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Abstract. After the work of Impagliazzo and Rudich (STOC, 1989),
the black box framework has become one of the main research domain
of cryptography. However black box techniques say nothing about non-
black box techniques such as making use of zero-knowledge proofs. Brak-
erski et al. introduced a new black box framework named augmented
black box framework, in which they gave a zero-knowledge proof oracle
in addition to a base primitive oracle (TCC, 2011). They showed a con-
struction of a non-interactive zero knowledge proof system based on a
witness indistinguishable proof system oracle. They presented augmented
black box construction of chosen ciphertext secure public key encryption
scheme based on chosen plaintext secure public key encryption scheme
and augmented black box separation between one-way function and key
agreement.

In this paper we simplify the work of Brakerski et al. by introducing
a proof system oracle without witness indistinguishability, named coin-
free proof system oracle, that aims to give the same construction and
separation results of previous work. As a result, the augmented black
box framework becomes easier to handle. Since our oracle is not witness
indistinguishable, our result encompasses the result of previous work.

Keywords: Black Box Construction · Zero-Knowledge Proof · NIZK ·
Witness Indistinguishability.

1 Introduction

Investigating the relationships between cryptographic primitives is one of the
most important task in theoretical cryptography. After the work of Impagliazzo
and Rudich [7], the black box framework has become one of the main research
domain of cryptography. We can deeply understand the condition for the exis-
tence of primitives through the black box framework. Non-black box techniques
are also extensively studied, whereas black box techniques say nothing about
them. A widely known non-black box construction result is the work of Naor
and Yung [10], which make use of a zero-knowledge (ZK) proof [5] to construct
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a chosen ciphertext secure public key encryption scheme (CCA-PKE) based on
a chosen plaintext secure public key encryption scheme (CPA-PKE).

Although black box and non-black box techniques are developed indepen-
dently each other, a new framework that combines them came into existence.
Brakerski et al. [2] introduced the augmented black box framework, which makes
use of a ZK oracle in addition to a cryptographic primitive oracle. They presented
an oracle that instantiates a witness indistinguishable (WI) proof system [4] and
showed that they could construct a non-interactive zero-knowledge proof (NIZK)
based on the oracle in a black box manner. They demonstrated the power of the
framework by showing construction and separation results; they showed the aug-
mented black box construction of CCA-PKE based on CPA-PKE following the
Naor-Yung construction [10], and the augmented black box separation between
one-way function (OWF) and key agreement (KA) [3].

Here we explain the motivation of our work. In the black box research, making
an oracle that implements a base primitive simpler is an important direction.
Introducing a simplified oracle helps to handle the oracle. Moreover it may make
security proofs simpler. One of the major black box technique is relativizing
reduction [11], which assures that a black box construction/reduction result
holds relative to any oracle that implements a base primitive. In the beginning
of the line of the black box task, researchers treated simple oracles such as
implementing OWF [10]. However as more sophisticated primitives appeared,
researchers had to deal with oracles that implement these primitives in the black
box framework. For instance they began to handle oracles implementing trapdoor
permutation [1,13], which led more advanced security proof. Moreover in [2], the
augmented black box framework was accompanied by further complicated oracle
that implements a NIZK. Although the augmented black box framework is an
elegant framework, security proofs in this framework might become cumbersome
task due to the high complexity of the oracle. Thus it it fruitful to simplify the
oracle in the augmented black box framework.

In this paper we simplify the work of [2] by introducing a simpler proof
system oracle without witness indistinguishability that aims to give the same
construction and separation results of previous work. More concrete we simplify
the proof system oracle by removing randomness from the interface of the prover
oracle, and show that we can construct a WI proof system based on the sim-
plified oracle. As a result the augmented black box framework becomes easier
to treat. Moreover our result encompasses the result of [2], since the new oracle
implements a proof system without witness indistinguishability.

2 Preliminaries

We follow the terminologies in [2] . Throughout this paper n ∈ IN denotes the
security parameter. We denote polynomial functions and negligible functions by
poly and negl respectively. A PPT machine represents a probabilistic polynomial
time Turing machine for which there exists a poly s.t. for any input x the running
time is bounded by poly(|x|). An oracle machine is a Turing machine which is
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allowed to make queries to an oracle. We write MO an oracle machine M with
oracle access to an oracle O.

We write L ∈ NPO for a language L and an oracle O if there exists the
following PPT M whose input is a pair (x,w) s.t.

– the running time of M is bounded by poly(|x|); and
– x ∈ L iff there exists an witness w s.t. MO(x,w) accepts.

For any L ∈ NPO, we let RL denote an NP-relationship associated with L.
We define (cryptographic) primitives formally.

Definition 1 (primitive). A primitive P is a pair (FP , RP ) of a set of func-
tions f : {0, 1}∗ → {0, 1}∗ and a relation over pairs (f,M) where f ∈ FP and
M is a Turing machine.

We say f implements P or f is an implementation of P if f ∈ FP . A Turing
machine M breaks the security of P if there exists an implementation f ∈ FP

s.t. (f,M) ∈ RP . Thus, we say f ∈ FP is a secure implementation of P if there
exists no PPT M s.t. (f,M) ∈ RP .

Definition 2 (OWF). A function f : {0, 1}∗ → {0, 1}∗ is a one-way function
if the following conditions hold;

– there exists a PPT M s.t. M(x) = f(x) for all x, and
– for any PPT A, it holds that Pr[A(f(x)) ∈ f−1(f(x))] ≤ negl.

When the second condition holds for a negligible function ϵ, we say the OWF is
ϵ-OWF and it has ϵ-security.

Definition 3. For an oracle O, we say that

– O implements a primitive P if there exists an implementation f ∈ FP that
can be computed by an oracle PPT machine with oracle access to O;

– an implementation f ∈ FP is secure relative to O if there is no oracle PPT
machine M with oracle access to O s.t. MO breaks the security of f ; and

– a primitive P exists relative to O if there exists a secure implementation
f ∈ FP relative to O.

We present syntactical and security definitions of a NIZK.

Definition 4 (NIZK). A tuple of Turing machines (Crs,Prv,Vrf,CrsSim, PrvSim)
that work as follows is a non-interactive zero-knowledge proof system for a lan-
guage L in the common random string model where Vrf is deterministic and
others are probabilistic:

Crs: crs← Crs(1n) takes a security parameter, and outputs crs.
Prv: π ← Prv(crs, x, w) takes crs, an instance x and a witness w, and outputs

a proof π or ⊥.
Vrf: b← Vrf(crs, x, π) takes crs, an instance x and a proof π, and outputs a bit

b ∈ {0, 1}.
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CrsSim: (crs, τ) ← CrsSim(1n) takes a security parameter, and outputs τ and
crs.

PrvSim: π ← PrvSim(crs, x, τ) takes crs, an instance x and τ , and outputs π.

Definition 5 (security properties of a NIZK). A NIZK (Crs,Prv,Vrf, CrsSim,PrvSim)
for a language L is a NIZK with perfect complete, statistical sound and adaptive
black box zero-knowledge properties if it has the following properties;

perfect completeness: for any n ∈ IN, for any (x,w) ∈ RL and any crs ∈
{0, 1}poly(n), Vrf(crs, x,Prv(crs, x, w)) = 1;

statistical soundness: for any n ∈ IN, for any x /∈ L and any π ∈ {0, 1}poly(n),
Prcrs← Crs(1n)Vrf(crs, x, π) = 1 ≤ negl; and

adaptive black box zero-knowledge: for any adversary A, the following is
negligible;

∣∣∣∣∣∣∣Pr
crs← Crs(1n);

(x,w)← A(crs); : A(π) = 1

π ← Prv(crs, x, w) ∧ (x,w) ∈ RL


−Pr

(crs, τ)← CrsSim(1n);

(x,w)← A(crs); : A(π) = 1

π ← PrvSim(crs, x, τ) ∧ (x,w) ∈ RL


∣∣∣∣∣∣∣
.

We simply denote a NIZK (Crs,Prv,Vrf, CrsSim,PrvSim) with perfect complete,
statistical sound and adaptive black box zero-knowledge properties by a NIZK.

3 WI Proof System Oracle

In this section we review the work of Brakerski et al.[2]. They introduced an
instantiation of a WI proof system oracle and presented a construction of a NIZK
based on the oracle. Moreover they defined the augmented black box framework
and demonstrated the power of the framework; they showed the construction
of a CCA-PKE based on a CPA-PKE oracle and the WI proof system oracle,
and showed the separation between OWF and KA in the augmented black box
framework.

Definition 6 (proof system). A pair (P,V) of machines that works as follows
is a proof system for a language L;

P: π ← P(x,w, r) takes an instance x, a witness w and a random coin r, and
outputs a proof π, and

V: b← V(x, π) takes an instance x and a proof π, and outputs a bit b, where V
accepts π if b = 1 and V rejects otherwise.

Definition 7. A proof system (P,V) for a language L is a proof system with
perfect complete and statistical sound properties if it has the following properties;
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perfect completeness: for any n ∈ IN, for any (x,w) ∈ RL, and any random
coin r ∈ {0, 1}n, V(x,P(x,w, r)) = 1;

perfect soundness: for any n ∈ IN, any x /∈ L, and any π ∈ {0, 1}poly(n),
V(x,P(x,w, r)) = 0.

We simply say a proof system with perfect complete and perfect sound properties
a proof system.

Definition 8 (WI proof system). A proof system WI = (P,V) for a language
L is a witness indistinguishable proof system, if for any adversary A the ad-
vantage |Pr[ExptWIA(n) = 1] − 1

2 | of the following experiment ExptWIA(n) is
negligible;

(x,w0, w1)← AWI(1n);
b← {0, 1}; r ← {0, 1}n; if (x,w0), (x,w1) ∈ RL

π ← P(x,wb, r); : output 1 iff b′ = b
b′ = AWI(1n, π) else output a random bit.

Instantiation of a WI Proof System Oracle
Fix an oracle O that implements a primitive. For the reminder of this paper,
we set L = CIRCUIT-SATO. The WI proof system oracle is defined as following
prover and verifier oracles;

prover oracle: The prover oracle P is a random function s.t. P : {0, 1}3n →
{0, 1}7n. The input is parsed as tuples (x,w, r) ∈ {0, 1}n×{0, 1}n×{0, 1}n.
Note that P does not check if (x,w) ∈ RL.

verifier oracle: The verifier oracle V is a function s.t. V : {0, 1}8n → {0, 1}.
The input is parsed as pairs (x, π) ∈ {0, 1}n×{0, 1}7n. The verifier oracle V
is defines as

V(x, π) =

{
1 if ∃w, r s.t. π = P(x,w, r) ∧ (x,w) ∈ RL

0 otherwise.

We denote the above oracle by WI = (P,V).

Theorem 1. [2] WI is a WI proof system oracle.

Theorem 2. [2] Let O be an oracle s.t. there exists a OWF fO relative to O,
and let WI be a WI proof system oracle. Then fO is one-way relative to O and
WI.

The Construction of a NIZK
Fix an oracle O and a WI proof system oracle WI s.t. a OWF fO exists relative
to O and WI. If such a OWF exists, then a pseudorandom generator (PRG)
GO : {0, 1}n → {0, 1}2n can be constructed[6]. Let

L′ = {(x, crs) | ∃ w s.t. (x,w) ∈ RL ∨ crs = GO(w)}.

The construction of a NIZK (Crs,Prv,Vrf, CrsSim,PrvSim) is as follows:
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Crs: crs← Crs(1n)
Given 1n, output uniformly chosen crs ∈ {0, 1}2n;

Prv: π ← Prv(crs, x, w)
Given crs ∈ {0, 1}2n and x,w ∈ {0, 1}n. Let x′ := (crs, x). Note that if
(x,w) ∈ RL then (x′, w) ∈ RL′ . Apply Levin reduction[9] to (x′, w) ∈ RL′

to obtain (x̂, ŵ) ∈ RL. Choose r ← {0, 1}|x̂| and output π ← P(x̂, ŵ, r);
Vrf: b← Vrf(crs, x, π)

Given crs ∈ {0, 1}2n, x ∈ {0, 1}n and π ∈ {0, 1}7n. Let x′ := (crs, x). Apply
Levin reduction to x′ ∈ L′ to obtain x̂ ∈ L. Output b = V(x̂, π);

CrsSim: (crs, τ)← CrsSim(1n)
Given 1n, choose τ ← {0, 1}n, and output τ and crs = GO(τ); and

PrvSim: π ← PrvSim(crs′, x, τ)
Given x, τ ∈ {0, 1}n and crs ∈ {0, 1}2n. Let x′ := (crs, x). Note that (x′, τ) ∈
RL′ . Apply Levin reduction to (x′, τ) to obtain (x̂, ŵ) ∈ RL. Choose r ←
{0, 1}|x̂| and output π ← P(x̂, ŵ, r).

Theorem 3. [2] The above (Crs,Prv,Vrf,CrsSim,PrvSim) is a NIZK with perfect
complete, statistical sound and adaptive black box zero-knowledge properties.

Definition 9 (augmented black box construction). [2] There exists an
(fully) augmented black box construction of a primitive Q based on a primitive
P if there are PPTs G and S s.t.

– for any oracle O and WI proof system oracle WI for NPO where O imple-
ments P , the oracle machine GO,WI implements Q; and

– for any oracle O, WI proof system oracle WI for NPO and adversary A
that Q-breaks GO,WI, the adversary SA,O,WI P -breaks O or breaks witness
indistinguishability of WI.

In [2] they showed construction and separation results to demonstrate the power
of the augmented black box framework (namely, to ensure that the augmented
black box framework encompasses the power of ZK). They showed an augmented
black box construction of CCA-PKE based on CPA-PKE such as [10,12], and
an augmented black box separation between OWF and KA such as [7].

Theorem 4. [2] There is an augmented black box construction of a CCA-PKE
based on a CPA-PKE.

Theorem 5. [2] There is no augmented black box construction of KA based on
OWF.

4 Simplified Proof System Oracle

4.1 Coin-Free Proof System Oracle

In this section we introduce a more simplified proof system oracle, which leads
a more general result than [2], by simplifying the WI proof system oracle de-
fined in Section 3. As in Section 3, we treat the NP-complete language L =
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CIRCUIT-SATO. We first give intuitions. Let WI be a WI proof system oracle
defined in Section 3. In [2], they constructed a NIZK by making use of witness
indistinguishability of WI. Recall that the prover oracle is a random function and
we can flip a random coin in the construction of a NIZK. Hence we observe that
these randomness are enough to construct a NIZK, and we can omit the random
coin r from its interface, resulting a simpler prover oracle. We first introduce
such simplified proof system oracle. Then we show that we can construct a WI
proof system based on the simplified oracle in the black box manner.

We introduce the following coin-free proof system oracle.

Definition 10 (coin-free proof system oracle). A pair (P,V) of oracles is
a coin-free proof system oracle for a language L if it works as following;

prover oracle: The prover oracle P is a random function P : {0, 1}2n →
{0, 1}6n. The input is parsed as pairs of the form (x,w) ∈ {0, 1}n × {0, 1}n.
Note that P does not check if (x,w) ∈ RL.

verifier oracle: The verifier oracle V is V : {0, 1}7n → {0, 1}. The input is
parsed as pairs of the form (x, π) ∈ {0, 1}n × {0, 1}6n. The verifier oracle V
is defined as

V(x, π) =

{
1 if ∃w s.t. π = Pn(x,w) ∧ (x,w) ∈ RL

0 otherwise.

It is clear that the above pair of oracles constitutes a proof system. We denote
a coin-free proof system oracle by CF = (P,V). We remark that coin-free proof
system oracle is no longer witness indistinguishable, since an adversary, given a
proof π, can decide which of witness w0 or w1 was used to generate π by making
queries P(x,w0) and P(x,w1).

Construction of WI Proof System
We show that we can construct a WI proof system based on a coin-free proof
system oracle. Our construction is similar to the construction of the NIZK in
Section 3. We flip a random coin and apply Levin reduction to the instance in
the construction. The key difference is an “extended” language. We introduce
a language that includes randomness, and this randomness yields the witness
indistinguishability. However it does not work simply adding a randomness in
the new language (if so, the WI prover have to send the randomness itself to
prove her knowledge about it). Thus we include a OWF in the new language
and let the WI prover to prove her knowledge about the output of OWF.

Now we are ready to present the construction of a WI proof system. Let O
be an oracle and CF = (P,V) be a coin-free proof system oracle for L s.t. there
exists an ϵ-OWF fO : {0, 1}n → {0, 1}2n relative to O and CF. We can argue this
due to Theorem 2 and the fact that a WI proof system implies a proof system
generally. We define L′ to be

L′ = {(x, c) | ∃ w, r s.t. c = fO(r) ∧ (x,w) ∈ RL}.

We construct a WI proof system (Prv,Vrf) as follows:
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Prv: π̂ ← Prv(x,w)
Given x,w ∈ {0, 1}n. Choose r ← {0, 1}n, and compute c = fO(r). Let
x′ := (x, c) and w′ := (w, r). Note that if (x,w) ∈ RL then (x′, w′) ∈ RL′ .
Apply Levin reduction to (x′, w′) ∈ RL′ to obtain (x̂, ŵ) ∈ RL. Compute
π = P(x̂, ŵ), and output π̂ := (c, π).

Vrf: b← Vrf(x, π̂)
Given x ∈ {0, 1}n and π̂ = (c, π) ∈ {0, 1}n×{0, 1}6n. Let x′ := (x, c). Apply
Levin reduction to x′ ∈ L′ to obtain x̂ ∈ L. Output b = V(x̂, π).

Lemma 1. The above (Crs,Prv) is a WI proof system for L ∈ NPO.

Proof. The perfect completeness property is immediate. We show that (Prv,Vrf)
is perfectly sound. Considering the definition of L′, we can apply Karp reduc-
tion [8] to an instance of L to obtain an instance of L′. Thus if there exists an
instance (x, c) /∈ L′ but applying Levin reduction results in an instance x̂ ∈ L,
then we can break the perfect soundness of CF.

We show the witness indistinguishability of (Prv,Vrf) following the idea of
the proof of Theorem 1 in [2]. Let A be an adversary and q be a polynomial upper
bound on the number of queries that A can make. We note that an adversary
in the experiment ExptWI has oracle access to O and CF. We abuse notation to
write A to denote AO,CF. Without loss of generality, we assume that A outputs
values (x,w0, w1) with (x,w0), (x,w1) ∈ RL. Then A is given a proof π̂ = (c, π)
for the instance (x,wb) where b ∈ {0, 1} and tries to decide whether w0 or w1

was used to generate π̂. In the following we first define an bad event s.t. A breaks
the witness indistinguishability by accident and prove that such an event occurs
only with negligible probability. Then we show that, assuming such event never
happens, if A breaks the witness indistinguishability of (Prv,Vrf), then there
exists an adversary that breaks the ϵ-security of fO.

Let Spoof be the event that A makes a query V(x∗, π∗) returning 1, yet
no query P(x∗, w∗) with (x∗, w∗) ∈ RL was made previously. We prove that
the probability Spoof occurs is negligible. At most 22n elements are uniformly
distributed in the domain of P, and the size of the range is 26n. Although making
a P-query reveals one point in the range, it tells nothing about other points since
P is a random function. Thus the probability that A makes a query V(x∗, π∗)
returning 1 yet π∗ was not output by P previously is at most 2−4n. Taking a
union bound, the probability that Spoof occurs is at most q · 2−4n.

We prove that, assuming Spoof never occurs, if (Prv,Vrf) is not witness indis-
tinguishable then there exists an adversary A′ that breaks the ϵ-security of fO.
Since P is a random function, the adversary A that breaks the witness indistin-
guishability of (Prv,Vrf) makes the P-query resulting in π̂. In the course of such
computation, A has to find the pre-image of c as c is independent of the witness
wb. Thus an adversary A′, given c, simulates A and outputs the pre-image of
c, which contradicts the ϵ-security of fO. Summing the above discussion, the
probability that an adversary breaks witness indistinguishability of (Prv,Vrf) is
at most q · 2−4n + ϵ, which is negligible.

Corollary 1. Let O be an oracle that implements a primitive Q, WI be a WI
proof system oracle defined in Section 3 and CF be a coin-free proof system oracle.
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If there exists an augmented black box construction of a primitive P based on O
and CF, then there exists an augmented black box construction of P based on O
and WI.

We say an augmented black box construction that making use of a coin-free
proof system oracle a simplified augmented black box construction.

4.2 Construction

We show that we can construct a CCA-PKE based on a CPA-PKE in the sim-
plified augmented black box model. If we can construct a NIZK, then we can
construct a CCA-PKE by following the Naor-Yung construction [10]. Due to the
construction of the NIZK in Section 3 and Lemma 1, we can construct a NIZK
based on a coin-free proof system oracle. Thus we can construct a CCA-PKE
based on a CPA-PKE in the simplified augmented black box model.

Let O be an oracle that implements a CPA-PKE (G,E,D) and CF = (P,V)
be a coin-free proof system oracle. As shown in the previous discussion, we can
construct a NIZK (Crs,Prv,Vrf, CrsSim,PrvSim) in the simplified augmented
black box model. Moreover we can translate (Prv,Vrf) into a simulation sound
NIZK[12] (PrvssZK , VrfssZK) for a language

L′ = {(c0, c1, pk0, pk1) | ∃ m, r0, r1 s.t.c0 = EO
pk0

(m, r0) ∧ c1 = EO
pk1

(m, r1)}.

Lemma 2. Let O be an oracle that implements a CPA-PKE and CF be a coin-
free proof system oracle. We can construct a CCA-PKE based on O and CF in
the simplified augmented black box model.

4.3 Separation Result

We show that there is no construction of KA with perfect completeness based on
OWF in the simplified augmented black box model. As stated in Section 1, one of
the motivation of our work is to simplify security proofs in the augmented black
box framework. However, in the proof of [2], they did not make use of the witness
indistinguishability (i.e., the random coin r) of the proof system oracle, resulting
the same proof logic in the simplified augmented black box framework. Thus,
we present the overview of the construction of the adversary and the separation
proof in [2].

Let O be a uniformly chosen random oracle and WI = (P,V) be a WI proof
system oracle, where there exists a OWF relative to O and WI. Let (A,B) be an
augmented black box construction of KA with perfect completeness based on O
and WI. Note that it is sufficient to consider a 1-bit KA construction. Let q be
the running time of (A,B) (i.e., the number of queries that A and B can make
to O and WI are restricted by q in total). Given security parameter 1n, A and
B interact each other, resulting a transcript T and a shared key k. Let rA be a
random tape of A and Q(A) be a set of query/answer pair that A makes to O
and WI, in the execution of KA. A pair (rA, Q(A)) is said a view of A. Similary
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the set of query/answer pairs that B makes in the execution is denoted by Q(B).
Note that |Q(A) ∪Q(B)| ≤ q.

The Adversary
In [2] they showed an adversary E that breaks KA but cannot break OWF, where
E is computationally unbounded but makes at most polynomially many queries
to those oracles. Given 1n and T , E simulates the view of A at first, then learns
about O and WI based on the simulation. More formally, E works as follows. Let
Q(E) be a set of query/answer pair and K be a set of “key candidates.” First
E sets Q(E) := ϕ and K := ϕ. Then E repeats the following 2q + 1 times:

Simulation Phase: E simulates the view of A that is consistent with T and
Q(E). Let Q̂(A) denote the set of the simulated query/answer pairs. Note
that Q̂(A) is not necessary consistent with the real oracles O and WI. Fol-

lowing the simulated view, E outputs a key k̂ and sets K := K ∪ {k̂}.
Update Phase: E makes all queries in Q̂(A) \ Q(E) to O and WI, and adds

the resulting query/answer pairs to Q(E).

After 2q + 1 iterations, E outputs the majority of K as a simulated shared key.

The Separation Proof
In [2] they showed that the above adversary breaks KA, but cannot break OWF.
We give the overview of the proof. Although in [2], they dealt with some sub-
tleties, we ignore them and focus only on essential part of the proof.

Since O is a random oracle, no adversary that makes at most polynomially
many queries cannot break OWF based on O. The reason that E can break KA
is as follows. They defined an event that Q̂(A) disagrees with Q(A) ∪ Q(B) on
the answer to some O-, P- or V-query. (Note that they defined other two events,
however they proved that these events are essentially the same as the above
event.) They showed that if this event occurs in an iteration then E learns at
least one query/answer pair in Q(A) ∪ Q(B), otherwise she adds a correct key
to K. Since |Q(A)∪Q(B)| ≤ q, this event occurs at most q times. Thus at least
q+1 keys in K are correct keys in the final step of the attack, resulting a correct
shared key.

Separation
We can construct the same adversary in the simplified augmented black box
framework by simply replacing a WI proof system oracle with a coin-free proof
system oracle. The event defined above occurs because O and P are random
oracles, i.e., the adversary cannot predict their output. Since a prover oracle of a
coin-free proof system oracle is still random function, the above adversary breaks
the constructed KA. To sum up the above, we obtain the following lemma:

Lemma 3. Let O be a uniformly chosen random oracle and CF be a coin-free
proof system oracle s.t. a OWF exists relative to O and CF. There is no simplified
augmented black box construction of KA with perfect completeness based on the
OWF.
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5 Conclusion

In this paper we introduced coin-free proof system oracle, a more simplified one,
and showed the same construction and separation results as in [2]. Thus when
we apply the augmented black box framework to some black box construction
or separation proof, we become to be able to prove it in more simplified and
general condition.

There are open questions still remain. One of such question is to show other
construction or separation results in the simplified black box model (especially to
known black box separation results). Focusing on specific topic, the construction
of the NIZK is based on a proof system oracle for NP-complete language, which
seems too strong. It is still debatable whether we can construct a NIZK based
on a proof system oracle for more restricted language.
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