as explained in [9], to see that
it executes a potentially unbounded amount of syn-
chronous rounds, each of which starts with a commu-
nication step, where any actor receives votes broad-
cast by the actors of the previous round. Our goal in
this section is therefore to simulate that behavior, us-
ing the idea of internal time in combination with our
byzantine safe communication channels (5.1). Algo-
rithm (5) gives the details.

Algorithm 5 Virtual synchronous rounds
Require:

connectivity k
difficulty oracle d

1: procedure round(vertex:v, lamport graph:G)
2: Nv ← {v́ ∈ G | v → v́}
3: r ← max({v́.round | v́ ∈ Nv} ∪ {0})
4: if there is a v́ ∈ Nv with v́.is last and v́.round = r then
5: v.round← r + 1
6: else
7: v.round← r
8: end if
9: Sv ← {v́ ∈ G | v́.round = v.round− 1, v́.is last, v́ ≤k v}

10: if w(Sv) > 3 · dr then
11: v.last← true
12: else
13: v.last← (r = 0)
14: end if
15: end procedure

The procedure assumes a previous execution on all vertices in
the past of v, but it can be called concurrently on spacelike
vertices.

The algorithm computes so called round numbers
and the is last property of any vertex. The round
number of a vertex is computed by first taking the
largest round of all direct causes as its current esti-
mation. If the vertex is a direct effect of a current
round vertex with the is last property, a new round
begins and the vertex is a first vertex in that new
round. If the vertex has enough last vertices of the
previous round in its past and it is k-reachable from
all of them, the vertex becomes a last vertex in its
own round.

Last vertices are interpreted, as sending and receiv-
ing votes through byzantine resistant virtual commu-
nication channels to and from last vertices of consecu-
tive rounds. This way, last vertices model the behav-
ior of actors sending votes to other actors, whenever
a round transition happens in algorithm BA∗.

Remark. The appearance of new rounds can not be
guaranteed, even if we assume new messages to ar-
rive forever. This is because the required high in-
terconnectivity between messages must not happen.
Extreme situations are thinkable, where no message
references any other message and the Lamport graph
is totally disconnected. Then, of course, no intercon-
nectivity occurs and all message have a round number
of zero forever. Any actual incarnation therefore re-
quires proper incentivation to encourage the appear-
ance of new rounds. This is possible, for example,
if only vertices with v.is last = true are incentivised
in one way or another by the systems incentivation
function.

Now, to understand our concept of virtual rounds
a bit better, we proof a series of statements, that
basically show that the round number and the is last
property are well defined and behave as expected. We
start by showing that both properties do not depend
on the actual Lamport graph, but are the same for
equivalent vertices.

Proposition 5.3 (Round invariance). Let v and
v́ be two equivalent vertices in Lamport graphs G
and Ǵ respectively. Then v.round = v́.round and
v.is last = v́.is last.

Proof. Both, the round number and the is last prop-
erty depend on certain sets of vertices in the past of
a vertex, only. But since v and v́ are equivalent,
they have equivalent pasts Gv and Ǵv́, due to the
invariance of the past theorem (3.7). We can there-
fore proof the statement by strong induction on the
number of vertices, both in Gv and Ǵv́.

For the base case assume that Gv contains v only.
In that case Ǵv́ contains v́ only and both Nv and Nv́,
are empty. Then v.round = 0 and v́.round = 0, since
algorithm (5) executes line (7) in both cases. More-
over, Sv and Sv́ are empty which implies v.is last =
true and v́.is last = true, since algorithm (5) exe-
cutes line (13) in both cases and r = 0.

For the induction step, assume that Gv and Ǵv́
are given and that x.round = x́.round as well as
x.is last = x́.is last holds for all equivalent verices
x and x́ in all Lamport graphs, with |Gx| < |Gv| as
well as |Gx́| < |Gv|.

12



Then there is exactly one x́ ∈ Nv́ for every x ∈
Nv and x.round = x́.round as well as x.is last =
x́.is last, since Nv and Nv́ are equivalent by the in-
variance of the past theorem (3.7) and |Gx| < |Gv| as
well as |Gx́| < |Gv|. This however implies v.round =
v́.round, because algorithm (5) computes the same
value r both for v and v́ and decides the same branch
in line (4).

A similar reasoning shows x.round = x́.round as
well as x.is last = x́.is last for all x ∈ Sv and x́ ∈
Sv́ and that w(Sv) = w(Sv́) holds, since equivalent
vertices have equal weight. Hence both executions of
algorithm (5) decide the same branch in line (10) and
the proposition holds on Gv and Ǵv́, which proof the
proposition in any case by strong induction.

Round numbers are compatible with causality, in
the sense that the round number of a future vertex is
never smaller then the round number of any vertex in
its past. Round numbers are therefore an important
first step in any attempt to totally order a Lamport
graph. The following proposition gives the details.

Proposition 5.4. Let v and v́ be two vertices in
a Lamport graph G, such that v́ ≤ v holds. Then
v́.round ≤ v.round.

Proof. To see this, first assume v → v́. Then v́ ∈
Nv and algorithm (5) computes v.round ≥ v́.round
and the statement holds. The general situation then
follows by repeated execution of (5) on each vertex in
the causal chain v = v1 → v2 · · · vn−1 → vn = v́.

A vertex has the is last property, if and only if it is
indeed a last vertex in a given round, i.e. every vertex
in its future has a higher round number. We can
therefore interpret these vertices as the end of a step
in virtual BA∗ and as the exact point in internal time,
where a virtual process sends its vote to members of
the next step. This serves as the basis for our virtual
adaptation of algorithm BA∗.

Proposition 5.5 (Last vertices of a round). Let v be
a vertex in a Lamport graph, with v.is last = true.
Then every vertex in the future of v has a round num-
ber, strictly larger then v.round.

Proof. Let v́ be a vertex in the future of v. Then,
there is a path v́ → v1 → · · · → vk → v in any
Lamport graph, that contains v́ (and therefore v) and
v́.round ≥ vk.round follows from proposition (5.4).

However, since v ∈ Nvk and v.is last = true, either
max{ṽ.round | ṽ ∈ Nv} > v.round, or algorithm (5)
executes line (5). In any case, the round number of
vk is strictly larger then the round number of v and
we get v́.round ≥ vk.round > v.round.

If we consider vertices of a given round to receive
votes from vertices of a previous round, we have to be
sure, that those previous round vertices are indeed in
the past of any current round vertex. The following
proposition shows that this is indeed the case.

Proposition 5.6. Let G be a Lamport graph and v
a vertex with a positive round number v.round > 0
in G. Then v has at least one last round s vertex in
its past for all round numbers s < r.

Proof. We show the proposition for s = r − 1. The
general case then follows by recursion, since G is fi-
nite.

To see the statement, observe that for a vertex to
be in round r, r must either be the largest round
number of its direct causes, or it must have a direct
cause of round number r − 1 that is a last vertex of
that round.

The second case is immediate. For the first case
the argument can be repeated with any round r di-
rect cause. Since the graph is directed, acyclic and
finite and any sink vertex has round 0, there must
eventually be a round r vertex, that has no round r
direct causes.

5.4 Difficulty bounds

Both the voting weight and the number of virtual pro-
cesses is potentially unbounded in any given round.
It is true that we can approximately limit the amount
of faulty behavior at every moment by proper in-
centivation and punishment, but given enough time,
byzantine behavior accumulates in the graph. In fact
everyone can add arbitrary amounts of vertices with
arbitrary large weights into any round, provided that
sufficiently many new rounds appeared ever since.

13



For example a system with a Bitcoin-style Proof-
Of-Work voting weight, might observe the occasional
occurrence of something like a hash-bomb, i.e. a su-
per heavy message that suddenly appears, but refer-
ences messages way back in the past only. Such a
’bomb’ is able to break all global byzantine bound
assumptions in any round and it certainly exists if
some motivated process puts all its hashing power
for weeks, or even years into the generation of just
one single message.

Another extreme example would be some kind of
Internet-meme like phenomena, where suddenly large
amounts of small to medium size messages occur in
very old rounds for no apparent reason. In particular
anybody can generate new messages in round zero
easily, by not referencing other messages at all.

We might call fringe cases like this time travel at-
tacks. The underlying reason is, that byzantine be-
havior is unbounded altogether, despite the fact that
we can assume it to be approximately bounded at
any given moment in time by our difficulty oracle.

According to Brewers CAP-theorem, behavior like
this is unavoidable in any open and asynchronous sys-
tem, because partition happens in unstructured sys-
tems without any governance, stake-, or member-lists
in one way or another. It sharply distinguishes our
situation from more traditional approaches like hash-
graph [2], parsec [5], or blockmania [6] and puts our
algorithm much more closely to Nakamoto’s consen-
sus.

Thats being said, unbounded byzantine behavior
never happens in the past of any vertex, because
that past is fixed forever, due to the invariance of the
past theorem (3.7). We can therefore counteract such
an attack locally, by carefully computing all relevant
properties relative to the perspective of a vertex in a
consecutive round only. The price to pay is globality,
because agreement is achieved locally only.

Now, ideally, that is in an imaginative system with-
out partitions, a system engineer would design the
difficulty oracle such that the overall voting weight
wGr of last messages in round r of Lamport graph G
would always be in the range 3 · dr < wGr ≤ 6 · dr.
This would guarantee any local round leader to be the
global round leader and the order would be strictly
convergent, not just probabilistically.

However, time travel attacks, forking and parti-
tions are something to consider and because of that,
the overall voting weight of a round is undefined,
must not converge and varies between different Lam-
port graphs. The difficulty oracle can therefore be
designed in such a way that an overall weight > 3 ·dr
eventually happens frequently, but an upper bound
estimation is impossible in general.

On the other hand, it is still rational to assume
that the voting weight per time is in a certain range,
at least approximately. Fortunately, this is enough
to compute a theoretical upper bound on the over-
all amount of voting weight that might occur in any
Lamport graph G. This bound can then be used to
guarantee probabilistic convergence of the total or-
der.

To see that, let t be an external time parameter
and Π(t) the system at time t. Then the maximal
round number rt at time t is the maximum of all
round numbers in all Lamport graphs of the system
Π(t) as it would appear to an omnipotent external
observer7.

We can use this number to give an upper bound
on the amount of voting weight that occurs in the
system. If Gmax(t) is the largest Lamport graph that
exists in the system at time t and if wGs is the overall
voting weight of all last vertices in some Lamport
graph G that has a round number s, then we assume
our difficulty oracle to be designed such that

lim
|G|→|Gmax(t)|

rt∑
s=0

wGs
ds
≤ 6 (8)

holds approximately for all external time parameters
t. Of course this number is theoretical, as no actual
process can compute it, because no process knows rt,
or Gmax(t).

Basically, this inequality expresses the idea that
the difficulty oracle is designed such that the amount
of voting weight per time, is limited and no more then
6ds weight can be produced in any round on average.
However, it is flexible enough to allow every process
to append generated voting weight into any round
that currently exists.

7Of course this number is entirely theoretical as no partic-
ipant can actually know it.

14



5.5 Virtual process sortition

In [1], Alchieri et al. looked at byzantine agreement in
systems with unknown participants (BFT-CUP) and
gave sufficient conditions to solve it. Their reasoning
is solid, but they didn’t consider player replaceable
protocols.

However with player replaceability in mind, the sit-
uation changes, because every step in the protocol is
executable in an entirely different set of processes.
This implies that new solutions might appear and in-
deed a family of such solutions was found by Chen &
Micali in Algorand [4], where consensus in open sys-
tems becomes more or less a problem of synchrony
and quorum selection. The latter of which can be
nicely solved by cryptographic sortition.

Nevertheless, the present situation is somewhat or-
thogonal to Algorand, as we can simulate synchro-
nism easily, but cryptographic sortition might not
work in our virtual setup. We therefore face the prob-
lem of how to decide, which virtual processes should
execute a step in the protocol. Moreover, as our sys-
tem is open and asynchronous, an unbounded amount
of virtual processes might appear in any round.

Fortunately we can put things into perspective and
consider the past of a vertex only, which fixes the
problem of unbounded vertices, relatively speaking.
However there might still be too much entropy in the
system and we need a way to deterministically com-
pute a subset of virtual processes that is somewhat
favorable in the execution of a next step in the agree-
ment protocol.

We call such a mechanism a quorum selector and
consider it as another important parameter in any
actual incarnation. Like the voting weight, different
quorum selector functions might lead to very different
long term behavior and the author believes that it is
currently impossible to decide which one performs
best under any given circumstances.

In any case, quorum selector functions decide vir-
tual processes, not vertices. We therefore need a way
to go from vertices to virtual processes first. This
however is efficiently done, by deriving another graph
from any Lamport graph, that projects vertices of
equal id’s together. The following two definitions
make the idea precise.

Definition 5.7 (Relative subgraph of a round). Let s
and r be two round numbers with s < r, G a Lamport
graph, v a round r vertex in G and V sv the set of all
round s vertices in the past of v. Then the subgraph
Gsv := (V sv , A

s
v) of G, with (x, y) ∈ Asv, if and only if

x, y ∈ V sv and x → y, is called v’s round s past in
G.

Now, the transition from vertices to virtual pro-
cesses is done, by collapsing all vertices with the same
id into some kind of new meta-vertex in the so called
quotient graph. The latter of which is nothing but a
quotient object in the category of graphs.

Definition 5.8 (Knowledge graph). Let s and r be
two round numbers with s < r, G a Lamport graph,
v a last message in round r and Gsv the round s past
of v in G. Then the quotient graph Πs

v := Gsv\ 'id
defined by the equivalence relation x 'id y, if and
only if x, y ∈ Gsv and x.id = y.id, is called v’s round
s knowledge graph.

We write id for an equivalence class vertex {v́ ∈
Gsv | v́.id = id} ∈ Πs

v and call it a round s virtual
process, from the perspective of v.

Given any Lamport graph, our definition of knowl-
edge graphs is efficiently computable and can be
stored with little additional overhead. It is directed,
but in general not acyclic anymore and it resembles
a virtual version of the knowledge connectivity graph
from [1].

To understand the meaning of this graph, consider
that a virtual process id ∈ Πs

v has a directed edge
to another virtual process id′ ∈ Πs

v, if and only if
there is a vertex ṽ with ṽ.id = id and a vertex v́ with
v́.id = id′ in Gsv, such that ṽ → v́. Hence any edge
represents the knowledge a virtual process has about
the existence of another virtual process relative to a
given round.

The following two propositions show that knowl-
edge graphs are indeed well defined and invariant
among different Lamport graphs.

Proposition 5.9 (Existence). Let s and r be two
round numbers with s < r, G a Lamport graph and v
a last message in round r. Then the round s knowl-
edge graph Πs

v is well defined, directed and not empty.

15



Proof. Since v is a last vertex in a round r > s, v must
have round s vertices in its past due to proposition
(5.6). This however implies, that Gsv is not empty as
a directed graph. In addition 'id is an equivalence
relation on the vertex set of Gsv, which implies that
the quotient is a well defined, directed and not empty,
by the general properties of quotient objects in the
category of graphs.

We call two knowledge graphs Πs
v and Πs

v́ equiva-
lent, if their reference vertices v and v́ are equivalent.
As the following proposition shows, equivalent knowl-
edge graphs are isomorphic and their elements consist
of equivalent vertices only.

Proposition 5.10 (Invariance of knowledge graphs).
Let s and r be two round numbers with s < r and v as
well as v́ two equivalent round r vertices in Lamport
graphs G and Ǵ, respectively. Then the knowledge
graph Πs

v of v is isomorphic to the knowledge graph
Π́s
v́ and the elements in each equivalence class id ∈

Πs
v are in one-to-one correspondence with equivalent

elements in id′ ∈ Π́s
v́.

Proof. The invariance of the past theorem (3.7) im-
plies, that Gsv and Gsv́ are isomorphic and vertices
with equal id’s are in one-to-one correspondence.
Hence their quotients under the 'id relation, are iso-
morphic. Moreover, each equivalence class id ∈ Πs

v

consist of vertices from Gsv that have the same id.
However due to invariance of the past, these are in
one-to-one correspondence with vertices in Ǵv́ that
project onto the appropriate id in Π́s

v́.

Now, given any knowledge graph, a quorum selec-
tor is nothing but a way to chose a subset of virtual
processes from that graph. The members are then in-
terpreted as to send and receive votes through their
last vertices.

Definition 5.11 (Quorum selector). Let s and r be
two round numbers with s < r, v a last round r vertex
in a Lamport graph G and Πs

v the round s knowledge
graph of v. Then a quorum selector quorum de-
terministically chooses a subset Qsv ⊂ Πs

v, called v’s
round s quorum, such that Qsv and Qsv́ are equivalent

for equivalent graphs Πs
v and Π́s

v́.

Quorum selection serves as a kind of filter, to re-
duce the overall byzantine noise, that might appear
in the voting process of fully open systems. Its pur-
pose is to make the appearance of a so called safe
voting pattern as defined in the next section, more
likely.

Example 3 (Highest voting weight quorum). Voting
weight of vertices can be combined into voting weight
of appropriate equivalence classes in Πs

v, if we define
w(id) :=

⊕
v∈id w(v) for any id ∈ Πs

v. This is invari-
ant among equivalent knowledge graphs Πs

v and Πs
v́

and low weight mutations do not change that value
much.

A quorum selector function is then given by first
choosing the weakly connected component of Πs

v, that
has the highest combined voting weight and then by
ordering all virtual processes in that component ac-
cording to their individual weight. After that the
quorum selector might takes the heaviest n vertices
from it, where n is a suitable constant, that makes
the appearance of enough last vertices with an overall
voting weight strictly larger then 3ds probable.

The reasoning here is, that by restricting to a
weakly connected component, faulty behavior based
on graph partition is reduced. Moreover different ver-
tices will compute the same quorums, as it is unlikely
that the voting weight will fluctuate that much, seen
from the perspective of different vertices. Moreover,
mutations will effect the votes of these sets the least,
simply because the voting power of very heavy ver-
tices is less affected by lightweight mutations.

5.6 Safe voting pattern

With a quorum selector function at hand, we can now
look at the last vertices of all quorum members in a
given round and see if they qualify as proper voting
sets.

Similar to any other byzantine agreement protocol,
our virtual leader election (7) is based on the assump-
tion that the amount of faulty behavior is bounded
and does not exceed a certain amount of the overall
voting weight. If this holds true voting takes place,
if not voting stalls until the situation eventually re-
solves.

16



The purpose of a safe voting pattern is therefore
to make sure, that voting takes place in those rounds
only, that have appropriately bounded byzantine be-
havior. As described in section (5.4), the overall
amount of faulty behavior is necessarily unbounded
in any round, as the system is open and fully asyn-
chronous. However it is always bounded relative to
the past of any vertex, simply because that past is
frozen and does not change ever again, due to the
invariance of the past theorem (3.7).

This leads naturally to our definition of safe voting
patterns, but before we derive the details, we need to
specify the concept of a voting set first.

Definition 5.12 (Voting sets). Let k ∈ R+ be a pos-
itive number, r and s two round numbers with s < r
and v a last round r vertex in a Lamport graph G.
Then the set

Sv(s, k) := {x | x.id ∈ Q(v, s) ∧ x ≤(r−s)k v

∧ x.round = s ∧ x.is last = true}

is called v.id’s round s voting set and v.id is said
to receive voting weight from the members of Q(v, s)
through Sv(s, k). In addition, if t is another round
number, with t < s, l ∈ message a message and
b ∈ {⊥, 0, 1} a possibly undecided binary value, then

w(Sv(s, k), t, (l, b)) :=

w({x ∈ Sv(s, k) | x.vote(t) = (l, b)})

is called the overall voting weight for the round t vote
(l, b) that v.id receives from its voting set Sv(s, k).

We moreover say that v receives a super major-
ity of voting weight for a round t vote (l, b) from
its voting set, if w(Sv(s, k), t, (l, b)) > w(Sv(s, k)) 	
ds and a honest majority of voting weight, if
w(Sv(s, k), t, (l, b)) > ds, where ds is the difficulty
oracle in round s.

Voting sets are invariant among equivalent vertices
in different Lamport graphs, due to the invariance
of the past theorem and the same holds for voting
weights w.r.t. any given vote. The following propo-
sition proofs the first statement, however to proof
the second one, we need to understand how voting
weights are actually computed first. We will do this
in the following section.

Proposition 5.13 (Voting set invariance). Let v and
v́ be two equivalent vertices in Lamport graphs G and
Ǵ respectively. Then the voting sets Sv(s, k) and
Sv́(s, k) are equivalent, i.e. both sets are isomorphic
and consists of equivalent vertices only.

Proof. Since the quorum selector is assumed to be
invariant w.r.t. to vertex equivalence, all defining
properties are actually invariant, which in tuen im-
plies the invariance of any voting set.

Using our definition of voting sets, we are now able
to compute a safe voting pattern in a round. Algo-
rithm (6) gives the details and we assume that it is
executed on any vertex after algorithm (5) only.

Algorithm 6 Safe voting pattern
Require:

connectivity k
difficulty oracle d

1: procedure svp(vertex:v, lamport graph:G)
2: v.svp← ∅ : ∅ . empty total order
3: if v.is last and

there is a ś < v.round with
3dś < w(Sv(ś, k)) ≤ 6dś and
x.svp = y.svp for all x, y ∈ Sv(ś, k) and
(x.svp 6= ∅ or s = 0) and
|w(Sx(t, k), u, (l,⊥))	 w(Sy(t, k), u, (l,⊥))| ≤ dt
|w(Sx(t, k), u, (·, b))	 w(Sy(t, k), u, (·, b))| < dt
t← max(x.svp) for x ∈ Sv(ś, k) . max(∅) = −∞
∀x, y ∈ Sv(ś, k), rounds u ∈ x.svp\{t}, votes (l, b)

then
4: s← maximum of all such ś
5: v.svp← x.svp ∪ {s} : s ≤ s and t < s for all t ∈ x.svp
6: end if
7: end procedure

The procedure assumes a previous execution on all vertices in
the past of v, but it can be called concurrently on spacelike
vertices.

Given any vertex v, algorithm (6) computes the to-
tally ordered set v.svp, which is used to index round
numbers that have safe voting patterns in the past
of v. In particular, a voting set Sv(s, k) is said to
be a safe voting pattern, if s is the maximal round
number, such that Sv(s, k) has enough overall voting
weight to execute a step in a byzantine agreement
protocol, all members x ∈ Sv(s, k) have equal total
orders x.svp and all safe voting patterns of all mem-
bers do not differ too much in any of their votes on
previous rounds.

17



In addition, algorithm (6) implies, that safe voting
patterns are nested sequences, where the elements of
one stage reference the elements of a previous stage
and so on. The following proposition makes this pre-
cise.

Proposition 5.14. Let v be a vertex with v.svp 6= ∅,
r = max(v.svp) and let Sv(r, k) be v’s safe voting
pattern. Then x.svp = v.svp\{r} for all x ∈ Sv(r, k).

Proof. If x ∈ Sv(r, k), then algorithm (6) computes
the set v.svp as x.svp ∪ {r}.

To properly speak about the distance between two
safe voting patterns it is moreover advantageous to
define a metric on any totally ordered set v.svp.

Definition 5.15 (Svp distance). Let v be a vertex
with v.svp 6= ∅. Then the svp distance is the func-
tion

dv.svp : v.svp× v.svp→ R (9)

where dv.svp(r, r) = 0 and dv.svp(s, r) is otherwise
defined for any s, r ∈ v.svp with s 6= r as the number
of different elements between s and r in the internal
order plus one.

Remark. Safe voting patterns are not guaranteed to
exist in any round, for various reasons. One of which
is that the voting weights might differ to much, due
to too much mutations. It is therefore of importance
for any system engineer to implement some way that
makes safe voting pattern at least likely. Ideally ex-
actly one safe voting pattern would appear in every
round. The more the system deviates from this rule,
the more rounds are needed to make progress in the
total order generation.

On the bright side we know, that safe voting pat-
terns are byzantine fault detectors, because they ac-
curately measure the amount of mutations of quorum
members. This is good news, as any such fault de-
tector can then be used to implement some invariant
way of incentivation and punishment, which in turn
can be used to make safe voting patterns attractive
and economically favorable. Moreover, the folk the-
orems of repeated games suggest that such a system
can be guided into all kinds of behaviors.

5.7 Local leader election

Any safe voting pattern provides an environment for
the execution of another step in a player replaceable
byzantine agreement protocol. The algorithm we use
is an adaptation of Chen, Feldman & Micali’s proto-
col BA∗, to the setting of Moser & Melliar-Smith’s
idea of virtual voting on causality graphs in a BFT-
CUP environment.

Loosely speaking, a local round leader is nothing
but a message, that defines an invariant set of vertices
in any Lamport graph, the latter of which is then
integrated into the total order, using some kind of
topological sorting. Leader messages are computed
in a byzantine agreement process, because we need to
be sure, that all Lamport graphs of honest processes
agree on them, at least locally, i.e in the causality
cone of a safe voting pattern.

In any case, execution of the agreement protocol
start with an initial round leader proposal, computed
by a so called initial vote function.

Definition 5.16 (Initial Vote). Let 2vertex be the
power set of our vertex type. Then an initial vote
function is a map

initial vote : 2vertex → message (10)

that deterministically chooses a message from any
given set of vertices, such that the outcome is the
same for equivalent vertex sets.

Initial vote functions are a system parameter and
different choices might lead to different long term be-
havior. Ideally, all members of a safe voting patter
would always compute the same initial vote. In that
case an actual virtual round leader l 6= � would be
decided in just a few extra rounds. However due to
mutations, different members might compute differ-
ent initial votes. In that case, it is the task of the
virtual leader election to agree on a message anyway.

Since it is almost never the case that all members
of a safe voting pattern are in agreement on a leader
right away, the next best thing is to have at least
a super majority of voting weight for some message.
Based on this insight, the following example might
give a reasonable choice for an initial vote function,
based on the voting weight of messages.

18



Example 4 (Highest weight). A simple yet fast im-
plementation of the initial vote function is given
by choosing the underlaying message of the highest
voting weight vertex. Since we assume that it is infea-
sible to have different vertices of equal weight, such
a choice is practically deterministic and the outcome
depends on the underlying message only.

After initial votes are made, a byzantine agreement
protocol is executed in a chain of safe voting pattern,
that locally decides on a message. However as the
system is open, asynchronous and the voting weight
is eventually unbounded in any round, we can never
rule out, that a different leader is decided for the
same round in another partition of the system.

Because of that, algorithm (7) itself does not decide
a global leader but adds any local decision to the
set of all possible leader in a round. The result is a
stream of candidate sets that we call the global leader
stream of a Lamport graph.

Definition 5.17 (Leader Stream). Let G be a Lam-
port graph and 2(uint,message) be the power set of in-
dexed vertices. Then the function

leaderG : N→ Option〈2(uint,message)〉

is called the global leader stream of the Lamport
graph, the set leaderG(r) is called the candidate
set for the virtual round r leader and some element
(s, l) ∈ leaderG(r) is a possible round r leader mes-
sage l, locally decided in round s.

Basically, algorithm (7) computes the votes of
a vertex on every local leader election in previous
rounds, based on the votes of all members in its safe
voting pattern. The special character � is used to in-
dicate, that no actual message could be decided in a
round. If the vertex is able to locally decide a leader,
the global leader stream is updated, using function
(8) as a variation of Nakamoto’s longest chain rule.

To be more precise, algorithm (7) computes v’s
votes in all currently active voting rounds, by looping
through the elements of v.svp. Each such element in-
dicates a round number and a different stage δ, the
latter of which is measured by the position of that
round number inside the total order of v.svp.

Algorithm 7 virtual leader elections
1: if v.svp = ∅ then
2: leaderG(r)← nakamoto(leaderG(r),�, v.round)
3: return
4: end if
5: s← max(v.svp)
6: S ← v’s safe voting pattern Sv(s, k)
7: n← w(S)
8: for all t ∈ v.svp do
9: δ ← dv.svp(s, t)

10: if δ = 0 then . Initial leader proposal
11: v.vote(t)← (initial vote(S),⊥)
12: else
13: l← message with highest round t voting weight in S
14: if δ = 1 then . Leader presorting
15: if w(S, t, (l,⊥)) > n− ds then
16: v.vote(t)← (l,⊥)
17: else
18: v.vote(t)← (�,⊥)
19: end if
20: else if δ = 2 then . BBA∗ initialization
21: if l 6= � and w(S, t, (l,⊥)) > n− ds then
22: v.vote(t)← (l, 0)
23: else if l 6= � and w(S, t, (l,⊥)) > ds then
24: v.vote(t)← (l, 1)
25: else
26: v.vote(t)← (�, 1)
27: end if
28: else
29: if δ mod 3 = 0 then . Coin fixed to 0
30: if w(S, t, (l, 0)) > n− ds then
31: v.vote(t)← (l, 0)
32: if w(S, t, (l, 0)) = n then
33: long chain(leaderG(t), l, s)
34: end if
35: else if w(S, t, (l, 1)) > n− ds then
36: v.vote(t)← (l, 1)
37: else
38: v.vote(t)← (l, 0)
39: end if
40: else if δ mod 3 = 1 then . Coin fixed to 1
41: if w(S, t, (l, 1)) > n− ds then
42: v.vote(t)← (�, 1)
43: if w(S, t, (l, 0)) = n then
44: long chain(leaderG(t),�, s)
45: end if
46: else if w(S, t, (l, 0)) > n− ds then
47: v.vote(t)← (l, 0)
48: else
49: v.vote(t)← (l, 1)
50: end if
51: else if δ mod 3 = 2 then . Genuine coin flip
52: if w(S, t, (l, 0)) > n− ds then
53: v.vote(t)← (l, 0)
54: else if w(S, t, (l, 1)) > n− ds then
55: v.vote(t)← (l, 1)
56: else
57: bcoin ← lsb(H(x.m)) for max weight x ∈ S
58: v.vote(t)← (l, bcoin)
59: end if
60: end if
61: end if
62: end if
63: end for

19



Algorithm 8 Longest chain rule
1: procedure long chain(set〈uint,message〉:S,message:m,uint:s)
2: if there is no (t, l) ∈ S with t > s then
3: S ← (S\{(t, l) ∈ S | t < s}) ∪ {(s,m)}
4: end if
5: return S
6: end procedure

Any election starts with vertex v proposing its ini-
tial vote for a leader in v’s own safe voting patter.
This is the δ = 0 stage of algorithm (7) and it mim-
ics the initial vote assumption, made in the original
BA∗ algorithm.

After that, stages δ ∈ {1, 2}, basically indicate the
two execution steps in Feldman & Micali’s gradecast
algorithm GC, while all higher stages δ ≥ 3 indicate
an execution step in Micali’s binary agreement pro-
tocol BBA∗. Of course every such step is entirely
virtual and no votes are actually send to other real
world processes as explained previously in great de-
tail.

The purpose of the δ = 1 stage is to presort all
initial votes the vertex received for some round leader
message. In fact an actual message l 6= � can become
a round leader only, if some vertex receives a super
majority of voting weight for that message. If this
does not happen, the outcome will be the non-leader
l = �. Therefore any initial voting weight function
has to account for this to ensure liveness.

In stage δ = 2 the output of gradecast is trans-
formed into the input of BBA∗, to prepare for the
local decision either on a single message l or the non-
leader message�. In this stage an actual leader l 6= �
can be proposed only, if a honest majority of voting
weight is received for that message.

For any stage with δ ≥ 3 and δ mod 3 = 0 we are
in a ’Coin fixed to zero’ round, according to Micali’s
terms. If a vertex receives voting weight that is in
agreement on a vote with zero binary part in such a
round, it locally decides a leader and uses the longest
chain rule (8) to update the global leader stream.
Note however the absence of a stop criteria. This is
necessary for the longest chain rule to work properly.
We explain this in the next section.

Stage δ ≥ 3 and δ mod 3 = 0 is analog, but the
decision will always be the non leader � message.

For a stage with δ ≥ 3 and δ mod 3 = 2 we are
in a so called ’Genuine coin flip’ stage and as usual,
no decision is made in such a round. In BBA∗ all
peers broadcast a unique signature and the least sig-
nificant bit of the smallest hash of those signature if
interpreted as a float, is the same for all participant
with probability 2/3, provided 2/3 of all peers are
honest.

Our virtualization of such a ’common concrete
coin’ works as follows: Instead of sending unforgeable
signatures, vertices virtually send their own hash and
we choose the heaviest of theses hashes to take the
least significant bit of it. These hash values are suffi-
ciently unforgeable as the voting weight would drop
below the cmin threshold if changed, by our tamper-
proof assumption. Moreover, we can assume, that the
bit bcoin is sufficiently random and the same with a
non zero probability pcoin for all members of the safe
voting pattern that contains v, because the amount
of forking is limited in that voting set.

Remark. The reader should note, that no termina-
tion occurs in any local election. However, once a
local leader is decided, every consecutive safe voting
pattern, that has such a deciding vertex in its past,
will decide the same value due to agreement stabil-
ity (6.11). Hence any actual implementation can stop
the local computation for that round and just update
the next round accordingly. This is more efficient
from an implementation perspective, but the author
believes that writing the abstract algorithm without
stop criteria is conceptually cleaner.

5.8 Total order

As time goes by and the Lamport graph grows, more
and more round leaders are computed and incorpo-
rated into the global leader stream leaderG(·) using
procedure (8). We call this function the longest chain
rule, because it deletes all local leader messages de-
cided previous rounds and keeps those computed in
the maximum round number, only. It always chooses
the longest chain, so to speak. As we will proof in sec-
tion (6.4), this allows the set of each round r leader to
eventually converge to a single element with proba-
bility one. Total order is then achieved by topological
sorting on the past of appropriate vertices.

20



The intuition is that the local leader election on
a round r never stops, as every new round s > r
that has a safe voting patter, recomputes the round
r leader. This can be seen as a chain of rounds si,
that all compute the round r leader (l, s1) < (l, s2) <
(l, s3) < . . ., but anytime the overall voting weight of
such a round exceeds the upper bound 6 · dsi , addi-
tional round leader might appear.

However, every time more then one round r leader
appears in a Lamport graph, the chain forks, like
(l, s1) < {(l, s2), (ĺ, s2)} < {(l, s3), (ĺ, s3)} < . . .. The
longest chain rule then selects the maximum hight set
of elements in this chain together with all forks that
might occur in that set. The reason is, that forks
will eventually decay away and a single chain with a
single message will asymptotically remain, provided
our estimation on the difficulty (8) holds.

Algorithm (9) then uses the stream leaderG(·)
to compute the total order and as leaderG(·) con-
verges, so does the order. It is executed in an infinite
loop and in concurrence to the rest of the system.

Algorithm 9 Order loop
run the following loop forever

1: loop update order
2: wait for leaderG(·) to change
3: s← min round of all changed leaderG(ś)
4: r ← max round of all leaderG(ŕ) 6= ∅
5: vls−1

← leader in highest round, smaller s in G

6: for s ≤ t ≤ r do
7: n← max{v.total position | v ∈ OrdG(vlt−1

)}
8: (randomly) choose (p, lt) ∈ leaderG(t)
9: if lt 6= � then

10: order(OrdG(vlt ), n) . vlt .m = lt
11: end if
12: end for
13: end loop

OrdG(vl) past of leader vertex vl without the past of all leader
vertices in previous rounds.

Every time a round leader appears, or is updated,
the algorithm executes a topological sorting algo-
rithm on the past of all future leaders of the smallest
updated leader, without reodering the past of pre-
vious unchanged leaders. Since that past is invari-
ant between all Lamport graphs by the invariance of
the past theorem (3.7), every process will eventually
compute the same total order, provided the leader
streams of all honest processes converges.

Moreover, since we use topological sorting, the gen-
erated order will be an extension of the partial causal-
ity between massages.

Efficient topological sorting is known, able to
achieve logarithmic run time, if executed concur-
rently on spacelike vertices. However for the sake
of simplicity we use Kahn’s algorithm (10) as our ex-
ample, to generate total order in linear runtime.

Algorithm 10 Total order using Kahn’s algorithm
1: procedure order(dag:Ord(v), uint:last)
2: n← last+ 1
3: S ← set of all elements of Ord(v) with no outgoing edges
4: while S 6= ∅ do
5: remove x with highest weight w(x) from S
6: x.total position← n
7: n← n+ 1
8: for each vertex y ∈ Ord(v) with edge e : y → x do
9: remove edge e from Ord(v)

10: if y has no other outgoing edge then
11: S ← S ∪ {y}
12: end if
13: end for
14: end while
15: end procedure

Kahn’s algorithm in its arrow reversed incarnation, since we
want to order the past before the future in any Lamport graph.

Since the weight is invariant among all equivalent
vertices and it is practically impossible for two ver-
tices to have the same weight, execution of (10) will
give the same results in any Lamport graph, which
establishes an invariant total order.

Remark. Of course sorting by voting weight is just
an example. In fact any deterministic function able
to decide elements from S in line (5) in an invariant
way can be used.

5.9 The Crisis protocol

Finally, the overall algorithm works as follows: Mem-
ber discovery (3) and message gossip (4) are executed
in infinite loops, concurrently to the rest of the sys-
tem. Ideally the message sending loop is executed
on as many parallel threads as possible. This implies
that an overall unbounded amount of new messages
arrive over time due to our liveness assumption. In
addition each processes may generate messages and
write them into its own Lamport graph.

21



For each new set of messages that pass the integrity
check, the Lamport graph is extended by an appropri-
ate set of vertices V that contain those messages. We
assume all elements of V to be spacelike and that all
vertices in the past of V have already decided round
numbers, safe voting patterns and votes. If this is
not the case, V can easily be partitioned into sets
of spacelike vertices and the protocol is executed on
their past first.

Then, algorithms (5), (6) and (7) are executed in
that order concurrently on each vertex from V . As
these algorithms run, they will update the leader
stream leaderG(·) in some way.

In addition, the total order loop (9) runs concur-
rently to the rest of the system and waits for updates
of the leader stream. Depending on the actual order
algorithm (10), additional threads might be required
to execute exponentially fast topological ordering al-
gorithms.

6 Correctness Proof

We show that the Crisis protocol family eventually
converts a causal order on messages into a total or-
der on vertices that is asymptotically identical at all
nonfaulty processes in the system. In particular we
adapt Moser & Melliar-Smith definition of total or-
der [10] to our probabilist setting and proof that the
following properties hold under the assumptions we
make in section (6.1):

1. Probabilistic Termination I. The probability that
a honest process j computes v.total position = i
for some position i and vertex v increases asymp-
totically to unity as the number of steps taken
by j tends to infinity.

2. Probabilistic Termination II. For each message
m broadcast by a non byzantine process j, the
probability that a non byzantine process k places
some vertex v with v.m = m in the total order,
increases asymptotically to unity as the number
of steps taken by k tends to infinity.

3. Partial Correctness. The asymptotically con-
vergent total orders determined by any two

non byzantine processes are consistent; i.e.,
if any non byzantine process determines
v.total position = i, then no honest process de-
termines v́.total position = i, where v́ 6≡ v.

4. Consistency. The total order determined by
any non byzantine process is consistent with
the partial causality order; i.e. v́ ≤ v implies
v́.total position ≤ v.total position.

6.1 Assumptions

Our byzantine fault resistant total order is based on
the following list of assumptions.

1. Random Oracle Model. Cryptographic hash
functions exist, are collision, first- and second-
preimage resistant and behave like random ora-
cles.

2. Liveness. At every moment in time, there are
non-faulty processes that participate in the sys-
tem and every such process must generate fur-
ther messages that causally follow messages from
other nonfaulty process.

3. Message Dissemination. If Lamport-graph G
of process j contains a vertex v and Lamport-
graph Ǵ of process k does not contain any ver-
tex, equivalent to v and both j and k are honest
and participate in the protocol, then there will
eventually be a Lamport graph G̃ of process k,
with Ǵ ⊂ G̃ and v ≡ ṽ for some vertex ṽ ∈ G̃.

4. Existence of Weight Systems. A weight system
as defined in section (3.1.1) exists and allows for
the definition of a difficulty oracle function d :
N→ R+, that satisfies (8) approximately.

5. Quorum selector & safe voting pattern. A quo-
rum selector exists, such that safe voting pattern
appear frequently, i.e. the probability pr that
round r has a safe voting pattern is non vanish-
ing.

6. Initial Vote. The initial vote function is able to
generate vertices with l 6= � in the presorting
stage δ = 2 of algorithm (7).

22



6.2 Invariance

Votes are well defined and equal for equivalent ver-
tices among different Lamport graphs. This is the
foundation of virtual voting, because any real world
process knows, that any other process will compute
the same votes with respect to equivalent vertices.
In other words, votes are deducible from the causal
relation between vertices and we must not send them.

Proposition 6.1 (Safe voting pattern invariance).
Let v and v́ be two equivalent vertices in Lamport
graphs G and Ǵ respectively. Then v.svp = v́.svp as
well as v.vote(t) = v́.vote(t) for all t ∈ v.svp.

Proof. Both properties v.svp as well as v.vote depend
deterministically on the past of v, only. However
equivalent vertices have equivalent histories, due to
the invariance of the past theorem (3.7). We there-
fore proof the statement by strong induction on the
number of vertices |Gv| in the histrory of v (which is
equal to |Ǵv́|).

For the base case assume that v and v́ are two
equivalent vertices in Lamport graphs G and Ǵ re-
spectively, such that Gv contains v only. Then Ǵv́
must contain v́ only and v.round = 0 as well as
v́.round = 0 follows. This however implies that no
round numbers s < v.round and ś < v́.round exist
and algorithm (6) computes the empty total order
v.svp = ∅ : ∅ as well as v́.svp = ∅ : ∅ in both cases,
since the ’if’ branch after line (3) is not executed.
After that, algorithm (7) executes line (3) both for v
and v́ and we get v.vote = ⊥ as well as v́.vote = ⊥,
as no safe voting pattern exist in the past of both v
and v́.

For the strong induction step assume that v and
v́ are two equivalent vertices in Lamport graphs G
and Ǵ respectively and that x.svp = x́.svp and
x.vote(t) = x́.vote(t) for all t ∈ x.svp and equiva-
lent vertices x and x́ in all Lamport graphs G̃ and Ĝ
with |G̃x| < |Gv|.

If v.is last then v́.is last and since the voting
sets Sv(s, k) and Sv́(s, k) are equivalent for all s <
v.round = v́.round, we know that their overall vot-
ing weight must be identical, i.e. w(Sv(s, k)) =
w(Sv́(s, k)). In addition x.svp = x́.svp as well as
x.vote(u) = x́.vote(u) holds for all x ∈ Sv(s, k) as

well as x́ ∈ Sv́(s, k) and u ∈ x.svp, by our induc-
tion hypothesis, since |Gx| = |Gx́| < Gv. This how-
ever implies that algorithm (6) executes the if branch
in line (3) for v, if and only if it executes the same
branch for v́. Therefore v.svp = v́.svp.

In case v.svp = ∅ and v́.svp = ∅, algorithm (7)
computes v.vote = ⊥ as well as v́.vote = ⊥ and
otherwise executes its for loop on the same round
numbers t both for v and v́, using the same δ in
both cases. However, the voting weights of Sv(s, k)
and Sv́(s, k) are equal for any vote by our induction
hypothesis, since |Gx| = |Ǵx́| < Gv. Therefore al-
gorithm (7) chooses the same branches both for v
and v́, which implies v.vote(t) = v́.vote(t) for all
t ∈ v.svp, since initial vote is deterministic and
gives the same result on equivalent voting sets and
lsb(H(v.m)) = lsb(H(v́.m)).

Altogether we get x.svp = x́.svp and x.vote =
x́.vote for all equivalent x ∈ Gv and x́ ∈ Ǵv́, which
proofs the proposition by strong induction.

6.3 Virtual Leader Election

We proof that the virtual leader election algorithm
(7) eventually decides a set of round leader with prob-
ability one. As algorithm (7) is an adaptation of
Chen, Feldman & Micali’s algorithm BA∗, we fol-
low their ideas and divide the proof into two sub-
proofs, the first of which shows the graded consensus
properties and the second of which proof the binary
consensus part.

Remark. In what follows we will frequently say that
some vertex v executes the virtual leader election
algorithm (7). This in agreement with our line of
thought, because a vertex v represents a virtual pro-
cess v.id. But of course algorithm (7) is executed by
some real world process with input (v,G), where G
is a Lamport graph that contains v.

Consensus protocols are based on a property called
agreement, which basically means that all honest pro-
cesses hold the same value. However when it comes
to weighted consensus it might not be appropriate
to distinguish between a honest and a faulty process,
but to talk about honest and faulty weight instead.
We therefore say that the honest voting weight is in

23



agreement on some vote, if all but a possibly byzan-
tine amount of weight agrees on that vote.

Definition 6.2 (Agreement). Let v be a vertex with
|v.svp| ≥ 3, {r > s} ∈ v.svp the largest two elements
and Sv(r, k) the safe voting pattern of v. We then say
that the members of Sv(r, k) are in agreement on
some round t ∈ v.svp\{r, s} vote (l, b), if the voting
set Sx(s, k) of each such member x ∈ Sv(r, k) has
a super majority of voting weight for (l, b), that is
the inequality w(Sx(s, k), t, (l, b)) > w(Sx(s, k)) 	 ds
holds.

As the following corollary shows, our definition of
agreement, immediately implies, that all members of
a voting set compute the same vote for any agreed on
value.

Corollary 6.3. Let v be a vertex with |v.svp| ≥ 3 and
{r > s} ⊂ v.svp the largest two elements, such that
the members of Sv(r, k) are in agreement on some
round t ∈ v.svp\{r, s} vote (l, b). Then x.vote(t) =
y.vote(t) for all x, y ∈ Sv(r, k).

Proof. Each member x ∈ Sv(r, k) executes algorithm
(7) to compute its own votes. Since t < s < r, we
know t < r− 1, which implies that the ’Initial leader
proposal’ branch δ = 0 is never executed for any x ∈
Sv(r, k). But since a super majority of voting weight
from Sx(s, k) votes for (l, b), line (13) computes the
same l again and one of the following branches decides
the same b́ ∈ {⊥, 0, 1} for all x ∈ Sv(v, k). Hence
x.vote(t) = y.vote(t) for all x, y ∈ Sv(r, k).

6.3.1 Graded Consensus

We start the correctness proof with a series of
propositions, that basically show that the first three
branches (i.e. δ ∈ {0, 1, 2}) of our virtual leader
election (7) are nothing but an adaptation of Feld-
man & Micali’s graded consensus, but executed in
three consequitive safe voting patterns. Our proofs
are strongly influenced by the approach taken in [7].

Proposition 6.4 (Initial super majority). Let v be
a vertex with |v.svp| ≥ 3 and {r > s > t} ⊂ v.svp
the three maximum elements from v.svp. If there is
a member x ∈ Sv(r, k) that receives a super majority

of voting weight w(Sx(s, k), t, (l,⊥)) from its voting
set Sx(s, k) for some round t initial vote (l,⊥), there
can not be a member y ∈ Sv(r, k) that receives a super
majority of voting weight from its voting set Sy(s, k)

for some round t vote (ĺ,⊥) with l 6= ĺ.

Proof. The statement follows from the properties of a
safe voting pattern. To see this in detail, first observe
that if algorithm (7) is executed from x ∈ Sv(r, k),
the δ = 1 branch is used to compute x.vote(t), since
x.svp = v.svp\{r} by proposition (5.14) and there-
fore dx.svp(s, t) = 1. This however implies that the bi-
nary part of x.vote(t) is undecided for all x ∈ Sv(r, k).

We proof the statement by contradiction. Sup-
pose that there is another member y ∈ Sv(r, k)
that receives a super majority of voting weight w >
w(Sy(s, k))	 ds for some vote (ĺ,⊥) with l 6= ĺ from
its voting set Sy(s, k). Then x must receive more

then w(Sy(s, k)) 	 2 · ds voting weight for (ĺ,⊥),
since Sv(r, k) is a safe voting pattern, which implies

|w(Sy(s, k), t, (ĺ,⊥))	 w(Sx(s, k), t, (ĺ,⊥))| ≤ ds.
Moreover since the overall voting weight of Sy(s, k)

is strictly larger then 3 ·ds, x must receive more then
ds voting weight for (ĺ,⊥) and at the same time more
then w(Sx(s, k))	 ds voting weight for (l,⊥), which
is a contradiction.

To see that, let S
(l,⊥)
x be the set of all members

from Sx(s, k) that vote for (l,⊥) and S
(ĺ,⊥)
x the set of

members from Sx(s, k) that vote for (ĺ,⊥). Then

w(S(ĺ,⊥)
x ∩ S(l,⊥)

x ) =

w(S(ĺ,⊥)
x )⊕ w(S(l,⊥)

x )	 w(S(ĺ,⊥)
x ∪ S(l,⊥)

x ) >

ds ⊕ w(Sx(s, k))	 ds 	 w(S(ĺ,⊥)
x ∪ S(l,⊥)

x ) =

w(Sx(s, k))	 w(S(ĺ,⊥)
x ∪ S(l,⊥)

x ) ≥ 0

This means that there are members of Sx(s, k) that

have a vote both for (l,⊥) and (ĺ,⊥) in round t, which
is a contradiction, since each vertex has a single vote
in any round only.

Proposition 6.5 (Message presorting). Let v be a
vertex with |v.svp| ≥ 3 and {r > s > t} ⊂ v.svp the
three maximum elements from v.svp. Then there is
a message l and each member of Sv(r, k) has a round

24



t vote either for (l,⊥) or (�,⊥) and no other round
t votes appear in Sv(r, k).

Proof. Let x ∈ Sv(r, k). Then algorithm (7) com-
putes δ = 1 if executed by x and x either received a
super majority of initial voting weight for some round
t vote (l,⊥) from its voting set Sx(s, k) or it does not.
In the first case x.vote(t) = (l,⊥) and in the second
x.vote(t) = (�,⊥). Now suppose that x and y are
both members of Sv(r, k), that both received a super
majority of voting weight for some round t vote (l,⊥)

and (ĺ,⊥), respectively. Then the previous proposi-

tion (6.4) implies l = ĺ.

Proposition 6.6 (Graded Agreement). Let v be a
vertex with |v.svp| ≥ 4, {r > s > t > u} ⊂ v.svp the
four maximum elements from v.svp and let x and y be
two members of Sv(r, k). If x has round u vote (l, 1)
or (l, 0) for some message l 6= � and y has round

u vote (ĺ, 1) or (ĺ, 0) for some message ĺ 6= �, then

l = ĺ.

Proof. This is our adaptation of the gi, gj > 0⇒ vi =
vj property in the definition of graded consensus and
a consequence of the previous proposition.

To see that, first observe that if algorithm (7) is
executed from x ∈ Sv(r, k), the δ = 2 branch is used
to compute x.vote(u), since x.svp = v.svp\{r} by
proposition (5.14) and therefore dx.svp(s, u) = 2.

Now, if x votes for (l, 0) or (l, 1) in round u with l 6=
�, it must have received more then ds voting weight
for (l,⊥) from its voting set Sx(s, k) and since Sv(r, k)
is a safe voting patter, we know |w(Sx(s, k), (l,⊥))−
w(Sy(s, k), (l,⊥))| ≤ ds for all members y ∈ Sv(r, k).
Hence each member of Sv(r, k) must have received at
least some voting weight for (l,⊥).

This implies that there must be a member of y’s
safe voting pattern Sy(s, k) that has a round u vote
(l,⊥). But from the previous proposition (6.5) we
know, that then no other member in y’s safe voting
pattern Sy can vote for some actual message ĺ 6= l.
Therefore if y does not vote (�,⊥), it must have
voted (l, 0) or (l, 1).

Proposition 6.7 (Bounded grading). Let v be a ver-
tex with |v.svp| ≥ 4, {r > s > t > u} ⊂ v.svp the
four maximum elements from v.svp and let x be a

members of Sv(r, k) with x.vote(u) = (l, 0) for some
message l 6= �. Then there can not be a member
y ∈ Sv(r, k) with y.vote(u) = (�, 1)

Proof. This is our adaptation of the |gi − gj | ≤ 1
property in the definition of graded consensus. To
start, observe that if algorithm (7) is executed from
x ∈ Sv(r, k), the δ = 2 branch is used to compute
x.vote(u), since x.svp = v.svp\{r} by proposition
(5.14) and therefore dx.svp(s, u) = 2.

Now, for x to compute x.vote(u) = (l, 0), l must
be an actual message, i.e l 6= � and x must have
received a super majority of voting weight for (l,⊥)
from its voting set Sx(s, k).

But then every other member y ∈ Sv(r, k) must
receive strictly more then ds voting weight for (l,⊥),
since Sv(r, k) is a safe voting pattern, which implies
w(Sy(s, k)) > 3 · ds as well as |w(Sx(s, k), (l,⊥)) 	
w(Sy(s, k), (l,⊥))| ≤ ds. This however implies, that
y’s execution of (7) can not compute y.vote(u) =
(�, 1).

Proposition 6.8 (Graded consistency). Let v be a
vertex with |v.svp| ≥ 4, {r > s > t > u} ⊂ v.svp
the largest four elements and let there be a vertex
v́ ∈ Sv(r, k), such the members x ∈ Sv́(s, k) are
in agreement on a round u vote (l,⊥). Then each
member y ∈ Sv(r, k) computes its round u vote as
y.vote(u) = (l, 0).

Proof. For a first orientation, observe that the ex-
ecution of algorithm (7) from v́ ∈ Sv(r, k), uses
the δ = 2 branch to compute v́.vote(u), since
v́.svp = v.svp\{r} by proposition (5.14) and there-
fore dv́.svp(s, u) = 2. The same reasoning shows that
the δ = 1 branch is used to compute x.vote(u) if al-
gorithm (7) is executed from any x ∈ Sv́(s, k).

Since the members of Sv́(s, k) are in agreement
on a round u vote (l,⊥), by definition each mem-
ber x ∈ Sv́(s, k) receives a super majority of initial
voting weight for (l,⊥) from its voting set Sx(t, k),
which implies x.vote = (l,⊥) for all x ∈ Sv(s, k) by
corollary (6.3).

Then v́ receives all voting weight w(Sv́(s, k)) for

(l,⊥) and no voting weight w(Sv́(s, k), (ĺ,⊥)) = 0

for any other vote (ĺ,⊥) with l 6= ĺ. However
since Sv(r, k) is a safe voting pattern, each member

25



y ∈ Sv(r, k) receives at most dr voting weight for any

(ĺ,⊥) other then (l,⊥) from its voting set Sy(s, k),
which implies, that the overall voting weight y re-
ceives for (l,⊥) must be at least w(Sy(s, k)) 	 ds,
since each member of Sy(s, k) has exactly one round
u vote. But then y’s execution of (7) gives δ = 2 and
then y.vote(u) = (l, 0).

6.3.2 Binary byzantine agreement

As we have seen in the previous section, the δ ∈
{0, 1, 2} branches of algorithm (7) are an adaptation
of Feldman & Micali’s gradecast algorithm. In this
section, we proof that the δ ≥ 3 branches simulate
Micali’s binary byzantine agreement protocol BBA∗,
if we, for a moment, consider the binary part (·, b)
of any vote (l, b) only. Our proofs are strongly influ-
enced by Micali’s original ideas as provided in [9].

Proposition 6.9 (Binary quorum intersection). Let
v be a vertex with |v.svp| ≥ 5, {r > s} ⊂ v.svp
the largest two elements of v.svp and x ∈ Sv(r, k)
a member that receives a super majority of voting
weight w > w(Sx(s, k)) − ds for some round u vote
(·, 0) with dx.svp(s, u) ≥ 4 from its voting set Sx(s, k).
Then there is no member y ∈ Sv(r, k), that receives a
super majority of voting weight w(Sy(s, k)) − ds for
a round u vote (·, 1) from its voting set Sy(s, k) and
vice versa.

Proof. First observe that the execution of algorithm
(7) from any y ∈ Sx(s, k), uses a δ ≥ 3 branch to com-
pute y.vote(u), since y.svp = x.svp\{s} by propo-
sition (5.14) and therefore dy.svp(t, u) ≥ 3 for t =
max(y.svp). Therefore the binary part of y.vote(u)
is decided for any y ∈ Sx(s, k).

We proof the theorem by contradiction and assume
that there is a member x of Sv(r, k), that receives a
super majority of voting weight w > w(Sx(s, k))	ds
for a round u vote (·, 0) from its voting set Sx(s, k)
and another member y ∈ Sv(r, k) that received a su-
per majority of voting weight w(Sy(s, k)) 	 ds for a
vote (·, 1) in the same round through its voting set
Sy(s, k).

Since Sv(r, k) is a safe voting pattern, both
voting sets Sx(s, k) and Sy(s, k) have an over-
all weight strictly larger then 3 · ds. Moreover

|w(Sx(s, k), (·, 0)) 	 w(Sy(s, k), (·, 0))| < ds im-
plies that y must have received strictly more then
w(Sx(s, k))	 2 · ds voting weight for (·, 0).

Now, let S0
y and S1

y be the subsets of Sy(s, k)
through which y received votes for (·, 0) and (·, 1),
respectively. Then S∗y := S0

y ∪ S1
y is again a subset

of Sy(s, k). If we use the identity w(S) = w(S1) ⊕
w(S2)�w(S1 ∩S2) for the weights of a cover S1 and
S2 of a set S we get

w(S1
y ∩ S0

y) =

w(S1
y)⊕ w(S0

y) � w(S∗y) >

w(Sy(s, k))	 ds ⊕ w(Sx(s, k))	 2ds � w(S∗y) =(
w(Sy(s, k))	 w(S∗y)

)
⊕ (w(Sx(s, k))	 3ds) > 0

since S∗y is a subset of Sy(s, k) and the weight of
Sx(s, k) is strictly larger then 3ds. But no vertex
can vote both for (·, 0) and (·, 1) in the same round.
Hence we arrive at a contradiction. The proof for the
vice versa case is exactly analog.

Proposition 6.10. Let v be a vertex with |v.svp| ≥
5, {r > s} ⊂ v.svp the largest two elements from
v.svp and pcoin the probability that b := lsb(H(v́x.m))
is the same for all x ∈ Sv(r, k) and maximum weight
vertex v́x ∈ Sx(s, k). If there is an element u ∈ v.svp
with dv.svp(s, u) ≥ 3 and dv.svp(s, u) mod 3 = 2,
then, with probability at least pcoin/2, all members
x ∈ Sv(r, k) will have the same vote x.vote(u) = (·, b)
for a binary value b ∈ {0, 1}.

Proof. Since x.svp = v.svp\{r} for every x ∈
Sv(r, k) by proposition (5.14), the requirement
dv.svp(s, u) mod 3 = 2 implies that the computation
of x’s round u vote in algorithm (7) executes the
δ mod 3 = 2 branch, e.g. the genuine-coin-flip stage.
The quorum intersection theorem (6.9) then induces
the following five exclusive cases:

1.) Every member x ∈ Sv(r, k) receives a super ma-
jority of votes (l, 0) for some message l and computes
x.vote(t) = (l, 0) in line (53). Hence every member
votes x.vote(·, 0)

2.) Every member x ∈ Sv(r, k) receives a super ma-
jority of votes (l, 1) for some message l and computes
x.vote(s) = (l, 1) in line (55). Hence every member
votes x.vote(·, 1)

26



3.) No member x ∈ Sv(r, k) receives a super major-

ity, neither for (l, 0) nor for (ĺ, 1). Hence all members
of Sv(r, k) compute their vote as (·, b) in line (58)
where b is the least significant bit b := lsb(H(v́x.m))
of the vertex v́x ∈ Sx(s, k) that has the highest vot-
ing weight in Sx(s, k). Then with probability pcoin,
agreement will hold on (·, b), as the probability of b
being the same for all x ∈ Sv(r, k) is assumed to be
pcoin.

4.) Some members x ∈ Sv(r, k) receive a super
majority of voting weight for some (l, 0) and some

neither receive a super majority for (ĺ, 0) nor for (l̃, 1).
Let S0 ⊂ Sv(r, k) be the set of members that receives
a super majority of voting weight for (l, 0) and Sb the
set of members that receives no super majority at all.
Then all processes in S0 execute line (53) and vote
(·, 0) and all processes in Sb execute line (58) and vote
(·, b). Hence with probability at least pcoin/2, every
member x ∈ Sv(s, k) votes x.vote(t) = (·, 0).

5.) Some members x ∈ Sv(r, k) receive a super
majority of voting weight for some (l, 1) and some

neither receive a super majority for (ĺ, 0) nor for (l̃, 1).
The argumentation is then analog to the previous
situation.

From the quorum intersection theorem (6.9), we
know that it is impossible for two members of the
same safe voting pattern to receive super majorities
both for (·, 0) and (·, 1). Hence the previous five case
are exclusive and the proposition follows.

Proposition 6.11 (Agreement stability). Let v be
a vertex with |v.svp| ≥ 5, r = max(v.svp) the max-
imum element from v.svp and suppose that there is
an element u ∈ v.svp with dv.svp(r, u) ≥ 3 such that
the members x ∈ Sv(r, k) are in agreement on some
round u binary vote (·, b) with b ∈ {0, 1}. If v́ is
another vertex with v́.svp 6= ∅, q = max(v́.svp) and
v ∈ Sv́(q, k), then every member y ∈ Sv́ has the same
round u vote y.vote(u) = (·, b), too.

Proof. We proof the proposition for (·, 0). The sit-
uation for (·, 1) is analog. Since the members of
Sv(r, k) are in agreement on a round u binary vote
(·, 0), corollary (6.3) implies, that every member
x ∈ Sv(r, k) computes x.vote(u) = (·, b). Hence
all voting weight of the safe voting pattern votes

for (·, 0), e.g. w(Sv(r, k), u, (·, 0)) = w(Sv(r, k)) as
well as w(Sv(r, k), u, (·, 1)) = 0 holds, as no ver-
tex can have more then one vote in a round. But
since Sv́(q, k) is a safe voting pattern, we know
|w(Sv(r, k), u, (·, 1)) 	 w(Sy(r, k), u, (·, 1))| < dr for
all y ∈ Sv́, which implies w(Sy(r, k), u, (·, 1)) < dr.
However each member of Sy(r, k) either votes for
(·, 0) or (·, 1), since ever member has exactly one
vote in a round. This implies w(Sy(r, k), u, (·, 0)) =
w(Sy(r, k)) 	 w(Sy(r, k), (·, 1)) < w(Sy(r, k)) 	 dr.
Hence y receives a super majority of voting weight
for (·, 0) and therefore votes (·, 0). This is true for all
y ∈ Sv́(q, k).

Proposition 6.12. Let v be a vertex with |v.svp| ≥
5, {r > s} ⊂ v.svp the highest two elements and let
u ∈ v.svp be a round number with dv.svp(r, u) > 3,
such that there is a member x ∈ Sv(r, k) that receives
a super majority of voting weight w > w(Sx(s, k))	ds
from its voting set, for a round u vote (·, b) with b ∈
{0, 1} and dv.svp(s, u) mod 3 = b. Then all members
y ∈ Sv(r, k) vote y.vote(u) = (·, b).

Proof. We proof the proposition for (·, 0). The situ-
ation for (·, 1) is analog.

In that case every member x ∈ Sv(r, k) executes
the δ mod 3 = 0, i.e. the coin-fixed-to-zero branch of
algorithm (7). Since x received a super majority of
voting weight w > w(Sx(s, k)) 	 ds from its voting
set Sx(s, k) for a round u vote (·, 0) and Sv(r, k) is a
safe voting pattern, no other member y ∈ Sv(r, k) can
receive a super majority of voting weight for a vote
(·, 1) due to the binary quorum interesection theorem
(6.9). However this implies, that each member of y ∈
Sv(r, k) computes its vote as (·, 0) either according to
line 31 or line 38.

Proposition 6.13 (Eventual Agreement). Suppose
that the probability for the appearance of new rounds
and safe voting pattern is not zero. Let s be a
round number, such that there is a safe voting pat-
tern Sv́(s, k) for some vertex v́ in round s. Then,
with probability one, there will be a vertex v with
r = max(v.svp) and s ∈ v.svp, such that all members
of Sv(r, k) will be in agreement on the binary part of
their round s votes, i.e. x.vote(s) = (·, b) holds for
all x ∈ Sv(r, k).

27



Proof. As the probability of new rounds to appear
is not zero and safe voting patterns will appear at
least in some of these rounds, there will be vertices v,
with v.svp 6= ∅, s ∈ v.svp and dv.svp(max(v.svp), s)
mod 3 = 2. But then proposition (6.10) implies that
the probability to reach agreement on some round s
vote in Sv(r, k) is not zero. Since there is an un-
bounded amount of those vertices, agreement holds
eventually with probability one.

6.3.3 Virtual leader agreement

Proposition 6.14 (Eventual Agreement). Suppose
that the probability for the appearance of new rounds
and safe voting pattern is not zero. Let s be a
round number, such that there is a safe voting pat-
tern Sv́(s, k) for some vertex v́ in round s. Then,
with probability one, there will be a vertex v with
r = max(v.svp) and s ∈ v.svp, such that all mem-
bers of Sv(r, k) will be in agreement on a round s
vote, i.e. x.vote(s) = (l, b) holds for all x ∈ Sv(r, k)
and message l.

Proof. Due to proposition (6.13), we know that with
probability one, there will be a vertex v with r =
max(v.svp) and s ∈ v.svp, such that all members of
Sv(r, k) will be in agreement on the binary part of
a round s vote, i.e. x.vote(s) = (·, b) holds for all
x ∈ Sv(r, k) and some b ∈ {0, 1}.

If binary agreement holds on (·, 1), that is
x.vote(s) = (·, 1) for all x ∈ Sv(r, k), then line (42)
will be executed by every member of Sv(r, k), hence
each such member computes x.vote(s) = (�, b) and
agreement holds on �.

If binary agreement holds on (·, 0), then |v.svp| ≥ 5
and there is a t ∈ v.svp such that dv.svp(t, s) = 3.
Then there is a vertex ṽ and a safe voting patter
Sṽ(t, k) in the past of v, such that at least one mem-
ber must have received a super majority of voting
weight for some vote (l,⊥) with l 6= �, because oth-
erwise, all members of Sṽ(t, k) would be in agreement
on (·, 1) and by proposition (6.11) stay in agreement
on that vote, which contradicts our assumption, that
agreement holds on (·, 0).

Hence proposition (6.7) implies, that no member
of Sṽ(t, k) votes (�, 1) and proposition (6.6) then im-
plies that all members of of Sṽ(t, k) either vote (l, 0)

or (l, 1) for the same message l. In any case all mem-
bers of that round are in agreement on the message l.
Therefore l always receives the most voting weight in
consecutive rounds (simply because there is no other
choice) and hence agreement continous to hold on l,
which implies that all members of Sv(r, k) compute
x.vote(s) = (l, 0)

Proposition 6.15 (Agreement stability). Let v be a
vertex with v.svp 6= ∅, r = max(v.svp) the largest ele-
ment from v.svp and let there be an element t ∈ v.svp
with dv.svp(r, t) ≥ 3 and the members x ∈ Sv(r, k) are
in agreement on some message l, i.e x.vote(t) = (l, b)
with b ∈ {0, 1}. If v́ is another vertex with v́.svp 6= ∅,
q = max(v́.svp) and v ∈ Sv́(q, k), then every member
y ∈ Sv́ has a vote y.vote(t) = (l, b) in round t, too.

Proof. This follows from the binary agreement sta-
bility (6.11) and proposition (6.14).

6.4 Total Order

6.4.1 Leader stream convergence

Proposition 6.16. Suppose that the probability for
the appearance of new rounds and safe voting pattern
is not zero, let j ∈ Π be a honest process and r a
round number. Then j will eventually have a Lamport
graph G, such that the set leaderG(r) is not empty.

Proof. If there will never be a safe voting pattern in
round r, algorithm (7) will eventually execute line (2)
for some vertex and insert (r,�) into leaderG(r). If
on the other hand r has a safe voting patter, propo-
sition (6.14) implies that with probability one there
will eventually be a vertex that has a safe voting pat-
tern, such that all members of that pattern are in
agreement on a round r leader. In that case, ex-
ecution of (7) will enter line (33) or line (44) and
therefore elements are inserted into leaderG(r).

Proposition 6.17. Let j ∈ Π be a honest process
that has a Lamport graph G, such that there are n
different elements in the set leaderG(r). Then there
is a round s in G with an overall amount of voting
weight wGs strictly larger then 3 · n · ds.

28



Proof. First of all, function (8) ensures, that all el-
ements in leaderG(r) always have the same round
number, because a new element (t, l) is inserted only,

if there are no elements (t́, ĺ) ∈ leaderG(r), that
have higher deciding rounds t́ > t. Moreover, once
an element is inserted, all elements with lower decid-
ing rounds are deleted. This implies that the massage
part of different elements from leaderG(r) must dif-
fer, but the round parts are always the same.

Thats being said, we proof the proposition in case
there are two different elements in leaderG(r) only.
The general argumentation is analog. To see that, let
(l, s) and (ĺ, s) be different elements of leaderG(r).
Then we know that there must be two different ver-
tices v and v́, that both have round s safe voting
patterns Sv(s, k) and Sv́(s, k), such that v’s execu-
tion of algorithm (7) inserted (l, s) and v́’s execution

inserted (ĺ, s) into leaderG(r).
However due to the execution of line (32), or (43),

v’s safe voting pattern Sv(s, k) is in agreement on
(l, b) and v́’s safe voting pattern Sv́(s, k) is in agree-

ment on (ĺ, b), e.g. all members x ∈ Sv(s, k) vote
x.vote(r) = (l, b) and all members x́ ∈ Sv́(s, k) vote
v́.vote(r) = (v́, b) for some b ∈ {0, 1}. But since any
vertex has a single vote in any round only, both vot-
ing sets must be disjoint. However Sv(s, k) as well
as Sv́(s, k) are safe voting patterns and each has an
overall amount of voting weight strictly larger then
3 · ds.

Theorem 6.18 (Leader convergence). Suppose that
the probability for the appearance of new rounds and
safe voting pattern is not zero and let j ∈ Π be
a honest process. Then j will have a series of
Lamport graphs G(t), such that the series of sets
leaderG(t)(r) converges to contain a single element
only.

Proof. Since new rounds appear, j will obtain a
stream of messages, that extend the current Lamport
graph. The time indexed Lamport graphs can there-
fore be seen as a sequence, such that each consecutive
graph contains strictly more elements then the previ-
ous one. Despite the fact, that time is a continuous
index. The theorem then follows from proposition
(6.17), our assumption (8) on the boundary of the

difficulty oracle and agreement stability.
To see this in detail, we proof the theorem by con-

tradiction and assume that leaderG(t)(r) does not
converge to a single element for t→∞. Then propo-
sition (6.16) implies that there is a parameter t0, such
that each set leaderG(t)(r) contains at least two el-
ements for all t > t0.

Let t1 be a time parameter, such that there are at
least two elements (s, l) and (s, ĺ) in leaderG(t1)(r).
Proposition (6.17) then implies that each element is
decided by execution of algorithm (7) from a vertex
v1 and a vertex v́1 both of which have disjoint safe
voting pattern and the overall voting weight of round
s is strictly larger in the Lamport graph G(t1).

Now since new rounds and safe voting patterns ap-
pear forever there must be a time t2 and two vertices
v2 and v́2 that have safe voting pattern Sv2

(s1, k)
and Sv́2(ś1, k), such that v1 is in the safe voting pat-
tern of v2 and v́1 is in the safe voting pattern of v́2.
By proposition (6.11) agreement then continuous to
hold in these pattern, which implies that they are dis-
joint. Moreover v1 can not be in the past of v́2 and
vice versa. Hence the entire history must be disjoint
and therefore any round between u1 = min{s1, ś1}
must have disjoint last vertices. This however im-
plies that any Lamport graph G(t) has voting weight∑u1

j=s w
G(t)
j /dj > 6 for all t ≥ t2.

However since leaderG(t)(r) does not con-
verge by assumption we can repeat the argument
an unbounded amount of times, which implies∑ui

j=s w
G(t2)
j /dj > 6 for arbitrary large round num-

bers ui which violates our assumption (8) on the dif-
ficulty oracle bound.

Corollary 6.19 (Leader stream convergence). Sup-
pose that the probability for the appearance of new
rounds and safe voting pattern is not zero and let
j, k ∈ Π be two honest process. Then their leader
streams will converge.

Proof. The previous theorem (6.19) implies that each
leader set will converge to a single element, which
implies that the leader stream of each honest pro-
cess will converge and it remains to show that the
elements in both leader streams are identical. This
however follows from our message dissemination as-

29



sumption (6.1), since Lamport graphs of honest pro-
cesses eventually converge to contain the same ele-
ments.

All previous proof are based on the assumption
that the voting weight function is essentially un-
bounded and that the difficulty oracle can be esti-
mated by assumption (8) only. However some im-
plementations might be much simpler, in that they
don’t have unbounded weight function or a strict up-
per bound on the voting can be computed. As the
following corollary shows, this leads to much faster
and cleaner convergence of the global leader stream.

Corollary 6.20 (Bounded voting weight leader
stream). Let d be a difficulty oracle, G a Lamport
graph and leaderG(·) the leader stream of G, such
that the overall amount of voting weight in any round
r is always in between 3dr < w ≤ 6dr. Then
leaderG(r) will never contain more then one ele-
ment.

Proof. This follows directly from proposition (6.17)
as more then one element would imply that there is a
round with overall voting weight strictly larger then
6dr.

6.4.2 Total order convergence

We proof that Moser & Melliar-Smith’s properties of
a byzantine resistant total order algorithm as defined
in (6) are satisfied, provided our set of assumptions
(6.1) holds.

Proposition 6.21 (Partial Correctness). The
asymptotically convergent total orders determined by
any two non byzantine processes are consistent; i.e.,
if any non byzantine process has a Lamport graph
that determines v.total position = i, then no hon-
est process has a Lamport graph that determines
v́.total position = i, where v́ 6≡ v.

Proof. The theorem follows, since the leader streams
of two honest processes eventually converge with
probability one, by corollary (6.19) and the order
is derived deterministically from the past of any el-
ement in the leader stream only. However that is
equivalent among all Lamport graphs, by the equiv-
alence of the past theorem (3.7).

Proposition 6.22 (Consistency). The total order
determined by any non byzantine process is consis-
tent with the partial causality order; i.e. v́ ≤ v im-
plies v́.total position ≤ v.total position.

Proof. Let v and v́ be two vertices in a Lamport
graph with v́ ≤ v, such that the total order of both
vertices is not ⊥. Let v be in the order cone of some
momentrary round leader vl, e.g. v ∈ Ord(vl). Then
either v́ ∈ Ord(vl) or not. In the former case both
v.total order and v́.total order are computed by a
topological sorting algorithm hence v́ ≤ v implies
v́.total order ≤ v.total order by the very proper-
ties of topologic sorting. In the latter case v́ ≤ v
implies v́ ∈ Gvl , but since v́ 6∈ Ord(vl), we know
v́.total order < w.total order for all w ∈ Ord(vl),
since the total order of all elements from Ord(vl)
starts with a value greater then all previous totally
ordered elements.

Proposition 6.23 (Probabilistic Termination I).
The probability that a honest process j computes
v.total position = i for some Lamport graph G, posi-
tion i and vertex v increases asymptotically to unity
as the number of steps taken by j tends to infinity.

Proof. By theorem (6.19) every round r will converge
to a single round leader lr and at least some of these
rounds will converge to a leader 6= � due to our ini-
tial vote assumption (6.1). This implies that the or-
der loop (9) will execute some topological sorting,
like (10), that assigns a total order position to all el-
ements in the past of a leader vertex v with v.m = lr
in any Lamport graph. As the leader converges, so
does the order in its past and as this goes on for-
ever there will eventually be a round u and a leader
lu, such that |Gv| > i for v with v.m = lu and any
i ∈ N. Hence Lamport graph G will have a vertex
with v.total order = i and this vertex converges to a
fixed value.

Proposition 6.24 (Probabilistic Termination II).
For each message m broadcast by a non byzantine
process j, the probability that a non byzantine pro-
cess k places some vertex v with v.m = m in the
total order, increases asymptotically to unity as the
number of steps taken by k tends to infinity.

30



Proof. Let m be a message and v a vertex with v.m =
m and round number r. Since new rounds appear
forever, there will eventually be a round r and round
r leader vertices vl in the future of v, (i.e v ∈ Gvl)
that converge to a single element. As the past of
these leaders gets ordered by algorithm (10) and this
order converges, the order of v converges too.

7 Conclusion & Outlook

We have developed a family of total order algo-
rithms that may survive in unstructured Peer-2-Peers
networks and in the presence of momentary large
amount of partitioning and faulty behavior. The sys-
tem chooses different strategies with respect to Brew-
ers CAP-theorem. If no forking occurs, it choose a
strict availability & consistency strategy which allows
for short finality. However if partition occurs, incar-
nated in the form of more then one safe voting pat-
tern in a round, availability remains but consistency
becomes probabilistically convergent only.

In contrast to most other approaches, our system
is able to incorporate a Proof-Of-Work based voting
strategy, which circumvent serious Proof-Of-Stake
problems, like bootstrapping and runaways. Proof-
Of-Work is difficult to use in byzantine agreement,
because such a weight function is usually unbounded.

In any case, future research has to be made in find-
ing optimal system parameter, like the difficulty ora-
cle, incentivation & punishment, weight systems and
the quorum selector. Of course its possible to just be
creative and make these function up, but the author
believes that a systematical search to find optima is
much more reasonable.

However, if you would like to support the continu-
ous production of content like this, please donate via
one of the channels mentioned on the title page, or
contact the author for additional solutions.

References

[1] Alchieri, E. A.; Bessani, A.N.; Fraga,
J.S.; Greve, F.: (2008) Byzantine Consensus
with Unknown Participants. In Proceedings of

the 12th International Conference on Principles
of Distributed Systems (OPODIS ’08). Springer-
Verlag, Berlin, Heidelberg, 22-40.

[2] Baird, L.: (2016) The Swirlds hashgraph con-
sensus algorithm: Fair, fast, Byzantine fault
tolerance, Swrirlds tech report, SWIRLDS-TR-
2016-01.

[3] Beck A.: (2002) Hashcash - A Denial of Service
Counter-Measure

[4] Chen, J.; Micali, S.: (2016). Algorand

[5] Chevalier, P.; Kaminski, B.; Hutchison,
F.; Ma, Q.; Sharma, S.: (2018) Protocol
for Asynchronous, Reliable, Secure and Efficient
Consensus (PARSEC).

[6] Danezis, G.; Hrycyszyn, D.: (2018) Block-
mania: from Block DAGs to Consensus.

[7] Feldman P., Micali S.: (1997) An Optimal
Probabilistic Algorithm for Synchronous Byzan-
tine Agreement. (Preliminary version in STOC
88.) SIAM J. on Computing.

[8] Lamport, L.: (1978) Time, clocks, and the or-
dering of events in a distributed system, Com-
mun. Assoc. Comput. Mach. 21, 558-565.

[9] Micali, S.: (2018). Byzantine Agreement ,
Made Trivial

[10] Louise E. Moser and P. M. Melliar-
Smith: (1999) Byzantine-Resistant Total Or-
dering Algorithms. Inf. Comput.. 150. 75-111.

[11] Nakamoto, S.: (2009) Bitcoin: A Peer-to-
Peer Electronic Cash System.

[12] Spivak, D. I.: (2014) Category Theory for the
Sciences. MIT Press.

31


	Introduction
	Model of Computation
	Data Structures
	Communication
	Total Order
	Correctness Proof
	Conclusion & Outlook

