
1

Universal Location Referencing and
Homomorphic Evaluation of Geospatial Query

Asma Aloufi, Peizhao Hu, Hang Liu, and Sherman S. M. Chow

Abstract—Location data is an important piece of contextual information in location-driven features for geosocial and pervasive
computing applications. In this paper, we propose to geo-hash locations using space-filling curves, which are dimension reduction
techniques that preserve locality. The proposed location referencing method is agnostic to specific maps or precoded location models
and can effectively preserve users’ location privacy based on user preferences. We employ post-quantum-secure encryption on
location data and privacy preferences to minimize the risk of data leakage. We also design three algorithms to homomorphically
compute geospatial queries on the encrypted location data without revealing either user locations or user preferences. One of the three
proposed algorithms reduces the multiplicative depth by more than half; thus, significantly speeding up homomorphic computations.
We then present a prototype of the proposed system and algorithms using a somewhat homomorphic encryption scheme and our
optimization techniques. A systematic evaluation of the prototype demonstrates its utility in spatial cloaking.

Index Terms—Location privacy, Geohashing, Spatial cloaking, Homomorphic encryption

F

1 INTRODUCTION

Location data is an enabler in location-based services (LBS)
and applications (apps), such as social network apps and dating
apps [1], [2]. The position of a user or the user’s proximity to
nearby objects (or other users) is often used to support position
and range queries. For example, Query 1: Bob may ask “Where
is Alice?” Query 2: Alice may ask “Which of my friends are
nearby?” Query 3: A social app may inquire “how geographically
close are Alice and Bob?” Similar queries are also useful in
Internet of Things (IoT) apps, where a user may wish to retrieve
measurements from one or many sensing devices within the vicin-
ity. To support these queries, periodic updates of GPS coordinates
of users are usually shared with service providers.

Location data is often considered sensitive information, par-
ticularly in countries where General Data Protection Regulation
(GDPR) is enforced. GPS coordinates can be used to profile
an individual user and his/her lifestyle (e.g., inferring where
other users live, work, shop, play, and much more from mobility
trajectories) [3]. Generally, users do not mind sharing their coarse-
grained location, e.g., the city or a bigger geographical region,
rather than their exact location (such as zip code or sub-division
where he/she is currently in) [4], [5]. Thus, users would generally
rely on a trusted service provider to control the selective disclo-
sure, such as controlling the granularity of location data based on
whom to share the location data with, i.e., relationships between
users. In other words, the service provider can learn both precise
locations and relationships between users. This is potentially a
source of data leakage [6]. In addition, recent high profile incidents
(e.g., Facebook-Cambridge Analytica) also suggest that blindly
trusting service providers to do the right thing may not be in the
users’ best interest.

Preserving the privacy of users and their location is a relatively
well-studied area [3], [7]–[10] , although a number of challenges
remain. For example, there have been solutions that rely on
a trusted third-party. For example, in solutions based on mix
zones, which anonymize and disassociate user identities from the

location of identification [11], and solutions based on statisti-
cal privacy, which obfuscate location data but allow statistical
computation [12]. A trusted server is required in many of these
solutions to perform anonymization, obfuscation, or resolution
reduction via spatial cloaking [13], [14]. There have also been
attempts to design solutions without involving a trusted third-
party (TTP) [15], [16]. However, such solutions often depend on
precoded location models or specific encoding/decoding methods
that are inflexible and not interoperable across geographical areas.

1.1 Contributions

In this paper, we propose a location referencing method, designed
to be map-agnostic and provides a robust representation that
supports efficient and privacy-preserving evaluation of position
and range queries. Location data encoded by this new method
allows users to define privacy preferences in the form of bit-
masks for spatial cloaking. Then, we employ post-quantum-secure
cryptographic techniques to protect the user’s encoded location
data and privacy preferences, while enabling secure queries on
encrypted location with no the need for decryption. Finally, we
design optimized algorithms to ensure the proposed system has
practical performance. More specifically, our main contributions
are three-fold.

First, we use a space-filling curve to geo-hash a GPS coordi-
nate in the WGS84 form (latitude, longitude, and altitude) into a
concatenation of numbers, which is a linear representation of the
GPS coordinate. Space-filling curves [17] have been widely used
as a dimension reduction technique when one wishes to transform
high dimensional data into a linear representation, yet preserving
the locality of points from the original representation. Hence, we
should be able to geo-hash all coordinates on the earth surface
and preserve the notion of “closeness” between points to support
useful geospatial queries. This approach is a type of dynamic
location referencing, which works better than symbolic location
referencing (e.g., Room 3400 in Building 70) that is inflexible and
requires a common definition that seldom exists between different

2

entities (e.g., due to the associated cost and efforts in creating
and maintaining such a common reference) [18]. Also, our new
geo-hashing method allows us to (i) perform spatial cloaking
as very efficient string masking operations, and (ii) support the
evaluation of geospatial queries as straightforward string matching
operations. In addition, we systematically analyze the effective-
ness of different space-filling curves for geo-hashing location
data. Furthermore, we extend our system to geo-hash coordinate
points from 3D space. This is the first method to support spatial
cloaking with a cryptographic approach for location referencing
in 3D space, at the time of this research.

Second, we design cryptographic algorithms to support the
three position and range queries discussed earlier. These algo-
rithms are constructed based on somewhat homomorphic encryp-
tion (SWHE), which allows the desired queries to be evaluated
on encrypted location data without decryption in a semi-honest
service provider. Specifically, we design an algorithm to evaluate
the aforementioned Query 3 with a significant reduction in mask-
ing error. This improves the usefulness of our solution. This new
algorithm can also be utilized in other applications, where Z-order
curve is used as the dimension reduction technique. As location
data is encrypted while it is being shared, any passive adversary
will not learn the user’s location and relationship other than what
have been revealed by the protocol. We further present methods
to make transmissions of encrypted location data efficient and to
support computations to perform over ciphertexts encrypted by
different key pairs.

Third, we design optimization and parallelization techniques
to significantly accelerate the homomorphic computations; thus,
ensuring that the proposed system is practical for real-world
deployments. As an example, we design a new common prefix
matching algorithm that can significantly reduce the multiplicative
depth of the computation, which corresponds to smaller ciphertext
size and faster computation over encrypted data due to the ability
to select smaller parameters for the SWHE scheme. The proposed
algorithm can also be adapted easily to other applications to
perform common prefix matching over two encrypted vectors of
numbers. This new algorithm reduces the computation time of
Query 3, which is the most complex of the three example queries,
by an order of magnitude of 7 as compared to our previous
design [19].

1.2 Layout

The rest of the paper is organized as follows. Sec. 2 discusses geo-
hashing using space-filling curves and the idea of spatial cloaking
for privacy-preserving location referencing. This is followed by
a discussion on the cryptographic scheme and its primitives in
Sec. 3. We describe the system design and security assumption
and present the details of our geosocial query system in Sec. 4.
We evaluate and discuss the system performance in Sec. 5. Sec. 6
presents the extant literature. Finally, we conclude the paper in
Sec. 7.

2 GEO-HASHING AND SPATIAL CLOAKING

2.1 Geo-hashing using Space-Filling Curves

Space-filling curves [17] reduce the dimensionality of coordinates
while preserving position of points. In most cases, the closeness
of two close points is preserved after transformation. Because of
this property, many map applications use space-filling curves to

2

31

4

3

21

432

41

3

0

2

1

1st order 2nd order

H
ilb

er
t

1st order 2nd order

Z-
or

de
r

C
ol

um
n

M
aj

or
R

ow
 M

aj
or

1st order 2nd order

1st order 2nd order

2D space 3D space 2D space 3D space

1st order 1st order

1st order 1st order

Fig. 1: Geo-hashing with different curves

index satellite images for efficient retrieval, e.g., Microsoft Bing
Map [20].

In this paper, we analyze various space-filling curves, includ-
ing Z-order, Hilbert, Column Major, and Row Major for location
referencing. We call this technique geo-hashing. As illustrated
in Fig. 1, these curves transform a point in the two- or three-
dimensional space into a point on a line that goes through all
sub-spaces or all points of a cube. This is done by encoding each
sub-space using a number. Hence, the transformation converts a
coordinate into a vector of concatenated values. Usually, space-
filling curves label each space with an incremental number, except
for Z-order curve which repeats between 0-3 in 2D (or 0-7 in
3D). Each number matches a specific level of detail at which there
is a box (or a cube) that includes points within the geographical
(or geospatial) region. This dimension reduction technique also
allow more efficient storage of location data and more efficient
computation of geospatial queries.

For clarity, we consider mostly the two-dimensional cases
(ignoring attitude) in the rest of our discussions unless specified
explicitly. In initial experiments, we found that the locality pre-
serving property works in most cases, but in some cases they do
not. As highlighted in the 1st order 2D space of all commonly used
curves in Fig. 1, two points laying in the adjacent quadrants remain
close to each other after transformation (even though their indexes
are different), except for the Hilbert curve with a distance of 2.
This problem becomes worse as we increase the order (or level of
detail), as shown in Fig. 2 for the 2nd order representation, that is,
Z-order curve has a distance of 3 whereas Hilbert curve has 6. We
conducted further experiments to measure the Euclidean distance
of every pair of neighboring spaces after transformation. Based on
our results, Z-order and Hilbert curves outperform the other two
curves for the purpose of geo-hashing, but each one has corner
cases that make two adjacent points become far apart. Later, we
propose an algorithm (namely ECPM for Query 3 in Sec. 4.3) to
significantly reduce masking error.

In this paper, we use Z-order curve because it shares similar
efficiency for geo-hashing as Hilbert curve, but it encodes coor-
dinates using smaller numbers. Correspondingly, smaller numbers
allow us to choose more efficient parameters for our encryption
scheme making the proposed system practical. In Z-order curve,
indexing keys (i.e., the concatenated values shown in Fig. 2) are
represented in Z4, hence the name QuadKey. Correspondingly,
we represent points from the 3D space in Z8 and give the name
OctaKey. The level of detail cab be increased by dividing an area
into four equal sub-areas, with each assigned a new QuadKey
appended to the existing QuadKey string. Essentially, the longer
the common prefix between the QuadKey of two points, the
closer they are. Also, a longer QuadKey provides a more precise

3

3

1 2

4

5

6 7

8

14

9

10 11

12

13

15 16

20 21

22 23

30 31

32 33

10 11

131203

0100

02

Z-order

1 8 16

Hilbert

Fig. 2: Adjacent points may apart after transformation

reference to the original coordinates.
Given the two-dimensional GPS coordinates (x, y) of a lo-

cation in the WGS84 encoding, the QuadKey can be computed
as QKd = {q1, .., qd} where d is the level of detail [20]. In
example, the QuadKey of (x, y) = (43.084474,−77.675372) at
d = 5 is QK5 = 03023 (or an OctaKey of OK5 = 06147 if
we consider attitude). We can also transform the QuadKey into
binary representation (hence BinKey), like BK5 = 0011001011
in 2D and BK5 = 000110000101110 in 3D. In this example,
we demonstrate the QuadKey at a small level of detail. The
maximum level for the QuadKey is 22 (same for OctaKey, but
44 in BinKey for 2D space and 66 in BinKey for 3D space),
which corresponds to the precise GPS coordinates. Note, we will
mostly use QuadKey and BinKey in the following discussions. We
generate the OctaKey and BinKey of coordinates in 3D space only
for empirical evaluation.

2.2 Spatial Cloaking

Our geo-hashing technique is based on space-filling curves also
has privacy-preserving property for location data, which is similar
to spatial cloaking [16] that hides the location data by masking
according to user’s preference. The result is an area that conceal
both the user precise location and the movement trajectories in
that masked area, as illustrated in Fig. 3 (a). Users should have the
ability to define their location privacy preferences according to the
trust level between them and their friends. As the masking area
size increases, the risk of being discovered or tracked decreases
[21].

When the user leaves a masked area, a new masking area
is created, which is not overlapping with the previous one. This
raises a privacy risk as the users transition between two fixed-size
areas is learned. In other words, the user must have crossed a point
on the edge shared between the two masking areas.

The problem of co-location [5], [7] is another possible privacy
risk. Figure 3 (b) shows the risk of co-location in a general case of
overlapping masking areas. An adversary can deduce, even with
spatial cloaking, that two co-locating users are in the overlapped
area, which could be much smaller than the user-defined masking
area [5].

To prevent revealing the user location by exploiting the issue
of co-locating, we study a new technique for spatial cloaking
(Fig. 3 (d)) which generates a geometric area that includes the
two users. Without revealing the locations of users, this common
box can be utilized to compute two users’ proximity. The box’s

diagonal length is the maximal distance between the two users.
This rough proximity can be valuable for many social applications
which provide services that do not require users exact location
or exact distance between users. Furthermore, a user can define a
geographic area and query for the list of nearby friends or devices
as shown in Fig. 3 (c). In ideal cases, we want to perform the
nearby query without exposing the exact locations of the involved
users or their relationships.

2.3 Concealing User’s Location and Preferences

We pose to ourselves three requirements for our proposed system:
1) Both the location and the users preferred level of location
granularity are encrypted, reducing the trust requirement on the
server to a semi-honest one. 2) Before processing any query,
the locations level of granularity is controlled (through masking)
based on the privacy preference of the user to guarantee security
even with colluding users. 3) Our system can be scaled to support
a large number of users who send and periodically update their
encrypted locations and may occasionally change their encrypted
preference. Specifically, the user does not have to provide different
versions of their locations for different users. In other words,
each user periodically encrypts the precise location and sends
it to a server provider. Then, the server provider computes on
the encrypted location to answer the three stated queries and
returns an encrypted result which the request decrypts using the
corresponding secret key.

To achieve these requirements, we study how to accomplish
practical spatial cloaking on encrypted location data with homo-
morphic encryption (HE). HE schemes support computations, such
as homomorphic addition and multiplication, on the encrypted
data. Our proposed method utilizes somewhat HE (SWHE) which
has a limited multiplicative depth, i.e., bounded number of con-
secutive homomorphic multiplications performed on a ciphertext.
Moreover, we address the use of block-ciphers, AES as an exam-
ple, with the HE schemes to decrease the communication overhead
and how to support computation on data encrypted under multiple
keys. Due to space limitation, details are in the Appendix.

3 CRYPTOGRAPHIC SCHEME AND PRIMITIVES

Our work uses the Brakerski-Gentry-Vaikuntanathan (BGV)
SWHE scheme [22] which allows an arbitrary number of additions
but limited consecutive multiplications. For a security level λ and
a cyclotomic polynomial Φ(x) = xη + 1 where η is a power of
2, we define R = Z[x]/(Φ(x)) to be a polynomial ring of degree
η with integer coefficient. Let q and t be two co-prime moduli
where q � t, we define the ciphertext space Rq = Zq[x]/(Φ(x))
and the plaintext space Rt = Zt[x]/(Φ(x)). Let χ be a Gaussian
error distribution over Rq .

The BGV scheme bases its security on the hardness of the ring
learning with errors (RLWE) assumption [23]. Let s and A be
uniformly sampled elements from Rq , and let e be an error term
sampled from the Gaussian distribution χ, the RLWE assumption
states that the pair of (A, bi = As+ te) is computationally indis-
tinguishable from any uniformly sampled pair of (A, bj) ∈ R2

q .
Solving the RLWE problem has proved to be as hard as solving
the shortest vector problem [24]. A variant of the RLWE problem
shows that it is equivalently secure to sample s from a small
distribution [24]. For parameters (λ, η, q, t), below describes the
essential components of BGV.

4

(a) Relationship-based location masking

I’m	with	

A

BI’m	in	

I’m	in	

co-location of A and B

(b) Co-location risk

Who	are
in	 ?

A

(c) Nearby query

I’m	happy	to
expose	

I’m	happy	to	
expose

Common bounding box

A

B

(d) Proximity of users

Fig. 3: various cases of user-controlled location privacy

KeyGen. Sample a small element s $← χk such that secret key
sk = s, and sample a small noise element e $← χe, where χk
and χe are two Gaussian distributions over Rq . Also uniformly
sample A $← Rq The public key is pk = (A,As+ te).

Encryption. Given a plaintext message m ∈ Rt, a public key
(A,As + te), and a uniformly sampled number γ $← Rt, we
encrypt the message m as Enc(m, pk) = C = (c0, c1) ∈ R2

q

where c0 = γA and c1 = γ(As+ te) +m.
Decryption. Given a ciphertext C = (c0, c1) ∈ R2

q , we can
decrypt using the secret key sk by computing Dec(C, sk) = m̃ =
c1 − c0s. The decryption of a ciphertext in the BGV scheme is
correct if and only if (m̃ mod t = m).

Homomorphic addition. Adding two ciphertexts C = (c0, c1),
C′ = (c′0, c

′
1) ∈ R2

q results in Cadd = ((c0 + c′0), (s(c0 + c′0) +
t(e+ e′) + (m+m′)) ∈ R2

q .
Homomorphic multiplication. Given two ciphertexts C,C′ ∈

R2
q , their initial homomorphic multiplication yields C̃mult = C ·

C′ = (c0, c1) · (c′0, c′1) = (c0 · c′0, c0 · c′1 + c′0 · c1, c1 · c′1) =
(c0, c1, c2) ∈ R3

q .
The additional component c2 includes a quadratic element s2

resulted from the multiplication (c0 · s + t · e + m)(c′0 · s + t ·
e′ + m′). One thus needs to use key switching [22] after each
homomorphic multiplication to reduce the dimension and yield a
correct ciphertext that is decryptable by the secret key sk.

4 BLINDFOLDED QUERYING ON LOCATION DATA

In this section, we present our privacy-preserving query system.
As illustrated in Fig. 4, the system consists of three main roles:
system users, a service provider SP, and multiple decryption
servers. First, if a user Alice A wants to add a new friend
Bob B to the system, they go through a pairing phase and setup
the necessary key-pair for AES and SWHE encryption, kA, kB
and (pkA, skA), (pkB, skB), respectively. Let assume Alice’s friend
Eva E is already in the system with key-pair kE and (pkE, skE).
Due to space limitation, details of hybrid and threshold encryption
for communication efficiency and supporting multiple keys are
discussed in Appendices A and C. 3We denote [m] and 〈m〉 as a
message encrypted under the SWHE scheme and the AES block
cipher respectively.

After the key setup, all users use the Z-order curve geo-
hashing technique to periodically convert their location (rep-
resented as GPS coordinates (x, y)) into QuadKeys QK =
QK22 = (q1, · · · , q22); qi ∈ Z4. They send the AES encrypted
ciphertexts 〈QK〉 = (〈q1〉, · · · , 〈q22〉) to SP. Also, each user
generates an encrypted privacy bit-mask for each of the other
users according to their relationship. For example, Alice generates
〈MB〉 = (〈mB

1 〉, · · · , 〈mB
d 〉);mi ∈ Z2 and 〈ME〉 for Bob

Alice

periodic
update

Alice’s friends
...{M1,M2,…, MN}

...

{...,Lt-1,Lt,Lt+1,...}

add

1

3

periodic
 update

Service Provider
Alice’s record

4

Bob (New friend)pairing

2 secret-share sk 2 secret-share skDecryption
Servers

Fig. 4: Overview of system setup

[MB], [ME], … Req_Location(A)

Req_Location(A)

Periodic update of [QKA] [QKA] ⨂ [MB]

[QKA] ⨂ [ME]

Service Provider

A’s preferences:
B: [MB]
E: [ME]
….

Encrypted

Alice Bob

Eva

(a) Query 1: Where is Alice?

(b) Bob (building) (c) Eva (district) (d) Others (city)

Fig. 5: Query 1 and resulting masked views for different parties:
Bob (d = 18), Eva (d = 12), and Others (d = 10)

and Eva respectively. This list of bit-masks is shared with SP
and only updated when the user changes the preference. On the
other hand, users’ current positions are periodically updated. All
the ciphertexts are transformed by SP to the SWHE domain, as
described in Appendix C, before processing a requested query.
The processed encrypted result is sent to the user who decrypts it
using the proposed decryption protocol described in Appendix B.

4.1 Query 1: Where is Alice?
Each time Bob queries on Alices whereabouts, SP masks the
location [QKA] by homomorphically multiplying with [MB] as
Fig. 5 (a) shows. There is an exception in the bit-masking result
for 0 because it can be interpreted either as a correct result or as

5

[MB], [ME], …

Periodic update of [QKA]

Service Provider

A’s preferences
B’s preferences
E’s preferences
….

Encrypted

Alice

Bob

Eva

[MA], [ME], …

[MA], [MB], …

Periodic update of {QKB}B

Periodic update of [QKE]

Nearby([MQ])

([uB], [uE], …)

Fig. 6: Query 2: Who is nearby?

a masked result. For example, both bit masks MB = 1100 and
ME = 1111 applied on QKA = 3100 obtain the same result.
To solve this issue, we increment each value in QK by one such
that qi ∈ {1, 2, 3, 4} before the encryption. With this encoding,
the element 1 in the bit-mask preserves the location data while the
element 0 masks it.

After decrypting the result QK on the client device, we
remove any 0s and convert back the elements to Z4. This produces
a masked QuadKey string which produces a box with the preferred
level of detail. The masking process in this query is efficient since
it only requires one depth of homomorphic multiplication.

For any further location queries, SP applies this masking
procedure first on the location to preserve the user’s privacy even
with colluding friends. Figures 5 (b)-(d) illustrate the produced
boxes based on Alice’s privacy preferences, whose precise GPS
coordinates are (43.084451,−77.680069). These boxes hide both
locations and movement patterns of users.

4.2 Query 2: Who is nearby?
Alice might want to find who, from her friends, is currently within
a geographic region. Based on her targeted proximity,she creates
a query bit-mask [MQ] and sends it to SP as shown in Fig. 6.
The query bit-mask [MQ] is different from the privacy bit mask
defined in Query 1.

Location data is first masked by the privacy bit-mask defined
by individual users and masked again by the query bit-mask. The
two-round masking process requires a multiplicative depth of two.
Hence, we can expect the computation time to be roughly twice of
Query 1. With a slight abuse of notation, let the ciphertexts from
above processing be denoted by [QK′A] for Alice and [QK′j] for
her j-th friend in the list. Then, the SP computes an element-wise
subtraction [QK′A]− [QK′j].

If Alice and her j-th friend are close based on the provided
query bit-mask, the output will be zero in all the elements
corresponding to the the proximity level. Then, SP re-randomizes
the resultant vector and homomorphically aggregates its elements
afterwards. The output of these calculations will be a ciphertext
[uj] which encrypts either 0 indicating the friend is close to Alice
or a non-zero positive value indicating the friend is not nearby.

Two users are located in the same region if their masked
QuadKey are the same. Related work [8], [25], [26] uses similar
intuition to provide proximity testing. SP returns to Alice a list of
encrypted results ([uB], [uE], · · ·) corresponding to her friends.
Upon decryption, Alice will only learn from this randomized
results list whether or not a friend is nearby, but nothing more.

4.3 Query 3: How close are Alice and Bob?
To determine the closeness of two users, we design an algorithm
which generates a box enclosing them. Note that generating this
box is equivalent to producing the common prefix (CP) from the

two users’ QuadKeys (e.g., QKA and QKB). First, we perform
an element-wise XNOR on each bit in the two QuadKeys and
produce a vector V. Then, we perform a prefix mask purification
function (PURIFY) in which bit value after the first leftmost 0 is
reset to 0 to obtain the proper prefix mask M.

Algorithm 1 shows the pseudocode and Fig. 7 shows an
example of our new algorithm, which reduce the multiplicative
depth L and leverage parallelization to speedup homomorphic
computations. This new algorithm split the binary prefix mask
V into k blocks of size dn/ke and apply the purification step on
all the blocks in parallel. Note that in this step, each block requires
(dn/ke − 1) consecutive multiplications. After the first round of
the purification step, all blocks have been set according to what
we need as outputs. But, we still need to either keep or reset all
bits within each block depending on the last bit in the previous
block. Intuitively, if the last bit of V1 is 1, then we keep all the bits
in V2. If the last bit of V2 is 0, then we reset all the bits in V3 to 0.
This procedure is achieved through homomorphic multiplications
with the corresponding bits. The second step requires (k − 1)
consecutive multiplications to set the bits. Hence, we derive the
formula L = (dn/ke + k − 2) to set the scheme’s parameter for
multiplicative depth.

Decreasing L, the multiplicative depth of the algorithm, is
important to improve the run-time. Our study shows that there
is a trade off between the multiplicative depth L and the to-
tal number of homomorphic multiplications performed when
selecting different values of k. For example, setting k = n
decreases the number of multiplications to one per block, but
the depth becomes L = n − 1. The number of blocks has
to be carefully selected such that we balance between L and
θ, which we derive the latter based on k. Specifically, θ =
(k−1)(dn/ke−1)+(dn/ke)(k−2)+2(n−(dn/ke)(k−1))−1,
where [(k − 1)(dn/ke − 1) + (dn/ke)(k − 2)] is the number of
multiplications performed on fully-sized blocks in both steps of
purification, and [2(n − (dn/ke)(k − 1)) − 1] is the number of
multiplications in the last block that may not be of full size. This
optimized algorithm allows us to perform the prefix matching
procedure in parallel and achieve a significant speedup in the
overall system.

Algorithm 1: Given a binary vector, transform it into a
proper prefix mask.

function PURIFY (V);
Input : A vector V = (v1, · · · , vn) as the output of

XNOR(A,B)
Output: A purified prefix mask M
Vi ∈ Partition(V, k); . V = {V1, ..Vk};
foreach Vi ∈ {V1, ..Vk} do

mi,1 = vi,1;
foreach vi,j ∈ Vi do

mi,j = mi,(j−1)vi,j ; . mi,j ∈M;
end

end
foreach Vi ∈ {V1, ..Vk} do

foreach vi,j ∈ Vi do
mi,j = mi−1,n/k ∗mi,j ;

end
end

When we acquire the common prefix mask M, we can

6

6

V 1 1 1 1
V1 V2 Vk

1 1 1
x x x

1 1 1 1

0 1 1 0

0 0 0
x x x

0 0 0 0

1 0 1 1

1 0 0
x x x

1 0 0 0

…

…

1 1 1 1

x x x x

x x x x

1 1 1 1 0 0 0 0 0 0 0 0…

Step 1
Block-wise
purification
(in parallel)

Step 2
(in sequence)

0 0 0 0
x x x x

M 1 1 1 1 0 0 0 0 0 0 0 0…

Fig. 7: Illustration of the PURIFY function

00 01

10 11

yx yx
y=0

y=1

x=0 x=1

0 1
2 3

(a) Coordinate

0

1

Ay

By

2

3

3

1

4

4

Le
ve

l o
f d

et
ai

l

Ay=(ay1, …, ayn)=1011…
By=(by1, …, byn)=1101…

CPM=1000…
ECPM=1110…

0

1

0

1 0

1
0
10

1

(b) Running example

Fig. 8: Utilizing the properties of coordinates.

calculate the common prefix by performing a component-wise
homomorphic multiplicationA⊗M. Lastly, the encryption of the
common prefix is returned to the requester, who use it to produce
the appropriate box (as discussed in [20]). In this case, utilizing
this method may produce unnecessarily large boxes for points that
are close yet lay in differing quadrants since geo-hashing requires
each point to fall into one quadrant at each level.

We tackle this problem by investigating the properties of the
Z-order curve coordinate system. When the QuadKey is converted
into BinKey, each bit represents the position of a point on the
corresponding axis. As shown in Fig. 8 (a), we can use one bit on
the x-axis to determine if a point is on the left- or right-half of the
box. Similarly, the bit value on y-axis determines whether a point
is on the top- or bottom-half.

These properties is applicable at any level of detail, which
we leverage to design an algorithm that substantially reduces the
masking noise. The pseudocode is described in Alg. 2, 3, and
4. Fig. 8 (b) shows a running example of two BinKey vectors
Ay = (ay1, · · · , ayn) = 1011 · · · and By = (by1, · · · , byn) =
1101 · · · . These two vectors are the y-axis only binary vectors
extracted from the two input BinKey A and B when calling the
ECPM(A,B) function. We explain the operations carried on the
y-axis vectors. Same operations will be independently applied to
the x-axis vectors.

When a request to compute a box enclosing Alice and Bob
is received, the ECPM splits the coordinates A and B into
the corresponding x-axis and y-axis vectors. For each axis pair,
the pairwise common prefix mask PCPM is computed as in
Alg. 3. In PCPM , we first compute the common prefix mask,
CPM(P,Q) for P and Q corresponding to Ay and By re-
spectively (similar process applies to Ax and Bx). We then
locate the leftmost position where the two vectors differ and store
this information as C and S. Let it be at the j-th position, we
extract the bit value homomorphically at ayj and byj . Then, we
use ayj (in EPM) to check with the bit value at ayk where
k = (j + 1, · · · , n). If ayk 6= ayj , we check ayk+1; otherwise,

we knowAy will only match up to level (k−1). Same operations
will be performed on By vector using the byj bit value. Fig. 8 (b)
illustrates that Ay and By is logically matched up to level 3
because ay4 6= ayj , but by4 = byj . In contrast, if we only use the
CPM(A,B), then the two points are matched only up to level
1; because when j = 2, ayj = 0, and byj = 1. Essentially, if
two points are close, they should be close to each other when we
increase the level of detail in both axes. We obtain the common
prefix mask between Ay and By by a simple coordinate-wise
multiplication, as shown in Line 6 of Alg. 2.

Algorithm 2: Calculate the Extended Common Prefix Mask
(ECPM) for users’ (Alice and Bob) given location data.

Function ECPM(A,B);
Input : Users’ geo-hashed binary vectors

A = (a1, · · · , an) and B = (b1, · · · , bn)
Output: The extended common prefix mask M
Ax[i] = A[2i] = (a2, · · · , an);
Ay[i] = A[2i− 1] = (a1, · · · , an−1);
Bx[i] = B[2i] = (b2, · · · , bn);
By[i] = B[2i− 1] = (b1, · · · , bn−1);
X = PCPM(Ax,Bx); . X = (x1, · · · , xn);
Y = PCPM(Ay,By); . Y = (y1, · · · , yn);
M = XY; . Bitwise

Algorithm 3: Calculate the Pairwise Common Prefix Mask
(PCPM) for given x-axis (Ax,Bx) and y-axis (Ay,By)
vectors pairs.

Function PCPM(P,Q);
Input : The pair of vectors (P,Q) = (Ax,Bx) or

(P,Q) = (Ay,By)
Output: The pairwise common prefix mask W
C = PURIFY(P,Q); . C = (c1, · · · , cn);
si = c̄i−1 + c̄i; . S = (s1, · · · sn) denotes the leftmost

position where P and Q differ. c̄i is the complement of ci;
U = EPM(P,C,S); . U = (u1, · · · , un);
V = EPM(Q,C,S); . V = (v1, · · · , vn);
W = UV; . Bitwise

Algorithm 4: Generate the Extended Prefix Mask (EPM) for
a given vector that is based on (Ax,Bx) or (Ay,By)

function EPM (R,C,S);
Input : The vector R = P or R = Q and the two vectors

C and S described in Alg. 3
Output: The extended prefix mask E
d = ⊕ni=1(siri); . Calculate the bit in R at the leftmost
position where P and Q vary
gi = d⊕ ri;∀i = 1, · · · , n; . G = (g1, · · · , gn);
hi = gic̄i;∀i = 1, · · · , n; . H = (h1, · · · , hn); c̄i is

complement of ci
ti = ci + si + hi;∀i = 1, · · · , n; . T = (t1, · · · , tn);
ci ∈ C; si ∈ S;
e1 = t1; . E = (e1, · · · , en);
ei = ei−1ti;∀i = 2, · · · , n;

In more depth, the ECPM algorithm describes the operations
of prefix matching by extracting the x- and y-axis vectors (in lines

7

2 and 3 of 4) from two given vectors A and B and performing
the PCPM on them. Algorithm 4 describes the operations on
vectors Ay or By using the common prefix inputs between
them, C, and a selector mask S generated in Alg. 3. The EPM
algorithm starts with computing the corresponding bit values at
the leftmost position j in which P and Q vectors are different.
We accomplish the following operations by utilizing a binary
multiplexer concept. Finally, we combine all masks and perform
a prefix mask purification step (also used in line 6 of Alg. 1) to
reset the bit values after leftmost 0 to 0.

The result of this query is a box enclosing the locations of the
querying and responding users for a third-party (e.g., geosocial
app). As shown in Fig. 10 (d), the precise locations of users
remain unknown to the third-party since they are hidden within
the resulting box. In fact, the smaller boxes in Fig. 10 (b-c)
demonstrate that precise locations of individual users are still
protected in intermediary operations due to the masking process.

5 EVALUATION AND DISCUSSION

5.1 Evaluation Platform

We prototype our proposed framework in C++ and use the HE-
lib [27], [28], which implements the BGV SWHE scheme [22].
We use the Number Theory Library (NTL), which depends on the
GNU Multiple Precision Arithmetic Library (GMP), to support of
polynomial operations. Parallelization is done with OpenMP. We
validate the correctness of our execution through extensive testing.

We created a cloud instance on the CloudLab.us [29] for
experiments. We run each of our experiments on a system with
10-core Intel E5-2640v4 at 2.40 GHz, and 64 GB RAM. We set
the BGV scheme’s security parameter λ to be 128 bits, which
corresponds to the security of a scheme with 3072-bit asymmetric
key (proposed for safeguarding genomic data [30]). The rest of the
BGV scheme parameters were set according to each experiment’s
requirements.

5.2 Empirical Results

We repeat each experiment 100 times and record the average
computation time of each operation as well as the standard
deviation of the mean (which was relatively small).

We present our evaluation results in Fig. 9 in log-scale. The
first set of results (Figs. 9 (a-c)) evaluates the location queries in
2D space, where the locations are encoded either as QuadKeys
(represented as vectors of size 22 in Z4) or BinKeys of size 44.
The second set of results (Figs. 9 (e-h)) evaluates the location
queries in 3D space, where the locations are encoded either as
OctaKeys (represented as vectors of size 22 in Z8) or 66-sized
BinKeys.

Figs. 9 (a) and (e) show the performance of the system when
evaluating the commonly used position and range queries, Query
1 and Query 2. The two queries operate on 22 encrypted digits
QuadKeys in Fig. 9 (a) and on 22 encrypted digits OctaKeys
in Fig. 9 (e). We set the plaintext modulus of the BGV scheme
according to the closest prime to the encoded geolocation, (t = 5)
for QuadKey in Z4 and (t = 11) for OctaKey in Z8. The
multiplicative depth is set to L = 3 for both experiments since two
consecutive multiplications are needed when evaluating the second
query, and an additional level for HE addition and subtraction. For
2D experiment, the run time of Query 1 is around 0.21 s, but with
parallelization, it decreases to 0.04 s. When evaluating Query 2,

it takes around 0.43 s which can be improved to 0.08 s with
parallelism. Notice that the second query is nearly double the first
query in performance due to applying two rounds of masking,
one for the privacy bit-mask and the other of the query bit-mask,
where each one of them performs homomorphic multiplication.
Compared to its counterpart in the 2D space, the performance of
3D is almost the same. This is because both of them share the
same scheme parameters except for the message space modular t,
and correspondingly for a small difference in the ciphertext space
modular q, which did not affect the performance

Figs. 9 (b) and (f) show the scaling of the system when
performing Query 2 on QuadKey and OctaKey with different sizes
for the user’s friend list. We use the same parameter settings from
the previous experiments. Likewise, the performance of the nearby
query is similar in 2D and 3D as the number of the of ciphertexts is
the same in both. Overall, the query run time increases linearly as
the size of friends list increases. Our proposed system is scalable
as it performs Query 2 under 20 s for 2D and 3D spaces on
300 friends, which is a reasonable number of friends in social
networks.

Fig. 9 (c) shows the evaluation of the system if we include the
third query, which computes the proximity between two friends.
As mentioned in Sec 4.3, the third query requires the encrypted
locations to be encoded as BinKey, which doubles the size of
ciphertexts to 44 encrypted bits per location data and mask. We
set the plaintext modular t = 2 because of binary inputs and
L = 21 based on our derived formula discussed in Sec. 4.3. The
performance of the first two queries is affected by the increase of
both the number of ciphertexts (44 for BinKey compared to 22 for
QuadKey) and their sizes, which increases to account for the larger
multiplicative depth. The third query achieves around 24 s when
performed in parallel, which is three times faster than when per-
formed in sequential (which takes around 76 s). We further studied
the performance and found that most of the computation run time
is consumed by performing the common prefix matching CPM .
Fig. 9 (g) shows the performance of the three proposed queries on
BinKey. Due to increasing the dimension in the 3D experiment, we
observe an decrease in performance. But, we compute the XNOR
on binary using homomorphic addition instead of multiplication.
Overall, the 2D performances are better than the one in 3D by
about 3 orders of magnitude.

Figs. 9 (d) and (h) shows the scalabilty when performing the
nearby query on BinKey. For each experiment, we use the same
corresponding parameters used in Figs. 9 (c) and (g). The run
time increases linearly with respect to the size of the friend list. In
Fig. 9 (d), Query 2 finishes in 188 s in parallel, which is around 6.5
times faster than sequential. The estimated increase in computing
time is around 4 s for every additional friend. In Fig. 9 (h), the
parallel evaluation of a list of 50 friends takes about 500 s, i.e.,
around 10 s per friend.

Fig. 10 shows examples of different views with boxes gen-
erated by our demo system for different parties. In all three
figures, the outer bounding box is generated by the CPM approach
and it is added for comparison. In Fig. 10 (a) and (b), users
can see their current coordinate point as well as the cloaked
area of the other user. These boxes are generated by the ECPM
algorithm. Compared to the outer bounding box, the ECPM
approach produces boxes which are two level smaller for the two
example coordinates used in these experiments; this corresponds
to 1.40E+13m2 reduction in area size as shown in the figures.
If both users are happy to share their masked location with a

8

10
-2

10
-1

10
0

Query1 Query2

T
im

e
 (

s
)

Sequential
Parallel

(a) QuadKey (t = 5, L = 3)

10
0

10
1

10
2

20 50 100 150 200 250 300

T
im

e
 (

s
)

Size of friends list

Sequential
Parallel

(b) Scaling Query 2 for QuadKey

10
0

10
1

10
2

10
3

Query1 Query2 Query3 CPM

T
im

e
 (

s
)

Sequential
Parallel

(c) BinKey (t = 2, L = 21)

10
1

10
2

10
3

10
4

5 10 20 30 40 50

T
im

e
 (

s
)

Size of friends list

Sequential
Parallel

(d) Scaling Query 2 for BinKey in 2D

10
-2

10
-1

10
0

Query1 Query2

T
im

e
 (

s
)

Sequential
Parallel

(e) OctaKey (t = 11, L = 3)

10
0

10
1

10
2

20 50 100 150 200 250 300

T
im

e
 (

s
)

Size of friends list

Sequential
Parallel

(f) Scaling Query 2 for OctaKey

10
0

10
1

10
2

10
3

Query1 Query2 Query3 CPM

T
im

e
 (

s
)

Sequential
Parallel

(g) BinKey (t = 2, L = 31)

10
1

10
2

10
3

10
4

5 10 20 30 40 50

T
im

e
 (

s
)

Size of friends list

Sequential
Parallel

(h) Scaling Query 2 for BinKey in 3D

Fig. 9: Computation times for different experiments. (a-d) are for 2D space, whereas (e-h) are for 3D space.

) MINNESOTA

Minneapolis
0

"'l�

WISCONSIN

MICHIGAN

Ottawa
<i>

Toronto
0

) NEW YORK

Quebec City
.

Montreal
0

M

VtRMONT

NEW
HAMPS I IRE

MASSACH I SETTS
IOWA Chicago

0

Dep,/

AS

Kansas City
0

MISSOURI

ILLINOIS

.LAHO A

Dall
0

ustin
0

)nio
Houston

0

ARKANSAS

MISSISSI i>PI

LOUISIANA

New Orleans

Gulf of

CT

PENNSYLVANIA New York
0

IN DIANA OHIO Philadelphia
0

lndianapoli

'

0
MARYLAND

N
J

@ DE

Alice
WEST

VIRGINIA
Washington

KENTUCKY□
Nasgville

VIRGIN! A

TtNNESSEE

ALABAMA

Atlanta
0

NORTH
0

CAROLINA
Charlotte

SOUTH
CAROLINA

GEORGIA

Jacksonville
0

Orlando
0

Tampa
0

FLORIDA

Miami
0

p

Bob

(a) Alice’s perspective

AS

1 MINNESOTA

Minneapolis
0

IOWA

Kansas City
0

MISSOURI

WISCONSIN

MICHIGAN Toronto
0

Quebec City

Ottawa Montreal
G> 0

/
NEW YORK

VERMONT

NEW
HAMPS lRE

M

MASSACHI SETTS

ILL NOIS

Chicago
0

INOIANA

0
Indianapolis

Alice□

OHIO

WEST
V RGINIA

Kt . '

Nashville Bob
0

rT

PENNSYLVANIA New York
.,

Phi ladelphia
o NJ

MARYLAl'<D
G> OE

Washington

VIRGINIA

LAHO � TENNESSEE NORTH
0 CAROLINA

Charlotte

Dall
0

Jstin
0

>nio
Houston

0

ARKANSAS

MISSISSIPPI

LOlJISIANA

New Orleans

Gv/1 of

ALABAMA

Atlanta
0

SOUTH
CAROLINA

GEOROIA

Jacksonville
0

O�ando
0

Tampa
0

fLOHIOA

(b) Bob’s perspective (c) Others’ perspective

Fig. 10: Perspectives of different parties produced by our demo
system using the ECPM algorithm (for the inner box) on Alice’s
and Bob’s locations. We add the outer box, which is computed by
the CPM algorithm, for comparison.

third-party application such as Facebook for performing geosocial
features, a union of their boxes will be generated and shared.

6 RELATED WORK

One of location privacy techniques is spatial cloaking where a
precise location is obfuscated by an area such as a rectangle or a
circle. A solution proposed by Hashem and Kulik [16] utilizes
nearby peers over a wireless ad-hoc networks to compute the
cloaked area for user. No trusted server is needed for this dis-
tributed approach; however, it remains dependent on the presence
of crowd-sourcing participants in close proximity. A centralized
transformation approach that requires a trusted anonymizer is pro-
posed by Peng et al. [31]. Hu et al. [32] proposed to compute the
Euclidean distance between two location points after transforming
them from WGS84 system to a 2-dimensional Cartesian coordi-
nate system (UTM projection). The UTM projection introduces
localization errors that increase as the two points become far
apart. The work by Khoshgozaran and Shahabi [33] leverages
Hilbert curves, which is similar to Z-order curve, and a one-
way trapdoor function to convert a location into a cloaked area
which contains a pre-processed set of places-of-interest stored in a

look-up table. Our proposed solution also adopts spatial cloaking,
but using a non-deterministic encryption guarantees that location
data stay private. Other cloaking techniques involves semantic
cloaking [34], which abstracts physical locations to semantic ones.

Users exact locations were masked with overlapping hexag-
onal grid system in Narayanan et al. [25], and MPC proto-
col was designed to privately inspect the closeness of two.
Nielsen et al. [26] proposed a private proximity testing pro-
tocol with active security via zero-knowledge proofs [35].
Zhong et al. [36] proposed three protocols for proximity testing.
Saldamli et al. [8] integrated geometrical properties to reduce
the number of encryption needed [25]. These approaches address
whether two users are within the same fixed-sized area in a secure
manner.

Khoshgozaran and Shahabi [37] proposed k nearest neighbor
and range queries based on a symmetric-key technique where a
group key is pre-shared with a set of users. In a similar pre-shared
key setting, Puttaswamy et al. [38] privately retrieve location from
or near a coordinate instead of user sharing multiple location data
with different granularities.

Mascetti et al. [39] proposed a proximity notification system
in Geo-social networks. The proximity query is subjected to user’s
privacy preferences, but is computed as a membership test on all
proximate locations. The privacy preferences are applied when
user return location with different levels of granularity for different
friends. In contrast, our solution only the user’s location is returned
once but differently masked based on the preference for each
friend. Our proximity query is directly computed rather than trying
all possible locations.

Finally, Damiani et al. [40] proposed PROBE framework,
which obfuscates the user’s location based on the geographic
context and the privacy preferences defined in the user’s profile.
The privacy in their solution is controlled by the user’s tolerance
for defined sensitivity level for each semantic location (e.g., hospi-
tals, banks, residence). This work requires precoded maps to link
symbolic representations of locations to coordinates, otherwise
spatial queries are limited to reasoning of containment relation.

9

7 CONCLUSIONS

We presented a new location referencing method that geo-hashes
GPS coordinates using space-filling curves. The findings of our
evaluation suggested that both Hilbert and Z-order curves outper-
form other curves. We also presented cryptographic algorithms
using somewhat homomorphic encryption to support three posi-
tion and range queries. One of these algorithms reduces masking
noise significantly besides addressing the issue of co-location.
We further designed optimization techniques that significantly
reduce the multiplicative depth and achieve an improvement of
an order of magnitude 7 as compared to our prior work. Since
both periodically updated location data and privacy preferences
are encrypted, the system protects user’s location privacy from
a semi-honest service provider. We also extended the proposed
solution to support location referencing in 3D space. Finally, we
developed and evaluated our prototype.

References
[1] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D.

Nicklas, A. Ranganathan, and D. Riboni, “A survey of
context modelling and reasoning techniques,” Pervasive and
Mobile Computing, vol. 6, no. 2, pp. 161–180, 2010, ISSN:
1574-1192. DOI: https://doi.org/10.1016/j.pmcj.2009.06.
002. [Online]. Available: http : / /www.sciencedirect .com/
science/article/pii/S1574119209000510.

[2] A. K. Dey, “Understanding and using context,” Personal
Ubiquitous Comput., vol. 5, no. 1, pp. 4–7, Jan. 2001,
ISSN: 1617-4909. DOI: 10.1007/s007790170019. [Online].
Available: http://dx.doi.org/10.1007/s007790170019.

[3] J. Krumm, “A survey of computational location privacy,”
Personal Ubiquitous Comput., vol. 13, no. 6, pp. 391–399,
Aug. 2009, ISSN: 1617-4909.

[4] S. Consolvo, I. E. Smith, T. Matthews, A. LaMarca, J.
Tabert, and P. Powledge, “Location disclosure to social
relations: Why, when, & what people want to share,” in
CHI, Portland, Oregon, USA: ACM, 2005, pp. 81–90, ISBN:
1-58113-998-5.

[5] A.-M. Olteanu, K. Huguenin, R. Shokri, and J.-P. Hubaux,
“Quantifying the Effect of Co-location Information on
Location Privacy,” Privacy Enhancing Technologies, vol.
8555, no. Chapter 10, pp. 184–203, 2014.

[6] A. Newcomb, Facebook data harvesting scandal widens
to 87 million people, https://www.nbcnews.com/tech/tech-
news/facebook-data-harvesting-scandal-widens-87-million-
people-n862771, Apr. 2018.

[7] C. R. Vicente, D. Freni, C. Bettini, and C. S. Jensen,
“Location-related privacy in geo-social networks,” IEEE
Internet Computing, vol. 15, no. 3, pp. 20–27, 2011, ISSN:
1089-7801.

[8] G. Saldamli, R. Chow, H. Jin, and B. Knijnenburg, “Private
Proximity Testing with an Untrusted Server,” in ACM
WiSec, ACM, Apr. 2013, pp. 113–118.

[9] T. V. A. Pham, I. I. Dacosta Petrocelli, G. F. M. Endignoux,
J. R. Troncoso-Pastoriza, K. Huguenin, and J.-P. Hubaux,
“Oride: A privacy-preserving yet accountable ride-hailing
service,” in Proceedings of the 26th USENIX Security
Symposium, 2017.

[10] U. M. Aı̈vodji, K. Huguenin, M.-J. Huguet, and M.-O.
Killijian, “Sride: A privacy-preserving ridesharing system,”
in Proceedings of the 11th ACM Conference on Security
& Privacy in Wireless and Mobile Networks, ACM, 2018,
pp. 40–50.

[11] J. Freudiger, M. Raya, M. Félegyházi, P. Papadimitratos,
and J.-P. Hubaux, “Mix-Zones for Location Privacy in
Vehicular Networks,” in Proceeding of Win-ITS’07, Van-
couver, British Columbia, Aug. 2007.

[12] C. Dwork, “Differential privacy,” in ICALP, ser. LNCS,
vol. 4052, Venice, Italy: Springer Verlag, Jul. 2006, pp. 1–
12, ISBN: 3-540-35907-9.

[13] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu, “Processing Mov-
ing Queries over Moving Objects using Motion-adaptive
Indexes,” IEEE TKDE, vol. 18, no. 5, pp. 651–668, 2006.

[14] F. Olumofin, P. K. Tysowski, I. Goldberg, and U. Hengart-
ner, “Achieving Efficient Query Privacy for Location Based
Services,” in PETS, Springer-Verlag, Jul. 2010, pp. 93–110.

[15] K. P. N. Puttaswamy, S. Wang, T. Steinbauer, D. Agrawal,
A. E. Abbadi, C. Kruegel, and B. Y. Zhao, “Preserving loca-
tion privacy in geosocial applications,” IEEE Transactions
on Mobile Computing, vol. 13, no. 1, pp. 159–173, Jan.
2014, ISSN: 1536-1233. DOI: 10.1109/TMC.2012.247.

[16] T. Hashem and L. Kulik, ““Don’t trust anyone”: Privacy
Protection for Location-Based Services,” Pervasive & Mo-
bile Computing, vol. 7, no. 1, pp. 44–59, 2011, ISSN: 1574-
1192.

[17] V. Gaede and O. Günther, “Multidimensional access meth-
ods,” ACM Comput. Surv., vol. 30, no. 2, pp. 170–231, Jun.
1998, ISSN: 0360-0300.

[18] P. Svensk and L. Wikström, Georeferencing methods - a
study on how to deal with georeferencing in the rosatte
implementation platform, Triona AB, Mar. 2013.

[19] P. Hu, S. S. Chow, and A. Aloufi, “Geosocial query with
user-controlled privacy,” in Proceedings of WiSec, ACM,
2017, pp. 163–172.

[20] J. Schwartz, Bing maps tile system,
https://msdn.microsoft.com/en-us/library/bb259689.aspx,
2012.

[21] C. Bettini and D. Riboni, “Privacy Protection in Pervasive
Systems: State of the Art and Technical Challenges,” Perva-
sive and Mobile Computing, vol. 17, Part B, pp. 159–174,
2015, ISSN: 1574-1192.

[22] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)
fully homomorphic encryption without bootstrapping,” in
ITCS, ACM, 2012, pp. 309–325.

[23] O. Regev, “The learning with errors problem (invited sur-
vey),” in Proceeding of CCC’10, Cambridge, MA, Jun.
2010, pp. 191–204.

[24] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lat-
tices and learning with errors over rings,” in EUROCRYPT,
Springer, 2010, pp. 1–23.

[25] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg,
and D. Boneh, “Location Privacy via Private Proximity
Testing,” in NDSS, Feb. 2011.

[26] J. D. Nielsen, J. Illeborg, and M. B. Stausholm, “Location
Privacy via Actively Secure Private Proximity Testing,”
in PerCom Workshop, Lugano, Switzerland, Mar. 2012,
pp. 381–386.

[27] S. Halevi and V. Shoup, “Algorithms in HElib,” in CRYPTO,
Springer, 2014, pp. 554–571.

10

[28] ——, Faster homomorphic linear transformations in helib,
Cryptology ePrint Archive, Report 2018/244, 2018. [On-
line]. Available: https://eprint.iacr.org/2018/244.

[29] R. Ricci, E. Eide, and the CloudLab Team, “Introducing
CloudLab: Scientific infrastructure for advancing cloud
architectures and applications,” ;login:, vol. 39, no. 6,
pp. 36–38, Dec. 2014. [Online]. Available: https : / /www.
usenix.org/publications/login/dec14/ricci.

[30] M. Backes, P. Berrang, M. Bieg, R. Eils, C. Herrmann,
M. Humbert, and I. Lehmann, “Identifying personal DNA
methylation profiles by genotype inference,” in IEEE S&P,
2017, pp. 957–976.

[31] T. Peng, Q. Liu, and G. Wang, “Privacy Preserving for
Location-Based Services Using Location Transformation,”
Cyberspace Safety and Security, Vol. 8003 of LNCS, no.
Chap. 2, pp. 14–28, 2013.

[32] P. Hu, T. Mukherjee, A. Valliappan, and S. Radziszowski,
“Homomorphic proximity computation in geosocial net-
works,” in BigSecurity, an INFOCOM workshop, Apr.
2016.

[33] A. Khoshgozaran and C. Shahabi, “Blind evaluation of
nearest neighbor queries using space transformation to
preserve location privacy,” in SSTD, Springer-Verlag, 2007,
pp. 239–257, ISBN: 978-3-540-73539-7.

[34] O. Barak, G. Cohen, and E. Toch, “Anonymizing mobility
data using semantic cloaking,” Pervasive and Mobile Com-
puting, Special Issue on Security and Privacy in Mobile
Clouds, vol. 28, pp. 102–112, 2016.

[35] U. Feige, A. Fiat, and A. Shamir, “Zero-Knowledge Proofs
of Identity,” J. Cryptology, vol. 1, no. 2, pp. 77–94, Jun.
1988.

[36] G. Zhong, I. Goldberg, and U. Hengartner, “Louis, Lester
and Pierre - Three Protocols for Location Privacy,” in
Privacy Enhancing Technologies, 2007, pp. 62–76.

[37] A. Khoshgozaran and C. Shahabi, “Private buddy search:
Enabling private spatial queries in social networks,” in
Computational Sci and Engg., IEEE Comp. Society, 2009,
pp. 166–173, ISBN: 978-0-7695-3823-5.

[38] K. P. N. Puttaswamy, S. Wang, T. Steinbauer, D. Agrawal,
A. E. Abbadi, C. Kruegel, and B. Y. Zhao: “Preserving
Location Privacy in Geosocial Applications,” IEEE Trans.
Mob. Comput., pp. 159–173, 2014.

[39] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajo-
dia, “Privacy in geo-social networks: Proximity notification
with untrusted service providers and curious buddies,” The
VLDB Journal, vol. 20, no. 4, pp. 541–566, 2011, ISSN:
1066-8888.

[40] M. L. Damiani, E. Bertino, and C. Silvestri, “Protecting
location privacy against spatial inferences: The probe ap-
proach,” in Workshop on Security and Privacy in GIS and
LBS, 2009, pp. 32–41.

APPENDIX A
THRESHOLD SWHE
For computation over data encrypted under multiple keys, we need
the threshold extension [1] of the BGV scheme to produce a joint
key. In a nutshell, we can leverage the additive homomorphism
property to generate a joint key from keys owned by individual
participants. Formally, given a set of public keys pki = (A,Asi+
tei) where i ∈ N and the element A ∈ Rq is shared, we can

System Users

Crypto Servers

pi,1 - … - rt-1 - rt - rt+1- … pi,2 + … + rt-1 + rt + rt+1+ …

 computes
sk shares

 pi,1 = ski - ri
 pi,2 = ri

1

periodic reshare3

send pi,12 send pi,22

… …

Decryption Servers

periodic reshare
using random ri,t

1
 send sk
shares

(Si,1,…, Si,k)

2

System Users

…

Si,1 - … - ri,t-1 - ri,t - ri,t+1- …

Si,k + … + ri,t-1 + ri,t + ri,t+1+ …
...

Si,1=(ski - ri,1 - … - ri,k-1), Si,2=(ri,1), … , Si,k=(ri,k-1)

Fig. 11: Securing private keys with secret-sharing

compute a joint public key pk∗ = (A,A
∑
si + t

∑
ei). The

underlying secret keys si are added together under the protection
of the RLWE assumption. This threshold extension allows us to
generate a joint key in advance for all homomorphic operations.
But, a key setup phase is not always feasible.

Hence, we propose an alternative way to efficiently transform a
ciphertext encrypted under different keys to an encryption under a
joint key. Given a ciphertext Ci = (c0, c1) = (γA, γ(Asi+tei)+
m) encrypted under si for a message m, we can homomorphically
add Ci with another ciphertext Cj that is the encryption of zero
using sj , assuming both γ and A are shared. For example, Ci +
Cj = (γA, γ(A(si + sj) + t(ei + ej)) + m). This produces a
ciphertext C∗ that is encrypted under the joint key pk∗.

APPENDIX B
THRESHOLD DECRYPTION PROTOCOL

After processing a requested query, the service provider sends
to the user the result that is encrypted under a joint public key
pk∗, hence the user is not able to decrypt the result without their
friends’ secret keys. We need to transform the result to a ciphertext
that is decryptable by the querier’s secret key. This process
reverses the additively homomorphism property by generating
ciphertext Cj that removes sj from s∗.

The decryption protocol hence requires either friends of the
user to be online to generate Cj or delegate the decryption task
to a decryption server who should have access to the secret keys
sj . In this paper, we propose the latter approach and improve the
security of user’s private keys by secret-sharing these keys among
multiple semi-honest and non-colluding decryption servers [2], as
illustrated in Fig. 11. We propose a dishonest majority model so
that the system tolerates up to N − 1 servers being hacked. We
also introduce a reshare protocol to change the representation of
the private keys periodically. Then, we construct a multiparty com-
putation protocol, similar to these [3], [4], to perform threshold-
based decryption.

Key revocation is done simply by generating a new key pair,
transforming the ciphertexts to be under the new public key, and
secret-sharing the new secret key.

APPENDIX C
HYBRID HOMOMORPHIC ENCRYPTION

Despite the recent advancement, somewhat homomorphic encryp-
tion schemes in general produces ciphertexts that are large in size.
Transmitting these homomorphically encrypted ciphertexts over
the network introduces significant communication overhead, we

11

10
1

10
2

10
3

10
4

2 4 8 16

S
iz

e
 (

B
y
te

s
)

Bit-length of inputs

AES
HE

(a) Ciphertext size of AES and HE

10
0

10
1

10
2

10
3

10
4

0 1 2 3 4 5

T
im

e
 (

s
)

Parameter settings

Bootstrap
No Bootstrap

(b) Homomorphic AES decryption

Fig. 12: Performance for hybrid encryption

propose a hybrid encryption [5], [6], which couples an efficient
block-cipher, such as AES, with SWHE. In a nutshell, this
approach uses block-cipher to encrypt data on the client side
and converts ciphertexts to the SWHE domain. More specifi-
cally, given an AES ciphertext EncAES(m) of a message m and
EncBGV(k) of an AES key k, we can compute EncBGV(m) =
homAESdec(EncBGV(EncAES(m)), EncBGV(k)). This can be easily
achieved by the homAESdec function supported in HElib [7].

To demonstrate the effectiveness of this approach, we con-
ducted experiments to investigate the reduction in ciphertext
size and computation time under different scenarios. Experiment
results are presented in Fig. 12. Note, in Fig. 12(b), parameter 0
is for toy examples and parameter 5 is for huge realistic examples

with higher security levels.

References

[1] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikun-
tanathan, and D. Wichs, “Multiparty computation with low
communication, computation and interaction via threshold
FHE,” in EUROCRYPT, Springer, 2012, pp. 483–501.

[2] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, 1979.

[3] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure
and optimally efficient multi-authority election scheme,”
European transactions on Telecommunications, vol. 8, no.
5, pp. 481–490, 1997.

[4] V. Shoup and R. Gennaro, “Securing threshold cryptosys-
tems against chosen ciphertext attack,” in International
Conference on the Theory and Applications of Crypto-
graphic Techniques, Springer, 1998, pp. 1–16.

[5] T. Lepoint and M. Naehrig, “A comparison of the ho-
momorphic encryption schemes FV and YASHE,” in
AfricaCrypt, Springer, 2014, pp. 318–335.

[6] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can ho-
momorphic encryption be practical?” In ACM workshop on
Cloud Computing Security Workshop, 2011, pp. 113–124.

[7] S. Halevi and V. Shoup, “Algorithms in HElib,” in CRYPTO,
Springer, 2014, pp. 554–571.

