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Abstract—Modular multiplication is one of the most compute-
intensive arithmetic operations. Most public-key cryptosytems
utilize modular multiplications of integers of various lengths,
depending on security requirements. Efficient algorithms and im-
plementations are required to realize a practical public-key cryp-
tosystem. Different parameters, such as area, power and time,
can be optimized for different implementation requirements. Low
latency was not as important as high throughput requirement for
modular multiplication implementations before. However, with
recent work on Verifiable Delay Functions (VDFs), a necessity
for lowest possible latency for modular multiplication implemen-
tations emerged. VDFs are designed to take a prescribed time to
realize the underlying computation that can be publicly verified.
VDF constructions are required to utilize inherently sequential
arithmetic operations. Efficient VDF constructions have been
proposed recently, based on time-lock puzzles constructed by
Rivest, Shamir and Wagner. An exponentiation operation in an
RSA group needs to be realized for these VDF constructions. For
these VDF constructions to be practical, low-latency modular
multiplication algorithms and implementations are required.
In this paper, a modular multiplication algorithm suitable for
low-latency circuit implementations is proposed and an FPGA-
optimized variant of this algorithm is presented.

Index Terms—Verifiable Delay Function (VDF), Modular Mul-
tiplication, Reduction

I. INTRODUCTION

Modular arithmetic is essential for various cryptographic
families. RSA [1] is one of the most widely utilized public-
key cryptosystems that is used for secure data transmission. In
RSA, public key is generated by multiplying two secret prime
numbers and security of RSA is based on integer factorization
problem [2]. This public key is used as modulus for main op-
erations of RSA and modulus length is determined according
to acceptable security levels. For example, National Institute
of Standards and Technology (NIST) currently recommends
usage of key sizes of 2048 bits [3].

For RSA, main operation is modular exponentiation. There
are various methods for efficient modular exponentiation im-
plementations [4]. Modular multiplication and modular squar-
ing of large integers are the most compute-intensive common
building blocks of these methods. Therefore, performance of
implementations of modular multiplication is directly related
to performance of RSA operations.

There are well-studied high-level algorithms and methods
enabling efficient modular multiplication implementations.
One of the most commonly used modular multiplication al-
gorithm is Montgomery Multiplication [5]. Montgomery Mul-

tiplication algorithm realizes C ′ ≡ A ·B ·R−1 mod M instead
of the desired C = A · B mod M outcome. To achieve the
desired outcome, a post-processing step is required. Therefore,
Montgomery Multiplication algorithm is efficient only for
applications involving many modular arithmetic operations,
such as exponentiation, due to inherent pre-processing and
post-processing overheads.

Barrett Reduction [6] can also be utilized for implementing
modular multiplication operation. Barrett Reduction algorithm
computes the desired C = A · B mod M outcome, which
makes it a better choice for a single modular multiplication
scheme, instead of exponentiation which involves large num-
ber of modular multiplication operations. Although Barrett
Reduction and Montgomery Reduction algorithms present
similar complexities, they present different performances for
different implementation settings [7], [8].

There are also other methods for modular multiplication,
which can be employed for different realistic constraints.
These implementations mostly focus on a high-throughput
yield, instead of a low-latency yield. For public-key crypto-
graphic applications, low-latency modular multiplication im-
plementation is not a practical requirement. For resource-
constrained devices, low-power is the main requirement for
implementations. For datacenter applications, high-throughput
is the main requirement. For client applications, a public-key
operation in the milliseconds range is sufficient for a practical
implementation. With the proposal of RSA-based Verifiable
Delay Functions (VDFs) [9], [10], [11], a significant require-
ment for a low-latency modular multiplication operation has
emerged.

A VDF is required to realize an inherently sequential
computational task. Exponentiation in a group of unknown
order is believed to have this property [10], and was used
by Rivest, Shamir, and Wagner [12] to construct the notion
of time-lock puzzles. The two recent VDF proposals by
Pietrzak [9] and Wesolowski [11] are based on this notion. An
exponentiation operation in an RSA group needs to be realized
for these VDF constructions. For these VDF constructions
to be practical, low-latency modular multiplication algorithms
and implementations are required. It should be noted that for
hardware implementations of VDF, circuit depth is the most
important optimization constraint for modular multiplication.

Efficient constuctions for multiplication operation is crucial
for the efficiency of modular multiplication. Both Montgomery
and Barrett Reduction are high-level algorithms and they uti-
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lize integer multiplication operations as their low-level build-
ing blocks. There are algorithms that allow lower circuit depth
than classical multiplication operation [13], [14]. Schonhage-
Strassen is an NTT-based method presented in 1971 that can
multiply two n-bit integers in O(nlognloglogn) time [15].
Harvey et. al. presented an improved algorithm that can
multiply two n-bit integers in O(nlogn4logn) operations [16],
[17]. However, efficient low-latency hardware implementations
of these schemes do not exist in literature. A theoretical log
depth circuit algorithm is presented in [14]. To the best of our
knowledge, no practical low-latency implementation of this
algorithm exists.

In this paper, a low-level low-latency multiplication al-
gorithm is presented. This algorithm enables an O(logn)
depth circuit implementations for modular multiplication and
modular squaring operations on large integers. A proof-of-
concept FPGA implementation of the proposed algorithm is
also presented. The results show that proposed algorithm is
suitable for utilization in VDF circuits.

The remainder of the paper is structured as follows: Sec-
tion II describes classical schoolbook multiplication algorithm
for integers and for polynomials, which presents the inherent
complexity of multiplication operations. Section III presents
the modular multiplication algorithm suitable for low-latency
circuit implementations. Section IV analyzes the complexity
of the circuit in terms of area and timing. Section V describes
an FPGA implementation and presents performance results.

II. BACKGROUND

Throughout this paper, following notations are used. All
operands are n-bit integers. An n-bit integer A is represented
in radix r as A = (Ak−1, Ak−2, ..., A1, A0)r, where r = 2d

and k = dn/de. Here, d is the digit length, Ai is ith digit
where Ai ∈ [0, r − 1] and k is the number of digits of A in
radix r representation. The ith digit Ai can be calculated as:

Ai = (A >> (d ∗ i)) mod r.

Multi-precision integer A can be written in terms of its digits
as:

A =

k−1∑
i=0

Ai · ri.

Notation T j is used to represent jth element of an array T .
A k-digit integer A can be represented using a polynomial

A(x) of degree k-1 as:

A(x) =

k−1∑
i=0

Ai · xi

where x = r. It should be noted that the polynomial
representation is only used for ease of explanation of the
algorithm, providing a sense of abstraction, due to a high level
of redundancy.

A. Classical Digitwise Integer Multiplication

Given two k-digit integers A and B, Algorithm 1 presents
a straightforward method of multiplying these two integers

to realize the operation C = A · B, where C is a 2k-digit
integer. It should be noted that this is a representative version
of the classical digitwise multiplication algorithm, constructed
in order to present the complexity of the operation. There
are various other methods and orders of operation that can
bu utilized to construct a classical digitwise multiplication
algorithm.

Algorithm 1 Classical Digitwise Integer Multiplication
Input: A = (Ak−1, Ak−2, ..., A1, A0)r
Input: B = (Bk−1, Bk−2, ..., B1, B0)r
Output: C = (C2k−1, C2k−2, ..., C1, C0)r

1: for i from 0 to 2k − 1 do
2: Ci = 0
3: end for
4: for i from 0 to k − 1 do
5: for j from 0 to k − 1 do
6: T j = (Ai ·Bj) . T j = (T j

1 , T
j
0 )r

7: end for
8: carry = 0
9: for j from 0 to k − 1 do

10: {carry, Cj+i} = Cj+i + T j
0 + carry

11: end for
12: Ck+i = Ck+i + carry
13: carry = 0
14: for j from 0 to k − 1 do
15: {carry, Cj+i+1} = Cj+i+1 + T j

1 + carry
16: end for
17: end for

Algorithm 1 demonstrates the inherent complexity of a
multi-precision multiplication operation. There are a total of
k2 d-bit core multiplication operations, which are followed
by costly addition operations. Although these addition opera-
tions can be realized via redundant arithmetic using efficient
constructions such as Wallace Tree [18], there is an inherent
costly n-bit carry propagation, which makes this algorithm not
suitable for low-latency applications such as VDF.

B. Classical Polynomial Multiplication
Given two polynomials A(x) and B(x) of degree k-1, Algo-

rithm 2 presents a straightforward method of multiplying these
two polynomials to realize the operation C(x) = A(x) ·B(x),
where C(x) is a polynomial of degree 2k-2.

Algorithm 2 demonstrates the inherent complexity of a poly-
nomial multiplication operation. Although seemingly simpler
than integer multiplication operation with much shorter carry
propagation, polynomial multiplication in this form is not
suitable for exponentiation. Since coefficients of the inputs are
d-bit numbers, coefficients of the output are required to be d
bits wide to be suitable for exponentiation operation. However,
for Algorithm 2, each output Ci is 2d+log(k) bits wide, since
k 2d-bit numbers are added together in the worst case.

In this paper, a low-level multiplication algorithm that is
taking advantage of the shorter carry chain utilized in poly-
nomial multiplications is proposed. Polynomial multiplication
algorithm defined in Algorithm 2 is modified to be suitable
for use in modular exponentiation.
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Algorithm 2 Classical Polynomial Multiplication

Input: A(x) =
∑k−1

i=0 Ai · xi
Input: B(x) =

∑k−1
i=0 Bi · xi

Output: C(x) =
∑2k−2

i=0 Ci · xi
1: for i from 0 to 2k − 2 do
2: Ci = 0
3: end for
4: for i from 0 to k − 1 do
5: for j from 0 to k − 1 do
6: Cj+i = Cj+i + (Ai ·Bj)
7: end for
8: end for

III. THE PROPOSED MODULAR MULTIPLICATION
ALGORITHM

In this section, an incomplete modular multiplication algo-
rithm working on integers with redundant representations that
is suitable for modular exponentiation is presented.

A complete modular multiplication algorithm is required to
realize

C = A ·B mod M

operation, where C is an integer satisfying the condition 0 <
C < M . Since the proposed algorithm is designed to work in
exponentiation operation, output of the modular multiplication
operation can be in redundant form, not satisfying the said
condition.

First, we define a function that converts a k-digit integer
A = (Ak−1, Ak−2, ..., A1, A0)r to a polynomial of degree k-
1 with d-bit coefficients:

A(x) = inttopoly(A)

where

A(x) =

k−1∑
i=0

Ai · xi.

We also need to define a function that converts a polynomial
of degree K with arbitrary-length coefficients back to integer
form:

A = polytoint(A(x))

where

A =

K∑
i=0

Ai · 2d·i.

A. Multiplication

The proposed algorithm is a modified version of the polyno-
mial multiplication algorithm presented in Algorithm 2. Main
problem of this algorithm is that the output polynomial is in
different redundant representation than the inputs of the algo-
rithm, which makes it inefficient for modular exponentiation.
A modified version of the algorithm with an attempt to fix this
issue is presented in Algorithm 3.

Each product T can be written as a polynomial as:

T1x+ T0

Algorithm 3 Modified Polynomial Multiplication Algorithm

Input: A(x) =
∑k−1

i=0 Ai · xi, 0 ≤ Ai < 2d

Input: B(x) =
∑k−1

i=0 Bi · xi, 0 ≤ Bi < 2d

Output: C(x) = A(x) · B(x) =
∑2k−1

i=0 Ci · xi, 0 ≤ Ci <
2d+1

1: for i from 0 to 2k − 1 do
2: Di = 0
3: end for
4: for i from 0 to k − 1 do
5: for j from 0 to k − 1 do
6: T = (Ai ·Bj) . T = (T1, T0)r
7: Di+j = Di+j + T0
8: Di+j+1 = Di+j+1 + T1
9: end for

10: end for
11: for i from 0 to 2k − 1 do
12: Ci = 0
13: end for
14: for i from 0 to 2k − 2 do . ∀i,Di = (Di1 , Di0)r
15: Ci = Ci +Di0

16: Ci+1 = Ci+1 +Di1

17: end for
18: C2k−1 = C2k−1 +D2k−1

x

A0A1A2

B0B1B2

D0D1D2D3D4D5

T0 digits

T1 digits

+

Fig. 1. Initial computations of Algorithm 3.

Therefore, T1 can be accumulated into the higher coefficient
Di+j+1 instead of Di+j . Therefore, it should be noted that,
output and inputs of Algorithm 3 satisfies the equation:

polytoint(C(x)) = polytoint(A(x)) · polytoint(B(x)).

First part of Algorithm 3 is detailed in Figure 1 for k = 3.
Final part of the Algorithm involves addition of two d-bit
numbers, which results in a (d + 1)-bit integer. Therefore,
coefficients of output polynomial of Algorithm 3 are (d+1)-
bit integers, which is still not acceptable for exponentiation.
In order to fix this issue, another modification to the algorithm
is proposed. A redundant-representation polynomial multipli-
cation algorithm is presented in Algorithm 4.
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Algorithm 4 Redundant-Representation Polynomial Multipli-
cation Algorithm

Input: A(x) =
∑k−1

i=0 Ai · xi, 0 ≤ Ai < 2d+1

Input: B(x) =
∑k−1

i=0 Bi · xi, 0 ≤ Bi < 2d+1

Output: C(x) = A(x) ·B(x) =
∑2k

i=0 Ci ·xi, 0 ≤ Ci < 2d+1

1: for i from 0 to 2k do
2: Di = 0
3: end for
4: for i from 0 to k − 1 do
5: for j from 0 to k − 1 do
6: T = (Ai ·Bj) . T = (T2, T1, T0)r
7: Di+j = Di+j + T0
8: Di+j+1 = Di+j+1 + T1
9: Di+j+2 = Di+j+2 + T2 . 0 ≤ T2 < 22

10: end for
11: end for
12: for i from 0 to 2k do
13: Ci = 0
14: end for
15: C2k = D2k . 0 ≤ D2k < 22

16: for i from 0 to 2k − 1 do . ∀i,Di = (Di1 , Di0)r
17: Ci = Ci +Di0

18: Ci+1 = Ci+1 +Di1

19: end for . 0 ≤ Ci < 2d+1 ∀i ∈ [0, 2k].

It should be noted that, output and inputs of Algorithm 4
still satisfies Equation III-A.

Step 6 of Algorithm 4 shows the multiplication operation of
the coefficients of two polynomials. These multiplications can
be realized in parallel utilizing a single (d+1)-bit multiplier for
each multiplication. Since coefficients of input polynomails
in Algorithm 4 are d+1 bits wide, result of T = (Ai · Bj)
operation in Step 6 is 2d+2 bits wide. Steps 7, 8, 9 of
Algorithm 4 shows accumulation of the results of each core
multiplication operation to their respective coefficient. Instead
of accumulating the result of each coefficient into its respective
coefficient and growing the coefficient size of the intermediate
result to 2d+log(k) bits, each (2d+2)-bit result T is split into
3 digits utilizing the property:

T = T2 ∗ x2 + T1 ∗ x1 + T0

Since weight of each coefficient is d bits, this operation does
not change the validity of the result.

Algorithm 4 is detailed in Figure 2 for k = 3. It can be seen
that each T result is split into 3 digits and accumulated into
corresponding resulting coefficients. In this algorithm, carry
propagation happens only across 2 coefficients. Therefore,
critical path of this algorithm includes a 2d-bit carry chain,
instead of n bits. Since both input coefficients and output
coefficients are both d+1 bits wide, this algorithm is suitable
for use in modular exponentiation.

B. Reduction

Reduction operation is defined as C = A · B mod M .
However, within the scope of this work, this does not need to
be realized fully. Any redundant representation satisfying the

x

A0A1A2

B0B1B2

D0D1D2D3D4D5D6

T0 digits

T1 digits

T2 digits

+

Fig. 2. Initial computations of Algorithm 4.

condition C ≡ A · B mod M can be utilized for reduction
in exponentiation operation. The only requirement is that the
result of the multiplication operation needs to be reduced back
to similar redundant form as input of the multiplication.

Different reduction algorithms achieve different form of
results. A low-latency Montgomery Reduction [5] as well as
a low-latency Barrett Reduction [6] implementation utilizes 2
sequential large-integer multiplications for the reduction op-
eration after the multiplication. A full modular multiplication
utilizing Montgomery Reduction or Barrett Reduction includes
3 separate large-integer multiplications in its critical path. For
a low-latency implementation, this can be improved.

Assume a fixed modulus is used for the reduction operation.
This is feasible considering the fact that for public key opera-
tions, same modulus is utilized for long periods of time. Also,
for VDF implementations, a fixed modulus can be utilized.

Algorithm 5 Precomputation of look-up tables.
Input: Modulus M
Output: Precomputed tables LUT [k + 1][2d+1][k]

1: for i from 0 to k do
2: for j from 0 to 2d+1 − 1 do
3: T (x) = inttopoly(j · 2n+d∗i mod M)
4: for t from 0 to k − 1 do
5: LUT [i][j][t] = Tt
6: end for
7: end for
8: end for

Redundant-representation polynomial C(x) =
∑2k

i=0 Ci · xi
can be converted to its integer form as:

C =

2k∑
i=0

Ci · 2d·i.
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Therefore, each coefficient Ci · xi holds the value:

Ci · xi = Ci · 2d·i.

Since k · d = n+ ε, where 0 ≤ ε < d, C0 : Ck−1 coefficients
of C(x) are not reduced. However, remaining Ck : C2k

coefficients need to be reduced. Each coefficient Ci · xi can
be rewritten as:

T (x) = Ci · xi = inttopoly(Ci · 2d·i).

which is a polynomial of degree k-1. Using this approach,
look-up tables as shown in Algorithm 5 are precomputed. The
aim of generating these look-up tables is to store precomputed
modular values of each Ck : C2k coefficients resulting from
Algorithm 4.

Using these precomputed look-up tables, reduction opera-
tion is applied on the result of the multiplication operation
from Algorithm 4, as shown in Algorithm 6.

Algorithm 6 Reduction Algorithm
Input: C(x) = A(x) ·B(x), where

1: C(x) =
∑2k

i=0 Ci · xi, 0 ≤ Ci < 2d+1

2: A(x) =
∑k−1

i=0 Ai · xi, 0 ≤ Ai < 2d+1

3: B(x) =
∑k−1

i=0 Bi · xi, 0 ≤ Bi < 2d+1

Input: LUT [k + 1][2d+1][k]
Output: Res(x) =

∑k
i=0Resi · xi, 0 ≤ Resi < 2d+1

4: for i from 0 to k − 1 do
5: Di = Ci

6: end for
7: for i from k to 2k do
8: for j from 0 to k − 1 do
9: Dj = Dj + LUT [i− k][Ci][j]

10: end for
11: end for
12: for i from 0 to k do
13: Resi = 0
14: end for
15: for i from 0 to k − 1 do . ∀i,Di = (Di1 , Di0)r
16: Resi = Resi +Di0

17: Resi+1 = Resi+1 +Di1

18: end for . ∀i, 0 ≤ Resi < 2d+1.

Algorithm 6 is detailed in Figure 3 for k = 3.
As stated before, the only requirement is that the result

of the multiplication operation needs to be reduced back to
similar redundant form as input of the multiplication. It can
be seen in Algorithm 6 that output is a polynomial of degree k
with (d+1)-bit coefficients, whereas the inputs A(x) and B(x)
are polynomials of degree k− 1 with (d+ 1)-bit coefficients.
Another level of reduction is required to bring the output
polynomial to the same redundant form as the input. Since
this will add another sequential operation to the reduction
algorithm, increasing the critical path significantly, another
option is studied.

Instead of reducing the output to a polynomial of degree
k-1, input of the multiplication is modified as a polynomial of
degree k. Here, redundant representation of each operand is
defined as a polynomial of degree k with d+1-bit coefficients.

C0C1C2C3C4C5C6

LUT

LUT

LUT

LUT

D0D1D2

+

Fig. 3. Initial computations of Algorithm 6.

C. Modular Multiplication Operation

In this section, 3 different algorithms are presented. These
algorithms can be utilized in combination to realize a modular
multiplication operation.

Modified multiplication algorithm of redundant representa-
tion is detailed in Algorithm 7. This is a slightly modified
version of Algorithm 4, to make it suitable for use in mod-
ular exponentiation, combined with the reduction algorithm
presented in Algorithm 6.

Algorithm 7 Final Redundant-Representation Polynomial
Multiplication Algorithm

Input: A(x) =
∑k

i=0Ai · xi, 0 ≤ Ai < 2d+1

Input: B(x) =
∑k

i=0Bi · xi, 0 ≤ Bi < 2d+1

Output: C(x) =
∑2k+2

i=0 Ci · xi, 0 ≤ Resi < 2d+1

1:
2: for i from 0 to 2k + 2 do
3: Di = 0
4: end for
5: for i from 0 to k do
6: for j from 0 to k do
7: T = (Ai ·Bj) . T = (T2, T1, T0)r
8: Di+j = Di+j + T0
9: Di+j+1 = Di+j+1 + T1

10: Di+j+2 = Di+j+2 + T2 . 0 ≤ T2 < 22

11: end for
12: end for
13: for i from 0 to 2k + 2 do
14: Ci = 0
15: end for
16: C2k+2 = D2k+2 . 0 ≤ D2k+2 < 22

17: for i from 0 to 2k + 1 do . ∀i,Di = (Di1 , Di0)r
18: Ci = Ci +Di0

19: Ci+1 = Ci+1 +Di1

20: end for . 0 ≤ Ci < 2d+1 ∀i ∈ [0, 2k + 2].

For Steps 8, 9 and 10 of Algorithm 7, at most 2k + 1 d-
bit numbers and k 2-bit numbers are accumulated, as can be
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seen from Figure 2. Since each Di is assumed to be a 2-digit
number, log(2k+2) cannot be larger than d. For combinations
of n and d that results in log(2k + 2) > d, final steps of
Algorithm 7 needs to be modified. Thus, this algorithm works
as it is for n < d · 2d−2. For example, if d = 8, Algorithm 7
works as it is for n <= 512. If d = 16, Algorithm 7 works
as it is for n <= 262144.

Since number of coefficients of the redundant representa-
tions is modified, the number of precomputed look-up tables
also needs to be modified. Algorithm 8 details precomputations
of required look-up tables, which is a slight modified version
of Algorithm 5.

Algorithm 8 Precomputation of look-up tables for Algo-
rithm 9
Input: Modulus M
Output: Precomputed tables LUT [k + 3][2d+1][k]

1: for i from 0 to k + 2 do
2: for j from 0 to 2d+1 − 1 do
3: T (x) = inttopoly(j · 2n+d∗i mod M)
4: for t from 0 to k − 1 do
5: LUT [i][j][t] = Tt
6: end for
7: end for
8: end for

Finally, Algorithm 9 details the modified reduction algo-
rithm. It can be seen that output of this reduction algorithm
is in identical redundant representation as the input of the
multiplication algorithm presented in Algorithm 7.

Algorithm 9 Final Reduction Algorithm
Input: C(x) = A(x) ·B(x), where

1: C(x) =
∑2k+2

i=0 Ci · xi, 0 ≤ Ci < 2d+1

2: A(x) =
∑k

i=0Ai · xi, 0 ≤ Ai < 2d+1

3: B(x) =
∑k

i=0Bi · xi, 0 ≤ Bi < 2d+1

Input: LUT [k + 3][2d+1][k]
Output: Res(x) =

∑k
i=0Resi · xi, 0 ≤ Resi < 2d+1

4: for i from 0 to k − 1 do
5: Di = Ci

6: end for
7: for i from k to 2k + 2 do
8: for j from 0 to k − 1 do
9: Dj = Dj + LUT [i− k][Ci][j]

10: end for
11: end for
12: for i from 0 to k do
13: Resi = 0
14: end for
15: for i from 0 to k − 1 do . ∀i,Di = (Di1 , Di0)r
16: Resi = Resi +Di0

17: Resi+1 = Resi+1 +Di1

18: end for . ∀i, 0 ≤ Resi < 2d+1.

For Step 9 of Algorithm 9, k + 3 d-bit and 1 (d + 1)-bit
numbers are accumulated, as can be seen from Figure 3.
Since each Di is assumed to be a 2-digit number, log(k + 5)
cannot be larger than d. For combinations of n and d that

results in log(k + 5) > d, final steps of Algorithm 9 needs
to be modified. Since log(k + 5) < log(2k + 2) for large
numbers, reduction part does not constitute a bottleneck for
parameter selection requirements.

Polynomials A(x), B(x) and Res(x) are representing inte-
gers A, B and Res, respectively. The equation:

polytoint(Res(x)) ≡
polytoint(A(x)) · polytoint(B(x)) mod M (1)

ensures that Algorithms 7, 8 and 9 can be utilized for an
incomplete modular multiplication operation.

IV. COMPLEXITY ANALYSIS

Complexity of the modular multiplication operation as a
combination of 3 algorithms described in section III-C heavily
depends on the choice of d.

From a circuit implementation point of view, Algorithm 7
has the following in its critical path:
• Core multiplier: Step 7 of Algorithm 7 consists of

(k + 1)2 independent core multiplications of (d+ 1)-bit
coefficients. (k + 1)2 core multipliers can be utilized to
realize this step, with a circuit depth of a single (d+1)-bit
core multiplier.

• Adder Tree: Results of the (k+1)2 core multiplications
are accumulated as shown in Steps 8, 9 and 10 of
Algorithm 7. This accumulation can be realized using
an adder tree, such as Wallace Tree [18]. A Wallace tree
can be constructed with O(n2) area and O(logn) circuit
depth.

• Adder: After the Wallace Tree in Algorithm 7, coef-
ficients needs to be converted from redundant carry-
save representation to integer representation. All of the
operations after the Wallace Tree can be combined with
a single (2d+2)-bit carry lookahead adder, since focus
is implementing the fastest possible multiplier. Although
carry lookahead adder has O(logn) circuit depth, choice
of d is not relevant to the integer length n. Therefore,
this delay can be included as a constant delay.

Algorithm 8 can be used to precompute values that are
stored in a memory structure. Depending on the value of d,
complexity of the look-up table memory structure varies.

Algorithm 9 has the following in its critical path:
• Look-up Table Read: Each precomputed value needs to

be read from the look-up table for Step 9 of Algorithm 9.
Since complexity of these look-up tables depend on the
choice of d, this delay can be considered as a constant.

• Adder Tree: Precomputed values read from the look-up
tables are accumulated as shown in Step 9 of Algorithm 9.
As can be seen from the algorithm, (k + 3) 16-bit
and one 17-bit numbers are accumulated together. This
accumulation can be realized using an adder tree, as
described above, with an O(logn) circuit depth.

• Adder: After the adder tree in Algorithm 9, coefficients
needs to be converted from redundant carry-save repre-
sentation to integer representation. This can be realized
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TABLE I
PERFORMANCE RESULTS OF FPGA IMPLEMENTATION OF THE PROPOSED MODULAR MULTIPLICATION ALGORITHM.

Area Time
bit-length LUT FF DSP logic delay route delay total logic percentage

128 24120 1472 81 3.8ns 8.05ns 11.85ns 32.04%
256 87622 2952 289 4.405ns 13.14ns 17.55ns 25.11%
512 329868 4143 1089 4.73ns 20.95ns 25.68ns 18.42%

similar to the addition described for multiplication, with
a constant delay.

V. PROOF OF CONCEPT IMPLEMENTATION

For proof of concept, an FPGA-optimized version of the
proposed modular multiplication operation is implemented.
XILINX VIRTEX-7 FPGA families utilize functional blocks
named DSP48E1, which include 24 · 17-bit unsigned multi-
pliers [19]. These multipliers can be used as (d+ 1)-bit core
multipliers, realizing the operation T = (Ai ·Bj) from Step 6
of Algorithm 7. Therefore, d=16 is chosen for a proof of
concept FPGA implementation.

Although a theoretical O(logn) circuit depth, reduction
operation is impractical to realize for d = 16 since look-
up tables with 17-bit read address need to be implemented.
A single look-up table of this form holds n · 216 bits of
precomputed data. For large n, this is impractical for both area
and timing reasons. For a low-latency FPGA implementation,
a better reduction method is proposed for larger choices of d.

Algorithm 10 Precomputation of look-up tables for d = 16.
Input: Modulus M
Output: LUT8[k + 3][256][k], LUT9[k + 1][512][k]

1: for i from 0 to k + 2 do
2: for j from 0 to 255 do
3: T (x) = inttopoly(j · 2n+16∗i mod M)
4: for t from 0 to k − 1 do
5: LUT8[i][j][t] = Tt
6: end for
7: end for
8: end for
9: for i from 0 to k + 2 do

10: for j from 0 to 511 do
11: T (x) = inttopoly(j · 2n+16∗i+8 mod M)
12: for k from 0 to k − 1 do
13: LUT9[i][j][t] = Tt
14: end for
15: end for
16: end for

First, look-up tables as shown in Algorithm 10 are precom-
puted. The aim of generating these look-up tables is to store
precomputed modular values of each Ck : C2k+2 coefficients
resulting from Algorithm 7. Instead of generating a 17-bit
look-up table, one 8-bit look-up table and one 9-bit look-up
table is generated for each coefficient. 8-bit look-up tables are
generated for the low 8 bits of the 17-bit coefficients and 9-bit
look-up tables are generated for the remaining high 9 bits of
the 17-bit coefficients.

Using the precomputed tables LUT8 and LUT9, reduction
operation is applied on the result of the multiplication opera-
tion from Algorithm 7, as shown in Algorithm 11.

Algorithm 11 FPGA-Optimized Reduction Algorithm for d =
16
Input: C(x) = A(x) ·B(x), where

1: C(x) =
∑2k+2

i=0 Ci · xi, 0 ≤ Ci < 217

2: A(x) =
∑k

i=0Ai · xi, 0 ≤ Ai < 217

3: B(x) =
∑k

i=0Bi · xi, 0 ≤ Bi < 217

Input: LUT8[k + 3][256][k]
Input: LUT9[k + 3][512][k]
Output: Res(x) =

∑k
i=0Resi · xi, 0 ≤ Resi < 217

4: for i from 0 to k − 1 do
5: Di = Ci

6: end for
7: for i from k to 2k + 2 do
8: TH = Ci >> 8 . higher 9 bits
9: TL = Ci mod 28 . lower 8 bits

10: for j from 0 to k − 1 do
11: Dj = Dj + LUT8[i− k][TL][j]
12: Dj = Dj + LUT9[i− k][TH ][j]
13: end for
14: end for
15: for i from 0 to k do
16: Resi = 0
17: end for
18: for i from 0 to k − 1 do . ∀i,Di = (Di1 , Di0)r
19: Resi = Resi +Di0

20: Resi+1 = Resi+1 +Di1

21: end for . ∀i, 0 ≤ Resi < 217.

First part of Algorithm 11 is detailed in Figure 4 for k = 3.
It can be seen that for this version of the algorithm, 2(k+3) 16-
bit numbers and one 17-bit number are accumulated together,
which still results in O(logn) circuit depth.

Algorithms 7, 10 and 11 are implemented targeting
XILINX Virtex UltraScale+ XCVU9P FPGA using XILINX
Vivado Design Suite. For proof of concept implementation,
n =128, 256 and 512 are chosen with d =16. Results
are presented in Table I. Logic delay and routing delay are
extracted from the reports generated by the Vivado tool.
Although slightly worse logic delays exist in other critical
paths, only the worst critical paths are reported here. Logic
delay numbers demonstrate the O(logn) circuit depth of the
proposed modular multiplication algorithm. Routing delays
demonstrate the wiring delays introduced by the O(n2) area
of the proposed multiplier.
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Fig. 4. Initial computations of Algorithm 11.

VI. CONCLUSION

In this paper, a novel and practical modular multiplication
algorithm is presented. Proof of concept implementation re-
sults show that this algorithm is suitable for low-latency appli-
cations. This algorithm can be tailored for different constraints
to achieve lowest possible latency for different environments.
It should be noted that a custom 2048-bit implementation of
this algorithm was utilized to solve the LCS35 puzzle [20] in
almost 60 days [21].
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