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Abstract 

Blockchains such as bitcoin rely on reaching global consensus for the distributed ledger, and suffer 

from a well know scalability problem. We propose an algorithm which can avoid double spending in 

the short term with just O(√n) messages, relying on the fact that the velocity of money in the real 

world has coins generally circulating through at most a few wallets per day. The algorithm should 

be practical to avoid double spending with arbitrarily high probability, while feasibly coping with 

all the commerce in the world. This k-root-n algorithm is less effective in the long term once money 

circulates through a significant proportion of the world’s wallets, and should therefore be used as a 

complement to a global consensus. Thus, global consensus can be reached periodically and with a 

considerable lag, while money can be safely spent with quick transactions in-between. 

Introduction 

In blockchains such as bitcoin, all n nodes reach Nakamoto Consensus (Nakamoto, 2009) on each 

block of transactions creating a scalability problem (Network, 2019) which famously limits the 

entire bitcoin network to a few transactions per second while consuming massive power. 

Nakamoto Consensus takes O(n) communication messages which limits its scale, although is 

already a huge improvement on traditional consensus algorithms like Paxos (Lamport, 1998) which 

take at least O(n2) messages. 

In practice, bitcoin transactions suffers from a lag time of between 15 minutes to several hours 

before being included in a block on the bitcoin blockchain (this lag time partly depending on how 

high a fee is paid), then an hour longer more to reach the commonly desired threshold of six block 

confirmation. Thus, there is a several hour latencies before received bitcoins can be respent. 

At the time of writing the typical fee paid to the miner for a single Bitcoin transaction is tens of 

thousands of Satoshis or about $0.50 - $5, more expensive and slower than most domestic bank 

transactions. 

We propose a scalable low-latency solution which can run in parallel to a global consensus 

mechanism such as blockchain, protecting against double spending in the short-term, while the n 

nodes reach consensus on transactions with a lag of some hours from the transaction time. With 

this algorithm we can also accept a situation where consensus is achieved infrequently (e.g. we 

could accept longer blocks which are created every hour, or every few hours rather than bitcoin’s 

average of 10 minutes). The consensus itself could be the bitcoin blockchain or another blockchain 

or other consensus blockchain algorithms such as SCP (Loi Luu, 2015) or a traditional algorithm 

like PBFT (Liskov, 1999).  
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For example, each morning the nodes may reach consensus on the valid transaction histories and 

wallet balances as of the preceding midnight GMT, and they may do so asynchronously, reaching 

the consensus by say 6am the next morning. Or in bitcoin terms we assume that a transaction is 

processed and verified within 6 hours and we take the chain up to the 6-th last block as known at 

6am as a final record of all transactions dated up to the midnight before.  

This timing with a 24-hour cycle and 6-hour lag is just a useful example. The purpose of the 

algorithm is that global consensus on transactions may only be reached periodically and with a 

considerable lag from the transaction time, and in the meantime we propose a solution to allow 

people to trade (in particular to pass on received coins safely) with next to zero latency. 

We introduce a probabilistic algorithm called k-root-n which can avoid double-spending in the 

short to medium term, while there is no global consensus on the ledger, with arbitrarily high 

probability of detecting double spend, with just O(√n) messages per transaction. This is under the 

realistic assumption that specific money balances only circulate through O(constant) nodes in a 24-

hour period. This assumption is realistic as in the real economy money circulates with a  velocity 

measured in transactions per year and bitcoin is constrained by lag times to circulating a few times 

per day and in practice much more rarely on average. 

In this algorithm the transactions are not off-chain and not limited to finite subset of user as in 

other solutions like the Lightning Network (Dryja, 2019). Every transaction can be on-chain. But the 

transaction verification is low latency allowing transactions to continue off-chain while waiting for 

the blockchain to catch up. And the algorithm only involves O(√n) nodes, typically we will assume 

that we pick a number of verification messages around 10√n.  

To see how well the k-root-n algorithm scales, assume n=10 billion people (the projected world 

population for 2050 and much more than bitcoin’s current 32m wallets) transacting each on 

average once an hour 24-hours per day (higher than the average rate of commerce). Each 

transaction will involve messages to 10√n=1 million nodes. We will see that this gives a probability 

of p≈10-9 of getting away with double spending even if half the nodes are fraudulent and 10% of the 

nodes are unavailable (i.e. 4.5√n honest nodes validating).  So, each transaction only burdens 1 out 

of 10,000 nodes and with 10 billion transactions per hour globally, or 2.77million transactions per 

second globally, each node has to be involved in 278 transactions per second which is feasible for a 

modern computer. Thus, it seems practical that this algorithm could securely cope not only with 

Visa/Mastercard volumes but in fact with all the commerce in today’s world and in the foreseeable 

future. 

Basic idea of √n random double spending detection 

We assume for now that every wallet is also a node which is online and provides basic verification 

services to the network. The basic idea is that any honest node that want to make sure the funds 

they received have not been double spent, will query k√n random nodes and share with each of 

them the transaction history (since the last global consensus) of the person sending them funds. 

Here k is a small number greater than 1, we generally recommend and assume k=10 for an effective 

k=4.5 after deducting 10% non-respondent nodes and up to 50% fraudulent nodes.  



The communication with k√n random nodes can be directly or preferably cascading the query 

through a smaller number of nodes in a simple tree to avoid network bottlenecks of one node 

making k√n networks calls at the same instant. 

On average for any two honest nodes receiving a payment there will be an average of k2 common 

nodes queried by both, any one of which can detect double spending and raise the alarm.  To see 

this, the first honest node queried randomly k√n nodes which is a proportion k/√n of all n nodes. 

So, when the second honest node queries k√n random nodes, on average a proportion of k√n * 

(k/√n) = k2 will overlap.  

Choosing say k=4.5 is sufficient that there are on average 25 common honest responsive nodes and 

we will see that there is only a probability of ~10-9 of zero common honest responsive nodes and 

therefore the chances of getting away with double spending are negligible. Also, the penalty for 

double spending is at least the minimum stake so if each wallet has a minimum stake m of $1, and 

each transaction is limited to well under $1 billion, say to a maximum M=$1,000,000, there is no 

expected benefit of double spending. 

Critically though, a dishonest node may not be checking their inbound transactions. Therefore, the 

honest nodes need to check not only the transaction history of their immediate sender for 

forking/double spending, but also to recursively check any of sender’s sender’s, in any case that the 

immediate sender is relying on the sender’s sender (etc.) to have balance to cover the current 

transaction. That is, the receiver will treat any inbound transaction (since the last global consensus 

of the network) as suspicious and if it is critical to providing cover for this transaction it will be 

recursively validated before the transaction is accepted. 

There is an assumption here that each wallet must function as a node, must be online most of the 

time, and that each wallet has a minimum balance m (proof of stake threshold) so that there is 

always something to be lost by fraud, while every transaction has some maximum M so there is a 

limit on what can be gained by a single fraudulent transaction. It is also recommended that each 

wallet has a maximum balance (which could be simply m+M) so that it will not be possible to gain a 

high proportion of the wallets with an infinitesimally small proportion of the wealth. 

And again, there is an assumption that the entire network reaches consensus on all transactions 

periodically e.g. with Blockchain (e.g. every 24 hours and with some hours of latency). This protocol 

provides performant transaction security in-between, while the participants must trust that any 

valid transaction will eventually make its way into the main blockchain or other main consensus 

algorithm which is the only long term record of transactions. The reason for this is that over a long 

time this k-root-n algorithm will slow down as money circulates through many nodes and the 

recursive checking becomes expensive. 

Example 

During Monday morning the network eventually reaches consensus that as of Sunday midnight the 

balances after all transactions were 



Chuck (malicious)   $100 

Mallory (malicious)   $100 

Alice (honest)   $100 

Bob (honest)   $100 

At that time there were a total of n valid wallets each of which with a minimum stake of m=$1. 

We analyze this scenario where Chuck conspires with Mallory to double spend by giving the same 

money to Alice directly and to Bob via Mallory in an effort to conceal the double spend. 

 

1. Mallory gives $99 to Bob (in exchange for some goods or services). Mallory declares her 

transaction history from the last consensus, which is empty, so she has $99 to spare. Bob 

first confirms Mallory had $100 as of the last consensus. Bob being honest then queries k√n 

network nodes (either directly or through a cascading tree) to confirm that none of them 

have heard of Mallory doing any other transactions since consensus. They have not. Bob 

accepts the $99 and they both digitally sign the transaction and submit it for eventual 

inclusion on the main distributed ledger. 

2. Chuck gives $99 to Mallory. Mallory being malicious and complicit with Chuck tells no one 

about this transaction. They both sign the transaction and may or may not submit it to the 

main ledger. Chuck is passing this $99 through Mallory attempting to mask the double 

spending he is planning. He might potentially pass this money through further nodes. 

3. Chuck now gives $99 to Alice. This is a fraudulent double spend. He tells Alice fraudulently 

that he has no other transactions since the last consensus. Alice being honest queries k√n 

network nodes. They all tell Alice that they are not aware of any forked transaction histories 

(since transaction #2 was not broadcast) for Chuck, and so Alice accepts the payment. Thus, 

the double spend is not yet detected (until both instances of double spent money reaches 

honest nodes). 

Checkpoint 
        Chuck                 Mallory                            Alice                          Bob 

#1:$99 

#2:$99 

#3:$99 

#4:$99 

Chuck’s double spend not yet 
detected since Mallory 
complicit 

Double spend now detected 
as both sums reach honest 
nodes 



4. Mallory gives another $99 to Bob and provides Bob with a copy of Mallory’s transaction 

history since consensus namely transaction #1 (-$99 which Bob already knows about) and 

transaction #2 (+$99) thereby evidencing Mallory’s balance of $100 allowing Mallory to 

spend $99.  At this point, Chuck’s double spent money has, via Mallory, reached the honest 

Bob. 

○ Bob notices that Mallory has $100 but only when depending on money from Chuck 

(transaction #2). Bob will therefore want to validate transaction #2 and will require 

Mallory to provide Chuck’s transaction history. (Further in case Chuck in turn was 

relying on incoming transactions for his balance in transaction #2, which is not the 

case here, Bob would recursively ask for sender’s sender’s sender’s transaction 

history until he has a transaction history for every transaction which is needed to 

justify Mallory’s balance sufficiently to cover the current transaction).  

○ Chuck now queries k√n random network nodes providing both Mallory’s and Chuck 

transaction history (and any other recursively requested history).  

○ Some of these nodes (k2 on average but at least 1 with an incredibly high 

probability) had previously been told about Chuck’s alternative transaction history 

#3 where he give $99 to Alice. They raise the alarm of double spending and 

broadcast a fraud proof. The proof of fraud is two different histories both signed by 

Chuck. 

○ Bob rejects the transaction.  

○ Since Alice had reported her transaction we can assume that Mallory is malicious. 

Mallory and Chuck have their wallets blacklisted and both forfeit their $1 minimum 

stake.  

○ As an extra recommended step, Alice and Bob might compare notes and find all the 

common nodes they had consulted and make sure none of them failed to report the 

double spending. If they did that node should also be blacklisted for fraud, with 

proof of fraud showing that the node received two alternative histories of Alice and 

in both cases approved them (such approvals being signed by the node evidencing 

the fraud). 

The next morning (or after some hours of lag time on a sliding scale) consensus is established again 

around the following balances: 

End balances 

Chuck (malicious)  $1 (blacklisted with balance forfeited) 

Mallory (malicious)   $1 (blacklisted with balance forfeited) 

Alice (honest)   $199 

Bob (honest)   $199 

Once this consensus is reached, future senders need only provide shorter transaction histories back 

to the newer consensus. 



Uptime 

There is a need for honest nodes to be online most of the time. It is recommended to have a 

protocol where an honest node commits to a Service Level Agreement (SLA) of say 90% uptime and 

a node which doesn’t comply may receive warnings and eventually financial penalties or 

disqualification by consensus of all nodes. 

Technical details 

Variables 

● n Number of valid nodes as of last consensus 

● k A number >1 where we choose a convention of querying k√n nodes for validation 

● k “Effective k” which is khu 

● m Minimum allowed wallet transactions, typically $1 

● M Maximum allowed transaction (where preferably the maximum wallet balance is also 

M+m) 

● h Proportion of nodes assumed to be honest. Typically, assumed to be at least 50%. The 

algorithm can work with less but the underlying Blockchain probably can’t. 

● u Proportion of uptime required from nodes, typically 90% 

● v The maximum number of inbound transactions a node commonly participates in during 

the time period between consensus (or more accurately only the inbound transactions 

which the node depends on for a subsequent spend) 

● w The maximum number of nodes a specific balance of coin commonly circulates through in 

time period between consensus (where it is only considered circulation of the nth 

transaction was dependent for its balance on the (n-1)th). w is generally assumed to be 

small e.g. around 2. It is related to the economics concept of the velocity of money but 

defined more narrowly. 

Glossary 

● Node/wallet - a computing device that represents the interests of a User acting as their 

digital wallet storing their public and private key, transactions and balances, and executing 

their Transactions with other wallets. Also acts as a Node in the network providing 

validation services to the rest of the network by storing various Transaction Lineages it has 

seen for other users and raising the alarm if a forked Transaction Lineage is spotted. 

● User a human or other legal Person such as a company who owns a Wallet. 

● Transaction A Transaction t is an agreement between two User’s Wallets to transfer a 

specific amount of money from one Wallet called the Sender S[t] to the other called the 

Receiver R[t] with at a minimum the timestamp, amount, and digital signatures of both 

Wallets. 

● Consensus Checkpoint - a periodic (e.g. daily at midnight) checkpoint where all honest 

nodes reach universal agreement on the transaction histories of all wallets as of that given 



time and therefore also of the Balances of all Wallets at that time, although the time at 

which the Global Consensus is Achieved may be some time (e.g. a few hours) later due to 

the network time involved in running the consensus algorithm. 

● Consensus Latency Is the lag time from the time for which Global Consensus is achieved, 

and the time at which consensus is achieved (e.g. in our examples 6 hours from midnight to 

6am each day) 

● Transaction History A chronologically ordered list with all transactions for a certain user u 

from the previous Consensus Checkpoint up to some point in time. 

● Lineage (LIN[t] of a Transaction t) is the Transaction History for the Sender of t S[t] from 

the last Global Consensus achieved prior to the time of t, and up to the time of t. The Lineage 

establishes Sender’s balance to cover the Transaction t and should be checked by any 

honest Receiver R[t] before signing Transaction t. 

● Critical Lineage (CLIN[t] of a transaction t) is a set of transactions and a subset of LIN[t] 

(i.e. a list with the same order but with deletions) critical to the balance which allows t. 

Suppose a Sender S makes a payment of $x in a Transaction t and suppose S’s last consensus 

balance was $y and suppose the list of transactions S participated in since the last Global 

Consensus, LIN[t] includes inbound payments r1...rn in descending order of size (and 

chronologically when equal) and outbound payments s1...sm. Now the critical inbound 

payments are the smallest subset of k inbound payments CLIN[t]={r1...rk} such that  

𝑦 − ∑ 𝑠𝑖
𝑚
𝑖  + ∑ 𝑟𝑖 

𝑘
𝑖 ≥ 𝑥 +  𝑚.  I.e. {r1...rk} are the smallest subset of inbound transactions 

which are sufficient to provide balance coverage for this payment of $x given that the 

Sender has value $y and spent the si. Validating by Receiver of these critical inbound 

payments CLIN[t] of Sender is sufficient to ensure Sender can afford $x (even if the other 

inbound payments rk+1...rn derive directly or indirectly from fraud) and therefore the 

minimum due diligence of the receive R[t] is to check that LIN[t] is complete and then 

recursively check the lineage of each transaction CLIN[t].  

● Critical Recursive Lineage (CLIN*[t] of a Transaction t) - is a set of transactions defined as 

all transactions reachable on the directed graph whose edges for every t are CLIN[t].  To 

compute this: 

○ Start with the Set of CLIN[t].  

○ Recursively for each new t1 added for the first time to the Set (which can be stored 

in a global variable) add also CLIN*[t1] to the Set 

○ That’s it 

This gives a list of all the transactions which ultimately t depends on in the sense that if any 

one of those is invalidated the transaction t won’t be covered (whereas any other 

transaction in the entire system since the last Global Consensus can be invalidated without 

invalidating t). 

● Validating a Transaction Lineage LIN[t] Involves checking that S[t] has signed LIN[t] and 

that all the transactions t1 in LIN[t] are properly formed and signed and then checking with 

k√n random nodes that they have not seen any alternative transaction histories from S[t].  



● Transaction Receiver Due Diligence The checks an honest Node will perform before 

Receiving and signing a new Transaction t. Specifically they will Validate the Transaction 

Lineage LIN[t] of t and the Transaction Lineage LIN[t1] for every transaction t1 in CLIN*[t]. 

Data Details 

A node/wallet stores the following data 

● Public and private key 

● List of all Transactions ever where this Node is Sender/Receiver 

● List of valid Wallets on the network and their Balances as of last Consensus Checkpoint 

● List of Transaction Histories for various people on the Network including 

○ The histories CLIN*[t] for any inbound Transaction since the last Consensus 

Checkpoint 

○ Any Transaction History which anyone on the Network has asked this Node to 

validate since the last Consensus Checkpoint 

API Details 

The APIs of a wallet/node are 

● Inbound transaction initiated by Sender node to Receiver node on behalf of Sender’s User 

○ Sender public key 

○ Amount (which must be less than the sender’s balance minus m ) 

○ Timestamp 

○ CLIN*[t] and a full transaction history for each transaction therein  

○ Response 

■ Approval (may require Receiver’s User approval); or 

■ Rejection 

● Validate transaction for third party 

○ Details of Transaction t 

○ Recursive list of Transaction Histories CLIN*[t] which this transaction Sender 

depends on for the balance to cover the Transaction 

○ Optionally a list of further nodes that this node is requested to cascade the request 

to (in case it is prohibitive for one node to communicate to k√n nodes directly) 

○ Response 

■ OK; or 

■ Reject (in case fraud detected) 

■ Optionally responses relayed from cascaded nodes with their signature 

● Notification of fraudulent node  

○ Public key of fraudulent node 

○ Proof of fraud 

■ Double spend: two alternative Transaction histories signed by same node 



■ Failure to validate: Two alternative transaction histories sent to the node 

and both approved by node 

● Not specified here are the protocols for reach periodic global consensus on transactions and 

balances 

All messages will have a hash digest, sender’s signature, and all responses will include the request 

digest, response data, response digest, and responder’s signature. 

Before signing a transaction, an honest receiver will do the following 

● Receive sender’s recursive list of dependent transactions CLIN*[t] and a Transaction History 

for each. Validate that each transaction was properly formed and signed, and had balance to 

cover it (assuming till the next steps that the histories are honest). 

● Randomly choose k√n valid nodes, send each (directly or through a cascading tree of 

nodes) all the Transactions Histories and ask them to validate that they have not seen any 

different history for any of the senders of any of the transactions in this recursive list 

CLIN*[t]. 

○ The nodes validate that they have not seen a contradictory history for any of the 

same senders. They store every transaction history they are asked to validate for 

future validation. 

● If they have seen an alternative history the transaction is cancelled and the double spending 

wallet is broadcast with proof to all nodes for blacklisting. Any wallet that could have 

reported the double spending should also be blacklisted. 

● Otherwise the transaction is approved. The same k√n nodes are updated provided the 

updated history for the sender/receiver with the new transaction 

Complexity and security 

Message Complexity 

While this recursive check may add overhead, in 24 hours a real currency will only change hands at 

most a handful of times (in fact a typical velocity of real money is changing hands order of 

magnitude once per month) and therefore this overhead is small. That’s why this k-root-n method 

of preventing double spending is not practical for the long term and it’s critical to use this technique 

only for some hours or days, but eventually as money changes hands many times this algorithm will 

slow down and it’s then important to reach a global consensus and reset the transaction histories. 

Thus the message size is bounded by (and probably much less) than O(vw) where v is the number of 

inbound transactions a node participates in the time period between consensus (or more accurately 

only the inbound transactions which the node depends on for a subsequent spend), and w is the 

number of nodes a specific balance circulates through in the same time period, again only to the 

extent that it is relied on for a spend. In practice w is likely to be mostly ≤2. v can occasionally be 

bigger, in the case of a merchant who receives many small payments and then uses the aggregate 

balance to pay a supplier all in the same cycle. Still in most transactions, payers will have balance to 



cover their spend as of the last global consensus and there will be no need to recursively validate 

their inbound transactions at all. So most message sizes will have a reasonable bound measured in 

say tens of kilobytes including at most a few dozen recursive transactions.  

Security and choice of k 

We may compute the probability of zero clashes (common nodes) between two random sets of 

r=k√n nodes to be: 

 

𝑝0(𝑛, 𝑟) =
(𝑛−𝑟

𝑟 )

(𝑛
𝑟)

=
(𝑛 − 𝑟)! 𝑟! (𝑛 − 𝑟)!

𝑟! (𝑛 − 2𝑟)! 𝑛!
=

(𝑛 − 𝑟). . . (𝑛 − 2𝑟 + 1)

𝑛. . . (𝑛 − 𝑟 + 1)
≈ (1 −

𝑟

𝑛
)𝑟 

For large n we can approximate further 

𝑝0(𝑛, 𝑟) ≈ (1 −
𝑘√𝑛

𝑛
)

𝑘√𝑛

= ((1 −
𝑘

√𝑛
)

√𝑛

)

𝑘

→ (𝑒−𝑘)𝑘 = 𝑒−𝑘2
 

By substitution we can see that k=4.5 gives p~10-9 for all large n and for convenience we therefore 

typically assume k=4.5 then k=10 to allow for 10% unavailable nodes and 50% fraudulent nodes. 

The probability of exactly c clashes can be written as  

𝑝𝑐(𝑛, 𝑟) =
(𝑟

𝑐)(𝑛−𝑟
𝑐 )

(𝑛
𝑟)

 

Note that even if 51% or more of nodes are dishonest, the system can still work. For example, if k=6 

and 51% or so of nodes are dishonest we have an effective k=3 which still gives p≈0.00012 for 

sizeable n and of course we can always pick a higher k. However, the Global Consensus algorithm is 

likely going to fail with 51% dishonest nodes. 

In general k=𝑘ℎ𝑢√𝑛 is the expected number of honest nodes who will respond to a verification 

request where u is the proportion of uptime of honest nodes. Therefore, if m is the wallet minimum 

(and therefore the minimum penalty for being caught in a double spend), M is the wallet maximum 

and therefore the maximum gain from a double spend we have 

𝑝0(𝑛, 𝑘ℎ𝑢√𝑛)𝑀 − (1 − 𝑝0(𝑛, 𝑘ℎ𝑢√𝑛))𝑚 ≈ 𝑝0(𝑛, 𝑘ℎ𝑢√𝑛)𝑀 − 𝑚  

is the expected payoff from a double spend attempt. 

W must design our network so that 𝑚/𝑀 >  𝑝0(𝑛, 𝑘ℎ𝑢√𝑛). p0 is not sensitive to n (above a certain 

number) so typical practical numbers which satisfy the above with a couple of orders of magnitude 

to spare would be k=10, h>0.5, u=0.9, k=4.5, 𝑝0(𝑛, 4.5) ≈ (1.5)10−9 and therefore we might choose 

m=$1, M=$100 million. 



Sybil attack 

In a Sybil attack a fraudster can create a large number of fraudulent nodes hoping to reduce the 

chance of two honest nodes detecting the fraudster’s double spending. 

Suppose again that m=$1 and M=$1m and k=10.  Suppose there are n honest nodes and the 

fraudster creates another n fraudulent nodes, for control of 50% , and suppose further that 10% of 

nodes are unavailable.  So, k=4.5 and the fraudster has successfully reduced p0≈10-44 to p0≈10-9. 

But with M/m=106 there is no incentive to double spend with p0≈10-9. In fact they would need to 

get k<3.5 to make double spending have a positive expected value. For this the criminal would need 

about 2n fraudulent nodes. But now they have another problem. The loss from a single unsuccessful 

double spend would be not only be the loss of the double-spending wallet but also the loss of all the 

fraudulent nodes that failed to detect the double spend namely 6.52 nodes. 

Consider more generally that a fraudster creates (f-1)n fraudulent nodes for a total of n=fn nodes. 

Now when a user consults k√n = k√(fn) nodes, a proportion of 1/f of them or k√(n/f) nodes will be 

genuine this being a proportion k/√(fn) of all real nodes. Two honest nodes will therefore have an 

expectation of consluting (𝑘/√𝑓𝑛)( 𝑘𝑛/√𝑓)  =  𝑘2/𝑓 common honest nodes, i.e. k=k/√f. They will 

also consult on average k2- k2/f dishonest nodes and if the double spending is caught these k2(1-1/f) 

nodes will be disqualified. 

So the expected payoff from a single double spend is p0(k, n) ≈ 𝑒−𝑘2/𝑓𝑀 against an expected cost of 

(k2(1-1/f)+1)m ≈  k2m (the fraudulent nodes who fail to report the double spending +1 for the 

double spending wallet) for the for every unsuccessful transaction and a setup cost of (f-1)nm. 

In practice the number of fraudulent nodes required for double spending to pay off is huge. For 

k=10 we can find numerically that we need approximately f>10.5 for a positive payoff!  With say 

f=11 the fraudster would have to create a massive 10n fake nodes at a cost of $10nm, say $10m for 

n=1 million. Now k=k/√f≈3 and so p0 = 𝑒−𝑘2/𝑓 = 𝑒−9 ≈ 0.00012. So a double spend of 

M=$1,000,000 would have an expected value of $120 while the expected cost would be losing [k2(1-

1/f)+1] = 91 nodes at a cost of 91m=$91 giving an expected profit of $29. 

However, even this strategy is doomed to fail. If n=1 million the cost of the setup of 10 million nodes 

would be $10 million and the user would have to repeat the double spending three hundred 

thousand times in order to recoup the investment.  However, they would lose on average 91 nodes 

each time they fail meaning they would lose the vast majority of the fraudulent nodes before 

recouping their investment and so the whole scheme is not feasible. 

Now if we increase f further say f ≈ k2 = 100 then fraud can pay off. p0 gets closer to 1 and the 

fraudster gets a payback tending to M as f increases. However this requires creating O(100n) nodes 

to dominate O(99%) of the network. Several strategies can help to defend against such an extreme 

attack including 

• Reducing M/m. Reducing M will also force honest people to have more wallets increasing n. 



• Increasing k 

• Biasing the k√n random nodes towards nodes that have been around for longer or have 

higher balances. 

In summary we have found that with the right parameters of k, m, M, the algorithm is immune to 

51% attacks and very resilient to all but the most extreme of Sybil attacks.   

Alternative ideas 

Nodes v wallets 

The assumption so far is that every wallet is a node and that providing node verification services is 

part of the cost of being a wallet.  

There could be a scenario where not every wallet is a node. This may be helpful as people may want 

their wallets to be offline or to be stored on a machine with limited processing power, bandwidth or 

memory. In this scenario nodes might be paid a fee to provide verification services with a penalty 

for failing to report a double spend they were aware of. The nodes could be the same machines as 

the nodes of the underlying blockchain. 

Alternative node selection 

Instead of purely random selection of k√n nodes there are some alternative ideas. 

● Preferring richer nodes.  This would increase the cost of attacking with dishonest nodes.  

But it would mean that rich nodes have to handle more than O(√n) traffic 

● An algorithm to select nodes based on buyer/seller’s public key, time etc.  This would 

increase the clashes and allow fewer nodes to be queried. But a dishonest node may be able 

to use this to predict which nodes an honest receiver will consult and they could perhaps 

engineer a transaction by picking one of many sender keys or one of many time slots in 

order to avoid the receiver detecting double spending. 

 

Forced validation  

An alternative idea may be considered where even dishonest nodes are forced to consult O(√n) 

nodes. It is critical in this situation that the dishonest nodes are not given the opportunity to select 

which nodes they consult as they could pick collaborating dishonest nodes and so we assume a 

pseudorandom formula is used to dictate which nodes are consulted while also ensuring balancing 

the load between all nodes. The idea in this situation is that if Alice sends money to Bob and Bob 

sends the same money to Charlie, then Charlie will again ask k√n nodes to validate that Bob didn’t 

spend the money but Charlie will not need to ask the network to validate the transaction from Alice 



to Bob. Instead Charlie will simply ask Bob to see the k√n digital signatures for the appropriate 

nodes that signed off on the transaction with Alice, and thus Bob can verify these himself creating 

less traffic and processing demands on the network. 

We therefore propose that when two people do a transfer they must notify a pseudorandom 

selection of k√n other nodes and get each of their digitally signed approval. The pseudorandom 

selection is based on a predetermined pseudorandom formula which is known to all and takes as 

input e.g. sender id and timestamp. Preferably we take timestamp to the second or minute (rather 

than a more fine-grained time slot) to reduce sender’s ability to pick and choose a specific time 

when the pseudorandom formula happens to pick all fraudulent nodes. As before, each of those 

nodes if honest will check that the sender has not double spent. 

Now for the recursive check of sender’s sender etc. as needed, the receiver can simply check that all 

the recursive transactions have the necessary sign-off from all the nodes as determined by the 

pseudorandom formula. Thus, the receive does not have to trouble the network with validating the 

recursive transactions. 

This scheme suffers from some clear vulnerabilities. 

There is a high chance in a real network that some nodes are not available and so the sender could 

feasibly calculate which k2 nodes would detect his double spending and simply claim that those 

specific nodes were not available. This would have to be mitigated by common monitoring of node 

availability or the honest nodes will self-monitor so that anyone can later validate the claim that a 

certain node was unavailable at a certain time. 

The sender may also have multiple wallets and multiple available time slots allowing them some 

choice of nodes/time to try to plan a double-spend without any clashes by choosing the specific 

wallet and time slots where they can double spend without any clash of the pseudorandom nodes. 

Of course, if we choose high enough k we can make this infeasible for example with k=10 p0=3.70E-

44 the user would have to consider O(1044) combinations of wallets and time slots to find one with 

no clashes to an earlier transaction which is not feasible. 
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Appendix: Table of k and p0 

This table shows p0, the chances of zero clashes when two honest nodes consult k√n random nodes, 
for various values of k )in practice we should use k net of any fraudulent and unavailable nodes) 

and a couple of values of n. We see that for large n, 𝑒−𝑘2
gives an excellent approximation for p0 and 

for small n and large k there is some divergence from the estimate, but in the direction of the 
probabilities being even smaller. Thus, in all cases we can safely ignore n and plan our network 

based on 𝑝0 = 𝑒−𝑘2
. 

 



 

k p0(n=104, k) p0(n=1010, k) 𝑒−𝑘2
 

1 0.36 0.37 0.37 
1.5 0.1 0.11 0.11 

2 0.017 0.018 0.018 
2.5 0.0016 0.0019 0.0019 

3 9.30E-05 1.20E-04 1.20E-04 
3.5 3.10E-06 4.80E-06 4.80E-06 

4 5.80E-08 1.10E-07 1.10E-07 
4.5 6.10E-10 1.60E-09 1.60E-09 

5 3.70E-12 1.40E-11 1.40E-11 
5.5 1.20E-14 7.30E-14 7.30E-14 

6 2.30E-17 2.30E-16 2.30E-16 
6.5 2.30E-20 4.50E-19 4.50E-19 

7 1.30E-23 5.20E-22 5.20E-22 
7.5 3.70E-27 3.70E-25 3.70E-25 

8 5.60E-31 1.60E-28 1.60E-28 
8.5 4.60E-35 4.20E-32 4.20E-32 

9 1.90E-39 6.60E-36 6.60E-36 
9.5 4.10E-44 6.30E-40 6.40E-40 
10 4.40E-49 3.70E-44 3.70E-44 
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