
Key recovery attacks on the Legendre PRFs within
the birthday bound

Dmitry Khovratovich
khovratovich@gmail.com

Dusk and Evernym and ABDK Consulting and Sikoba
Supported by Ethereum Foundation

July 24, 2019

Abstract

We show that Legendre PRF, recently suggested as an MPC-friendly primitive
in a prime field Zp, admits key recovery attacks of complexity O(

√
p) rather than

previously assumed O(p). We also demonstrate new attacks on high-degree versions
of this PRF, improving on the previous results by Russell and Shparlinski.

1 Introduction

Pseudo-random function (PRF) is an important cryptographic primitive. Typically de-
noted FK(·) with K being a secret key, its security is usually defined as inability to
distinguish the output from a randomly chosen function f on the same domain by an
adversary who does not know neither K nor f . Different PRF candidates have been
proposed, with block ciphers like AES being the most secure examples. AES and other
blockcipher-based PRF candidates with n-bit keys and inputs are assumed to be secure
to distinguishing and key recovery attacks with complexity up to 2n. In contrast, PRF
candidates whose security is based on discrete logarithm hardness and similar assump-
tions typically claim security only up to the birthday bound and even less [DY05]. In this
paper we show that the Legendre PRF candidate falls into the second category as it fails
to provide security comparable to AES.

Legendre PRF The Legendre PRF has been introduced recently [Gra+16] as a MPC-
friendly candidate as its multi-party computation requires only a few multiplications which
are the bottleneck in many MPC implementations.

Let p be a prime and a a positive integer, then the Legendre symbol Lp(a) is defined
as

Lp(a) = a(p−1)/2 mod p

and denoted

(
a

p

)
. If a = b2 for some b then Lp(a) = 1, otherwise Lp(a) = −1.

1



Damgard [Dam88], based on tests that demonstrate statistical uniformity of quadratic
residues modulo p, suggested a keyed Legendre symbol LKp (a) = Lp(K + a) as a pseudo-
random generator outputting 1 or −1 by incrementing a. Damgard conjectured that no
polynomially bounded adversary can recover K with reasonable probability given access
to the oracle that computes LKp (a) for any a, which became known as Legendre hidden
shift problem [Gra+16]. A naive deterministic algorithm guesses K and compares the
entire keystream of length p with the guessed one, thus spending p2 time. Russell and Sh-
parlinski [RS04] demonstrated, based on the Weil bound, that a deterministic algorithm
may consider keystream segments as short as log2 p, thus bringing down the complexity
to p log2 p. Note that a naive randomized algorithm, selecting a random a to start with,
hopes to check the guess using only log p outputs and has total complexity of p log p.
Together with the Russell-Shparlinski bound, these are the best results on the Legendre
keyed generator so far. One can also consider a high-degree generator

LK0,K1,...,Kd−1
p (a) = Lp(K0 +K1a+K2a

2 + · · ·+Kd−1a
d−1 + ad)

with d keys. The Russell-Shparlinski deterministic algorithm requires d2pd log2 p opera-
tions, whereas a naive randomized algorithm needs pd log p operations.

Our contributions We demonstrate new algorithms for key recovery in Legendre PRF,
both in degree-1 and high-degree versions. Our attacks are based on time-memory tradeoff
attacks and memoryless collision search algorithms.

2 Memoryless attack on the Legendre keyed genera-

tor

Here we consider the Legendre linear PRF

LK(a) = Lp(K + a).

Let us denote for vector a = (a1, a2, . . . , an) the set of PRF evaluations

LK(a) =
(
LK(a1), L

K(a2), . . . , L
K(an)

)
.

We first formalize the uniformity assumption that we use to filter out key candidates.
Concretely, we assume that for any vector a = (a1, a2, . . . , alog p) and any log p-bit string
b the number of keys K such that LK(a) = b is O(1). It is a very natural cryptanalytic
assumption and it is also confirmed by statistical tests. A conservative attacker may use
the Weil bound [RS04] which provably upper bounds the length of such strings by log2 p.

We then note that the Legendre PRF has a very simple related-key property that
holds with probability 1. Indeed, for any δ ∈ Zp:

LK(a) = LK+δ(a− δ).

Then we proceed as follows. Let N be an integer and a = (a1, a2, . . . , an) be a vector
of Zp elements.

2



1. Make N guesses of K : K1, K2, . . . , KN and compute N vectors

V [Ki] = LK
i

(a) =
(
LK

i

(a1), L
Ki

(a2), . . . , L
Ki

(an)
)
.

2. Select randomly N elements of Zp: A1, A2, . . . , AN and make N · n queries to the
PRF so that N vectors are stored:

W [Ai] = LK(Ai + a) =
(
LK(Ai + a1), L

K(Ai + a2), . . . , L
K(Ai + an)

)
.

3. Suppose that Ki − Aj = K for some i, j. Then

W [Aj] = LK(Aj + a) = LK
i−Aj

(Aj + a) = LK
i

(a) = V [Ki].

Therefore it suffices to find an intersection between {W [Aj]}j and {V [Ki]}i.

If we denote f(x) = V [x] and g(y) = W [y], then the key recovery is equivalent to the
collision search f and g. Thus N = O(

√
p) suffices.

A collision search between two functions can be done memoryless by first reducing the
search to a single function h [MOM91] and then making a memoryless collision search.
The single function is defined as:

h(x) =

{
f(x), if φ(x) = 1;

g(x), if φ(x) = 0.

where φ is some simple predicate like a XOR of all bits.
The overall complexity of the attack is O(

√
p log p) PRF queries and Legendre eval-

uations. If only M <
√
p queries are available, then the attack costs O(p(log p)/M)

computations. In the unlikely case we get too many false alarms, we can simply select
another a.

3 Quadratic Legendre PRF

Now we consider the polynomial version of Legendre PRF and start with degree 2:

LK0,K1(a) =

(
K0 +K1a+ a2

p

)
.

A naive randomized algorithm just guesses K0, K1, computes log p outputs and compares
with PRF queries. It has complexity O(p2 log p). We can do better by guessing only
K1 and applying our attack on the linear case, with a simple replace of a with a2. This
algorithm has complexity O(p1.5 log p).

We can do better by recalling some attacks on stream ciphers. Babbage [Bab95]
considered a clocked stream cipher with internal state of logN bits and showed that if
we can make M queries to the cipher so that it changes state M times, then we should
run the cipher starting at N/M random states and search a collision between guessed
keystreams and the actual keystream.

3



Unfortunately, this attack does not apply directly since in our quadratic generator
we do not have a state that evolves. If we set (K0, K1, a) then only a would change but
neither K0 nor K1, so Babbage’s attack does not seem to work.

To make the approach work we introduce another related-key property. Recall now
that

L(a) = a(p−1)/2 =⇒ L(ab) = L(a)L(b).

Now let r be some integer, then L(r2) = 1. We obtain

LK0,K1(a) = LK0,K1(a)L(r2) =

(
K0 +K1a+ a2

p

)(
r2

p

)
=

=

(
K0r

2 +K1ar
2 + a2r2

p

)
= LK0r2,K1r(ar).

Or equivalently
LK0r2,K1r(a) = LK0,K1(a/r). (1)

Thus we can compute the PRF on p related keys using p different r on the same input.
However, we need log p inputs for each related key. We could use arbitrary log p values,
but there is a better choice which allows reusing Legendre computation for another related
key.

Concretely, consider a = (r, r2, . . . , rn). Then

LK0,K1(a) = (LK0,K1(r), LK0,K1(r2), . . . , LK0,K1(rn))

and

LK0r2,K1r(a) = (LK0r2,K1r(r), LK0r2,K1r(r2), . . . , LK0r2,K1r(rn)) =

= (LK0,K1(1), LK0,K1(r), . . . , LK0,K1(rn−1))

Therefore, querying the PRF on ri for many i we obtain LK0r2ri,K1ri(a).
The full attack works as follows:

1. For N guesses of K : K1 = (K1
0 , K

1
1), K2 = (K2

0 , K
2
1), . . . , KN = (KN

0 , K
N
1 ) and a

vector a = (r, r2, . . . , rn) compute

V [Ki] = LK
i

(a) = {LKi

(r), LK
i

(r2), . . . , LK
i

(rn)}.

2. For N values r, r2, . . . , rN compute:

W [rj] = L(K0,K1)◦(r2j ,rj)(a) =

=
(
L(K0,K1)◦(r2j ,rj)(r), L(K0,K1)◦(r2j ,rj)(r2), . . . , L(K0,K1)◦(r2j ,rj)(rn)

)
.

3. If for some i, j we have Ki = (K0, K1) ◦ (r2j, rj) then V [Ki] = W [rj]. We need p
elements in each set to have a collision.

The attack can be done memoryless using the same approach as in Section 2. The overall
complexity is O(p log p).

4



Generator Rus-Shpa Randomized Ours

Linear LK() p log2 p p log p
√
p logp

Quadratic LK0,K1() p2 log2 p p2 log p p logp

High-deg LK0,K1,...,Kd−1() pdd2 log2 p pdd log p pd−1d logp

Table 1: Summary of our and previous results on the Legendre PRF

4 High-degree Legendre PRF

We finally consider a high-degree version:

LK0,K1,...,Kd−1(a) =

(
K0 +K1a+ . . .+Kd−1a

d−1 + ad

p

)
The attack is a simple reduction to the quadratic case:

1. Guess K2, K3, . . . , Kd−1;

2. Apply Section 3 attack to K0, K1 with the modified property

LK0rd,K1rd−1

(a) = LK0,K1(a/rd)L(rd). (2)

3. The attack complexity is O(pd−1d log p).

5 Future work

References

[Bab95] SH Babbage. “Improved exhaustive search attacks on stream ciphers”. In:
(1995) (cit. on p. 3).

[Dam88] Ivan Damg̊ard. “On the Randomness of Legendre and Jacobi Sequences”.
In: CRYPTO. Vol. 403. Lecture Notes in Computer Science. Springer, 1988,
pp. 163–172 (cit. on p. 2).

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. “A Verifiable Random Function
with Short Proofs and Keys”. In: Public Key Cryptography. Vol. 3386. Lecture
Notes in Computer Science. Springer, 2005, pp. 416–431 (cit. on p. 1).

[Gra+16] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, et al. “MPC-Friendly
Symmetric Key Primitives”. In: IACR Cryptology ePrint Archive 2016 (2016),
p. 542 (cit. on pp. 1, 2).

[MOM91] Hikaru Morita, Kazuo Ohta, and Shoji Miyaguchi. “A Switching Closure Test
to Analyze Cryptosystems”. In: CRYPTO. Vol. 576. Lecture Notes in Com-
puter Science. Springer, 1991, pp. 183–193 (cit. on p. 3).

[RS04] Alexander Russell and Igor E. Shparlinski. “Classical and quantum function
reconstruction via character evaluation”. In: J. Complexity 20.2-3 (2004),
pp. 404–422 (cit. on p. 2).

5


	Introduction
	Memoryless attack on the Legendre keyed generator
	Quadratic Legendre PRF
	High-degree Legendre PRF
	Future work

