
Plaintext Recovery Attacks against XTS
Beyond Collisions

Takanori Isobe1,3 and Kazuhiko Minematsu2

1 University of Hyogo, Japan. takanori.isobe@ai.u-hyogo.ac.jp
2 NEC Corporation, Japan. k-minematsu@ah.jp.nec.com

3 National Institute of Information and Communications Technology, Japan.

Abstract. XTS is an encryption scheme for storage devices standard-
ized by IEEE and NIST. It is based on Rogaway’s XEX tweakable block
cipher and is known to be secure up to the collisions between the blocks,
thus up to around 2n/2 blocks for n-bit blocks. However this only implies
that the theoretical indistinguishability notion is broken with O(2n/2)
queries and does not tell the practical risk against the plaintext recovery
if XTS is targeted. We show several plaintext recovery attacks against
XTS beyond collisions, and evaluate their practical impacts.
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1 Introduction

XTS is a symmetric-key encryption scheme for storage devices such as HDD or
USB memory sticks. It has been developed by IEEE Storage in Security Work-
group (SISWG) in 2007, based on a block cipher mode called XEX proposed by
Rogaway in 2004 [19]. It has been standardized as IEEE standard for storage
encryption (IEEE P1619) [11]. In 2010, NIST specified XTS as one of the rec-
ommended schemes with the explicit use of AES as the underlying block cipher.
This scheme is called XTS-AES and is described in NIST SP800-38E [5] with a
parameter restriction not presented in the IEEE document. XTS is quite widely
deployed, such as Bitlocker, dm-crypt, and Truecrypt and its successors.

Since XTS is built on XEX, the security of XTS is basically inherited from that
of XEX. Assuming the underlying n-bit block cipher is secure, XEX is provably
secure as long as the number of processed blocks is sufficiently smaller than
2n/2 [19, 15]. This bound comes from a collision between two inputs to the block
cipher, which is expected to happen with high probability for 2n/2 blocks due to
the birthday paradox. Hence it is called “birthday bound”. The security analysis
of XTS largely follows this result, except the case that the last block in a sector
is partial (i.e. not n bits) for which a variant of the classical ciphertext stealing
is applied.

Most popular block cipher modes are secure up to the birthday bound. This
implies that if we take n large enough the scheme is secure in practice. However,
it is also important to study what will happen if the attacker can perform 2n/2



encryptions, that is, security analysis beyond the birthday bound. This allows
to learn the limit of key lifetime and the danger of small-block ciphers. In the
similar context, the security of CBC and CTR modes beyond the birthday bound
have been studied [1, 13].

Our Contribution. In this paper, we study the security of XTS beyond the
birthday bound, in particular, the security against plaintext recovery. We note
that it is not hard to derive a collision-based distinguishing attack against XEX
thus XTS, however, this only implies the tightness of the security bound. The
collision attack needs O(2n/2) encrypted blocks for one sector, and only reveals
the block cipher mask used by this sector. Once the mask is known, XTS largely
reduces to the basic ECB mode, hence the attack trivially reveals (a part of)
plaintexts of the target sector when they are chosen or known with a low entropy.
Unfortunately, this observation does not tell anything beyond, say how easy to
recover the plaintext stored in sectors that was not the target of the collision
attack. This is the problem we want to study.

Under a reasonable adversary model for storage encryption (e.g. [6, 12]) we
derived several plaintext recovery attacks against XTS. Specifically, we classify
the sectors of an XTS-encrypted storage into two categories, called reference
sectors and target sectors. At the reference sectors, the adversary can encrypt a
known plaintext and decrypt any ciphertext, that is, a combination of known-
plaintext attack (KPA) and chosen-ciphertext attack. At the target sectors,
the adversary can only perform a ciphertext-only attack or a partially-known-
plaintext attack, where the definition of “partial” depends on the attack. The
goal is to recover the plaintext at one of the target sectors for the corresponding
ciphertext obtained by encryption queries to that sector.

Our attacks are not a trivial application of collision attack described above in
that it does not need O(2n/2) encrypted blocks of the sector for which the target
plaintext is stored. The key observation of our attacks is a similarity between
XTS and single-key Even-Mansour (SEM) ciphers: it allows us to convert attacks
against SEM into XTS. Specifically, we show that once a mask is recovered by
the collision attack at the reference sector, XTS at target sectors can be seen as a
variant of SEM. Then, we propose plaintext-recovery attacks beyond collisions at
target sectors in several practical settings. In a partially-known plaintext setting
where a part of plaintext blocks at the target sector is known, e.g. fixed header
files, we are able to recover the remaining unknown plaintext blocks by a variant
of key recovery attacks on SEM [4]. For a 64-bit block cipher, our plaintext-
recovery attack is feasible with only 28 known blocks in the target sectors, and
256 local computations independently from the key size of the underlying block
cipher. Besides, we show that this attack works with the almost same attack
complexity even if there is no blocks that is completely known, e.g. only one
byte in a block is known. Finally, we show that in the ciphertext-only setting
where the adversary does not have any information of plaintext at target sectors,
we are able to guess a target plaintext with a higher probability than random
guessing.
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Table 1. Summary of our attacks in the several attack settings.

Attack Setting Attack Type n = 64 n = 128

Time Data Memory Time Data Memory

pKPA 1 (Sec. 7.1) Plaintext Recovery 256 28 28 296 232 232

pKPA 2 (Sec. 7.2) Plaintext Recovery 255 210 257 298 232 2122

pKPA 2 (Sec. 7.2) Plaintext Recovery 257 210 210 2120 232 232

Ciphertext-only (Sec. 7.3) Plaintext Recovery 260 260 260 2124 2124 2124

pKPA 1: Partially-known plaintext setting where plaintext blocks of Data are known.

pKPA 2: Partially-known plaintext setting where only one byte of each block of Data

is known.

Table 1 shows the summary of our attacks. Time and Memory are adversary’s
local computations and memory cost, respectively. Data is the number of required
known plaintext/ciphertext blocks at target sectors in pKPA 1, and in pKPA 2,
only one byte in a corresponding plaintext block is known. In the ciphertext-only
setting, Data is the number of required ciphertexts at target sectors and there
is no any information of plaintexts. For example, in pKPA 2 for n = 64, given
210 known plaintext blocks in which only 1 byte is known at a target sector, all
other plaintext blocks and unknown 7 bytes of 210 known plaintext blocks in the
target sector can be recovered with local 257 computations and 210 memory. In
the ciphertext-only setting for n = 60, given 260 ciphertexts, we can correctly
guess one of them with time complexity of 260 and 260 memory, while it ideally
should require 264 ciphertexts to successfully guess a 64-bit plaintext.

We stress that our plaintext recovery attacks at target sectors are feasible
with less than O(2n/2) data unlike a trivial application of the collision attack
to the target sectors which requires O(2n/2) data. Note that collecting known
plaintext blocks in the target sectors is the most difficult task for real world
applications. In this sense, our attack is more practical. Especially, for n =
64, our plaintext recovery attacks at target sectors are successful with a small
number of known plaintext blocks (e.g. 28) and practical local computations,
independently from the key size. Therefore, our results reveal that 64-bit block
ciphers with XTS mode, which is commercially deployed in some products, are
practically insecure as storage encryption schemes.
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2 Preliminaries

2.1 Basic notations

Let N be the set of positive integers. Let [n] denote {1, . . . , n}. The bit length of

binary sequenceX is written as |X|, and |X|n denotes d|X|/ne. Let (M1, . . . ,Mm)
n←−

M denote the n-bit block parsing of M , where m = |M |n, |Mi| = n for
1 ≤ i ≤ m − 1 and |Mm| ∈ [n]. For a binary string X, its first s bits and
last s bits are written as msbs(X) and lsbs(X).

Galois Field. Any n-bit value may be taken as an element of GF(2n) by seeing it
as the sequence of coefficients of the polynomial. In particular, forX,Y ∈ {0, 1}n,
we write X ⊗ Y to denote GF(2n)-multiplication of X and Y . A division of X
by Y 6= 0 is written as X/Y .

2.2 Tweakable block cipher

A tweakable block cipher (TBC) is an extension of ordinary block cipher pro-

posed by Liskov et. al [14]. A TBC is a keyed function Ẽ : K × T ×M → M
such that for each (K,T ) ∈ K×T , Ẽ(K,T, ·) is a permutation overM. Here, K
is the key and T is a public value called tweak. A conventional block cipher is a
TBC with T being a singleton, and specifically written as E : K×M→M. The
encryption of X ∈ M under key K ∈ K and tweak T ∈ T is Ẽ(K,T,X) and is

also written as ẼK(T,X) or ẼTK(X). For block cipher we write as EK(X). The

decryption is written as Ẽ−1,TK (Y ) for TBCs and E−1K (Y ) for block ciphers. For

any T ∈ T and K ∈ K, when Y = ẼTK(X) we have Ẽ−1,TK (Y ) = X.
We say f : T ×M→M is a tweakable permutation if f(T, ∗) is a permutation

for any T ∈ T . Let P̃ : T ×M→M be the ideal tweakable random permutation
distributed uniformly over the set of all tweakable permutations : T ×M→M.
The security of a TBC Ẽ : K×T ×M→M is measured by the computational
indistinguishability from P̃ using chosen encryption queries (T,X) and chosen
decryption queries (T, Y ) [14, 19].

3 Specification of XTS

XTS is a tweakable encryption over message spaceM = {0, 1}∗ with tweak space
TXTS = {0, 1}n.

Let E : K × {0, 1}n → {0, 1}n be an n-bit block cipher, and let K =
(K1,K2) ∈ K2 be a pair of keys of E. The core component of XTS is a single-block
TBC written as XEX2 : K2×{0, 1}n×TXEX2 → {0, 1}n, where TXEX2 = TXTS×N
is a tweak space. It encrypts n-bit plaintext block X to create ciphertext block
Y using tweak T = (T, j) ∈ TXEX2 as

Y = S ⊕ EK1(M ⊕ S), (1)
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where S = EK2
(T ) ⊗ αj . Here, α denotes the generator of the field, i.e. the

polynomial x, and αj denotes the multiplication by α for j times.
XTS encrypts plaintext M ∈ {0, 1}∗ with a tweak T ∈ TXTS by first (1)

parsing M as (M1, . . . ,Mm)
n←− M and (2) encrypting Mj for j ∈ [m − 1] by

XEX2 taking tweak (T, j). The encryption of the last block Mm depends on
whether |Mm| = n or shorter, in a similar manner to Ciphertext Stealing in
CBC mode. See Figure 1.

3.1 LRW mode

Before XTS, IEEE SISWG considered a mode called LRW [9] named after the
paper by Liskov et al. [14]. It can be seen as a predecessor of XEX. An encryption
of LRW is the same as Eq. (1), however

S = L⊗ T

is used instead, where L ∈ {0, 1}n is the second key independent of K, and
T ∈ {0, 1}n identifies the target block in the storage, which is typically considered
as a combination of sector number and block index. LRW may look much slower
than XTS as it involves a full multiplication over GF(2n) for every update of
tweak. However this is not the case if sector number and block index are properly
encoded, e.g. when T is (T ‖ j) with sector number T ∈ {0, 1}n/2 and block index
j ∈ {0, 1}n/2, L⊗ (T ‖ j + 1) is obtained by L⊗ (T ‖ j)⊗ α, hence basically the
same cost as XTS. LRW mode was consequently not adapted as a standard,
however, some encryption software still use it, in particular with 64-bit block
ciphers (see Section 8).

4 Attack Model

Motivation. We first need to clarify the adversary model, i.e. how the adversary
accesses to a storage encrypted by XTS and what is the goal of the adversary,
in a way that reflects practical use cases, at least to some extent. This must be
done first, as it is known that, unlike encryption or authenticated encryption,
there is no widely accepted security notion that captures XTS beyond single-
block tweakable block cipher, i.e., XEX2 (see e.g. Rogaway [18]). It is rather
straightforward to derive a birthday attack to break Tweakable Strong Pseudo-
random Permutation (TSPRP) notion of XEX2, however this is not sufficient for
our purpose.

Informally, we classify the sectors of an XTS-encrypted storage into two cat-
egories, called reference sectors and target sectors. At the reference sectors, the
adversary can encrypt a known plaintext and decrypt any ciphertext, that is,
a combination of known-plaintext attack (KPA) and chosen-ciphertext attack
(CCA)4. This implies that the plaintext recovery is trivial at these sectors if we

4 Here it means an attack with decryption queries of any chosen ciphertext and does
not mean a combination with chosen-plaintext attack.
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Algorithm XTSK .Enc(M,T )

1. (M1, . . . ,Mm)
n←−M

2. for i = 1 to m− 1 do
3. Ci ← XEX2K .Enc(Mi, (T, i))
4. if |Mm| = n then
5. Cm ← XEX2K .Enc(Mm, (T,m))
6. else
7. Cm ← msb|Mm|(Cm−1)
8. D ← lsbn−|Mm|(Cm−1)

9. M̃m ←Mm ‖D
10. Cm−1 ← XEX2K .Enc(M̃m, (T,m))
11. C ← (C1 ‖C2 ‖ . . . ‖Cm)
12. return C

Algorithm XTSK .Dec(C, T )

1. (C1, . . . , Cm)
n←− C

2. for i = 1 to m− 1 do
3. Mi ← XEX2K .Dec(Ci, (T, i))
4. if |Cm| = n then
5. Mm ← XEX2K .Dec(Cm, (T,m))
6. else
7. Mm ← msb|Cm|(Mm−1)
8. D ← lsbn−|Mm|(Mm−1)

9. C̃m ← Cm ‖D
10. Mm−1 ← XEX2K .Dec(C̃m, (T,m))
11. M ← (M1 ‖M2 ‖ . . . ‖Mm)
12. return M

Algorithm XEX2K .Enc(X, (T, j))

1. (K1,K2)
n←− K

2. S ← EK2(T )⊗ αj

3. Y ← S ⊕ EK1(X ⊕ S)
4. return Y

Algorithm XEX2K .Dec(Y, (T, j))

1. (K1,K2)
n←− K

2. S ← EK2(T )⊗ αj

3. X ← S ⊕ E−1
K1

(Y ⊕ S)
4. return X

Fig. 1. XTS.

have ciphertext at a reference sector for unknown plaintext. However, at the tar-
get sectors, the adversary can only perform a ciphertext-only attack (COA) or a
partially-known-plaintext attack (pKPA, the definition of “partial” depends on
the attack) against the target sectors, and cannot perform decryption at all. The
goal is to recover the plaintext at one of the target sectors for the corresponding
ciphertext obtained by encryption queries to that sector.

The assumption of reference sector(s) follows the existing attack models for
storage encryption, such as Ferguson [6, Section 2.7] and Khati et. al [12]. Intu-
itively, in many cases, there are encrypted sectors where we already know (some
part of) the plaintext and can modify the ciphertext and somehow see the re-
sulting plaintext. For example, Windows OS has a boot screen and the default
value is known, and the result of a modification of the encrypted sectors that
contains this boot screen image is visible by just booting OS and see how the
boot screen has been corrupted. There should be other types of sectors that work
as reference sectors, depending on applications and OSs. Individual analysis of
each case is beyond the scope of our paper.

For the target sectors it is reasonable to assume that we have few knowledge
of the plaintext.

Simplified Model. Let T (r) be the single reference sector and T (t) be the target
sector. For simplicity, we assume the sector size is always mn bits for some
positive integer m. We note that the size of sector and whether the last block is
partial or not is irrelevant to our attacks. To simplify the description of attacks
while capturing the core of our ideas, we assume the adversary only queries to
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Fig. 2. Our Attack Model.

these two sectors, and each query is given directly to XEX2 rather than XTS.
Thus an encryption query is (M,T ) and a decryption query is (C, T ), both are
elements of {0, 1}n × TXEX2.

As we described, the adversary can issue encryption queries (M, (T (r), j))
with some known (possibly random) M for any j ∈ [m], and decryption queries
(C, (T (r), j)) with any C ∈ {0, 1}n and any j ∈ [m]. In fact, the condition for
the adversary can be further reduced, so that we only require existence of two
different blocks, j, j′ ∈ [m] in the reference sector that accept above queries.

Encryption queries to target sectors (M, (T (t), j)) can be done with unknown
M (COA) or partially-known M (pKPA). When the adversary correctly guess M
it means the win. Depending on the available queries at T (t), we derive different
attacks.

All attacks are extended to the case where there are multiple target sectors.
This captures the case that all sectors of HDD are target except the reference
sector. The overview of our attack model is described in Fig. 2.

5 Overview of Our Attacks

Our attacks consist of two phases. In the first phase, we perform a collision
attack at a reference sector T (r) to obtain a mask key EK2

(T (r)). This attack is
a beyond-birthday attack in that it requires 2n/2 encryptions. Once EK2

(T (r))
is known, input/output pairs of the internal function EK1

are available in the
reference sector T (r). Note that the same internal function EK1

is used in other
sectors including the target sector T (t).

In the second phase, we mount plaintext recovery attacks at a target sector
T (t). Due to a direct access to the internal function EK1

via the reference sector
T (r), XTSK is regarded as a single-key Even-Mansour construction in the target
sector T (t). Then, we are able to perform plaintext recovery attacks on the target
sector T (t) in several practical attack settings.
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Fig. 3. Collision attack at the reference sector T (r).

Importantly, our plaintext recovery attack works independently from the key
size of the internal function EK1 . In other words, the key size of EK1 does not
affect the attack complexity.

6 Collision Attack at Reference Sector

We first describe a collision attack that obtains a mask key EK2
(T (r)) at a

reference sector T (r).

Assumption and Goal. As mentioned in Section 4, the adversary can issue
encryption queries (M, (T (r), j)) with some known M , and decryption queries
(C, (T (r), j)) with any C ∈ {0, 1}n for two distinct block j and j′ in the reference
sector T (r).

The purpose of this attack is to recover EK2
(T (r)) without knowing K1 and

K2.

Idea for Collision Attack. We utilize an event where two inputs of EK1
at two

distinct blocks j and j′ in the reference sector T (r) are the same as illustrated in
Figure 3. When this event happens, we get the following equation with respect
to inputs of EK1 .

M ⊕ (EK2
(T (r))⊗ αj) = M ′ ⊕ (EK2

(T (r))⊗ αj
′
) (2)

Since EK1 is a permutation, we also have the following equation with respect to
outputs of EK1 .

C ⊕ (EK2
(T (r))⊗ αj) = C ′ ⊕ (EK2

(T (r))⊗ αj
′
) (3)
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From Eqs. (2) and (3), we obtain the equation regarding plaintexts and cipher-
texts.

M ⊕ C = M ′ ⊕ C ′. (4)

Given 2n/2 sets of (M,C) and (M ′, C ′), respectively, there exists two pairs
of (M,C) and (M ′, C ′) that satisfy Eq. (4) with a high probability, in which,
Eqs. (2) and (3) hold with probability of 1−2−n. Once such two pairs of (M,C)
and (M ′, C ′) are found, we can recover a mask key EK2

(T (r)) from ciphertexts
without knowing K1 and K2 as

EK2
(T (r)) = (C ⊕ C ′)/(αj + αj

′
).

To find the collision pairs such that M ⊕C = M ′⊕C ′, in a straight forward
way, we should evaluate 2n(= 2n/2 × 2n/2) combinations of each 2n/2 sets of
(M,C) and (M ′, C ′). Using the meet-in-the-middle technique, we can efficiently
find collision pairs. Specifically, we first make a table of 2n/2 pairs of (M,C)
indexed by M ⊕ C, and then access the table with 2n/2 values of (M ′ ⊕ C ′) to
find pairs such that M ⊕ C = M ′ ⊕ C ′. Then, the time complexity for finding
collision pairs is estimated as about 2n/2 operations.

Attack Procedure. Based on the above idea of the collision attack, the pro-
cedure of the mask recovery attack is given as follow.

1. Choose two distinct block indexes, j and j′ at a reference sector T (r).
2. Obtain 2n/2 pairs of (M,C) at j, and store 2n/2 tuples of (C,M ⊕ C) in a

table.
3. Obtain 2n/2 pairs of (M ′, C ′) at j′, and find a pair of (C,C ′) such that
M ⊕ C = M ′ ⊕ C ′ by accessing the table of (C,M ⊕ C) with values of
M ′ ⊕ C ′.

4. Output (C ⊕ C ′)/(αj + αj
′
) as a candidate for EK2(T (r)).

Complexity Evaluation. 2n/2 known plaintext/ciphertext pairs are required
in Step 2 and 3, respectively, and 2n/2 memory is required for the table in Step
2. The time complexity to find a collision of M ⊕ C = M ′ ⊕ C ′ in Step 2 and
3 is bounded by 2n/2 encryption calls, assuming the cost of the sum of a single
memory access in Step 2 and Step 3 and computations of (M⊕C) and (M ′⊕C ′)
is less than a single encryption function call.

In summary, the attack complexity is estimated as follows.

– Time 2n/2 encryptions
– Data: 2n/2+1 known plaintexts/ciphertexts
– Memory: 2n/2 blocks5

5 Using Floyd’s cycle-finding algorithm [7], this attack is feasible with the same com-
plexity and negligible memory.

9



Example 1. For n = 64, our collision attack is feasible with 233 known plain-
text/ciphertexts, 232 computations, and 232 memory.

Example 2. For n = 128, our collision attack is feasible with 265 known plain-
text/ciphertexts, 264 computations, and 264 memory.

Especially, for n = 64, attack complexity is practical.

Reference Sector as Oracle. After the collision attack against the reference
sector T (r) is succeeded, the adversary is able to obtain inputs X and outputs
Y of EK1

by knowledge of EK2
(T (r)) and a known pair of (M,C) as follows.

X = M ⊕ (EK2(T (r))⊗ αj)
Y = C ⊕ (EK2

(T (r))⊗ αj
′
)

In our plaintext recovery attack at the target sectors T (t), we will use this
reference sector as encryption/decryption oracle that output a Y/X, given X/Y .
Since EK1

is regarded as a public permutation by queries to the reference sector
T (r), XTSK at any target sector T (t) can be treated as a single-key Even-Mansour
(SEM) cipher.

7 Plaintext-Recovery Attacks at Target Sector

In this section, we propose plaintext-recovery attacks at a target sector T (t)

in several attack settings such as a partially-known plaintext setting and a ci-
phertext only setting. All attacks are performed after the collision attack in the
reference sector T (r) described at Section 6, and the adversary is assumed to has
access to the encryption/decryption oracle of EK1

.

7.1 Partially-known Plaintext Attack 1

First, we describe a plaintext-recovery attack at a target sector T (t) in the
partially-known-plaintext setting. Informally, we assume only some blocks in
T (t) are known.

Assumption and Goal. The adversary is able to collect plaintext/ciphertext
block pairs of indexes at some j ∈ Jkp in a target sector T (t), where Jkp ⊂ [m] is
an index set of known plaintext blocks in T (t). That is, all the plaintext blocks
at (T (t), j) for any j ∈ Jkp are known. Note that all ciphertexts at the target
sector T (t) are available.

The purpose of this attack is to recover a set of unknown plaintext blocks
j 6∈ Jkp in the target sector T (t).

10



Fig. 4. Partially-known plaintext attack 1.

Attack Idea. The equation with respect to a mask key EK2(T (t)) is given as
follows.

EK2(T (t)) = (αj)−1 ⊗ (M ⊕X) = (αj)−1 ⊗ (C ⊕ Y )

This equation is rewritten as

(αj)⊗ EK2
(T (t)) = M ⊕X = C ⊕ Y. (5)

According to Eq. (5), a valid tuple of (M,C,X, Y ) must satisfy the equation of
X ⊕ Y = M ⊕ C. Given a valid tuple of (M,C,X, Y ), EK2

(T (t)) is obtained as
EK2(T (t)) = (αj)−1 ⊗ (C ⊕ Y ) in the same manner to the key recovery attack
against SEM by Dunkelman et al. [4].

Candidates of M and C are obtained at blocks of j ∈ Jkp in the target sector
T (t). As shown in Figure 4, X and Y are obtained in the reference sector T (r)

by querying X ⊕ EK2
(T (r)) ⊗ (αj) as a plaintext to an encryption oracle, and

obtaining the answer (ciphertext) of Y ⊕EK2(T (r))⊗ (αj) where EK2(T (r)) and
(αj) are known values. Let qt and qr be the number of available M ⊕ C and
X⊕Y , respectively. When qt×qr ≥ 2n, there exists a valid tuple of (M,C,X, Y )
with a high probability.

After EK2(T (t)) is found, with knowledge of EK2(T (t)) and decryption oracle

access to EK1
in the reference sector T (r), all unknown plaintext blocks in J t

def
=

[m] \ Jkp can be recovered.

Attack Procedure. The attack procedure of the plaintext recovery attack in
the partially-known plaintext setting is as follows.

1. Obtain qr pairs of (X,Y ) from the reference sector T (r), and store tuples of
(X,Y,X ⊕ Y ) to a table.
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2. Obtain qt known plaintext/ciphertext pairs (M,C) at the target sector T (t)

such that qt × qr ≈ 2n, and find a tuple of (M,C,X, Y ) such that X ⊕ Y =
M ⊕ C by accessing the table of (X,Y,X ⊕ Y ) with values of (M ⊕ C).

3. Output (αj)−1 ⊗ (C ⊕ Y ) as a candidate of EK2
(T ).

4. Decrypt ciphertexts of block indexes in J t by a decryption query to EK1 at
the reference sector T (r) and the knowledge of EK2(T ) , and then obtain the
corresponding plaintexts.

Complexity Evaluation. We estimate the number of queries to the refer-
ence sector T (r) as time complexity, as the adversary is able to locally compute
input/output pairs of EK1 , (X,Y ), at the reference sector T (r) after the col-
lision attack. We evaluate data complexity by the number of queries to the
target sectors T (r), as partially-known plaintext/ciphertext blocks are given to
the adversary in the target sectors. Thus, our attack is feasible by qt known
plaintext/ciphertext blocks at T (t) in Step 2 and qr encryptions at T (r) in Step
1. The memory requirement is estimated as qr blocks in Step 1. Note that in the
case of qr > qt, by changing Step 1 and 2, the memory requirement is reduced
while keeping the same time and data complexity, i.e. (M,C,M ⊕ C) is stored
in a table instead of (X,Y,X ⊕ Y ). Our attack is successful if qt × qr ≥ 2n.

The attack complexity is estimated as follows.

– Time qr encryptions
– Data: qt(= 2n/qr) known plaintexts/ciphertexts blocks
– Memory: min(qr, qt) blocks

Example 1. For n = 64, this plaintext-recovery attack is feasible with 28 known
plaintext/ciphertext blocks, 256 encryptions, and 28 memory.

Example 2. For n = 128, this plaintext-recovery attack is feasible with 232 known
plaintext/ciphertext blocks, 296 encryptions, and 232 memory.

For n = 64, this attack is practically feasible by the standard commercial com-
puter resource in this time. For n = 128, time complexity is not very practical
but it is still feasible by cloud-based computations and dedicated hardware. Note
that our attacks does not need O(2n/2) encrypted blocks of the sector for which
the target plaintext is stored unlike a trivial application of collision attack in the
target sector. It makes our attack more practical in the real world settings.

Multi-target Setting. Since the same key of K1 is used at any sector, qr pairs
of (X,Y ) of EK1

, which are obtained in the reference sector T (r), can be used for
plaintext recovery attacks at any sector. Thus, we are able to mount plaintext
recovery attacks in multiple sectors at the same time. In the Multi-target setting
where we try to compromise at least one of them [10, 8, 16, 2], given qr ≥ 2n/qt

plaintexts/ciphertexts from multiple target sectors, EK2
(T (t)) is recovered at

the one of target sectors T (t), and then all plaintexts in this target sector can
be recovered. This setting makes our attack more practical because collecting
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Fig. 5. Partially-known plaintext attack 1 in a multi-target setting.

known plaintexts/ciphertexts are most difficult task in the real world.

Example. For n = 64, our plaintext recovery attack is feasible with 210 known
plaintext/ciphertexts, and 254 computations with 210 memory. If the adversary
knows the first eight blocks of plaintexts in target 27(= 128) sectors, e.g. fixed
header files, as shown in Figure 5, our multi-target attack is successful, that is,
unknown plaintext blocks of at least one sector out of 128 target sectors are
recovered. This attack is more practical in the real world.

7.2 Partially-known Plaintext Attack 2

In this section, we propose another variant of partially-known plaintext recovery
attacks in which there is no block in T (t) that is completely known.

Assumption and Goal. The adversary is able to collect plaintext/ciphertext
pairs at blocks of index j ∈ Jkp ⊂ [m] in a target sector T (t), however only b bits
(b < n) out of n bits of each plaintext block of index j ∈ Jkp are known and the
other n− b bits are unknown. For simplicity, we assume that first b bits of n-bit
plaintext block M , denoted by MA = msbb(M), is known, the last (n − b)-bit
MB = lsbn−b(M) is unknown at blocks of index j ∈ Jkp, where M = MA ‖MB ,
while our attack is applicable when any part of b bits of each plaintext block is
known.

The purpose of this attack is to recover a set of unknown plaintext blocks
j 6∈ Jkp and unknown bits of blocks of j ∈ Jkp at the target sector.

Attack Idea. Given qt pairs of (M,C) and qr pairs of (X,Y ) such that qt ·qr =
2n, there are 2n−b(= 2n/2b) tuples of (MA, C,X, Y ) satisfying a corresponding
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Fig. 6. Partially-known plaintext attack 2.

b-bit relation of XA ⊕ YA = MA ⊕ CA, where XA, YA, and CA are lower b
bits of X, Y and C, respectively. In this case, 2n−b candidates of EK2

(T (t)) =
(αj)−1 ⊗ (C ⊕ Y ) are obtained. Among them, there exists a correct EK2

(T (t))
with high probability because of qt · qr = 2n.

To efficiently sieve candidates of EK2(T (t)), we obtain Ns sets of 2n−b candi-
dates of EK2

(T (t)) by preparing Ns sets of qr pairs of (X,Y ), and then find the
duplicated one in all different Ns sets, assuming that the correct one is included
in each set. Since the probability that a wrong key in a set 1 is included in the
other Ns − 1 sets is (2n−b/2n)N

s−1, the expected number of surviving wrong
pairs is estimated as

2n−b · (2n−b/2n)N
s−1 = 2n−N

sb.

If 2n−N
sb is sufficiently small, we exhaustively test surviving key candidates of

1 + 2n−N
sb to find the correct one. The overview of this attack is illustrated in

Figure 6.

Attack Procedure. The attack procedure of the plaintext recovery attack in
the partial known plaintext setting is as follows.

1. Obtain qt known plaintext/ciphertext pairs (M,C) at the target sector T (t),
and store tuples of (MA, C,MA ⊕ CA) to a table.

2. Obtain Ns sets of qr pairs of (X,Y ) at T (r) such that qt × qr ≈ 2n, and
find Ns sets of 2n−b tuples of (MA, C,X, Y ) satisfying the b-bit relation of
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XA ⊕ YA = MA ⊕ CA by accessing the table of (MA, C,MA ⊕ CA) with the
values of (XA ⊕ YA).

3. Output Ns sets of 2n−b candidates of mask keys EK2
(T ) = (αj)−1⊗(C⊕Y ))

from valid tuples of (MA, C,X, Y ), and find the duplicated ones in all Ns

sets. The expected number of remaining keys are estimated as (1 + 2n−N
sb).

4. Exhaustively search (1 + 2n−N
sb) surviving key candidates, and find the

correct EK2
(T ).

5. Decrypt ciphertexts of index in J t by a decryption query to EK1
at the

reference sector T (r) and the knowledge of EK2
(T ), and then obtain the

corresponding unknown plaintexts.

Complexity Evaluation. The required data is qt known plaintexts/ciphertexts
in Step 1 where only b bits of each block are known. The time complexity is
estimated as the sum of Ns×qr encryptions in Step 2 and 1+2n−N

sb encryptions
in Step 4. The memory requirement is the sum of Ns×qt (Step 1) and Ns×2n−b

(Step 3). The attack complexity is estimated as follows.

– Time: Ns × qr (Step 1) + 1 + 2n−N
sb (Step 4)

– Data: qt(= 2n/qr) partial known plaintexts/ciphertexts in which only b bits
of each plaintext are known.

– Memory: Ns × qt (Step 1) + Ns × 2n−b (Step 3)

Note that the value Ns such that Ns × qr = 1 + 2n−N
sb is optimal for time

complexity.
Table. 2 shows time and data complexity in each b with optimal values of Ns.

Surprisingly, even when only b bits in qt plaintexts are known, the key recovery
attack is feasible with almost the same data and time complexity, that is, the
product of time and data is around 2n.

Example 1. For n = 64, b = 8 (1 byte) and qr = 254, when Ns = 2 the expected
number of surviving wrong pairs is 248(= 264−8·2). The plaintext-recovery at-
tack is feasible with 210 known plaintext/ciphertexts, 255(= 2 × 254 + 1 + 248)
computations, and 257(= 2× 210 + 2× 256) memory.

Example 2. For n = 128, b = 8 (1 byte) and qr = 296, when Ns = 4 the
expected number of surviving wrong pairs is 296(= 2128−8·4). The plaintext-
recovery attack is feasible with 232 known plaintext/ciphertexts, 298(= 4×296 +
1 + 296) computations, and 2122(= 4× 232 + 4× 2120) memory.

Multi-target Attack. This attack is naturally extended to a multi-target at-
tack. It makes collecting (M,C) easier as discussed in the previous section. Fig-
ure 7 illustrates the case of only one byte is known (b = 8) in 1024 target sectors
for n = 64. In this case, when Ns = 2, the expected number of surviving wrong
pairs is 248(= 264−8·2). The plaintext recovery attack in Multi-target setting is
feasible with 258(= 2×257+1+248) computations, and 257(= 27+2×257+1+248)
memory. The adversary recovers unknown plaintext blocks in one of 1024 target
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Table 2. Time and data complexity in each b (the number of known bits in n-bit
block) with optimal values of Ns of partially-known plaintext attack 2.

b = 2 b = 4 b = 8 b = 16 b = 24

Ns 5 10 15 3 5 8 2 3 4 1 2 3 1 1 2

Data 210 220 230 210 220 230 210 220 230 210 220 230 210 220 230

Time 256.3 247.3 237.9 255.6 246.3 237 255 245.6 236 254 245 235.6 254 244 235

Data × Time 266.3 267.3 267.9 265.6 266.3 267 265 265.6 266 264 265 265.6 264 264 265

Fig. 7. Partial-known plaintext attack 2 in a Multi-target setting.

sectors.

Low-Memory Attack. When Ns = 1, we can mount low-memory attacks at
the cost of increased time complexity. In this case, 2n−b candidates in Step 3 are
exhaustively searched without the duplication check. Thus, we do not need to
store 2n−b key candidates and the memory requirement of Step 3 to store key
candidates are not necessary. The attack complexity is estimated as follows.

– Time: qr (Step 1) + 1 + 2n−b

– Data: qt(= 2n/qr) partial known plaintexts/ciphertexts in which only b bits
of each plaintext are known.

– Memory: qt

When qr > 1 + 2n−b, the attack is feasible with the almost same complexity and
data requirements, namely the product of time and data is around 2n, otherwise
it becomes less efficient.
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Example 1. For n = 64, b = 8 (1 byte) and qr = 254, the expected number of sur-
viving wrong pairs is 256(= 264−8) to be exhaustively searched. The plaintext re-
covery attack is feasible with 210 known plaintext/ciphertexts, 257(= 254+1+256)
computations, and 210 memory.

Example 2. For n = 128, b = 8 (1 byte) and qr = 296, the expected number
of surviving wrong pairs is 2120(= 2128−8) to be exhaustively searched. The
plaintext recovery attack is feasible with 232 known plaintext/ciphertexts, 2120(=
296 + 1 + 2120) computations, and 232 memory.

7.3 Ciphertext-only Attack

In this section, we propose a plaintext recovery attack in the weakest, ciphertext-
only setting, where the adversary does not have any information about plain-
texts.

Assumption and Goal. The adversary is able to collect ciphertexts at a target
sector T (t), and does not have any information about plaintexts.

The purpose of the attack is to guess plaintext at the target sector T (t) with
higher probability than random guessing.

Attack Idea. From Eq. 5, an n-bit equation with respect to a plaintext is given
as

M = C ⊕ (X ⊕ Y (= EK1(X))).

Interestingly, a plaintext M is expressed as C, X and Y without including the
value of EK2

as shown in Figure 8. These are obtained in the target sector T (t)

and the reference sector T (r), respectively, even in the ciphertext-only setting,
We utilize a multi collision technique in (X ⊕ Y (= EK1(X))) to guess a

plaintext M from only a corresponding ciphertext C with higher probability
than random guessing, while this technique was originally used for key-recovery
attacks on a 2-round single-key Even-Mansour cipher [17, 3],

Specifically, we exploit t-way collisions of F (X) = (X ⊕EK1
(X)) for a value

of v such that

X(1) ⊕ EK1
(X(1)) = X(2) ⊕ EK1

(X(2)) = · · · = X(t) ⊕ EK1
(X(t)) = v,

i.e., t input values of X(1), . . . , X(t) map to the same output value v through the
function F . Assuming that there are t-way collisions with respect to v in F (X),
the probability of M = C ⊕ v is estimated as t/2n, which is t times higher than
the expected 1/2n.

Attack Procedure. Our plaintext recovery attack in the ciphertext-only set-
ting consists of two phases. In the first phase, we find t-way collisions of F (X) =
(X ⊕ EK1

(X)) = v by accessing the reference sector T (r). In the second phase,
we guess a plaintext as M = P ⊕ v. The attack procedure using t-way collisions
is given as follows.
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Fig. 8. Ciphertext-only Attack.

1. Obtain qr pairs of (X,Y ) at the reference sector T (r) and evaluate (X ⊕Y ).
2. Find t-way collisions of F (X) = (X ⊕ Y (= EK1

(X))), which map to the
same value v.

3. Guess a values of a target plaintext M at T (t) from a corresponding cipher-
text C as M = C ⊕ v.

Complexity Evaluation. For the accurate estimation of the cost for finding
t-way collisions of F (X) in the Step 2, we assume that in-degree of an element
in the range of F (X) is distributed according to the Poisson distribution with
an expectation λ, which is equal to the average in-degree, i.e., λ = qr/2n is the
ratio between the sizes of the domain and range as with Dinur et al. [3]. For a
parameter t, the probability that an arbitrary element v will have an in-degree
of t is (λt · e−λ)/t!. Since there are 2n elements in the range, it is expected that
about (2n · λt · e−λ)/t! vertexes have an in-degree of t.

Assuming that a value of v in has t-way collisions, the success probability
of our plaintext recovery attack is estimated as t/2n. The time complexity is
estimated as qr for finding t-way collisions at the reference sector T (r).

Example 1. For n = 64 and qr = 260, which implies λ = 260/264 = 2−4, and
t = 10, the number of 10-way collisions is estimated as num = (2n ·λt ·e−λ)/t! =

(264 · (2−4)10 · e−2−4

/10!) = 4. With these parameters, the time complexity is es-
timated as 260 encryptions and its memory complexity is 260. Then, the success
probability in Step 3 is 10/264 = 2−60.68 while ideally it should be 2−64.

Example 2. For n = 128 and qr = 2124, which implies λ = 2124/2128 = 2−4,
and t = 25, the number of 18-way collisions is estimated as num = (2n · λt ·
e−λ)/t! = (2128·(2−4)18·e−2−4

/18!) = 4. With these parameters, time complexity
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Table 3. The expected number of vertexes for each qr computations and the suc-
cess probability of our ciphertext-only plaintext recovery attacks using multiple t-way
collision for n = 64.

qr Vertex Expected Number of Vertexes Success Probability Ideal Probability

262 12 1787 2−49.6 2−53.2

10 221.8 2−38.9 2−42.2

10 4 2−60 2−62

260 8 216.6 2−44.4 2−47.4

6 230.4 2−31.0 2−33.6

4 243.3 2−18.7 2−20.7

256 6 90 2−54.9 2−57.5

4 227.4 2−32.0 2−34.0

252 4 2739 2−51.6 2−53.6

is estimated as 2124 encryptions and its memory complexity is 2124. Then, the
success probability in Step 3 is 18/2128 = 2−123.83 while ideally it should be
2−128.

Multiple t-way Collision. For n = 64 and qr = 260, we are able to find
216.6 8-way collisions. Given a ciphertext, the probability that the corresponding
plaintext is included in a set of P = C ⊕ v, v ∈ V s, where V s is a set of
216.6 8 vertexes, is estimated as 244.4(= 216.6 × 8/264), while ideally it should
be 247.4(= 216.6/264). Table 3 shows the expected number of vertexes for each
qr, the success probability of our plaintext recovery attack which is estimated
as the probability that a plaintext is included in a set of P = C ⊕ v′, where v′

is a set of corresponding vertexes.

Multi-target Setting. Once t-way collisions are found in Step 2, plantext
recovery attacks are applicable to any ciphertext at any target sector T (t) with
the same success probability (namely multi-target attack). Thus, in the above
case, there are 244.4 ciphertexts in the while target disc, the attack is successful
one of them with a high probability.

8 Practical Impact

Since our attacks are based on collisions, the data complexity is at least 2n/2

for one key of XTS, which is not considered as an urgent risk when n = 128
including the case of XTS-AES. However, we stress that the storage encryption
is crucially different from encryption of communication that allows rekeying for
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each session to thwart the attacks that need a large amount of data per key. A
key in a storage encryption is hard to renew, since this implies total re-encryption
of storage devices. Hence it is likely to be used very long time (or forever), and
the risk of birthday attack is larger than the encryption for communications. In
case of 64-bit block ciphers however, as demonstrated by Sweet32 [1], a collision
can occur around 232 8-byte blocks which is about 32 Gbyte. In this case our
attack has a practical complexity.

We performed a survey on existing encryption software that employ 64-bit
block ciphers with LRW or XTS. The survey is on specification documents and
the product website, and we did not look into the source codes even if available.

Fortunately, most of popular products with active developments, such as Ve-
raCrypt 6, solely use XTS-AES or XTS with strong 128-bit block ciphers (e.g.
AES finalists) in addition to AES. Nevertheless, we can find some examples of
storage/file encryption software that use 64-bit block ciphers with LRW. We
note that our attacks against XTS are also applicable to LRW with minor mod-
ifications, since our attacks are independent of the mechanism for deriving each
masks

Examples.

– BestCrypt 7 is a popular encryption software and it employs 64-bit block
ciphers such as Blowfish, CAST, and GOST 28147-89 with LRW. We have
informed our findings to the developper of BestCrypt.

– Old version of TrueCrypt 8, specifically the version up to 4.2, supported
Blowfish, CAST-128, and TDES with LRW.

– A successor of TrueCrypt called CipherShed 9 used Blowfish, Cast, and DES
with LRW.

– Some popular encryption systems on linux such as dm-crypt 10 may support
64-bit ciphers and LRW. The supported ciphers will depend on the kernel.

9 Conclusion

In this paper, we have studied the security of XTS storage encryption scheme
from the aspects of plaintext recovery. The provable security result of the core
of XTS (XEX2) suggests that the attack is not feasible without data of 2n/2, and
indeed it is rather easy to derive an attack based on collision, using that amount
of data. However this attack only breaks the indistinguishability. Starting from
this simple collision attack, we have shown several plaintext recovery attacks
beyond collision, based on the popular adversary model against storage encryp-
tion. Our main observation is that, once a collision attack was successful, XTS

6 https://www.veracrypt.fr/en/Home.html
7 https://www.jetico.com/data-encryption
8 http://truecrypt.sourceforge.net/
9 https://www.ciphershed.org/

10 https://wiki.archlinux.org/index.php/dm-crypt
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can be seen as a variant of Single-key Even-Mansour (SEM) cipher, therefore we
can adapt the known attacks against SEM. To our knowledge, our work is the
first to study the plaintext recovery security of XTS. Since all attacks have 2n/2

to even close to 2n complexity, the attacks do not show a practical threat against
the standard XTS-AES for its n = 128-bit block. However, as we observed, there
still exist systems that use 64-bit block ciphers with XTS or LRW for storage
encryption, where our attacks can be a practical concern.
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