Blindfolded Evaluation of Random Forests with
Multi-Key Homomorphic Encryption

Asma Aloufi, Peizhao Hu, Harry W. H. Wong, and Sherman S. M. Chow

Abstract—Decision tree and its generalization of random forests are a simple yet powerful machine learning model for many
classification and regression problems. Recent works propose how to privately evaluate a decision tree in a two-party setting where the
feature vector of the client or the decision tree model (such as the threshold values of its nodes) is kept secret from another party.
However, these works cannot be extended trivially to support the outsourcing setting where a third-party who should not have access
to the model or the query. Furthermore, their use of an interactive comparison protocol does not support branching program, hence
requires interactions with the client to determine the comparison result before resuming the evaluation task.

In this paper, we propose the first secure protocol for collaborative evaluation of random forests contributed by multiple owners. They
outsource evaluation tasks to a third-party evaluator. Upon receiving the client’s encrypted inputs, the cloud evaluates obliviously on
individually encrypted random forest models and calculates the aggregated result. The system is based on our new secure comparison
protocol, secure counting protocol, and a multi-key somewhat homomorphic encryption on top of symmetric-key encryption. This
allows us to reduce communication overheads while achieving round complexity lower than existing work.

Index Terms—Applied Cryptography, Decision Tree, Homomorphic Encryption, Machine Learning, Random Forest

1 INTRODUCTION

ECISION tree is one of the most widely used nonparametric

machine learning techniques for classification and regres-
sion. The evaluation process is a series of comparison at each
decision node of the tree, which compares the input from a client
with the threshold of the node as specified in the model. The
boolean results decide which descendant node to traverse and
eventually leads to a leaf node representing a result. Similar to
some other machine learning frameworks, relying on a single such
tree may incur the model-overfitting problem. A random forest
(Fig. 1a) which aggregates the results from individual decision
trees can provide more accurate results. The final result is either
a list of classification labels together with counts associated with
each label, or a classification label that most of the trees agreed on.

In this paper, we focus on a scenario where predictive models
from multiple owners are sent to an evaluator for collaborative
evaluation (Fig. 1b). Collaborative machine learning becomes a
commonplace as it provides more accurate prediction due to
the diversity in data [1]. Medical diagnostics is one example
(EU WITDOM project) in which multiple hospitals and medical
laboratories collaborate to offer a better diagnosis. A natural
source for the evaluator is to rely on an external cloud. But, privacy
leakage can occur [2], [3] due to security breaches or insider
attacks. According to the statistics [4], there are around 2 declared
breaches per week, each affecting 500+ people. More importantly,
leaking of sensitive personal data (e.g., genome, fingerprint, eye-
iris-scan) is irreversible. Strict data protection regulations, such as
HIPAA and EU GDPR!, embrace data utility for medical diagnosis
and drug discovery but demand provable security of private data
when it is in storage and being processed.

1. https://www.hhs.gov/hipaa and https://www.eugdpr.org

1.1 Current Solutions

Existing privacy-preserving protocols [S]-[7] follow the client-
server model where the server owns the random forest and the
client inputs encrypted features to start the evaluation. Comparison
at each node is carried out using the secure comparison protocol
proposed by Damgérd, Geisler, and Krgigaard (DGK protocol) [8]
which takes inputs in binary and produces a list of intermediate
results that are either encryption of zero or non-zero integer. These
intermediate results cannot be used directly to perform branching
program and traversal through the decision tree because the server
requires the client’s help to determine whether any ciphertext
decrypts to zero. The client then generates and sends back an
encrypted bit to resume the evaluation on the server side. This
process based on the DGK protocol is interactive and makes the
existing works to be a synchronous system design.

These state-of-the-art works [5]-[7] use additive homomorphic
encryption (HE) and cannot be easily extended to work in a
collaborative setting which naturally requires multiplication of
two ciphertexts. A best-effort workaround is to have the client
sends separate requests to each model owner, as illustrated in
Fig. lc. Leaving aside the communication overhead caused by
the exchange of intermediate results, this naive extension reveals
the individual decision made by each model owner to the client.

Alternatively, model owners can outsource their models to a
third-party evaluator. This is undesirable due to concerns of secu-
rity breaches. One may encrypt each model under the key of its
respective owner. Yet, such a multi-key usage is not considered in
the existing privacy-preserving decision tree evaluation protocols.

1.2 Our Contributions

We propose a privacy-preserving protocol which allows multiple
model owners to delegate the evaluation of the random forests
(resulted from the implicit collaborative effort of combining in-
dividual models) to an untrusted party. As depicted in Fig. 1b,

(a) Random Forests Evaluation (b) Collaborative Setting

P Client Evaluator
T |- i send (Public or Private Cloud)
1 ®encrypted P NN
=inputs " Collaborative N
(Ié %;;(4 \, evaluation of random ’\’
"’/ - >~ forests SN L
H return ‘(_ SecCount(7, ” Client \e M
T @ encrypted(\-- et) (Patient) cend enchyP 1
N result offload encrypted @)'\\’\9"“5 ll —
o Model Owners (Hospltals) models g @W\\e\'pre\ I res“&'s'
@ P2
Q --" ted :
& model model J [H model J - 4 —orn en :
ES (D At d, calculate: T T feature @ resut® M,
B bElsy) G : G [Vem (modei
M, My SecCount(7) Model Owners / Evaluators
- (Hospitals)

(c) Two-Party Setting

Fig. 1: System models for collaborative evaluation of random forests F, consisting of N decision trees: Each decision tree 7; with a
depth of § contains m decision nodes d; € D, and (m + 1) leaf nodes I, € L. Each leaf node contains a classification value vy, € V.

individual model owners encrypt their decision trees such that
none of them can get the decision tree of everyone else, while the
cloud remains oblivious to the models or the query.

Our technical contributions are a new secure comparison
protocol SecComp (see Sec. 5.5), a new secure counting protocol
SecCount (see Sec. 5.6), the incorporation of techniques for
computing over data encrypted under different keys, and various
techniques for efficiency improvement.

SecComp directly produces an encrypted bit that is used
for branching in decision tree evaluation. The extra interactions
for processing the list of encrypted integers output by the DGK
protocol (or other DGK-based protocols [9]) in the existing works
are not necessary. It thus achieves a lower round complexity.

SecCount calculates the count of each class label resulted
from the evaluation of individual decision trees and performs
majority voting. To our best knowledge, this method has not been
used in similar works. Recent work only considered a specific
form of random forest evaluation based on the mean of the trees’
results. It is only suitable for regression or binary classification
problems but not for multi-class classification we consider.

A core building block of our system is a somewhat homomor-
phic encryption (SWHE) scheme proposed by Brakerski, Gentry,
and Vaikuntanathan (BGV SWHE) [10]. Our system incorporates
multiple techniques for efficiency improvement: (a) optimization
techniques to speed-up homomorphic evaluation through paral-
lelization, (b) hybrid encryption to lower the communication over-
head, and (c) leveraging threshold encryption such that ciphertext
extension does not grow linearly with respect to the number of
(differnt encryption keys used by different) model owners. This
new design significantly reduces the overhead caused by ciphertext
extension as discussed in the original work [11].

While SWHE is relatively heavyweight, we aim to exploit as
much as SWHE can provide for overcoming multiple limitations
of existing works and at the same time improve the practical
aspects of using SWHE by the aforementioned efficiency im-
provements. A side benefit of using lattice-based SWHE is that
it provides post-quantum protection of user sensitive data, such as
patients’ genomic data. We also performed empirical experiments
over multiple real-world datasets which validated the performance
of our proposed solutions.

1.3 Organization

The next section presents the cryptographic techniques used in our
system. Sec. 3 describes the system design and security model. In
Sec. 4, we discuss the related work in more details. Sec. 5 presents
our protocol and Sec. 6 discusses its correctness and security. After
that, we provide complexity analysis and empirical study of the
system performance. Finally, Sec. 7 concludes the paper.

2 PRELIMINARIES

We give a brief description of the cryptographic primitives used
in our protocol. In particular, we overview the primitives used to
support homomorphic computation with multiple keys. We also
overview hybrid encryption used for efficient communication, and
techniques for privately retrieving information.

2.1 The RLWE Problem

For a security parameter A, let ®(z) = z" + 1 be a cyclotomic
polynomial where 7 = n(\) is a power of 2, and ¢ = g(\) > 2
be an integer. Define the ring R over polynomials with integer
coefficients R = Z[z]/(®(z)). Let x = x(\) be a Gaussian error
distribution over R, and bounded by B = B(\) such that B < q.

Definition 2.1 (Ring-Learning-With-Errors (RLWE) [12]). Let a
and s be uniformly sampled elements from Ry, and let e <—x
be a sampled error term. The RLWE problem is to distinguish
the pair of (ai,b; = a;s +) from any uniformly sampled
pair (a;,b}) « R2. The RLWE assumption is that the RLWE
problem is computationally infeasible to solve.

An amortized version of the RLWE problem [12], [13] shows
that it is equivalent to sampling s from a small distribution instead
of the ring R,. This yield a smaller secret key in an RLWE-based
cryptosystem, e.g., BGV SWHE scheme [10] (Appendix A).

2.2 Multi-Key SWHE Scheme

There are two common extensions of SWHE to support computa-
tion with different keys: threshold HE [14] and multi-key HE [11],
[15], [16]. In threshold HE scheme (Appendix C), n model owners
M, and p clients C; leverage key homomorphism to generate a

joint key, this yields p distinct joint keys {pk y¢ ¢, ;-5 Pkatc, }.
Beside generating these joint keys in advance, model owners
must send p encrypted copies of the models must to the cloud,
one for each distinct joint key, which increases the space and
communication overhead of the system.

Multi-key BGV scheme (MKBGV) [11] (Appendix D) dy-
namically extends a ciphertext encrypted under one key to a
concatenation of keys from all parties. For example, a cipher-
text c¢c = (co,c1) € Ri encrypted under a client’s key pke
is extended to one under {pkc,pkpy,,---,Pkpy, }, such that

¢ = {cc,emyy-rem,t € R Note the size of the
ciphertext increases linearly with (n + 1) involved keys.

Observing the inefficiency in these two methods, we propose
a new multi-key HE (MKHE) scheme. The set of model owners
in our collaborative setting in Fig. 1b do not often change; hence,
they can set up one joint key pk 4 based on their keys pk .. They
encrypt their models using this joint key. At time of evaluation,
each ciphertext is extended under the two keys {pkec,pkn},
resulting ¢ = {c¢c,cm} € R;l. By leveraging both threshold and
multi-key HE techniques, model owners send one copy of their
encrypted models to the cloud, who extends them when needed to
two keys, reducing the size in ciphertext expansion.

Our new MKHE scheme involves the following algorithms
(Setup, KeyGen, Enc, Ext, EvalKeyGen, Eval, Dec):

- Setup(1*,1%,1%) — pp: A probabilistic algorithm inputs the
security parameter A, a bound on circuit depth L, a bound on
number keys K, outputs public parameter pp.

- KeyGen(pp) — ((pke,ske),eky) and KeyGen(pp) —
((Pkpg,,skat,),eklng,): Each system user (ie., clients
and model owners, respectively) generates a key-pair
(Pkesske), (Pk g, s skat,). They also generate the correspond-
ing evaluation helper element ekg,ek)y,,, which encrypts
powers-of-two of the secret key skc,skaq, under GSW HE
scheme [17].

- JointkeyGen(pk vy, ;- - - Pk s ek, s - - -5 eking,) —
(pk g, €k/ng): The set of n model owners perform interactive
protocol to establishes a joint key pk,, by combining their
keys as discussed. The corresponding evaluation helper element
ek’y, must encrypt the bits of the secret key saq, which is
shared among the model owners. The evaluation helper element
can be generated by homomorphically adding all ek, using a
binary addition BinAdd() that performs a fast full adder on the
encrypted bits [18], [19].

- Enc(pk,) — c: A probabilistic algorithm that performs the
standard BGV encryption on given message < R: and a
public key pk and outputs ¢ = (co,cl) € Rg. Each ciphertext
is associated with set [that holds the index of the used key. We
indicate the index 1 as the client’s key pk, and the index 2 as
the model owners’ joint key pk .

- Ext(pk,c) — & A deterministic algorithm extends a given
ciphertext ¢ to one encrypted under the concatenated keys
pk = {pke, pk}. Simply output a concatenated two sub-
vectors ¢ = (cc,cm) € R‘ql, such that ¢; = ¢; if the index
i € I, and ¢; = 0 otherwise. We denote [[-]] as an extended
BGYV ciphertext.

- EvalKeyGen(ekg,ek/y,,) — ek: A deterministic algorithm
generates an evaluation key ek for the concatenated pub-
lic key pk = {pkc,pk,} based on given helper elements
{ekg, ek/y(}. The evaluation key is generated as follows. First,
extend each evaluation helper element ekg (or ek’y) to the other

3

key pk, (or pke). Then, perform a homomorphic multiplica-
tion to compute the encryption of § ® 3, where § = {sc, s}
This encrypts the powers-of-two of the concatenated keys,
which is used in KeySwitch (i.e., relinearization) after each
homomorphic evaluation to bring 52 to .

- Eval(¢,¢,ek) — Caga OF Gmuis: A deterministic algorithm
inputs two extended ciphertexts ¢,¢ € R;l encrypted under
the concatenated keys pk, perform homomorphic addition as
element-wise addition aaqa = ¢+ & € Rj or the homomorphic
multiplication as the tensor product ém1ts = E® ¢ € RSIG. After
the homomorphic evaluation, perform KeySwitch technique
using the generated evaluation key ek to output a ciphertext in
Ré, and the ModulusSwitch technique to reduce the resultant
noise by switching to a smaller ciphertext modulus. Note that
during evaluation, for example in homomorphic addition, the
underlying messages pi¢c and paq do not directly add up. The
sub-ciphertexts are added together after decryption, yielding the
correct evaluation result.

- Dec(sk,&) — p or _L: An interactive protocol decrypting an
extended ciphertext ¢ = {cc,ca} € R} with the concatenated
secret keys § = {s¢, sam}. The client and model owners col-
laborate to decrypt the message as (¢, §) = (cc, s¢) + (cu, Sam)-
The client obtains pc through straightforward BGV decryption.
Since s4 is shared among n model owners, they perform the
partial decryption (cu, spm) = (car,1 —Ca,08Mm) in a threshold
manner (Appendix C). Each model owner M; computes a
smudged? component poq, = ca1,05m, +tet,, then all model
owners compute together caq,1 — i q CAM,05M,, yielding
ta. The protocol outputs the message p = pc + paq for
the client and nothing abort L for model owners and evaluator.

Definition 2.2 (Correctness and Compactness). Let pp <
Setup(1*, 1%, 1%). Consider a correctly generated key pairs
(Pke,ske,eke) and (pky,,ska,,eklyg,) < KeyGen(pp),
and any two messages /i, pa. Let {cc Enc(pke, pc)}
and {cam < Enc(pkng, m)}. Let € « Ext(pk,cc) and
& « Ext(pk, ca), where pk = {pke, M}. Let f be function
with depth bounded by L, let & < Eval(¢,&,ek) be the
evaluated ciphertext:

o Correctness: For any negligible function €(\), we have
|Pr[Dec(sk,) = f(uc, um)]| > 1 —¢

o Compactness: There exists a polynomial p(-) such that |¢| <
p(\, L, K).

Definition 2.3 (Semantic Security). Let pp —
Setup(1*, 15, 11), and (pke, ske, eke) and
(pk oq, Skat, ek/yg) < KeyGen(pp). For any polynomial

d = d(\) and any two messages po,u1 the following
distribution are computationally indistinguishable:

comp
(PP, Pk, Enc(pke, 110)) = (pp, pke, Enc(pke, p11))

and

comp
(PP, Pk o> Enc(pk oy, 110)) = (PP, Pk ogs Enc(pkag, 1))

2. Smudging noise is added to hide the secret key s, (Appendix B.2)

2.3 Hybrid Approach of Homomorphic Encryption

Despite the recent advancement, SWHE schemes produce cipher-
texts that are large in size. It is thus more efficient to use a hybrid
approach [20], [21] which firstly uses an efficient block-cipher
(AES) to encrypt the data.

Let Encaes(p) be a ciphertext of the message p encrypted
under an AES key k, the cloud encrypts the ciphertext again
using SWHE Encgey (Encags (1)). To decrypt, the cloud homomor-
phically decrypts the AES ciphertext with an SWHE encryption
of the AES key Encggy(k). We denote this by Encpev(p) =
homAESdec(Encggv(Encaes(1t)), Enceev(k)), where we use the
homAESdec function of HElib [22].

2.4 Oblivious Transfer

Oblivious transfer (OT) [23] allows the receiver Bob to retrieve
a message p; from a sender Alice who has a set of n messages
(41, .-, pn), without Alice knowing his choice ¢ € N. Further-
more, Bob only knows the message corresponding to his chosen
index ¢ but not the other messages. In our paper, such a 1-out-of-n
OT is denoted by OTL ({p1, . . ., pin},3) = pi.

3 SYSTEM SETUP
3.1 System Model

Each model owner M, has a set of decision trees {71, ..., 7Tn}.
We model a complete decision tree as T = (D, L), where D is a
set of m decision nodes and L is a set of (m + 1) leaf nodes. For
classification, each leaf node I, € £ contains a class label vg. In
the case of textual class labels, such as different classes of blood
diseases {“Anemia”, “Leukemia”, ..., “Hemophilia”} [24], we
hash them into numerical values. We assume that this encoding is
publicly known.

At each decision node d; = (fi,yi) € D, there is a
boolean function that takes a user input x; € X, compares
it with a threshold value y; € Y, and produces a result,
such that b; = fi(x; < y;), as illustrated in Fig. la. Here,
X = {®zo,...,xm—1} is a vector of features provided by the
client while Y = {yo,...,ym—1} is a vector of threshold values
defined for all decision nodes in a tree. The collections of all (or a
subgroup of) decision trees contributed by all model owners form a
random forest F C {71, .., Tn}, which is evaluated in the cloud
and produce a classification result such that v = F(X);v € V.

3.2 Threat Model

A client adversary may attempt to learn, through sent queries,
information about the random forest, such as the tree structure,
threshold values, or class labels in the leaf node. A client should
learn nothing other than what is known in public, such as tree
depth § and number of decision/leaf nodes m. Note that we can
hide the tree structure by adding dummy nodes. On the other hand,
a model owner may try to learn about models contributed by other
model owners, or the client’s sensitive data through the provided
queries, or the (intermediate) evaluation result during decryption.

In our outsourced setting, the (cloud) evaluator is a potential
adversary who may want to learn both of the above, i.e., the query
of the client and its final result, and the models of the owners.

4 RELATED WORK
4.1 Secure Comparison Protocol

A critical part in decision tree evaluation is to compute b =
(r < y) as shown in Fig. la. Given two encrypted ¢-bit in-
puts x, y, many secure comparison protocols, such as those by
Damgard er al. [8], Veugen [9], [25], operate over individual
encryption of bits in z = {x,—1, -+ ,z0}, ¥y = {ye—1," - , Y0},
and rely on arithmetic computations to determine whether the
specified relation holds.

The DGK protocol [8] is widely used for comparing two
encrypted ¢-bit inputs without decryption. It has been proven that
the comparison result bit b = 1{z < y} is set to 1 if and only if
there exists an index ¢ € (0,--- ,¢ — 1) such that for a bit-wise
comparison x; < y; and x; = y; for all leading bits at position
j > . Thus, DGK performs the following arithmetic computation

Zizxi—yi+1+2(xj@ Y5)
i>i
which produces £ results z; that can either be an encryption of zero
or a non-zero integer. One thus needs to check within a vector of
encrypted integers whether there is a z; that decrypts to zero, that
is, the result is true. Veugen [25] proposed an improvement (based
on the proposition in [26]) to support the comparison relation of
both x < y and z > y by adding a single bit input. The improved
DGK protocol has the following arithmetic form.

Zizwi—yi+6+3z($j@ Yi)
j>i

where 3 =1—2-b" and V/ & {0, 1}, i.e., a uniformly sampled bit.
If ' = 0 then the protocol is checking x < y, otherwise = > .
This random flipping of the comparison rule can hide the structure
of the decision tree (and prevent active probing of the threshold
values in the decision nodes). Similarly, the output bit is true if
there exists encryption of zero in z;.

Veugen [9] also proposed an alternative protocol to compare
two encrypted [27], [28] integers. This protocol outputs a single
encrypted bit, which is also adapted by Bost et al. [5] for secure
machine learning. Yet, it incurs three rounds, one of those uses
the DGK protocol [8] to compare two intermediate results. It also
introduces significant communication overheads.

4.2 Secure Evaluation of Decision Trees

We give some technical highlights of the existing protocols for
a better understanding of either their intrinsic weaknesses or
some similar working mechanisms which our protocol shares. A
comparison of recent work will be discussed in Table 3.

The protocol of Wu et al. [6] uses the improved DGK protocol
to evaluate all boolean functions in the decision nodes with
the help of the client as discussed in Sec. 4.1. After that, the
protocol concatenates the encrypted boolean results to assemble
an encrypted binary string bob; - - - by, —1 that corresponds to the
index of the leaf node containing the evaluation result. The server
sends this binary string to the client who uses OT (Sec. 2.4) to
privately retrieve the evaluation result.

Bost et al. [5] proposed a set of homomorphic protocols for
common operations such as dot product, argmax, comparison,
which are the building blocks of many machine learning algo-
rithms including hyperplane, naive Bayes, and decision tree. Their
approach uses two multiple-round secure comparison protocols,
which produce a single encrypted bit at each decision node. This

allows the evaluation result to be revealed directly on the server,
instead of relying on an OT protocol [6]. However, the comparison
protocol still requires interaction between client and server. Once
all Boolean functions have been evaluated, the authors proposed
to transform a decision tree, like the example shown in Fig. 1la,
into a polynomial form such as:

bo - I3+ (1 —bo) - (b1 - (b2 - l2 + (1 —b2) - 11) + (1 — b1) - lo)

where b, = fi(x; < y;) is a boolean function to be evaluated at
each decision node d; € D using a secure comparison protocol
and each leaf node has an assignment of a class label .

The server homomorphically evaluates the above polynomial
which then reveals the correct classification value. For polynomial
evaluation, SWHE such as the Brakerski—-Gentry—Vaikuntanathan
(BGV) scheme [10] is needed. Evaluating a polynomial of a
decision tree with high depth § impacts the efficiency since the
polynomial performs § consecutive homomorphic multiplications.
The authors suggested to compute the multiplications in pairs;
thus; the multiplicative-depth decreases to [log,(d)]. We explore
this idea further, develop an algorithm to speed up the evaluation,
and conduct empirical experiments to study its efficiency.

Tai et al. [7] proposed the concept of path cost for transform-
ing the tree into a set of linear equations which is compatible
with efficient cryptographic operation. For each leaf node I, it
computes the sum of the boolean results b; along the path from
the root to [j as the path cost pc,. For example, the path costs
in the decision tree shown in Fig. la are: pco = bg + b1, pc1 =
b0+(1—b1)+b2, pc3 = 1—bg, and pc2 = bo+(1—bl)+(l—b2).
The classification values vg to be retrieved by the client via the
conditional OT is randomized if and only if pc,, is non-zero, which
ensures that the client can only learn the result corresponding
to his inputs. When compared with the use of OT protocols by
Wu et al. [6], it avoids sending a binary string to the client who
then retrieves the final result using the concatenated index.

Recently, Joye and Salehi [29] proposed a new privacy-
preserving decision tree protocol using OT and additive HE.
They proposed a secure comparison protocol by increasing the
interactive rounds in favor of reducing the number of comparisons.
The protocol of Tueno, Kerschbaum, and Katzenbeisser [30]
represents a tree of depth J as an array. They did not use HE, but
used garbled circuits, OT, or Oblivious RAM, to evaluate the tree
with only § comparisons which is sublinear in the tree size. Both
protocol works in the two-party setting and do not support data
encrypted under different keys. Moreover, the boolean functions
are evaluated interactively, which leads to high round complexity.

4.3 Other Related Approaches

Other works also considered the learning phase. Emekgi et al. [31]
utilized secret sharing to build a decision tree model based on pri-
vate datasets from multiple parties. Using SWHE, Bos ef al. [32]
aim to evaluate known predictive models, such as logistic regres-
sion and proportional hazards models, on encrypted medical data.
Hu et al. [33] aim to support ridge regression.

Some recent works study privacy-preserving machine learning
over other models such as neural networks. The work of Mohassel
and Zhang [34] requires two non-colluding servers. Liu et al. [35]
did not consider the outsourced setting and their protocol is highly
interactive. Using SGX, Ohrimenko et al. [36] proposed a system
which allows multiple parties to load their private datasets into
the enclave, which is an isolated memory region where oblivious

Phase 1 Phase 2 Phase 3 Phase 4
f] partial ciphertext y’;:: :\l
Model e:g:;;id component | generate |
777777777 decryption |
Owners models ; { component |
evaluate agaregate aggregate
Evaluator random ?’gs El;ts decryption
forests u icomponents
@ send decrypt
&9 Jencrypted result
Client features

Fig. 2: Overview of Different Phases of Our Proposed System

codes can train a machine learning model based on these datasets.
It also supports evaluation. However, tailor-made protocols out-
perform the generic approaches in many cases because of they
exploit the structure of the underlying model.

5 PROPOSED SOLUTION

5.1 Overview

Fig. 2 illustrates the four phases of interactions between different
parties. In the first phase, each model owner M encrypts a set
of decision trees {7;}, includes all the threshold values in their
binary format. Delegating the encrypted models to the evaluator
can be performed as a one-time setup before servicing the clients.

In the second phase, upon receiving a feature vector X
encrypted under the key of the client, the evaluator evaluates every
decision tree in the entire random forest. Once it is done, each
decision tree outputs a class label. The evaluator will perform a
secure counting protocol to obliviously aggregate the number of
occurrences for each unique class label. The evaluator then sends
the class labels with their associated counts to the client.’

In the final phase, each model owner will participate in the
partial decryption, which sends a decryption component to the
evaluator to convert the encrypted result to a ciphertext which is
decryptable by the secret key of the client.

5.2 Notations and Steps in Different Phases

Fig. 3 details our proposed system. Data are sent at first as
AES ciphertexts for efficient transmission. The evaluator homo-
morphically decrypts them into SWHE ciphertexts of decision
tree 7, which can then be homomorphically evaluated result-
ing 7(X) = wv. Similar to many existing work [6], [7], we
convert each feature and threshold value into its binary form
x={xp—1, - ,x0} € X andy = {ye—1,--- ,y0} € Y. Then,
the evaluator computes the final classification result of the random
forest by a joint computation over the individual trees.

Table 1 lists commonly used notations in the proposed system.
We use (-), [], and [[]] to denote AES, SWHE, and MKHE
encryption respectively. Sometimes we may omit these encryption
notations for clarity, but all computations are on ciphertexts.

3. An alternative option is to engage with the client in an additional OT
protocol to return the final class label with the highest vote.

Setup phase.

Model owner M;: (1) Train on the datasets and generate a set of decision trees {7 = (D, £)}. Each decision node d; = (fi,y;) € D
consists of a threshold value y; € Y. Each leaf node [;, € £ contains a class label vy € V.

(2) Generate an AES key k.

(3) Generate SWHE key pair and evaluation helper element KeyGen(pp) — ((pkaq,, Sk,), eking,).

(4) Generate a joint encryption key and evaluation helper element with all other model owners
JointkeyGen(pk oy, , - - - PRy, » €Ky s - - - €K,) = (Pkags eklag)-
Client C: (1) Provide a set of features {x1,...,xn};z; € X.
(2) Generate AES key (k¢).
(3) Generate SWHE public key, secret key and evaluation helper element KeyGen(pp) — (pkc, sk, eke).
Phase 1: OQutsourcing computations.
Model owner M;: (1) Convert each threshold y; and label vy, into bit-wise representation {ye—1,- -+ ,yo} and {ve—1,- -+ ,v0}.

(2) Encrypt each bit in y; and vy using AES {{ys—1), -, (yo)} and {{ve—1), -+, {vo)}.

(3) Encrypt the AES key using SWHE joint key: [kaq,]m-
(4) Send (pk a4, [k,], {(y5)}, {(vj)}) to the evaluator.

Client C: (1) Convert each feature into bit-wise representation of length ¢: x; = {z¢_1, - ,z0} € X.

(2) Encrypt each bit in x; using AES: {{x¢_1),--- , {x0)}.
(3) Encrypt AES key using SWHE: [k¢]c.

(4) Send (pke, [kc]c,{z;}) to the evaluator to start the evaluation.
Evaluator: (1) Upon receiving {y; }, convert ciphertexts from AES to SWHE: [y;]p = homAESdec([(y;)], [km]);
(2) Apply similar procedure for {v;} and {z;}, yielding {[v;]rm} and {[z;]c}.
(3) Extend each of [y;] and [v;] via [[y;]] = Ext(pk, [y;]) and [[v;]] = Ext(pk, [v,]) for extended SWHE key pk = {pk¢, pk v, }-
(3) Extend each of [y;] and [v;] via [[y;]] and [[v,]] via the subroutine of Eval for extended SWHE key pk = {pkc, pk v }-
(4) Similarly, extend ciphertexts {[x;]} from encryptions under pk., yielding [[z;]] = Ext(pk, [x;]). (4) Similarly, extend
ciphertexts {[x;]} from encryptions under pk., yielding [[z;]] via the subroutine of Eval.
(5) Generate evaluation key ek = EvalKeyGen({pkc, pk}, {ek¢, ek/y,}) via the subroutine of Eval.

Phases 2&3: Evaluating decision trees and random forest.

Evaluator: (1) Evaluate [[b;]] = SecComp([[z:]], [[y:]]); the result is [[b;]] = [[1]]{z: < v:}-
(2) Evaluate the polynomial representation of the tree using all [[b;]], yielding [[7;(X)]] = [[vx]] for all trees in random forest F.

(3) Invoke SecCount over all [[7;(X)]] to get [[F(X)]] = {([[v1]], [[z1]]), - - -, ([[un]]; [[2n]]) } or [[vk]] Where 2y is the maximum.
(4) Send the ciphertext element caq,0 from the encrypted result [[F(X)]] to each model owner M.

Phase 4: Decrypting result.

Model owner M;: Use the secret share saq, to construct p; = caq,05Mm, + tea, and send this p; back to the evaluator.
Evaluator: Send encrypted results [[F(X)]] and aggregated decryption component p = 3% | p; = car,05:m + te M to the client.
Client C: Use the provided component p and the secret key ske to decrypt [[F(X)]] that is under the extended key pk.

Fig. 3: Details of Different Phases of Our Proposed System

TABLE 1: Notations used in the proposed system

Notation | Description
C,M; A client and ¢-th model owner, respectively
F A random forest with the trees {7 } of all owners M
Ti,w w-th decision tree of model owner M ;
| A vector of class labels, V = {vo, -+ ,vn}
Yi w A threshold vector of 7; w; Yi,w = {Y0," " ,Ym—1}
X A feature vector of a client C, X = {xo, -+ ,&m—1}
pke SWHE public key of a client C
Pk g SWHE public key of a model owner M
Pk pt A jointkey 307 Pk,
pk An MKHE concatenated key {pk¢, pke}
()i AES encryption with party ¢ symmetric key k;
[]: SWHE encryption under pk;, also as ¢
18] MKHE extended encryption w.r.t. {pk¢, pk \,}, also as ¢

5.3 Establishing Multiple Keys

As shown in our collaborative setting in Fig. 1b, there are two
main roles, client and model owner. Before participating in the

protocol, both must run a key setup to generate SWHE keys.

Each client C independently generates an SWHE key pair
(pke,ske) and ekp which encrypts information about the secret
key and used later to generate the evaluation key ekc as in Sec. 2.2.

The model owners set up a joint key as the sum of their
independently generated SWHE keys pk,, = > ; pk M, » Once
before the start of the protocol. It is used to encrypt the models
before sending them to the cloud. Similarly, they generate the cor-
responding evaluation helper element ek’y, as the combination of
their individual evaluation helper elements ek’y,, which encrypts
information about the secret keys.

Each client C and model owner M, also generates their own
AES keys, k¢ and ka4, respectively, which will be used to encrypt
their data at transmission to lower the communication overhead.

5.4 Outsourcing Computations

As a one-time setup (Phase 1 in Fig. 2), each model owner
sends to the evaluator AES encrypted decision trees with each
represented as a vector of threshold values y; € Y corresponds

to decision nodes d; € D, and a vector of class labels in leaf
nodes I, = v;lx € L;v € V. Each threshold value and class
label are encrypted bit-wise in the form of {y¢_1),...,{yo) and
(vg—1),...,{vo). The encrypted models can also be updated.

Hiding model structure. To preserve the privacy of model
structure from the evaluator, the model owner can optionally
introduce dummy nodes [6] to the decision tree 7 to transform
it to a complete tree, which has a depth 9, (25 — 1) decision nodes,
and 2° leaf nodes. In this case, the evaluator will obliviously
evaluate each decision node (including the dummy nodes), which
will add overhead on the performance cost. One might add
dummy nodes with no computation requirement, but this method
fails if a malicious evaluator launches a timing attack against
the protocol execution. Hence, for stronger security, we suggest
adding dummy nodes that have random threshold values, and the
resulting branches will point to the same leaf node.

Processing a query. When the client requests an evalua-
tion from the evaluator, the evaluator converts each feature
bit-wise from AES encryption to SWHE, such that [z;] =
homAESdec([(z;)], [kc]). Then, the evaluator further extends
each ciphertext under the set of the two keys pk = {pkc, pk v}
using the extension function Ext(pk,c) described in Sec. 2.2.
The extended client’s ciphertext is [[z;]] = {[z;]c,0} € Rj.
Similarly, the evaluator extends each model’s ciphertext from one
under model owners’ joint key pk,, to one under pk to obtain
[[y;1] = {0, [yjlam} and [[v;]] = {0, [vj]r}-

As mentioned, the concatenated key {pk¢, pk,} consists of
the client’s key and all model owners’ joint key. The joint key
is a combination of partial keys of all involved model owners
to prevent information leakage due to collusion between the
evaluator and a malicious model owner/client. It can be revoked
by any model owner simply by refreshing their own new partial
key pair. However, this will require to run the threshold key setup
again and encrypting the models with the new joint key.

This design is both secure and efficient since model owners
do not have to send different encryptions of their models for each
registered client. The evaluator only extends these individually
encrypted models to ciphertexts under the two keys {pk¢, pk o}
when it receives the client’s request.

5.5 Evaluating Encrypted Decision Trees

Upon receiving the client’s encrypted feature vector X, the eval-
uator evaluates each decision tree in the random forest 7; € F.
Below, we focus our descriptions on the evaluation of a single de-
cision tree and omit some indexes for clarity. The same evaluation
procedures are applied in parallel to each tree.

Secure Comparison. Given a feature x € X and a thresh-
old value y € Y, the evaluator evaluates a boolean function
b= 1(z < y). We use our new protocol SecComp(z,y) which
computes the single-bit encrypted output b as follows.

(Te—1 < Ye—1)V

(@e—1 = Yo—1) AN (zp—2 < Yo—2)V
b=< . (D

(o1 =ye—1) A+ A (21 = 1) A (20 < o)

where (z; < y;) = (-z; Ay;) = (1 —z;)y; and (z; = y;) =
(zj@y;+1) =z +y; + 1.

The intuition is similar to the DGK protocol [8] (Sec. 4.1),
but we remove the linear dependency on ¢ for transferring and

7

interactively processing ¢ ciphertexts encrypting zero or non-
zero integers. Our protocol can be extended to support equality
checking if needed, such that:

V = (xo—1 =yo—1) A A(x1=y1) A(xo =yo) (2)

The evaluator can then evaluation the comparison b = 1(z < y)
by simply combining Eqns. 1 and 2 to compute b = (b V b').

Existing works [5]-[7] are using an additional technique to
randomly flip the branches and comparison rules at each decision
node to prevent a malicious client from probing the threshold
value. However, we do not apply this feature because our compar-
ison protocol can be evaluated without interaction with the client.

Optimizing Secure Comparison. The multiplicative depth of
SecComp increases with the increase of bit-length £ due to the
increase of consecutive homomorphic multiplications performed
at each bit-comparison. For example, a 4-bit comparison protocol
illustrated in Fig. 4(a) requires 3 OR, 5 AND, 3 bit-by-bit equality
checks, and 4 bit-by-bit less-than comparison checks. We find that
for comparing two ¢-bit values, we evaluate (£ — 1) number of OR
gates, (2¢ — 3) number of AND gates, (¢ — 1) equality checks, and
¢ bit-by-bit less-than comparison checks. So, the multiplicative
depth of an £-bit comparison protocol is (3¢ — 2). Consecutive
homomorphic multiplication impacts the efficiency greatly.

We speed up the SecComp evaluation through parallelization
at a reduced multiplicative depth. This is done by translating the
comparison into a binary evaluation tree as shown in Fig. 4(b). The
evaluation tree reveals the dependencies between computations
for comparison. All the computations in the same level can be
evaluated in parallel. The tree is arranged in a way for balancing
the computations being assigned to each processors. The result is
acquired by merging the branches of the tree bottom up.

Further, we identify that all bit-by-bit equality checks and less-
than comparisons can be done in parallel. They become inputs
for the subsequent AND and OR gates. Recall that the bit-by-
bit equality checks are performed using homomorphic additions.
From the evaluation tree, we extract all parallelizable computa-
tions at each level into a vector for easier access to different
computations, as shown on the right of Fig. 4(b). With these
observations, evaluating SecComp is highly parallel. The results
are cached in a lookup table. The cached values are reused when
repeated evaluation of the same terms is called. For example, the
second call to evaluate (z3 = y3) A (x2 = y2) is skipped.

All boolean functions can also be evaluated in parallel since
they are independent. The multiplicative depth significantly de-
creases in this parallelized approach. For efficiency, the evaluation
tree can be created once before the start of the protocol as a set of
instructions to evaluate any two inputs of a specific bit-length £.
Using this approach facilitates the extension to use multi-cloud
instances to evaluate multiple decision nodes in parallel.

Although the approach still requires the evaluation of ¢ bit-
by-bit less-than comparison checks (rounded boxes in Fig. 4(b)),
the evaluation tree now requires log, ¢ consecutive multiplica-
tions for the OR gates and é for the AND gates. Therefore,
the multiplicative depth of the parallel SecComp for ¢-bit is
(log, £ + % + ¢). The (¢ — 1) bit-by-bit equality checks are
evaluated using homomorphic addition; therefore, their evaluation
does not significantly affect the multiplicative depth. For example
in Fig. 4(b), the evaluation tree for comparing 4-bit inputs requires
4 bit-by-bit less-than comparison checks, 2 levels of OR logic
gates and 2 levels of AND logic gates. Thus, the multiplicative

3| (x;<yy)V

2| (=Y)Ax,<y,)V

1] (%= v3)AG= Y)X, < y)V

0] (%,= Y)AX,= y,)AMX,= Y)AX< V)
(a) SecComp protocol for 4-bit inputs

Lvl HEOp

VN
@21‘

/\/\// "‘/\/\

30/\/ 777®21/< B
=0) (3 T

") ?Vx—wxw HW
{]{ Mxl_ ylMX0< yo] [Xa_ V3M 2~ sz m =,..,<

(b) Evaluation tree and vector

Fig. 4: An example instantiation of SecComp (Eqn. 1) for 4-bit
inputs, and the corresponding evaluation tree and vector

depth is 8 compared to the sequential approach which requires 10
consecutive homomorphic multiplications.

Once the evaluation of all decision nodes is done in paral-
lel, we got the bits bg, b1,...,bmn—1. Our system evaluates the
decision tree by plugging in these bits into a polynomial [5], as
discussed in Sec. 4.2. The evaluation of this polynomial outputs
a single ciphertext which decrypts to the classification result,
such that 7;(X) = v. We employ a similar speedup technique
for evaluating SecComp to reduce the multiplicative depth and
to parallelize homomorphic operations. The system evaluates the
polynomial ¢ times, one for each bit of v, to assemble v in the
bit-wise format for our secure counting protocol to be discussed.
Lower multiplicative depth allows us to choose smaller parameters
for the SWHE scheme, hence smaller ciphertext size.

Our approach, in its worst, will only send unique class labels
with their counts. Alternative methods for evaluating the tree [6],
[7] require the server to send the entire list of class labels to the
client who extracts the result through an OT protocol.

5.6 Combining Results of a Forest

After evaluating individual trees, we will get a set of decision
tree results {7;(X)}. For a regression problem, these results are
numerical values that we can compute the random forest result;
for example, calculating the average of all values. This can be
achieved by homomorphically adding the values output from
decision tree evaluation (X) = 2 3" | (7;(X)). The evaluator
then sends the sum to the client who decrypts and divides it by the
number of decision trees in the random forest.

For a classification problem, we normally want to know either
the count of each class label or the class label that has the
maximum count. To achieve this, we propose a secure counting
algorithm — SecCount, which counts the number of times each
unique class label has been chosen as the result.

We associate a vector of counters {z1, 22, ...,
all zeros) with the vector of class labels V' = {vi,v2,...,vn}.
For each evaluation result v; € {7;(X)}, we perform a matching
algorithm using the bit-wise representations of v; and vy:

zn} (initially

zj = (Vj,0-1 ©Vk,e—1) A (Vj,e—2 O Vk,e—2) A+ -+ A (V5,0 © Vk,0)

8

where A is logical AND, © is logical XNOR, and z; = 1 if and
only if v; = vk, otherwise z; = 0. We then calculate the sum
of z;, = Z? o 2j for each vg. In other words, zj contains the
total count corresponding to the number of decision trees which
outputs vy as the evaluation result. To maintain correctness of
addition with respect to binary message space, we use a regular
binary full-adder circuit to perform the addition. The result of
the addition is the count encoded in bits and can be decoded by
performing the equation af;& (2x.:2"). Note that the bit length for
the count can be set to be log, (n) instead of £ for space efficiency.

After the counting, a simple approach to return the random
forest evaluation result is to have the evaluator return directly the
two vectors for the client to decrypt and obtains the counts for
each class. This incurs a high communication overhead.

Alternatively, if we only want to provide the class label with
the maximum count, the evaluator can permute the vector of coun-
ters and the vector of class labels using the same seed, such that
vy, and zy, are correlated. This prevents the client from learning the
count of each specific class. Then, the evaluator sends the vector
of encrypted counters to the client who will decrypt and send
back an encrypted permuted index corresponding to the maximum
count as the input to a 1-out-of-n OT protocol to retrieve the class
label. This approach is considered as more efficient despite the use
of OT. As a result of the random forest evaluation, we get either
F(X) ={(v1,21), (v2,22), ..., (vn, 2n)} or F(X) = v, which
are encrypted under a joint key of multiple parties.

5.7 Decrypting the Classification Result

After the evaluation, the evaluator produces results that are
encrypted under pk = {pkc,pky }. Recall that the re-
sults are extended ciphertexts, where each is in the form
¢ = {(cc,0,¢c,1)|(em,0,cm,1)}. The client can only decrypt
(ce,0,cc,1)- Hence, model owners, who have shares of the secret
key sa4, have to help in decrypting car = (caq,0,¢Mm,1) SO the
client can decrypt the evaluation result.

Assume that we have an evaluation result [[v]l; =
{cclem} = {(cc,0,cc,1)(ea,0,cr,1)}- We need to construct
an element p using the part caq,0 to decrypt as described in
Sec. 2.2. In our protocol, the semi-honest evaluator sends ca,0
to all model owners. Each model owner M; will construct
PM,; = CM,05M, + tea,, where ey, is a large smudging noise
(Appendix B.2) for hiding s 4,, and return it back to the evaluator.
After collecting the responses from all model owners, the evaluator
sends the extended encrypted results to the client along with the
aggregated value of p = Zf;l pi = cm,05Mm + teaq. The client
then computes:

v = (cc,s¢) + (em,1 — p)
= (cc,1 —cc,08¢) + (em,1 — (eam,05m + tear))
= (ve +tec) + (vaq + team)
= (vec +vm) + (tec +tem)
=, +te~ v, modt

6 EVALUATION AND DISCUSSION

We analyze the correctness, security, and complexity of the pro-
posed system. We also validate the design through a number of
empirical studies using synthetic and real-world datasets.

6.1 Correctness Analysis

The proposed system discussed in Sec. 5 correctly evaluates the
multi-party random forest. The process of evaluating a random
forest is deterministic by its inputs, the feature vector X and the
random forest F. The core of decision tree and random forest
evaluation is the SecComp protocol for evaluating the boolean
function at each decision node, and the SecCount protocol for
computing a vector of counts that are associated with the vector
of class labels. As shown in previous sections, both computations
are made up of logic gates which can be translated into additions
and multiplications. Hence, the proposed system directly evaluates
the random forest using homomorphic addition and multiplication
without having any side-effect that affects the evaluation results.

6.2 Security Analysis

Our proposed system privately evaluates the random forest and
is secure against semi-honest adversaries under the assumption
that the used encryption schemes are secure. While the use of
AES introduces another assumption, it lowers the communication
overhead as can be observed in Fig. 6a; otherwise, SWHE can
be used directly. The AES ciphertexts are transformed to SWHE
ciphertexts under the individual client’s key pk. and the model
owners’ joint key pk,, by the cloud. MKHE provides semantic
security unless the adversary compromised all the secret keys.

Beside their own inputs, the view of each model owner in
the decryption protocol consists of only the component cq,0 of a
ciphertext that is encrypted under the joint key derived from pk , ;.
For the decryption component to be sent to the cloud, the usage
of the sk, is protected under the RLWE assumption. Moreover,
the ciphertext (cat,0,ca,1) only encrypts a partial paq of the
evaluation result, but does not contain information about p¢c of the
client. Therefore, the security against an adversarial model owner
is ensured by the encryption and by the fact that the adversary
does not have access to all ciphertext components.

Lastly, the view of a client consists of his feature vector X
and unique class labels with their associated counts, which are
already computed on the cloud. The probability of each models
contribution to the evaluation result is uniformly distributed over
the counts. Therefore, an adversarial client will not be able to learn
information about individual models used in the random forest.

6.3 Complexity Analysis

With the notations in Table 2, we analyze the computation and
communication complexities of the proposed system. Especially,
we focus on the computation complexity of the core operations
that rely on homomorphic multiplications, since an extra step is
required to reduce the dimension of the resulting ciphertext. Fig. 5
shows a comparison of homomorphic operations implemented us-
ing HEIlib [22] on ciphertext C and plaintext P. Except C'+ P and
C x P, other operations are performed over ciphertexts. Note, the
logic gates, OR and AND, contain homomorphic multiplications.
Hence, they are significantly slower than addition and subtraction
that are used in NOT, XOR, and XNOR.

Upon receiving the client’s request, the cloud evaluates each
decision tree in the forest as discussed in Sec. 5. For each of
the 7 decision trees, the cloud requires a multiplicative depth
(number of consecutive homomorphic multiplications) of 3¢ — 2
to sequentially evaluate the boolean function SecComp at each
of the m decision nodes in the tree. For parallel evaluation, the
multiplicative depth decreases to (log, ¢ + % + £). Evaluating

TABLE 2: Notations for complexity analysis

Notation | Description
T num. of decision trees
0 max. depth of decision tree
m num. of decision nodes; (m + 1) leaf nodes
© num. of unique class labels known in the system
2 bit length of features, thresholds, class labels

C C 0 0,0, Ot
*oro ot ot 0%,
Homomorphic operations

Fig. 5: A comparison of homomorphic operations

the polynomial representation of a decision tree with depth ¢
requires a multiplicative depth of in sequential or log, § when
multiplying in pairs. Note, we also include the final multiplication
with the leaf node, as discussed in Sec. 4.2. The multiplicative
depth to evaluate a single decision tree of depth ¢ is set to 3¢—2+¢
in the sequential testing or log, ¢+ é + ¢+ (log, ¢) in the parallel
testing. Hence, the sequential evaluation of a decision tree requires
at most O(mf + §) homomorphic multiplications, while it costs
O(m(log, £ + £) + log, §) multiplications in parallel.

To securely count the number each of the ¢ class labels
accumulates based on the evaluation results from 7 decision trees,
the cloud requires £ homomorphic multiplication; the computation
complexity for SecCount is O(£ + ¢ + 7).

For communication complexity, we analyze the number of
message exchanges between the different parties and the size
of the transmitted messages. In the setup phase, when n model
owners send their models to the cloud, each round transmits 2m#¢
AES encrypted thresholds and class labels for a complete tree.
Because the size of a block-cipher is significantly smaller than that
of SWHE, the use of hybrid encryption offers lower communica-
tion overhead. Figure 6a shows the total size of ciphertexts sent
to the cloud evaluator, where each bit is individually encrypted
under the respective encryption scheme. We have adapted the
implementation of homAESdec provided in HElib [22] to eval-
uate the performance of homomorphic AES decryption, which is
performed once when the evaluator first receives the inputs. The
evaluation is shown in Fig. 6b considers different HELib-specific
parameter sets (indexed from O to 5) suggested in HELib and
in [17] to support different multiplicative depths and ciphertext
packing options. The evaluation compares the performance with
and without Bootstrapping. Note that Bootstrapping option has
lower multiplicative depth and is suggested to be used if further
computations are expected to be performed on the ciphertext [22]
as the case in our proposed system.

The model owner also exchanges 2n messages with the cloud
to generate and send the decryption components. The client ex-
changes 2 rounds of communication with the cloud, one during the
request of evaluation, where the client sends m¢ AES encrypted
features, and one SWHE encryption of its own AES secret key.

10 10*
AES === Bootstrap
HE o 3 No Bootstrap s
10°
210° O
= o102
o 210
7] 10
10° 10°
2 4 8 16 0 1 2 3 4 5

Parameter settings

Bit-length of inputs

(a) Size of AES and HE ciphertexts (b) Homomorphic AES decryption

Fig. 6: Empirical results for hybrid encryption

The other round is when the client receives the evaluation result
from the cloud in the form of either 2¢ ciphertexts representing
each class label with its corresponding count or as one single
ciphertext of the class label with the maximum count. The latter
option requires an additional round transmitting @¢ counts and
performing a 1-out-of-¢ OT. A comparison of the proposed system
with the state-of-the-art is presented in Table 3.

6.4 Empirical Study

We have developed a proof-of-concept prototype for performance
evaluation. Specifically, we focus on the SecComp and Sec-
Count protocols, which are the core of the proposed system.
These two protocols contain many homomorphic operations which
will dominate the run-time overhead of the overall system. The
communication overhead of our system depends on the network
factors (such as bandwidth) and can be directly estimated given
those factors. Due to the unavailability of a library that implements
the multi-key BGV SWHE scheme [11], we defer the multi-
key version to future work and focus on other core parts of the
proposed solution. The implementation is based on the HEIlib [22],
which implements the BGV SWHE scheme [10] using Number
Theory Library (NTL) and GNU Multiple Precision Arithmetic
Library (GMP). We run each experiment multiple times on two
systems, one with Intel Dual Core i7, 3.1GHz and 16GB RAM,
and the other with Intel Xeon, 2.00GHz with 8 CPU cores. We
recorded experiments’ average time and standard deviation.

We set the security parameter A of BGV scheme to be 128 bits,
which corresponds to a 3072-bit asymmetric key [37]. We set the
plaintext modulus ¢ = 2, which means the plaintext messages
are encoded as binary values as our client’s inputs and threshold
values are both encoded in binary. The rest of the BGV scheme
parameters are set to the defaults [22]. The multiplicative depth
L of is configured* according to what required by the evaluated
circuits in our protocol, for which we derived in Sec. 6.3.

6.4.1 Sub-protocols

First, we evaluate the SecComp protocol and compare the perfor-
mance of the sequential and parallel versions. We randomize the
input values with various bit-lengths in each experiment. Fig. 7
shows the evaluation results in the logarithmic scale. As expected,
the running time increases linearly with the length of inputs
because more homomorphic multiplications will be required.

As described in Sec. 5.5, we speed up the evaluation of the
protocol by pre-computing a lookup table of all leaf nodes and

4. The number of levels in the scheme is set as (20 x L) as suggested in the
latest release of the HELib library. https://github.com/shaih/HElib

10

10* ‘ : — ‘ ‘
Sequential m—
3 Parallel(4-core) mmmmm
107 ¢ Parallel(8-core) mmmmm 1

2 4 8 16 32
Bit-length of inputs

Fig. 7: Empirical results of the SecComp protocol

constructing an evaluation tree and vector to facilitate parallel
computing with OpenMP library [38]. The reduction in running
time is visible in Fig. 7. For a small input size (see 2-bit results),
the parallel approach is not significantly faster. That is because
building the evaluation tree and assigning tasks to threads using
OpenMP introduce additional time that is roughly the same as
performing the comparison sequentially. The ratio of speedup is
approximately 1:log, £ in each experiment, which agrees with the
estimated improvement since we perform multiplications in pairs
using the evaluation tree.

In another experiment, we study the performance gain when
we increase the parallelization from 4-core to 8-core. As shown
in Fig. 7, there is a significant improvement when more processor
cores are available. Comparing two 16-bit inputs requires around
328 s to complete. The running time decreases to 80 s when using
a 4-core system and to 37 s when using an 8-core system. Note,
the rest of the experiments are run using an 8-core system.

We also test the performance of SecCount through three
different experiments. In the first experiment, we set the number
of class labels to 2, mimicking a binary classification problem, and
calculate their counters based on one classification result. Fig. 8a
shows that the running time increases with the bit-length of the
class labels and classification results. For example, the protocol
counts labels and results in 31 s if their bit-length is 16, while it
only needs 6 s if the length is 8 bits. Similar to SecComp, this
is due to the increase of homomorphic multiplications. Hence,
we parallelize the evaluation of this protocol using OpenMP. The
parallel version achieves approximately a speedup by a factor of
x 2 when we calculate the counter of 2 class labels simultaneously.

In the second experiment (Fig. 8b), we investigate the per-
formance for a classification problem that has multiple class
labels. Specifically, we vary the number of class labels ¢ for each
experiment and set the number of results to 5. We aim to test the
performance of the SecCount protocol when the number of inputs
(both labels and results) scales up. In this experiment, we fix the
bit-length of each input to 8 bits. The third experiment, as shown in
Fig. 8c, we consider a different number of classification results but
fix the number of class labels to two. From the three experiments,
we demonstrate the feasibility of the SecCount protocol and
validate the technique to speed up the evaluation process.

6.4.2 Decision Trees and Random Forests

Next, we investigate the performance of evaluating the entire
decision tree, consisting of the secure comparison protocol at each
decision node and operating on the polynomial representation
of the tree. Our experiments are over complete trees since they
represent the worst case. There are m = 2% — 1 invocation of

11

TABLE 3: A comparison with the recent work on privately evaluating one decision tree: n is the number of feature, m is the number
of decision nodes, ¢ is bit-length of input, and ¢ is the depth of decision tree

. Computation complexity
Protocol HE scheme Comparison protocol CTient Model owner | Cloud Rounds
Bost ef al. [5] | SWHE + Additive HE | Veugen’s protocol [9] O((n+m)?) O(ml) - 6
Wu et al. [6] | Additive HE Improved DGK [25] O((n+m)l+45) | O(me+2°) | - 6
Tai et al. [7] Additive HE Improved DGK [25] O((n + m)?) O(ml) - 4
This work SWHE SecComp O(nl) O(ml) O((m+n)f+9) 2
10° ‘ T ‘
Sequential m— 10° 105
Paralle| o Sequential Sequential
102 4 Paralle| mmmm 4 Paralle|
- 10 10
))
e 10! g1o°
= - 102 |
10° ¢ 0
10’
1 0-1 2 3 4 6 8 3 5 7 9 15

2 4 8 16 32
Bit-length of inputs
(a) Varying bit-length (results=1, labels=2)

10° : 10° .
Sequential m— Sequential —
4 Paralle| 4 Paralle| o
10 10
))
3 3
g 10 g 10
[= [=
102 10?
10! 10!
2 4 6 3 5 7 9 15

Number of class labels Number of results

(b) Varying # of labels ¢ (results=5p) (c) Varying # of results (labels=2)

Fig. 8: Evaluation of different aspects of the SecCount protocol

the secure comparison protocol. We use randomized values (for
features, threshold values, and class labels) of 8-bit long.

Fig. 9a shows the results. The running time grows with the
increase of the decision tree depth as the number of decision
nodes increases. Correspondingly, this means there will be more
invocations of SecComp. The performance achieves a speedup of
factor X7 when evaluating a tree in parallel. The improvement is
largely due to our parallel evaluation of SecComp and processing
of the polynomial representation of the tree discussed in Sec. 5.5.

We also study the performance of evaluating a forest of trees
which have a depth of § = 2. We use synthetic data with bit-
length of 8 to construct all the tree in the random forest. We
vary the number of trees in each experiment. Fig. 9b shows the
performance. The most expensive part of evaluating the random
forest is SecComp at each decision node of each tree. For
complete trees, it takes 7(2° — 1) SecComp invocations where 7
is the number of trees. In this experiment, no parallelism has been
exploited to support concurrent evaluation of decision trees. The
parallelization is only applied to speed up the building blocks, i.e.,
SecComp at each decision node, the polynomial evaluation, and
SecCount. There is significant speedup (in the ratio of 1:4.5)
between the sequential and parallel evaluation of the random
forest. The parallel evaluation of random forest with 3 decision
trees requires around 250 s. In total, it is approximately one-fifth
of the time 1307 s needed in the sequential evaluation.

We validate the feasibility and performance of our system

Decision tree depth Number of decision trees

(a) Evaluation of decision tree (b) Evaluation of random forest

Fig. 9: Empirical results using synthetic data

using real-world datasets. Specifically, we use the Heart Disease
(HD), Breast Cancer (BC), and Credit Screening (CS) datasets
from the UCI Machine Learning Repository [39]. For each dataset,
we split that data into training data (50%) and testing data (50%)
and train a collection of decision trees using FFTrees (fast-and-
frugal decision trees) [40]. Note that we verify the ground truth
using the plaintext version in each of the following experiments.
We achieve an accuracy of 100% in our classification results since
the encryption scheme does not affect any computation.

Similar to the empirical study using synthetic data, we first
randomly pick one trained decision tree from each dataset. We
then measure the running time of the homomorphic evaluation of
the three representative trees. In these experiments, we choose the
bit-length 8-bit for HD inputs and the bit-length 4-bit for the BC
and CS inputs. Fig. 10a shows the results. Note that each dataset
has different characteristics (i.e., the tree depth ¢ and the number
of decision nodes m). Clearly, the running time is correlated to m
and the number of SecComp invocations.

Next, we randomly pick some number of decision trees from
the collection of trained trees to form a random forest of a specific
size. Table 4 summarizes the characteristics of the created random
forests for each dataset, which include the number of decision trees
in the forest, the number of decision nodes in the entire forest, the
maximum depth of each tree, and the bit-length of all inputs.

Figures 10b and 10c show the performance of the sequential
and parallel evaluation as the number of trees varies. Overall, these
results agree with the findings in earlier experiments. In general,
the more decision nodes, the longer the running time is, primarily,
due to the number of SecComp instances. Also, the bit-length of
inputs in the HD dataset is 8-bit, which incurs a longer running
time as shown in Fig. 7. For a random forest of size 15, the
forest for HD takes around 6532 s to evaluate sequentially, and
approximately 1420 s in parallel. The BC forest takes 1645 s, and
the CS forest takes 2213 s to be evaluated sequentially. In the
parallel setting, they run in 668 s and 1073 s respectively.

10° ‘ o ‘
Sequential
Paralle| mmm
2
@10
[0]
£
F1o' + 1
10°

HD BC CS
Dataset

(a) Evaluation of one decision tree for 3 datasets:
)HD (6 = 4,m = 4),ii)) BC (6 = 2,m = 2),
and iii) CS (06 = 3,m = 3)

10* 10*
HD HD
BC === BC ===
CS mmmm CS mmmm
— —10°
«@ °@
o102 ©
g £
[= F 102
10? 10"
3 5 7 9 15 3 5 7 9 15

Number of decision trees Number of decision trees

(b) Varying # of trees (Sequential) (c) Varying # of trees (Parallel)

Fig. 10: Empirical results using real-world datasets

TABLE 4: The numbers of decision nodes in the random forests
we created for different number of trees and datasets

Dataset / Number of Trees 7 3 5 7 9 15
HD (6 =4,£=28) 10 | 16 | 22 | 29 | 49
BC (6 =2,£=4) 6 10 | 14 | 18 | 30
CSWO=4,0=4 1T [1725] 31 | 53

6.4.3 Comparison to Existing Works

We also compare the performance of our protocol with different
state-of-the-art protocols for secure evaluation of decision tree [5],
[7]. Most related works are focused on a two-party setting,
whereas our design focuses on a collaborative setting which
requires multi-key support. For a fair comparison, we compare
the core techniques across the best-known works and consider
a special case where the model owner holds a random forest
consisting of one decision tree. The tree is of depth § (a variable
in our experiments) with (25 — 1) decision nodes and 2% leaves.
In our experiment setup, we use SWHE to encrypt model
information (i.e., thresholds and class labels) and client’s inputs.
We use our non-interactive SecComp protocol for evaluating the
boolean function at each decision node. We focus our testing on
two main approaches used in literature for tree traversal, the OT
approach [6], [7] and the tree polynomial evaluation [5]. Among
the OT approaches, we implemented the path cost [7] because it
is the most efficient among the two works. We compare it to the
polynomial approach, which is used in both [5] and in our work.
In Fig. 11a, we show the performance of evaluating a decision
tree as a polynomial. Recall that a tree of depth § can be repre-
sented as a polynomial with a multiplicative depth of § (Sec. 4.2).
Evaluating § consecutive multiplications is non-optimal, hence we
evaluate them in-pairs instead to achieve optimal performance.
Bost et al. [5] briefly showed the impact of this approach for
evaluating decision trees that have a small multiplicative depth
0 = 4. Here, we further investigate the impact of this optimization
with varying depths. As shown in Fig. 11a, the optimal approach

12

Bost et al. m—
Tai et al.
This work

Non-optimal -
Optimal

2 3
@10 @10 3
Q Q
S S
F 10! F10? ¢
10° 10’
2 4 6 8 2 4 6 8

Multiplicative Depth

Tree Depth

(a) Analysis of multiplicative depth (b) Evaluation of decision tree

Fig. 11: Empirical results of comparison with state-of-the-art

performs approximately 7x better compared to the non-optimal
one and the improvement increases as the decision tree depth
(0 = 4,5 = 6, and § = 8 achieve factors of 1 : 6, 1 : 10,
and 1 : 12 speedup respectively). For example, it takes around
168 s to evaluate a polynomial of depth § = 6, while it only takes
16 s to evaluate the same polynomial in-pairs.

We also compare the performance of evaluating a decision tree
using the optimized polynomial approach in Bost ef al. [5] and our
protocol, and the path cost approach in Tai et al. [7]. As can be
seen in Fig. 11b, the evaluation with the polynomial approach
outperforms the path cost approach of Tai ef al. [7] across all
different depths. For example, it takes around 236 s to evaluate
a tree of depth § = 4 using the path cost approach and 117 s
using our approach. Moreover, the path cost approach [7] sends
back 2° pairs of encrypted data for each decision tree to the client.
In contrast, our work sends back in the “worst case” ¢ pairs of
encrypted data. Note that the number of labels is less than the
number of all leaf nodes in the random forest (i.e., ¢ < 25).

7 CONCLUSION AND FUTURE WORK

We proposed a semi-honest protocol that supports privacy-
preserving evaluation of random forest in an outsourcing setting.
In particular, we integrated hybrid homomorphic encryption and
multi-key encryption to reduce the communication overhead in
homomorphic computations on data encrypted using different
keys. We also developed two sub-protocols. The first is a secure
counting protocol that goes beyond the state-of-the-art approaches
to compute the result of the random forest. Our secure comparison
protocol achieves a lower round complexity compared to existing
work. We discussed optimization techniques based on the execu-
tion path to speed up the evaluations of the comparison protocol
and the polynomial associated with the decision tree.

With these new features and improvements, we also developed
a proof-of-concept prototype for asserting the feasibility of our
protocol through experiments. We demonstrated that collaborative
evaluation of multiple models in an outsourcing setting is feasible.

One potential improvement of our proposed solution is to
allow operation on floating-point numbers instead of integers.
Computing homomorphically on floating-point numbers can be
handled using the CKKS scheme [41], which is implemented
in most of the recent HE libraries, such as HELib [22] and
SEAL [42]. Other future works include extending our protocol
for security against malicious adversaries and exploring further
techniques to speed up the homomorphic operations.

ACKNOWLEDGMENT

The authors would like to thank Krish Sunil Rohra for his valuable
contributions in protocol implementation and evaluation.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(1]

[12]

(13]

[14]

T. Hofmann and J. Basilico, “Collaborative machine learn-
ing,” in, M. Hemmje, C. Niederée, and T. Risse, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 173-182.
T. Fox-Brewster, 120 million american households exposed
in 'massive’ consumerview database leak, https://www.
forbes . com / sites / thomasbrewster /2017 /12/19/120m -
american-households-exposed-in- massive-consumerview-
database-leak, Dec. 2017.

D. Linthicum, Safer but not immune: Cloud lessons from
the equifax breach, https://www.infoworld.com/article/
3225479/ cloud- computing/safer- but- not- immune- cloud-
lessons-from-the-equifax-breach.html, Sep. 2017.

U.S. Department of Health & Human Services, Notice to
the secretary of HHS breach of unsecured protected health
information, https://ocrportal.hhs.gov/ocr/breach/breach_
report.jsf.

R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine
learning classification over encrypted data,” in Network and
Distributed System Security Symposium (NDSS), 2015.

D. J. Wu, T. Feng, M. Naehrig, and K. Lauter, “Privately
evaluating decision trees and random forests,” Proceedings
on Privacy Enhancing Technologies, vol. 4, pp. 1-21, 2016.
R. K. H. Tai, J. P. K. Ma, Y. Zhao, and S. S. M. Chow,
“Privacy-preserving decision trees evaluation via linear
functions,” in European Symposium on Research in Com-
puter Security, 2017, pp. 494-512.

I. Damgard, M. Geisler, and M. Krgigaard, “Efficient and
secure comparison for on-line auctions,” in Australasian
Conference on Information Security and Privacy, Springer,
2007, pp. 416-430.

T. Veugen, “Comparing encrypted data,” Delft University
of Technology and TNO Information and Communication
Technology, Tech. Rep., 2011.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)
fully homomorphic encryption without bootstrapping,” in
Innovations in Theoretical Computer Science Conference
(ITCS), ACM, 2012, pp. 309-325.

L. Chen, Z. Zhang, and X. Wang, “Batched multi-hop
multi-key fhe from Ring-LWE with compact ciphertext ex-
tension,” in Theory of Cryptography Conference, Springer,
2017, pp. 597-6217.

V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal
lattices and learning with errors over rings,” Journal of the
ACM, vol. 60, no. 6, p. 43, 2013.

B. Applebaum, D. Cash, C. Peikert, and A. Sahai, “Fast
cryptographic primitives and circular-secure encryption
based on hard learning problems,” in Advances in Cryp-
tology — CRYPTO, Springer, 2009, pp. 595-618.

G. Asharov, A. Jain, A. Lopez-Alt, E. Tromer, V. Vaikun-
tanathan, and D. Wichs, “Multiparty computation with low
communication, computation and interaction via thresh-
old FHE,” in Advances in Cryptology — EUROCRYPT,
Springer, 2012, pp. 483-501.

[15]

(16]

[17]

(18]

(19]

(20]

(21]

[22]
(23]
[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

13

M. Clear and C. McGoldrick, “Multi-identity and multi-
key leveled FHE from learning with errors,” in Advances in
Cryptology — CRYPTO, Springer, 2015, pp. 630-656.

C. Peikert and S. Shiehian, “Multi-key FHE from LWE,
revisited,” in Theory of Cryptography Conference, Springer,
2016, pp. 217-238.

C. Gentry, A. Sahai, and B. Waters, “Homomorphic en-
cryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based,” in Advances in
Cryptology—CRYPTO 2013, Springer, 2013, pp. 75-92.

M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan,
“Fully homomorphic encryption over the integers,” in Ad-
vances in Cryptology — EUROCRYPT, 2009, pp. 24-43.

J. Basilakis and B. Javadi, Efficient parallel binary opera-
tions on homomorphic encrypted real numbers, Cryptology
ePrint Archive, Report 2018/201, https://eprint.iacr.org/
2018/201, 2018.

T. Lepoint and M. Naehrig, “A comparison of the ho-
momorphic encryption schemes FV and YASHE,” in
AfricaCrypt, Springer, 2014, pp. 318-335.

M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can ho-
momorphic encryption be practical?” In ACM workshop on
Cloud Computing Security Workshop, 2011, pp. 113-124.
S. Halevi and V. Shoup, “Algorithms in HElib,” in Advances
in Cryptology — CRYPTO, Springer, 2014, pp. 554-571.
M. O. Rabin, How to exchange secrets with oblivious
transfer, IACR Cryptology ePrint Archive 2005/187, 2005.
CDC Diseases and Conditions, https://www.cdc.gov/
diseasesconditions/index.html, Accessed: 2018-02-15.

T. Veugen, “Improving the DGK comparison protocol,”
in International Workshop on Information Forensics and
Security (WIFS), IEEE, 2012, pp. 49-54.

Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, 1. La-
gendijk, and T. Toft, “Privacy-preserving face recognition,”
in Privacy Enhancing Technologies Symposium, Springer,
2009, pp. 235-253.

S. Goldwasser and S. Micali, “Probabilistic encryption,” J.
of Computer and System Sciences, vol. 28, no. 2, pp. 270-
299, 1984.

P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in Advances in Cryptology —
EUROCRYPT, Springer, 1999, pp. 223-238.

M. Joye and F. Salehi, “Private yet efficient decision tree
evaluation,” in IFIP Annual Conference on Data and Appli-
cations Security and Privacy, Springer, 2018, pp. 243-259.
A. Tueno, F. Kerschbaum, and S. Katzenbeisser, “Private
evaluation of decision trees using sublinear cost,” Proceed-
ings on Privacy Enhancing Technologies, vol. 2019, no. 1,
pp. 266-286, 2019.

F. Emekci, O. D. Sahin, D. Agrawal, and A. El Abbadi,
“Privacy preserving decision tree learning over multiple
parties,” Data & Knowledge Engineering, vol. 63, no. 2,
pp. 348-361, 2007.

J. W. Bos, K. Lauter, and M. Naehrig, “Private predictive
analysis on encrypted medical data,” Journal of biomedical
informatics, vol. 50, pp. 234-243, 2014.

S. Hu, Q. Wang, J. Wang, S. S. M. Chow, and Q. Zou,
“Securing fast learning! Ridge regression over encrypted
big data,” in TrustCom, 2016, pp. 19-26.

[34] P. Mohassel and Y. Zhang, “SecureML: A system for
scalable privacy-preserving machine learning,” in IEEE
Sympposium on Security and Privacy, 2017, pp. 19-38.

J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neu-
ral network predictions via MiniONN transformations,” in
Computer and Communications Security, 2017, pp. 619—
631.

O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S.
Nowozin, K. Vaswani, and M. Costa, “Oblivious multi-
party machine learning on trusted processors,” in USENIX
Security, 2016, pp. 619-636.

M. Backes, P. Berrang, M. Bieg, R. Eils, C. Herrmann,
M. Humbert, and 1. Lehmann, “Identifying personal DNA
methylation profiles by genotype inference,” in IEEE Sym-
posium on Security and Privacy, 2017, pp. 957-976.

L. Dagum and R. Menon, “OpenMP: An industry standard
API for shared-memory programming,” Computational Sci-
ence and Engineering, vol. 5, no. 1, pp. 46-55, 1998.

D. Dua and C. Graff, UCI machine learning repository,
2017. [Online]. Available: http://archive.ics.uci.edu/ml.

N. D. Phillips, H. Neth, J. K. Woike, and W. Gaissmaier,
“FFTrees: A toolbox to create, visualize, and evaluate fast-
and-frugal decision trees,” Judgment and Decision Making,
vol. 12, no. 4, pp. 344-368, 2017.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomor-
phic encryption for arithmetic of approximate numbers,”
in Advances in Cryptology — ASIACRYPT, Springer, 2017,
pp. 409-437.

Simple Encrypted Arithmetic Library (release 3.1.0), https:
//github.com/Microsoft/ SEAL, Microsoft Research, Red-
mond, WA., Dec. 2018.

[35]

(36]

[37]

(38]

(391

[40]

[41]

[42]

APPENDIX A
THE BGV SCHEME

Our work uses the Brakerski-Gentry-Vaikuntanathan (BGV)
SWHE scheme [1] which allows an arbitrary number of additions
but limited consecutive multiplications. The scheme consists of the
following algorithms (KeyGen, Enc, Dec, EvalAdd, EvalMult):

- BGV.KeyGen(pp) — (pk,sk): A probabilistic algorithm to
generate public and private keys. Sample a small element
s i X% such that secret key sk = s, and sample a small
noise element e &- Xe, Where xj and x. are two Gaussian
distributions over R,. Also uniformly sample A & Ry. The
public key is pk = (A, As + te).

- BGV.Enc(pk,) — ¢: A probabilistic algorithm inputs a plain-
text message p € R: and a public key pk = (A, As + te).
Uniformly sample a random number v < R; and encrypt
the message p as ¢ = (co,c1) € Rg where ¢9 = vA and
c1 = v(As+te) + p. For clarity, we omit the -y associated with
the noise ~te and write ¢ = yAs + te + p. Note, we represent
ciphertext with public key elements which is an encryption of
the secret key s with some noise e. In the BGV scheme, security
relies on the initial noise e and the random element y [1]. New
~ should be chosen for every encryption to ensure semantic
security.

- BGV.Dec(c,sk) — p: A deterministic algorithm inputs a
ciphertext ¢ = (co, 1) € Ri encrypted under pk and the corre-
sponding secret key sk. Decrypy by computing i = ¢1 — cos.

14

The decryption of a ciphertext in the BGV scheme is correct if
and only if (& mod t = p).

- BGV.EvalAdd(c,¢’) — cada: A deterministic algorithm adds
two ciphertexts ¢ = (co,c1) = (yA,vAs + pu + te), ¢ =
(ch,ch) = (Y A,y As + p’ + te’) and outputs caga = ((co +
cp), (c1 + 1)) € RZ, where, (co + cb) = (v +7')A and
(c1+c)=(+~v)As+tle+e')+ (u+). Decryption is
still correct because (y + 7') A can be canceled with the secret
key s.

- BGV.EvalMult(c, ¢’) — cmuke: A deterministic algorithm inputs
two ciphertexts c, = Rg and outputs the result cpmyi. Their
initial homomorphic multiplication yields

émult =cC- C/ - (CO)Cl) . (06761)
= (co-cp,co-ch +cp-er,ench)

3
= (co,c1,c2) € Ry

The additional component ¢ includes a quadratic element s2
resulted from the multiplication (co-s—+t-e+p)(ch-s+t-€’ +u').
Not only the error noise grows quadratically, but it also in-
creases the number of ciphertext elements. One thus needs to
use key switching [1] after each homomorphic multiplication
to reduce the dimension and yield a correct ciphertext that
is decryptable by the secret key sk. The process requires
generating a special set of evaluation keys {ek} which con-
tains the s element. We denote the output of the process by
Cmult = KeySwitch(Emurt, {ek}), which encrypts the product of
two ciphertexts under the secret key sk. For details about the
noise reduction technique for BGV, we refer interested readers
to [1].

APPENDIX B
CRYPTOGRAPHIC DEFINITIONS

B.1 Key switching

This technique is applied after homomorphic operations to trans-
form a ciphertext from one under the key s to one under a
different key s’. It is also called the relinearization step [1] that
reduces the dimension after each homomorphic multiplication and
yield a normal ciphertext that is decryptable by the secret key
s’. This transformation is accomplished with the aid of auxiliary
information provided as evaluation key ek which encrypts s under
s'. To perform key switching, two essential functions are needed:
- EvalKeyGen(s, s'): Given two keys s € R';, s € Rﬁ,
let 3 = |logq| and compute the powers-of-2 of the old
secret key § = Powersof2(s) = (2%s,2s,...,2%5) € R’;B.
Sample kS8 RLWE instances (a;,a;s’ + te;) and output
ek = {(a;,a;s’ +te; + 3[i]) € Rg}izl’_._’kﬁ
- KeySwitch(ek,c) Given a ciphertext ¢ € RI; under s
and the evaluation key ek, decompose the ciphertext to its
binary such that ¢ = BitDecom(c) = (uo,...,%[10gq))
where ¢ = ZZU:O(% al (u;2%) and output the new ciphertext
as ¢ = Y (¢lilek[i]) € R2 which is encrypted under the
new key s’.

B.2 Smudging Noise

In the threshold decryption protocol, each model owner uses their
own secret share to generate a decryption component. If the error
terms in these components were small, it may reveal information
about the secret shares due to their different distributions. To

make sure that no secret shares can be learned, we need to
add larger errors following the Smudging Lemma presented by
Asharov et al. [2], which states that adding large noise smudges
out the small values in the ciphertext.

Lemma B.1 (Smudging Noise [2]). Let B1 = Bi(\), and
By = Ba(A) be positive integers and let eg € [—B1, Bi]
be a fixed integer. Let e; +—[—Ba, B2] be chosen uniformly
at random. Then the distribution of e; is statistically indistin-
guishable from that of e; + eq as long as B1/B2 = ¢, where
€ = €(\) is a negligible function.

In our work, threshold decryption is held by model owners to
produce a decryption component that helps the client decrypting
the evaluation result. Each model owner uses their own secret
share to produce this component; hence, we apply the smudging
lemma to add a large noise to the component such that it prevents
leaking information about the secret share.

APPENDIX C
THRESHOLD HOMOMORPHIC ENCRYPTION

One approach to support computation over data encrypted under

multiple-key is to use the threshold extension [2] of the BGV

scheme. The scheme is key homomorphic, which means adding a

set of different individual keys produces a valid “joint key”. The

individual keys then become “partial keys” of the newly created
joint key.

Definition C.1 (Threshold Homomorphic Encryption (THE)).
Let P = {P1,...,,P,} be a set of parties. A threshold
homomorphic encryption scheme is a tuple of PPT algorithms
THE = (Setup, JointkeyGen, Enc, Eval, Dec).

- THE.Setup(1*,1%) — ((pky,sk1) ..., (pk,,,sks)): Given a
security parameter A and a bound on circuit depth L, the setup
algorithm outputs a set of n key pairs (pk;, sk;).

- THE.JointkeyGen(pky, ..., pk,,) — pk™,ek™: Given the input
of n public keys (pky,...,pk,), the interactive algorithm
outputs a joint public key pk* and the evaluation key ek*.

- THE.Enc(pk*,u) — c: Given a joint public key pk* and a
message [, the encryption algorithm outputs a ciphertext c.

- THE.Eval(pk*,c,¢’) — cCevai: Given a joint public key pk*
and two ciphertexts ¢, ¢/, the evaluation algorithm outputs the
evaluated ciphertext Ceyal.

- THE.Dec(sk1,...,skn,c) — u: Given a set of secret shares
(ski,...,skn) and a ciphertext ¢, the interactive decryption
algorithm performs decryption and outputs the message p

Formally, given a set of n public keys pk, = (A, As; + te;)
where ¢ € {1,...,n} and the element A € R, is assumed to
be shared, the joint public key is pk* = (A, A> s; +t>_ e;).
Likewise, given a key pair (pk™, sk™), the corresponding n partial
keys can be produced by dividing the joint secret key into n secret
shares {s1,...,sn}, such that s; = s* — 3%, 5534 # j.

During decryption, each party contributes its partial key s; by
computing cos; + te;. Then, all parties collaboratively produce a
component that contains the sum of all partial secret keys, that is
(cos™+te™) = (co Y si+t Y e;). The message can be decrypted
correctly when we compute ¢1 — (cos™ + te™).

Multiplying two ciphertexts results in a ciphertext of dimen-
sion increased quadratically. One needs a key switching tech-
nique (Appendix B.1) which takes in an evaluation key ek™ to
transform the resulting ciphertext. The evaluation key encrypts

15

the powers-of-two of (s*)2, i.e., {20(s*)%,2(s*)%,...,2%(s*)%}
where 8 = |logq].

For more details on the generation of the evaluation
key, we refer readers to the setup protocol [2]. Below we
quickly review some details. In the multi-key setting, the value
(%)% = (s*[k] - s*[u]), where k,u € {0,...,|s*| — 1}, has
to be homomorphically generated based on the secret shares
{s1,...,8n}. Hence, the n parties run a two-round proto-
col to generate the evaluation key in a threshold manner.
In the first round, each party ¢ shares the encryptions {2Z .
si[k]}ecqo,..., llog q,i€{1,...,n} ,kef0,...,|s*|—1} |} under s*. Then
in the second round, each party ¢ computes and shares the encryp-
tions {2°- 5[] s;[ul}eeqo,....|a) i €41s.n} o€ 0. |5 |—1}}-
Combining all encryptions yields the evaluation key ek™ =
{eky;} = {2 s*[k] - s*[u]} encrypted w.rt. s*.

APPENDIX D
MuLTI-KEY BGV SWHE SCHEME

Chen, Zhang, and Wang [3] extended the BGV scheme to a multi-
key homomorphic encryption scheme, where each participant has
a unique index ¢ € {1,...,n} and holds a key pair (pk,, sk;).
This new scheme extends a ciphertext linearly in the number of
participants’ keys, which is predetermined at setup.

Definition D.1 (Multi-Key BGV (MKBGYV)). The multi-key
BGV scheme is a tuple of PPT algorithms MKBGV =
(Setup, KeyGen, Enc, Ext, EvalKeyGen, Eval, Dec).

- MKBGV.Setup(1*,1%,1%) — pp: Given a security parameter
A, a bound on circuit depth L, and a bound on the number of
keys, the setup algorithm outputs the public parameters pp.

- MKBGV.KeyGen(pp) — (pk,sk,ek’): Given the public pa-
rameters pp, the key generation algorithm outputs a public key
pk, a private key sk, and a, evaluation helper element ek’.

- MKBGV.Enc(pk, 1) — c: Given a public key pk and a message
1, the encryption algorithm outputs a ciphertext c.

- MKBGV.Ext({pky, -, pk,, },c) — & Given a set of public
keys pky, -, pk,,, and a ciphertext c, the output is the extended
ciphertext ¢ under the concatenated public key pk.

- MKBGV.Eval(pk, c) — ceval: Given a concatenated public key
pk and two ciphertexts &, &, the evaluation algorithm outputs
the evaluated ciphertext Ceyal-

- MKBGV.Dec({ski,...,skn}, &) — u: Given a set of concate-
nated secret shares {ski,...,sk,} and an extended ciphertext
C, the interactive decryption algorithm performs decryption and
outputs the message p

A message p is encrypted under a public key pk; following the
standard BGV encryption (Appendix A), outputting a ciphertext
[1]i = ci = (ci,0,ci,1) € R2. Each ciphertext is associated with
an ordered set I that stores the indices of participants, indicating
the ciphertext is encrypted under their keys. For example, a fresh
ciphertext encrypted under pk; is associated with I = {1}.
Extending this ciphertext to a set of other keys {pk,,...,pk,}
yields a concatenated n sub-vectors ¢ = (cilcz|...|cn) € RZ"
such that ¢; equals to the ciphertext of participant 7 if 7 € I,
otherwise, ¢; = 0. The associated set is updated to include the
new indices, such that I = {1,2,...,n}. We denote [] as a
standard BGV ciphertext and [[-]] as an extended BGV ciphertext.

Decryption of an extended ciphertext ¢ that is encrypted under
pk = {pky,...,pk, } requires the concatenated secret keys 5 =

{s1]...|sn}. All n participants collaborate to decrypt the message
as (G,5) =y i {ci, ss) = te+ p~ p mod t.

Similar to the standard BGV scheme, the multi-key scheme
requires an evaluation key to perform key switching after ho-
momorphic computations. The evaluation key is generated based
on the different keys that encrypt the given extended ciphertext.
Since the set of keys can be changed during computations, the
evaluation key cannot be pre-generated. Instead for secret key s;,
an evaluation helper element ek’ is generated at key setup. This
helper element encrypts the powers-of-two of the secret key s;
and the randomness values using a ring-variant of GSW encryp-
tion [3], [4]. Before performing homomorphic computation on the
extended ciphertext ¢, which is encrypted under {pky, ..., pk,},
the corresponding evaluation helper elements {ek?, ..., ek;,} are
used to generate the evaluation key ek. Each helper element ek’ is
extended to the other keys {s;},c(1,....n},ji- Then, the extended
values are multiplied to produce the evaluation key that encrypts
the concatenated secret key (5).

References

[1] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)
fully homomorphic encryption without bootstrapping,” in

16

Innovations in Theoretical Computer Science Conference
(ITCS), ACM, 2012, pp. 309-325.

[2] G. Asharov, A. Jain, A. Lopez-Alt, E. Tromer, V. Vaikun-
tanathan, and D. Wichs, “Multiparty computation with low
communication, computation and interaction via thresh-
old FHE,” in Advances in Cryptology — EUROCRYPT,
Springer, 2012, pp. 483-501.

[3] L. Chen, Z. Zhang, and X. Wang, “Batched multi-hop
multi-key fhe from Ring-LWE with compact ciphertext ex-
tension,” in Theory of Cryptography Conference, Springer,
2017, pp. 597-6217.

[4] C. Gentry, A. Sahai, and B. Waters, “Homomorphic en-
cryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based,” in Advances in

Cryptology—CRYPTO 2013, Springer, 2013, pp. 75-92.

