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Abstract. We study the security of schemes related to Schnorr signatures in the algebraic group
model (AGM) proposed by Fuchsbauer, Kiltz, and Loss (CRYPTO 2018), where the adversary
can only compute new group elements by applying the group operation. Schnorr signatures can
be proved secure in the random oracle model (ROM) under the discrete logarithm assumption
(DL) by rewinding the adversary; but this security proof is loose. We start with giving a tight
security proof under DL in the combination of the AGM and the ROM. Our main focus are
blind Schnorr signatures, whose only known security proof is in the combination of the ROM
and the generic group model, under the assumption that the so-called ROS problem is hard. We
show that in the AGM+ROM the scheme is secure assuming hardness of the one-more discrete
logarithm problem and the ROS problem. As the latter can be solved in sub-exponential time
using Wagner’s algorithm, this is not entirely satisfying. Hence, we then propose a very simple
modification of the scheme (which leaves key generation and signature verification unchanged) and
show that, instead of ROS, its security relies on the hardness of a related problem which appears
much harder than ROS. Finally, we give a tight reduction of the CCA2 security of Schnorr-signed
ElGamal key encapsulation to DL, again in the AGM+ROM.
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1 Introduction

Idealized Models. Cryptosystems are often proved secure via a security reduction, which
turns any adversary A against the system into an algorithm solving a (presumably hard)
computational problem. When this does not appear possible, one can resort to idealized models.

The generic group model (GGM) [Nec94, Sho97] is an idealized model for the security
analysis of cryptosystems that are defined over cyclic groups. Instead of being given concrete
group elements, the adversary only receives “handles” for them and has access to an oracle
that performs the group operation (which we denote by addition) on handles. This implies that
if the adversary is given a list of (handles of) group elements (X1, . . . , Xn) and later returns a
(handle of a) group element Z, by inspecting its oracle calls one can derive a “representation”
~z = (z1, . . . , zn) such that Z =

∑n
i=1 ziXi.

The algebraic group model (AGM) [FKL18] lies between the standard model and the GGM.
On the one hand, the adversary has direct access to group elements, but on the other hand, it
is assumed to only produce new group elements by applying the group operation to received
group elements; in particular, with every group element Z that the adversary outputs, it also



gives a representation ~z of Z with respect to the group elements it has received so far. While
the GGM allows for proving information-theoretic guarantees, security results in the AGM are
proved via reductions to computationally hard problems, like in the standard model.

The random-oracle model (ROM) [BR93] replaces cryptographic hash functions by truly
random functions. In security games the adversary is given oracle access to such a function,
which is implemented by lazy sampling.

The results in this paper are given in the combination AGM+ROM, as already considered
when the AGM was first defined [FKL18]. Adversaries are assumed to be algebraic w.r.t. the
group and they are given access to a random oracle H. When H takes group elements as inputs,
as the adversary is algebraic, any of its queries Z must be accompanied by a representation ~z
of Z. The security results in this paper will be by reduction to either the discrete logarithm
problem or a variant of it, the one-more discrete logarithm (OMDL) problem.

Schnorr Signatures. The Schnorr signature scheme [Sch90, Sch91] is one of the oldest and
simplest signature schemes based on prime-order groups. Its adoption was hindered for years by
a patent which expired in February 2008, but it is by now widely deployed: EdDSA [BDL+12],
a specific instantiation based on twisted Edward curves, is used for example in OpenSSL,
OpenSSH, GnuPG and more. Schnorr signatures are also expected to be implemented in
Bitcoin [Wui18], enabling multi-signatures supporting public key aggregation, which will result
in considerable scalability and privacy enhancements [BDN18, MPSW19].

The security of the Schnorr signature scheme has been proven in the ROM under the
discrete logarithm (DL) assumption by Pointcheval and Stern [PS96b, PS00]. The proof, based
on the so-called Forking Lemma, proceeds by rewinding the adversary, which results in a loose
reduction (the success probability of the DL solver is a factor qh smaller than that of the
adversary, where qh is the number of the adversary’s random oracle queries). Using the “meta
reduction” technique, a series of works showed that this security loss is unavoidable when the
used reductions are either algebraic [PV05, GBL08, Seu12] or generic [FJS19].

Our starting point is the observation that in the AGM+ROM, we can give a reduction
which is straight-line, that is, it runs the adversary only once, resulting in a tight security
proof for Schnorr signatures under the DL assumption.4 We then turn to two schemes related
to Schnorr signatures whose security in the standard model remains elusive: blind Schnorr
signatures and Schnorr-signed ElGamal encryption.

Blind Schnorr Signatures. A blind signature scheme allows a user to obtain a signature
from a signer on a message m in such a way that (i) the signer is unable to recognize the
signature later (blindness, which in particular implies that the message m remains unknown to
the signer) and (ii) the user can compute one single signature per interaction with the signer
(one-more unforgeability). Blind signature schemes were introduced by Chaum [Cha82] and
are a fundamental building block for applications that guarantee user anonymity, e.g. e-cash
[Cha82, CFN90, OO92, CHL05, FPV09], e-voting [FOO93], direct anonymous attestation
[BCC04], and anonymous credentials [Bra94, CL01, BCC+09, Fuc11].

Constructions of blind signature schemes range from very practical schemes based on
specific assumptions and usually provably secure in the random oracle model [PS96a, PS00,

4 A similar result [ABM15] shows that Schnorr signatures, when viewed as non-interactive proofs of knowledge
of the discrete logarithm of the public key, are simulation-sound extractable, with an extractor working
straight-line. Our proof is much simpler and gives a concrete security statement.
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Abe01, Bol03, HKL19] to very theoretical schemes based on generic assumptions and provably
secure in the standard model [GRS+11, BFPV13, GG14, FHS15].

The blind Schnorr signature scheme derives quite naturally from the standard Schnorr
signature scheme [CP93]. While hardness of the discrete logarithm problem in the underlying
group G is obviously a necessary condition for the scheme to be secure against one-more
forgeries, Schnorr [Sch01] showed that another problem that he named ROS, which only
depends on the order p of the group G, must also be hard for the scheme to be secure.
Informally, the ROS` problem, parameterized by an integer `, asks to find ` + 1 vectors
~ρi = (ρi,j)j∈[`] such that the system of `+ 1 linear equations in unknowns c1, . . . , c` over Zp∑`

j=1 ρi,jcj = Hros(~ρi), i ∈ [`+ 1]

has a solution, where Hros : (Zp)` → Zp is a random oracle. Schnorr showed that an attacker able
to solve the ROS` problem can produce `+ 1 valid signatures while interacting (concurrently)
only ` times with the signer. Slightly later, Wagner [Wag02] showed that the ROS` problem
can be reduced to the (`+ 1)-sum problem, which can solved with time and space complexity
O
(
(`+ 1)2λ/(1+blg(`+1)c)), where λ is the bit size of p. For example, for λ = 256, this attack

yields 16 valid signatures after ` = 15 interactions with the signer in time and space close to 255.
For `+ 1 = 2

√
λ, the attack has sub-exponential time and space complexity O(22

√
λ), although

the number of signing sessions becomes arguably impractical. Asymptotically, this attack can
be thwarted by increasing the group order, but this would make the scheme quite inefficient.

From a provable-security point of view, a number of results [FS10, Pas11, BL13] indicate
that blind Schnorr signatures cannot be proven one-more unforgeable under standard assump-
tions, not even in the ROM. The only positive result by Schnorr and Jakobsson [SJ99] and
Schnorr [Sch01] states that blind Schnorr signatures are secure in the GGM+ROM assuming
hardness of the ROS problem.

Our Results on Blind Schnorr Signatures. Our first contribution is a rigorous analysis
of the security of blind Schnorr signatures in the AGM+ROM. Concretely, we show that any
algebraic adversary successfully producing ` + 1 forgeries after at most ` interactions with
the signer must either solve the one-more discrete logarithm problem or the ROS` problem.
Although this is not overly surprising in view of the previous results in the GGM [SJ99, Sch01],
this gives a more satisfying characterization of the security of this protocol. Moreover, the
proofs in [SJ99, Sch01] were rather informal; in particular, the reduction solving ROS was
not explicitly described. In contrast, we provide precise definitions (in particular for the ROS
problem, the exact specification of which is central for a rigorous security proof) and carefully
work out the details of the security reductions to both the OMDL and the ROS problem.

Nevertheless, the threat constituted by Wagner’s attack for standard-size group orders
remains. In order to remedy this situation, we propose a very simple modification of the scheme
which only alters the signing protocol (key generation and signature verification remain the
same) and thwarts (in a well-defined way) any attempt at breaking the scheme by solving the
ROS problem. The idea is that the signer and the user engage in two parallel signing sessions,
of which the signer only finishes one (chosen at random) in the last round. We show that an
algebraic adversary successfully mounting an (`+ 1)-forgery attack against this scheme must
either solve the OMDL problem or a modified ROS problem, which appears much harder than
the standard ROS problem, at least for large values of ` for which the standard ROS problem
becomes tractable.
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Chosen-Ciphertext-Secure ElGamal Encryption. Recall the ElGamal public-key
encryption (PKE) scheme [ElG85]: given a cyclic group G (denoted additively) of prime
order p and a generator G, a secret/public key pair is of the form (y, yG) ∈ Zp × G. To
encrypt a message M ∈ G, one draws x←$ Zp, computes X = xG, and outputs ciphertext
(X,M + xY ). This scheme is IND-CPA-secure under the decisional Diffie-Hellman (DDH)
assumption [TY98], that is, no adversary can distinguish encryptions of two messages. Since
the scheme is homomorphic, it cannot achieve IND-CCA2 security, where the adversary can
query decryptions of any ciphertext (except of the one it must distinguish). However, ElGamal
has been shown to be IND-CCA1-secure (where the adversary can only make decryption
queries before receiving the challenge ciphertext) in the AGM under a “q-type” variant of
DDH [FKL18].5

In order to make ElGamal encryption IND-CCA2-secure, a natural solution is to add
a proof of knowledge of the randomness used to encrypt. Intuitively, this would make the
scheme plaintext-aware [BR95], which informally means that for any adversary producing
a valid ciphertext, there exists an extractor that can retrieve the corresponding plaintext.
The reduction of IND-CCA2 security can then use the extractor to answer the adversary’s
decryption queries. (For ElGamal, the extractor would extract the randomness x used to
produce (X = xG,Z = M + xY ) from the proof of knowledge and return the plaintext
M = Z − xY .) Since the randomness x together with the first part X of the ciphertext form a
Schnorr key pair, a natural idea is to use a Schnorr signature [Jak98, TY98], resulting in what
is usually called (Schnorr-)signed ElGamal encryption.

Since Schnorr signatures are extractable in the ROM, one would expect that signed ElGamal
can be proved IND-CCA2 under, say, the DDH assumption (in the ROM). However, turning
this intuition into a formal proof has remained elusive. The main obstacle is that Schnorr
signatures are not straight-line extractable. As explained by Shoup and Gennaro [SG02], the
adversary could order its random-oracle and decryption queries in a way that makes the
reduction take exponential time to simulate the decryption oracle. Schnorr and Jakobsson
[SJ00] showed IND-CCA2 security in the GGM+ROM, while Tsiounis and Yung [TY98] gave
another proof under a non-standard “knowledge assumption” about Schnorr signatures, which
amounts to assuming that they are straight-line extractable. On the other hand, impossibility
results tend to indicate that IND-CCA2 security cannot be proved in the ROM [ST13, BFW16].

A second solution is to switch to the “hashed” variant of the scheme (also known as
DHIES) [ABR01], in which a key is derived as k = H(xY ). In the ROM, the corresponding
key-encapsulation mechanism (KEM) is IND-CCA2-secure under the gap Diffie-Hellman
assumption (which states that CDH is hard even when given a DDH oracle) [CS03]. We
propose to combine the two approaches: concretely, we consider the hashed ElGamal KEM
together with a Schnorr signature proving knowledge of the randomness used for encapsulating
the key and give a tight reduction of the IND-CCA2 security of this scheme to the DL problem
in the AGM+ROM.

Relevance of our results. We conclude with discussing the relevance of our results
in particular for blind Schnorr signatures. While the initial proposal is arguably one of the

5 [FKL18] showed IND-CCA1 security for the corresponding key-encapsulation mechanism, which returns a
key K = xY and an encapsulation of the key X = xG. The ElGamal PKE scheme is obtained by combining
it with the one-time-secure data-encapsulation mechanism M 7→M +K. Generic results on hybrid schemes
[HHK10] imply that the PKE scheme is also IND-CCA1-secure.
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simplest and most efficient blind signature schemes, Wagner’s attack represents a serious
weakness, which can be thwarted by using our modification of the signing protocol.

Our results are especially relevant to applications that impose the signature scheme and
for which one then has to design a blind signing protocol. This is the case for blockchain-based
systems where modifying the signature scheme used for authorizing transactions is a heavy
process that can take years (if possible at all). We see the major motivation for studying blind
Schnorr signatures in its real-world relevance for protocols that use Schnorr signatures or will
in the near future. The prime example is Bitcoin, for which developers are already actively
exploring the use of blind Schnorr signatures for blind coin swaps, trustless tumbler services,
and more [Nic19].

2 Preliminaries

General Notation. We denote the (closed) integer interval from a to b by [a, b]. We use
[b] as shorthand for [1, b]. A function µ : N → [0, 1] is negligible (denoted µ = negl) if for all
c ∈ N there exists λc ∈ N such that µ(λ) ≤ λ−c for all λ ≥ λc. A function ν is overwhelming if
1− ν = negl. We let lg denote the logarithm in base 2 and write x ≡p y for x ≡ y (mod p).

Given a non-empty finite set S, we let x←$S denote the operation of sampling an element
x from S uniformly at random. All algorithms are probabilistic unless stated otherwise. By
y ← A(x1, . . . , xn) we denote the operation of running algorithm A on inputs (x1, . . . , xn)
and uniformly random coins and letting y denote the output. If A has oracle access to some
algorithm Oracle, we write y ← AOracle(x1, . . . , xn). A list ~z = (z1, . . . , zn), also denoted
(zi)i∈[n], is a finite sequence. The length of a list ~z is denoted |~z|. The empty list is denoted ( ).

A security game GAMEpar(λ) indexed by a set of parameters par consists of a main
procedure and a collection of oracle procedures. The main procedure, on input the security
parameter λ, initializes variables and generates input on which an adversary A is run. The
adversary interacts with the game by calling oracles provided by the game and returns some
output, based on which the game computes its own output b (usually a single bit), which we
write b← GAMEApar(λ). When the game outputs the truth value of a predicate, we identify
false with 0 and true with 1. Games are either computational or decisional. The advantage of A
in GAMEpar(λ) is defined as Advgame

par,A(λ) := Pr[1← GAMEApar(λ)] if the game is computational
and as Advgame

par,A(λ) := 2 · Pr[1← GAMEApar(λ)]− 1 if it is decisional, where the probability is
taken over the random coins of the game and the adversary. We say that GAMEpar is hard if
for any probabilistic polynomial-time (p.p.t.) adversary A, Advgame

par,A(λ) = negl(λ). All games
considered in this paper are computational unless stated otherwise (we only consider decisional
games in Section 6 and Appendix B.)

Algebraic Algorithms. A group description is a tuple Γ = (p,G, G) where p is an odd
prime, G is an abelian group of order p, and G is a generator of G. We will use additive
notation for the group law throughout this paper, and denote group elements (including the
generator G) with italic uppercase letters. We assume the existence of a p.p.t. algorithm GrGen
which, on input the security parameter 1λ in unary, outputs a group description Γ = (p,G, G)
where p is of bit-length λ. Given an element X ∈ G, we let logG(X) denote the discrete
logarithm of X in base G, i.e., the unique x ∈ Zp such that X = xG. We write logX when G
is clear from context.
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Game DLAGrGen(λ)

(p,G, G)←GrGen(1λ)
x←$Zp ; X := xG

y ← A(p,G, G,X)
return (y = x)

Game OMDLAGrGen(λ)

(p,G, G)←GrGen(1λ)
~x := ( ) ; q := 0

~y ← AChal,DLog(p,G, G)

return
(
~y = ~x ∧ q < |~x|

)

Oracle Chal()

x←$Zp ; X := xG

~x := ~x ‖ (x)
return X

Oracle DLog(X)

q := q + 1
x := logG(X)
return x

Fig. 1. The DL and OMDL problems.

An algebraic security game (w.r.t. GrGen) is a game GAMEAGrGen(λ) that (among other
things) runs Γ ← GrGen(1λ) and gives Γ = (p,G, G) as input to A (see for example games
DL and OMDL in Figure 1). An algorithm Aalg executed in an algebraic game GAMEAalg

GrGen(λ)
is algebraic if for all group elements Z that it outputs, it also provides a representation of Z
relative to all previously received group elements: if ~X = (X0, . . . , Xn) ∈ Gn+1 is the list of
all group elements that Aalg has received so far (where by convention we let X0 = G), then
Aalg must output Z together with ~z = (z0, . . . , zn) ∈ (Zp)n+1 such that Z =

∑n
i=0 ziXi. We

let Z[~z] denote such an augmented output. When writing the vector ~z explicitly, we simply
write Z[z0,...,zn] (rather than Z[(z0,...,zn)]) to lighten the notation.

Algebraic Algorithms in the Random Oracle Model. The original paper [FKL18]
considered the algebraic group model augmented by a random oracle and proved tight security
of BLS signatures [BLS04] in this AGM+ROM model. The random oracle in that work is of
type H : {0, 1}∗ → G, and as the outputs are group elements, the adversary’s group element
representations could depend on them.

In this work, we analyze Schnorr-type cryptosystems, for which the RO is typically of type
H : G × {0, 1}∗ → Zp. Thus, an algebraic adversary querying H on some input (Z,m) must
also provide a representation ~z for the group-element input Z. In a game that implements the
random oracle by lazy sampling, to ease readability, we will define an auxiliary oracle H̃, which
is used by the game itself (and thus does not take representations of group elements as input)
and implements the same function as H.

The (One-More) Discrete Logarithm Problem. We recall the discrete logarithm (DL)
problem in Figure 1. The one-more discrete logarithm (OMDL) problem, also defined in
Figure 1, is an extension of the DL problem and consists in finding the discrete logarithm of q
group elements by making strictly less than q calls to an oracle solving the discrete logarithm
problem. It was introduced in [BNPS03] and used for example to prove the security of the
Schnorr identification protocol against active and concurrent attacks [BP02].

3 Schnorr Signatures

3.1 Definitions

A signature scheme SIG consists of the following algorithms:

– par← SIG.Setup(1λ): the setup algorithm takes as input the security parameter λ in unary
and outputs public parameters par;
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Game EUF-CMAASIG(λ)

par← SIG.Setup(1λ)
(sk, pk)← SIG.KeyGen(par) ; Q := ( )

(m∗, σ∗)← ASign(pk)

return
(
m∗ /∈ Q ∧ SIG.Ver(pk,m∗, σ∗)

)

Oracle Sign(m)

σ ← SIG.Sign(sk,m)
Q := Q ‖ (m)
return σ

Fig. 2. The EUF-CMA security game for a signature scheme SIG.

– (sk, pk)← SIG.KeyGen(par): the key generation algorithm takes parameters par and outputs
a secret key sk and a public key pk;

– σ ← SIG.Sign(sk,m): the signing algorithm takes as input a secret key sk and a message
m ∈ {0, 1}∗ and outputs a signature σ;

– b← SIG.Ver(pk,m, σ): the (deterministic) verification algorithm takes a public key pk, a
message m, and a signature σ; it returns 1 if σ is valid and 0 otherwise.

Correctness requires that for any λ and any message m, when running par← SIG.Setup(1λ),
(sk, pk) ← SIG.KeyGen(par), σ ← SIG.Sign(sk,m), and b ← SIG.Ver(pk,m, σ), one has b =
1 with probability 1. The standard security notion for a signature scheme is existential
unforgeability under chosen-message attack (EUF-CMA), formalized via game EUF-CMA,
which we recall in Figure 2. The Schnorr signature scheme [Sch91] is specified in Figure 3.

3.2 Security of Schnorr Signatures in the AGM

Theorem 1. Let GrGen be a group generator. Let Aalg be an algebraic adversary against the
EUF-CMA security of the Schnorr signature scheme Sch[GrGen] running in time at most τ
and making at most qs signature queries and qh queries to the random oracle. Then there exists
an algorithm B solving the DL problem w.r.t. GrGen, running in time at most τ +O(qs + qh),
such that

Adveuf-cma
Sch[GrGen],Aalg

(λ) ≤ Advdl
GrGen,B(λ) + qs(qs + qh) + 1

2λ−1 .

Sch.Setup(1λ)

(p,G, G)← GrGen(1λ)
Select H : {0, 1}∗ → Zp
return par := (p,G, G,H)

Sch.Sign(sk,m)

(p,G, G,H, x) := sk
r←$Zp ; R := rG

c := H(R,m) ; s := r + cx mod p
return σ := (R, s)

Sch.KeyGen(par)

(p,G, G,H) := par ; x←$Zp ; X := xG

sk := (par, x) ; pk := (par, X)
return (sk, pk)

Sch.Ver(pk,m, σ)

(p,G, G,H, X) := pk
(R, s) := σ

c := H(R,m)
return (sG = R+ cX)

Fig. 3. The Schnorr signature scheme Sch[GrGen] based on a group generator GrGen.
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We start with some intuition for the proof. In the random oracle model, Schnorr signatures
can be simulated without knowledge of the secret key by choosing random c and s, setting
R := sG− cX and then programming the random oracle so that H(R,m) = c. On the other
hand, an adversary that returns a signature forgery (m∗, (R∗, s∗)) can be used to compute
the discrete logarithm of the public key X. In the ROM this can be proved by rewinding the
adversary and using the Forking Lemma [PS96b, PS00], which entails a security loss.

In the AGM+ROM, extraction is straight-line and the security proof thus tight: a valid
forgery satisfies R∗ = s∗G− c∗X, with c∗ := H(R∗,m∗); on the other hand, since the adversary
is algebraic, when it made its first query H(R∗,m∗), it provided a representation of R∗ in basis
(G,X), that is (γ∗, ξ∗) with R∗ = γ∗G+ ξ∗X. Together, these equations yield

(ξ∗ + c∗)X = (s∗ − γ∗)G .

Since c∗ was chosen at random after the adversary chose ξ∗, the probability that ξ∗ + c∗ 6≡p 0
is overwhelming, in which case we can compute the discrete logarithm of X from the above
equation.

Proof. Let Aalg be an algebraic adversary playing EUF-CMASch[GrGen] and making at most qs
signature queries and qh RO queries. We proceed by a sequence of games specified in Figure 4.
Game0. The first game is the EUF-CMA game (Figure 2) for the Schnorr signature scheme
(Figure 3) in the random oracle model for H. The game maintains a list Q of queried messages
and T of values sampled for H. To prepare the change to Game1, we have written the
finalization of the game in an equivalent way: it first checks that m∗ /∈ Q and then runs
Sch.Ver(pk,m∗, (R∗, s∗)), which we have written explicitly. Note that since the adversary is
algebraic, it must provide a representation (γ∗, ξ∗) for its forgery (m∗, (R∗[γ∗,ξ∗], s

∗) such that
R∗ = γ∗G+ ξ∗X, and similarly for each RO query H(R[γ,ξ],m). By definition,

Advgame0
Aalg

(λ) = Adveuf-cma
Sch[GrGen],Aalg

(λ) .

Game1. In Game1, we make the following changes. First, we introduce an auxiliary table U
that for each query H(R[γ,ξ],m) stores the representation (γ, ξ) of R. Clearly, this does not
modify the probability that the game returns 1. Second, when the adversary returns its forgery
(m∗, (R∗[γ∗,ξ∗], s

∗)) and had previously made a query H(R∗[γ′,ξ′],m
∗) for some (γ′, ξ′), then we

consider this previous representation of R∗, that is, we set (γ∗, ξ∗) := (γ′, ξ′). The only actual
difference in Game1 is that it returns 0 in case ξ∗ ≡p −T(R∗,m∗) (line (I)); otherwise Game0
and Game1 are identical.

We show that this happens with probability exactly 1/p ≤ 1/2λ−1. First note that line
(I) is only executed if m∗ /∈ Q, as otherwise the game would already have returned 0; hence
T(R∗,m∗) can only have been defined either (1) during a call to H by the adversary or (2),
if it is still undefined when Aalg stops, by the game when defining c∗. We show that in both
cases the probability of returning 0 in line (I) is 1/p:
(1) If T(R∗,m∗) was defined during a H query of the form H(R∗[γ′,ξ′],m

∗) then T(R∗,m∗) is
drawn uniformly at random and independently from ξ′. Since then U(R∗,m∗) 6= ⊥, the game
sets ξ∗ := ξ′ and hence ξ∗ ≡p −T(R∗,m∗) holds with probability exactly 1/p.
(2) If T(R∗,m∗) is only defined after the adversary output ξ∗ then again we have ξ∗ ≡p
−T(R∗,m∗) with probability 1/p. Hence,

Advgame1
Aalg

(λ) ≥ Advgame0
Aalg

(λ)− 1
2λ−1 .
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Game0, Game1 , Game2

(p,G, G)← GrGen(1λ)
x←$Zp ; X := xG

Q := ( ) ; T := ( ) ; U := ( )(
m∗, (R∗[γ∗,ξ∗], s

∗)
)
← AH,Sign

alg (p,G, G,X)
// R∗ = γ∗G+ ξ∗X

if m∗ ∈ Q then return 0

c∗ := H̃(R∗,m∗)

if U(R∗,m∗) 6= ⊥ then
(γ∗, ξ∗) := U(R∗,m∗)

if ξ∗ ≡p −T(R∗,m∗) then return 0 (I)

return (s∗G = R∗ + c∗X)

Oracle H̃(R,m)

if T(R,m) = ⊥ then
T(R,m)←$Zp

return T(R,m)

Oracle H(R[γ,ξ],m) //R = γG+ ξX

if T(R,m) = ⊥ then

T(R,m)←$Zp ; U(R,m) := (γ, ξ)

return T(R,m)

Oracle Sign(m) // in Game0 and Game1

r←$Zp ; R := rG

c := H̃(R,m) ; s := r + cx mod p
Q := Q‖(m)
return (R, s)

Oracle Sign(m) // in Game2

c, s←$Zp ; R := sG− cX
if T(R,m) = ⊥ then

T(R,m) := c

else abort game and return 0 (II)
Q := Q‖(m)
return (R, s)

Fig. 4. Games used in the proof of Theorem 1. Game0, defined by ignoring all boxes, is the EUF-CMA security
game for the Schnorr signature scheme Sch[GrGen] with algebraic adversary Aalg. As we work in the ROM, Aalg

has oracle access to H while the game uses a local function H̃, both implemented via lazy sampling with the
same table T (see Section 2). Boxed statements are only included in Game1 and Game2; Gray boxes are
only included in Game2.

Game2. In the final game we use the standard strategy for Schnorr signatures of simulating
the Sign oracle without the secret key x by programming the random oracle. Clearly, Game1
and Game2 are identical unless Game2 returns 0 in line (II). For each signature query, R is
uniformly random, and the size of table T is at most qs + qh, hence the game aborts in line
(II) with probability at most (qs + qh)/p ≤ (qs + qh)/2λ−1. By summing over the at most qs
signature queries, we have

Advgame2
Aalg

(λ) ≥ Advgame1
Aalg

(λ)− qs(qs + qh)
2λ−1 .

Reduction to DL. We now construct an adversary B solving DL with the same probability
as Aalg wins Game2. On input group description (p,G, G) and X, the adversary runs Aalg on
input (p,G, G,X) and simulates Game2, which can be done without knowledge of logG(X).
Assume that the adversary wins Game2 by returning (m∗, R∗, s∗) and let c∗ := T(R∗,m∗) and
(γ∗, ξ∗) be defined as in the game. Thus, ξ∗ 6= −c∗ mod p and R∗ = γ∗G + ξ∗X; moreover,
validity of the forgery implies that s∗G = R∗ + c∗X. Hence, (s∗ − γ∗)G = (ξ∗ + c∗)X and B
can compute logX = (s∗ − γ∗)(ξ∗ + c∗)−1 mod p. Combining previous inequalities, we have

Advdl
GrGen,B(λ) = Advgame2

Aalg
(λ) ≥ Adveuf-cma

Sch[GrGen],Aalg
(λ)− qs(qs + qh) + 1

2λ−1 .
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Assuming that scalar multiplications in G and assignments in tables T and U take unit time,
the running time of B is τ +O(qs + qh).

4 Blind Schnorr Signatures

4.1 Definitions

We start with defining the syntax and security of blind signature schemes and focus on schemes
with a 2-round (i.e., 4 messages) signing protocol for concreteness.

Syntax. A blind signature scheme BS consists of the following algorithms:

– par ← BS.Setup(1λ): the setup algorithm takes the security parameter λ in unary and
returns public parameters par;

– (sk, pk)← BS.KeyGen(par): the key generation algorithm takes the public parameters par
and returns a secret/public key pair (sk,pk);

– (b, σ)← 〈BS.Sign(sk),BS.User(pk,m)〉: an interactive protocol is run between the signer
with private input a secret key sk and the user with private input a public key pk and a
message m; the signer outputs b = 1 if the interaction completes successfully and b = 0
otherwise, while the user outputs a signature σ if it terminates correctly, and ⊥ otherwise.
For a 2-round protocol the interaction can be realized by the following algorithms:

(msgU,0, stateU,0)← BS.User0(pk,m)
(msgS,1, stateS)← BS.Sign1(sk,msgU,0)

(msgU,1, stateU,1)← BS.User1(stateU,0,msgS,1)
(msgS,2, b)← BS.Sign2(stateS ,msgU,1)

σ ← BS.User2(stateU,1,msgS,2)

(Typically, BS.User0 just initiates the session, and thus msgU,0 = ( ) and stateU,0 = (pk,m).)
– b← BS.Ver(pk,m, σ): the (deterministic) verification algorithm takes a public key pk, a

message m, and a signature σ, and returns 1 if σ is valid on m under pk and 0 otherwise.

Correctness requires that for any λ and any message m, when running par← BS.Setup(1λ),
(sk,pk)← BS.KeyGen(par), (b, σ)← 〈BS.Sign(sk),BS.User(pk,m)〉, and b′ ← BS.Ver(pk,m, σ),
we have b = 1 = b′ with probability 1.

Unforgeability. The standard security notion for blind signatures demands that no user,
after interacting arbitrary many times with a signer and k of these interactions were considered
successful by the signer, can produce more than k signatures. Moreover, the adversary can
schedule and interleave its sessions with the signer in any arbitrary way.

In game UNFABS(λ) defined in Figure 5 the adversary has access to two oracles Sign1 and
Sign2 corresponding to the two phases of the interactive protocol. The game maintains two
counters k1 and k2 (initially set to 0), where k1 is used as session identifier, and a set S of
“open” sessions. Oracle Sign1 takes the user’s first message (which for blind Schnorr signatures
is empty), increments k1, adds k1 to S and runs the first round on the signer’s side, storing its
state as statek1 . Oracle Sign2 takes as input a session identifier j and a user message; if j ∈ S,
it runs the second round on the signer’s side; if successful, it removes j from S and increments
k2, which thus represents the number of successful interactions.

10



Game UNFABS(λ)

par← BS.Setup(1λ)
(sk, pk)← BS.KeyGen(par)
k1 := 0 ; k2 := 0 ; S := ∅

(m∗i , σ∗i )i∈[n] ← ASign1,Sign2 (pk)

return
(
k2 < n

∧ ∀ i 6= j ∈ [n] : (m∗i , σ∗i ) 6= (m∗j , σ∗j )

∧ ∀ i ∈ [n] : BS.Ver(pk,m∗i , σ∗i ) = 1
)

Oracle Sign1(msg)

k1 := k1 + 1 // session id

(msg′, statek1 )← BS.Sign1(sk,msg)
S := S ∪ {k1} // open sessions

return (k1,msg′)

Oracle Sign2(j,msg)

if j /∈ S then return ⊥
(msg′, b)← BS.Sign2(statej ,msg)
if b = 1 then S := S \ {j} ; k2 := k2 + 1
return msg′

Fig. 5. The (strong) unforgeability game for a blind signature scheme BS with a 2-round signing protocol.

We say that BS satisfies unforgeability if Advunf
BS,A(λ) is negligible for all p.p.t. adversaries A.

Note that we consider “strong” unforgeability, which only requires that all pairs (m∗i , σ∗i )
returned by the adversary (rather than all messages m∗i ) are distinct.

Blindness. Blindness requires that a signer cannot link a message/signature pair to a
particular execution of the signing protocol. Formally, the adversary chooses two messages m0
and m1 and the experiment runs the signing protocol acting as the user with the adversary, first
obtaining a signature σb on mb and then σ1−b on m1−b for a random bit b. If both signatures
are valid, the adversary is given (σ0, σ1) and must determine the value of b. A formal definition
can be found in Appendix B.

Blind Schnorr signatures. A blind signature scheme BlSch is obtained from the scheme
Sch in Figure 3 by replacing Sch.Sign with the interactive protocol specified in Figure 6 (the
first message msgU,0 from the user to the signer is empty and is not depicted). Correctness
follows since a signature (R′, s′) obtained by the user after interacting with the signer satisfies

BlSch.Sign((p,G, G,H), x) BlSch.User(((p,G, G,H), X),m)
r←$Zp ; R := rG R−−−−−−−−→

α, β←$Zp
R′ := R+ αG+ βX
c′ := H(R′,m)
c := c′ + β mod pc←−−−−−−−−

s := r + cx mod p s−−−−−−−−→
if sG 6= R+ cX then return ⊥
s′ := s+ α mod p
return σ := (R′, s′)

Fig. 6. The signing protocol of the blind Schnorr signature scheme.
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Game ROSAGrGen,`,Ω(λ)

(p,G, G)← GrGen(1λ)
Tros := ( )(
(~ρi, auxi)i∈[`+1], (cj)j∈[`]

)
← AHros (p)

// ~ρi = (ρi,1, . . . , ρi,`)

return
(
∀ i 6= i′ ∈ [`+ 1] : (~ρi, auxi) 6= (~ρi′ , auxi′)

∧ ∀ i ∈ [`+ 1] :
∑`

j=1 ρi,jcj ≡p Hros(~ρi, auxi)
)

Oracle Hros(~ρ, aux)

if Tros(~ρ, aux) = ⊥ then
Tros(~ρ, aux)←$Zp

return Tros(~ρ, aux)

Fig. 7. The ROS game, where Hros : (Zp)` ×Ω → Zp is a random oracle.

Sch.Ver:

s′G = sG+ αG = (r + cx)G+ αG = R+ αG+ βX + (−β + c)X
= R′ + c′X = R′ + H(R′,m)X .

Moreover, Schnorr signatures have been shown to achieve perfect blindness [CP93].

4.2 The ROS Problem

The security of blind Schnorr signatures is related to the ROS (Random inhomogeneities
in an Overdetermined, Solvable system of linear equations) problem, which was introduced
by Schnorr [Sch01]. Consider the game ROSGrGen,`,Ω in Figure 7, parameterized by a group
generator GrGen,6 an integer ` ≥ 1, and a set Ω (we omit GrGen and Ω from the notation
when they are clear from context). The adversary A receives a prime p and has access to
a random oracle Hros taking as input (~ρ, aux) where ~ρ ∈ (Zp)` and aux ∈ Ω. Its goal is to
find `+ 1 distinct pairs (~ρi, auxi)i∈[`+1] together with a solution (cj)j∈[`] to the linear system∑`
j=1 ρi,jcj ≡p Hros(~ρi, auxi), i ∈ [`+ 1].7
The lemma below, which refines Schnorr’s observation [Sch01], shows how an algorithm A

solving the ROS` problem can be used to break the one-more unforgeability of blind Schnorr
signatures.

Lemma 1. Let GrGen be a group generator. Let A be an algorithm for game ROSGrGen,`,Ω,
where Ω = (Zp)2 × {0, 1}∗, running in time at most τ and making at most qh random oracle
queries. Then there exists an (algebraic) adversary B running in time at most τ +O(`+ qh),
making at most ` queries to Sign1 and Sign2 and qh random oracle queries, such that

Advunf
BlSch[GrGen],B(λ) ≥ Advros

GrGen,`,Ω,A(λ)− q2
h + (`+ 1)2

2λ−1 .

Proof. We first consider a slightly modified game ROS′GrGen,`,Ω, which differs from ROS in
that it first draws x, r1, . . . , r`←$ Zp and returns 0 if one of the following two events occurs:

6 The group generator GrGen is only used to generate a prime p of length λ; the group G is not used in the
game.

7 The original definition of the problem by Schnorr [Sch01] sets Ω := ∅. Our more general definition does not
seem to significantly modify the hardness of the problem while allowing to prove Theorem 2.
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– E1: when A queries Hros(~ρ, (γ, ξ,m)), there has been a previous query Hros(~ρ ′, (γ′, ξ′,m′))
such that m = m′ and

γ + ξx+
∑`
j=1 ρjrj ≡p γ′ + ξ′x+

∑`
j=1 ρ

′
jrj ;

– E2: when A returns
(
(~ρi, (γi, ξi,mi))i∈[`+1], (cj)j∈[`]

)
, there exists i 6= i′ ∈ [`+ 1] such that

mi = mi′ and
γi + ξix+

∑`
j=1 ρi,jrj ≡p γi′ + ξi′x+

∑`
j=1 ρi′,jrj .

Games ROS and ROS′ are identical unless E1 or E2 occurs in ROS′. Note that we could defer
the random selection of x, r1, . . . , r` and the check whether E1 or E2 occurred to the very end
of the game. Consider two distinct random oracle queries (~ρ, (γ, ξ,m)) and (~ρ ′, (γ′, ξ′,m′)); if
m 6= m′ then E1 cannot occur; ifm = m′, then (γ, ξ, ~ρ) 6= (γ′, ξ′, ~ρ ′) and by the Schwartz-Zippel
Lemma,

(γ − γ′) + (ξ − ξ′)x+
∑`
j=1(ρj − ρ′j)rj ≡p 0

with probability 1/p ≤ 1/2λ−1 over the draw of x, r1, . . . , r`. Hence, event E1 occurs with
probability at most q2

h/2λ−1. Similarly, event E2 occurs with probability at most (`+ 1)2/2λ−1.
Hence,

Advros′
GrGen,`,Ω,A(λ) ≥ Advros

GrGen,`,Ω,A(λ)− q2
h + (`+ 1)2

2λ−1 . (1)

We now construct an adversary B for the game UNFBlSch[GrGen] as follows. Adversary B,
which takes as input (p,G, G,X) and has access to random oracle H and signing oracles
Sign1 and Sign2, simulates game ROS′ as follows. First, B initiates ` parallel instances
of the protocol by querying (j, Rj) ← Sign1() for j ∈ [`]. Then, it runs A(p). When A
queries Hros(~ρ, (γ, ξ,m)) where ~ρ = (ρj)j∈[`] ∈ (Zp)` and (γ, ξ,m) = aux ∈ (Zp)2 × {0, 1}∗,
B computes R := γG + ξX +

∑`
j=1 ρjRj and returns H(R,m) + ξ, unless there has been a

previous query Hros(~ρ ′, (γ′, ξ′,m′)) with m = m′ and R = γ′G+ ξ′X +
∑`
j=1 ρ

′
jRj , in which

case B aborts. It is easy to see that B perfectly simulate game ROS′. Eventually, A returns(
(~ρi, (γi, ξi,m∗i ))i∈[`+1], (cj)j∈[`]

)
. Then B closes all signing sessions by calling sj ← Sign2(j, cj)

for j ∈ [`]. Finally, for i ∈ [`+ 1], it computes

R∗i := γiG+ ξiX +
∑`
j=1 ρi,jRj

s∗i := γi +
∑`
j=1 ρi,jsj mod p

and returns `+ 1 forgeries (m∗i , (R∗i , s∗i ))i∈[`+1].
Assume that A wins game ROS′. Then, in particular, (i) all pairs (m∗i , R∗i ) are distinct

and (ii) for all i ∈ [`+ 1],∑`
j=1 ρi,jcj ≡p Hros(~ρi, (γi, ξi,m∗i )) ≡p H(R∗i ,m∗i ) + ξi ,

where the second equality follows from the way B answers A’s queries to Hros. While (i) implies
that all forgeries (m∗i , (R∗i , s∗i )) are distinct, (ii) implies that all forgeries are valid since for all
i ∈ [`+ 1],

s∗iG = γiG+
∑̀
j=1

ρi,j(rj + cjx)G = γiG+
∑̀
j=1

ρi,jRj︸ ︷︷ ︸
R∗i−ξiX

+

∑̀
j=1

ρi,jcj


︸ ︷︷ ︸
H(R∗i ,m

∗
i )+ξi

X = R∗i + H(R∗i ,m∗i )X .
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Thus, B successfully breaks unforgeability of BlSch[GrGen], and thus

Advunf
BlSch[GrGen],B(λ) = Advros′

GrGen,`,Ω,A(λ) . (2)

Clearly, B runs in time at most τ +O(`+ qh) and makes at most ` queries to Sign1 and Sign2
and qh random oracle queries. Combining Eqs. (1) and (2) concludes the proof.

The hardness of the ROS problem critically depends on `. In particular, for small values
of `, the ROS problem is statistically hard, as captured by the following lemma.

Lemma 2. Let GrGen be a group generator, ` ≥ 1, and Ω be some arbitrary set. Then for
any adversary A making at most qh queries to Hros,

Advros
GrGen,`,Ω,A(λ) ≤

( qh
`+1
)

+ 1
2λ−1 .

Proof. Consider a modified game ROS*
GrGen,`,Ω that is identical to ROS, except that it returns 0

when the adversary outputs ((~ρi, auxi)i∈[`+1], (cj)j∈[`]) such that for some i ∈ [` + 1] it has
not made the query Hros(~ρi, auxi). Games ROS and ROS∗ are identical unless in game ROS
the adversary wins and has not made the query Hros(~ρi, auxi) for some i, which happens with
probability at most 1/p ≤ 1/2λ−1. Hence,

Advros
GrGen,`,Ω,A(λ) ≤ Advros∗

GrGen,`,Ω,A(λ) + 1
2λ−1 .

In order to win the modified game ROS∗, A must in particular make `+ 1 distinct random
oracle queries (~ρi, auxi)i∈[`+1] such that the system

∑`
j=1 ρi,jcj ≡p Hros(~ρi, auxi), i ∈ [`+ 1] (3)

with unknowns c1, . . . , c` has a solution. Consider any subset of `+ 1 queries (~ρi, auxi)i∈[`+1]
made by the adversary to the random oracle and let M denote the (`+ 1)× ` matrix whose
i-th row is ~ρi and let t ≤ ` denote its rank. Then, Eq. (3) has a solution if and only if the
row vector ~h := (Hros(~ρi, auxi))T

i∈[`+1] is in the span of the columns of M . Since ~h is uniformly
random, this happens with probability pt/p`+1 ≤ 1/p ≤ 1/2λ−1. By the union bound,

Advros∗
GrGen,`,Ω,A(λ) ≤

( qh
`+1
)

2λ−1 ,

which concludes the proof.

On the other hand, the ROS` problem can be reduced the (`+ 1)-sum problem, for which
Wagner’s generalized birthday algorithm [Wag02, MS12, NS15] can be used. More specifically,
consider the (`+ 1)× ` matrix

(ρi,j) =


1 0 · · · 0
0 1 · · · 0

. . .

0 · · · 0 1
1 · · · · · · 1


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and let ~ρi denote its i-th line, i ∈ [` + 1]. Let q := 2λ/(1+blg(`+1)c). The solving algorithm
builds lists Li = (Hros(~ρi, auxi,k))k∈[q] for i ∈ [`] and L`+1 = (−Hros(~ρ`+1, aux`+1,k))k∈[q] for
arbitrary values auxi,k and uses Wagner’s algorithm to find an element ei in each list Li
such that

∑`+1
i=1 ei ≡p 0. Then, it is easily seen that ((~ρi, auxi)i∈[`+1], (ej)j∈[`]), where auxi

is such that ei = Hros(~ρi, auxi), is a solution to the ROS problem. This algorithm makes
qh = (`+1)2λ/(1+blg(`+1)c) random oracle queries, runs in time an space O((`+1)2λ/(1+blg(`+1)c)),
and succeeds with constant probability.

4.3 Security of Blind Schnorr Signatures

We now formally prove that blind Schnorr signatures are unforgeable assuming the hardness
of the one-more discrete logarithm problem and the ROS problem.

Theorem 2. Let GrGen be a group generator. Let Aalg be an algebraic adversary against the
UNF security of the blind Schnorr signature scheme BlSch[GrGen] running in time at most τ
and making at most qs queries to Sign1 and qh queries to the random oracle. Then there exist
an algorithm Bros for the ROSqs problem making at most qh + qs + 1 random oracle queries
and an algorithm Bomdl for the OMDL problem w.r.t. GrGen making at most qs queries to its
oracle DLog, both running in time at most τ +O(qs + qh), such that

Advunf
BlSch[GrGen],Aalg

(λ) ≤ Advomdl
GrGen,Bomdl(λ) + Advros

`,Bros(λ) .

We start with explaining the proof idea. Consider an adversary in the unforgeability game,
let X be the public key and R1, . . . , R` be the elements returned by the oracle Sign1 and
let (R∗i , s∗i ) be the adversary’s forgeries on messages m∗i . As Aalg is algebraic, it must also
output a representation (γi, ξi, ~ρi) for R∗i w.r.t. the group elements received from the game:
R∗i = γiG+ ξiX +

∑`
j=1 ρi,jRj . Validity of the forgeries implies another representation, namely

R∗i = s∗iG− c∗iX with c∗i = H(R∗i ,m∗i ). Together, these yield

(c∗i + ξ∗i )X +
∑`
j=1 ρ

∗
i,jRj = (s∗i − γ∗i )G , (4)

which intuitively can be used to compute logX.
However, the reduction also needs to simulate Sign2 queries, for which, contrary to the

proof for standard Schnorr signatures (Theorem 1), it cannot rely on programming the random
oracle. In fact, the reduction can only break OMDL, which is an easier game than DL. In
particular, the reduction obtains X,R1, . . . , Rq from its challenger and must compute their
logarithms. It can make q logarithm queries, which it uses to simulate the Sign2 oracle: on
input (j, cj), it simply returns sj ← DLog(Rj + cjX).

But this means that in Eq. (4) the reduction does not know the logarithms of the Rj ’s; all
it knows is Rj = sjG− cjX, which, when plugged into Eq. (4) yields(

c∗i + ξ∗i −
∑`
j=1 ρ

∗
i,jcj︸ ︷︷ ︸

=:χi

)
X =

(
s∗i − γ∗i −

∑`
j=1 ρ

∗
i,jsj

)
G .

Thus, if for some i, χi 6= 0, the reduction can compute x = logX, from which it can derive
rj = logRj = sj − cj x. Together, x, r1, . . . , rq constitute an OMDL solution.

On the other hand, we can show that if χi = 0 for all i, then the adversary has actually
found a solution to the ROS problem (see Figure 7): A reduction to ROS would answer the
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adversary’s queries H(R[γ,ξ,~ρ],m) by Hros(~ρ, (γ, ξ,m)) − ξ; then χi = 0 implies (recall that
c∗i = H(R∗i ,m∗))

0 = χi = H(R∗i ,m∗i ) + ξ∗i −
∑`
j=1 ρ

∗
i,jcj = Hros(~ρ∗i , (γ∗i , ξ∗i ,m∗i ))−

∑`
j=1 ρ

∗
i,jcj ,

meaning
(
(~ρ ∗i , (γ∗i , ξ∗i ,m∗i ))i, (cj)j

)
is a solution to ROS.

To simplify the proof we first show the following lemma.

Lemma 3. Let GrGen be a group generator and let A be an adversary against the UNF
security of the blind Schnorr signature scheme BlSch[GrGen] running in time at most τ and
making at most qs queries to Sign1 and qh queries to the random oracle. Then there exists an
adversary B that makes exactly qs queries to Sign1 and qs queries to Sign2 that do not return
⊥, and returns qs + 1 forgeries, running in time at most τ +O(qs), such that

Advunf
BlSch[GrGen],A(λ) = Advunf

BlSch[GrGen],B(λ) .

Proof. We construct the following adversary that plays game UNF (Figure 5). On input pk,
adversary B runs A(pk) and relays all oracle queries and responses between its challenger
and A. Let q be the number of A’s Sign1 queries, let R1, . . . Rq be the answers, and let C be
the completed sessions, that is, the set of values j such that A queried Sign2 on some input
(j, ∗) and Sign2 did not reply ⊥. Let (m∗i , (R∗i , s∗i ))i∈[n] be A’s output, for which we must have
k = |C| < n when A wins.
B now makes qs− q queries to Sign1 to receive Rq+1, . . . , Rqs . Next, B completes all qs− k

open signing sessions for distinct messages by following the protocol in Figure 6: for every
j ∈ S := [1, . . . , qs] \ C, adversary B picks a fresh message mj /∈ {m∗i }i∈[n] ∪ {mi}i∈S\[j] and
αj , βj←$ Zp, computes R′j := Rj + αjG+ βjX, queries H(R′,mj) to get c′j , computes cj :=
c′j +βj mod p and queries (j, cj) to Sign2. Upon receiving sj , B computes s′j := sj +αj mod p,
which yields a signature (R′j , s′j) on message mj .

Finally, B returns A’s output concatenated with qs + 1 − n ≤ qs − k signatures: let
S = {j1, . . . , jqs−k}; then B returns (m∗i , (R∗i , s∗i ))i∈[n] ‖ (mji , (R′ji , s

′
ji

))i∈[qs+1−n].
When A wins the game, all tuples (m∗i , (R∗i , s∗i )) are different; since moreover all remaining

messages are distinct, all tuples output by B differ. By correctness of the scheme, all of B’s
signatures are valid. Thus whenever A wins then so does B.

Proof of Theorem 2. Let Aalg be an algebraic adversary making at most qs queries to Sign1
and qh queries to the random oracle. By the above lemma, we can assume that Aalg makes
exactly ` := qs queries to Sign1, closes all sessions, and returns `+ 1 valid signatures. To prove
the theorem under this assumption, it now suffices to construct Bros and Bomdl and show

Advunf
BlSch[GrGen],Aalg

(λ) ≤ Advomdl
GrGen,Bomdl(λ) + Advros

`,Bros(λ) . (5)

We proceed with a sequence of games defined in Figure 8.

Game0. The first game is the UNF game (see Figure 5) for scheme BlSch[GrGen] played with
Aalg in the random oracle model. We have written the finalization of the game in a different
but equivalent way. In particular, instead of checking that (m∗i , (R∗i , s∗i )) 6= (m∗i′ , (R∗i′ , s∗i′)) for
all i 6= i′ ∈ [`+ 1], we simply check that (m∗i , R∗i ) 6= (m∗i′ , R∗i′). This is equivalent since for any
pair (m,R), there is a single s ∈ Zp such that (R, s) is a valid signature for m. Hence, if the
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Game0
(
UNFAalg

BlSch[GrGen](λ)
)
, Game1

(p,G, G)← GrGen(1λ)
x←$Zp ; X := xG

k1 := 0 ; k2 := 0 ; S := ∅ ; T := ( ) ; U := ( )(
m∗i , (R∗i [γi,ξi,~ρi], s

∗
i )
)
i∈[`+1]

← AH,Sign1,Sign2
alg (p,G, G,X)

// R∗i = γiG+ ξiX + Σ`
j=1 ρi,jRj

if k2 > ` then return 0
if ∃ i 6= i′ ∈ [`+ 1] : (m∗i , R∗i ) = (m∗i′ , R∗i′) then

return 0

for i = 1 . . . `+ 1 do
if T(R∗i ,m∗i ) = ⊥ then

T(R∗i ,m∗i )←$Zp
// T(R∗i ,m

∗
i ) := Hros(~ρi, (γi, ξi,m∗i ))− ξi

U(R∗i ,m∗i ) := (γi, ξi, ~ρi)

for i = 1 . . . `+ 1 do

c∗i := H̃(R∗i ,m∗i ) // does not modify T in Game1

(γ∗i , ξ∗i , ~ρ ∗i ) := U(R∗i ,m∗i )

if ∀ i ∈ [`+ 1] :
∑`

j=1 ρ
∗
i,jcj ≡p c∗i + ξ∗i

then return 0 (I)
// ((~ρ ∗i , (γ

∗
i , ξ
∗
i ,m

∗
i ))i∈[`+1], ~c) solves ROS

return (∀ i ∈ [`+ 1] : s∗iG = R∗i + c∗iX)

Oracle H̃(R,m)

if T(R,m) = ⊥ then T(R,m)←$Zp
return T(R,m)

Oracle H(R[γ,ξ,~ρ],m)

// R = γG+ ξX + Σ|~ρ|j=1 ρjRj

if T(R,m) = ⊥ then
T(R,m)←$Zp
// T(R,m) := Hros(~ρ, (γ, ξ,m))− ξ

U(R,m) := (γ, ξ, ~ρ)

return T(R,m)

Oracle Sign1()

k1 := k1 + 1
rk1 ←$Zp
Rk1 := rk1G // Rk1 ← Chal()

S := S ∪ {k1}
return (k1, Rk1 )

Oracle Sign2(j, cj)

if j /∈ S then return ⊥
sj := rj + cjx // sj ← DLog(Rj + cjX)

S := S \ {j}
k2 := k2 + 1
return sj

Fig. 8. Games used in the proof of Theorem 2. Game0 (ignore all boxes) is the unforgeability game adapted
for the original blind Schnorr signature scheme BlSch[GrGen] in the random oracle model for an algebraic
adversary Aalg. The light-gray comments in Game1 and oracle H show how the reduction Bros solves ROS and
the comments in the Sign oracles show how Bomdl embeds its challenges and simulates Game1.

adversary returns (m∗i , (R∗i , s∗i )) and (m∗i′ , (R∗i′ , s∗i′)) with (m∗i , R∗i ) = (m∗i′ , R∗i′) and s∗i 6= s∗i′ , at
least one of the two forgeries is invalid. Thus,

Advgame0
Aalg

(λ) = Advunf
BlSch[GrGen],Aalg

(λ) . (6)

Game1. In Game1, we make the following changes (which are analogous to those in the proof of
Theorem 1). First, we introduce an auxiliary table U that for each query H(R[γ,ξ,~ρ],m) stores
the representation (γ, ξ, ~ρ) of R. Clearly, this does not change the output of the game. Second,
when the adversary returns its forgeries (m∗i , (R∗i [γi,ξi,~ρi], s

∗
i ))i∈[`+1], then for each i ∈ [`+ 1]

for which T(R∗i ,m∗i ) is undefined, we emulate a call to H(R∗i [γi,ξi,~ρi],m
∗
i ). Again, this does not

change the probability that the game returns 1, since in Game0, the value T(R∗i ,m∗i ) would be
randomly assigned when the game calls H̃ to check the signature. Finally, for each i ∈ [`+ 1],
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we retrieve (γ∗i , ξ∗i , ~ρ ∗i ) := U(R∗i ,m∗i ) (which is necessarily defined at this point) and return 0 if∑`
i=1 ρ

∗
i,jcj ≡p c∗i + ξ∗i for all i ∈ [` + 1], where cj is the (unique) value submitted to Sign2

together with j and not answered by ⊥.
Clearly, Game0 and Game1 are identical unless Game1 returns 0 in line (I). We reduce

indistinguishability of Game0 and Game1 to ROS by constructing an algorithm Bros solving
the ROS` problem whenever Game1 returns 0 in line (I). Algorithm Bros, which has access to
oracle Hros, runs Aalg and simulates Game1 in a straightforward way, except that it uses its
Hros oracle to define the entries of T.

In particular, consider a query H(R[γ,ξ,~ρ],m) by Aalg such that T(R,m) = ⊥. Then Bros pads
the vector ~ρ with 0’s to make it of length ` (at this point, not all R1, . . . , R` are necessarily de-
fined, so ~ρ might not be of length `), and assigns T(R,m) := Hros(~ρ, (γ, ξ,m))−ξ (cf. comments
in Figure 8). Similarly, when Aalg has returned its forgeries (m∗i , (R∗i [γi,ξi,~ρi], s

∗
i ))i∈[`+1], then for

each i ∈ [`+1] with T(R∗i ,m∗i ) = ⊥, reduction Bros assigns T(R∗i ,m∗i ) := Hros(~ρi, (γi, ξi,m∗i ))−ξi.
Since Hros returns uniformly random elements in Zp, the simulation is perfect.

If Game1 aborts in line (I), then Bros returns ((~ρ ∗i , (γ∗i , ξ∗i ,m∗i ))i∈[`+1], (cj)j∈[`]), where
(γ∗i , ξ∗i , ~ρ ∗i ) := U(R∗i ,m∗i ). We show that this is a valid ROS solution.

First, for all i 6= i′ ∈ [` + 1]: (~ρ ∗i , (γ∗i , ξ∗i ,m∗i )) 6= (~ρ ∗i′ , (γ∗i′ , ξ∗i′ ,m∗i′). Indeed, otherwise we
would have (m∗i , R∗i ) = (m∗i′ , R∗i′) and the game would have returned 0 earlier. Second, since
the game returns 0 in line (I), we have

∑`
j=1 ρ

∗
i,jcj ≡p c∗i + ξ∗i for all i ∈ [` + 1]. Hence,

to show that the ROS solution is valid, it is sufficient to show that for all i ∈ [` + 1],
c∗i = Hros(~ρ ∗i , (γ∗i , ξ∗i ,m∗i ))− ξ∗i . This is clearly the case if T(R∗i ,m∗i ) = ⊥ when the adversary
returns its forgeries. Indeed, in that case (γ∗i , ξ∗i , ~ρ ∗i ) = (γi, ξi, ~ρi) and

c∗i = T(R∗i ,m∗i ) = Hros(~ρi, (γi, ξi,m∗i ))− ξi = Hros(~ρ ∗i , (γ∗i , ξ∗i ,m∗i ))− ξ∗i .

Otherwise, T(R∗i ,m∗i ) was necessarily assigned during a call to H, and this call was of the form
H(R∗i [γ∗i ,ξ

∗
i ,~ρ
∗
i ],m

∗
i ), which implies that c∗i = T(R∗i ,m∗) = Hros(~ρ ∗i , (γ∗i , ξ∗i ,m∗i ))− ξ∗i . Hence,

Advgame1
Aalg

(λ) ≥ Advgame0
Aalg

(λ)− Advros
`,Bros(λ) . (7)

Moreover, it is easy to see that Bros makes at most qh + `+ 1 queries to Hros and runs in time
at most τ +O(`+ qh), assuming scalar multiplications in G and table assignments take unit
time.

Reduction to OMDL. In our last step, we construct an algorithm Bomdl solving the OMDL
problem whenever Aalg wins Game1. Algorithm Bomdl, which has access to two oracles Chal
and DLog (see Figure 1 in Section 2) takes as input a group description (p,G, G), makes a
first query X ← Chal(), and runs Aalg on input (p,G, G,X), simulating Game1 as follows
(cf. comments in Figure 8). Each time Aalg makes a Sign1() query, Bomdl queries its Chal
oracle to obtain Rj . It simulates Sign2(j, c) without knowledge of x and rj by querying
sj ← DLog(Rj + cX).

Assume that Game1 returns 1, which implies that all forgeries (R∗i , s∗i ) returned by Aalg
are valid. We show how Bomdl solves OMDL. First, note that Bomdl made exactly ` calls to its
oracle DLog in total (since it makes exactly one call for each (valid) Sign2 query made by
Aalg).

Since Game1 did not return 0 in line (I), there exists i ∈ [`+ 1] such that∑`
j=1 ρ

∗
i,jcj 6≡p c∗i + ξ∗i . (8)
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Since the i-th forgery is valid, we have

s∗iG = R∗i + c∗iX . (9)

On the other hand, (γ∗i , ξ∗i , ~ρ ∗i ) is a representation of R∗i , i.e.,

R∗i = γ∗iG+ ξ∗iX +
∑`
j=1 ρ

∗
i,jRj . (10)

Combining Equations (9) and (10), we get

(c∗i + ξ∗i )X +
∑`
j=1 ρ

∗
i,jRj = (s∗i − γ∗i )G . (11)

Finally, for each j ∈ [`], sj was computed with a call sj ← DLog(Rj + cjX), hence

Rj = sjG− cjX . (12)

Injecting Eq. (12) in Eq. (11), we obtain(
c∗i + ξ∗i −

∑`
j=1 ρ

∗
i,jcj

)
X =

(
s∗i − γ∗i −

∑`
j=1 ρ

∗
i,jsj

)
G . (13)

Since by Eq. (8) the coefficient in front of X is non-zero, this allows Bomdl to compute
x := logX. Furthermore, from Eq. (12) we have rj := logRj = sj − cjx for all j ∈ [`]. By
returning (x, r1, . . . , r`), Bomdl solves the OMDL problem whenever Aalg wins Game1, which
implies

Advomdl
GrGen,Bomdl(λ) = Advgame1

Aalg
(λ) . (14)

Eq. (5) now follows from Equations (6), (7) and (14).

5 The Clause Blind Schnorr Signature Scheme

We present a variation of the blind Schnorr signature scheme that only modifies the signing
protocol. The scheme thus does not change the signatures themselves, meaning that it can be
very smoothly integrated in existing applications.

The signature issuing protocol is changed so that it prevents the adversary from attacking
the scheme by solving the ROS problem using Wagner’s algorithm [Wag02, MS12]. The reason
is that, as we show in Theorem 3, the attacker must now solve a modified ROS problem, which
we define in Figure 10.

We start with explaining the modified signing protocol, which we formally define in Figure 9.
The idea is that in the first round the signer and the user execute two parallel runs of the blind
signing protocol from Figure 6, of which the signer only finishes one at random in the last
round, that is, it finishes (Run1 ∨ Run2): the clause from which the scheme takes its name.

This minor modification has major consequences. Recall that in the attack against the
standard blind signature scheme from Section 4.2, the adversary opens ` signing sessions,
receiving R1, . . . , R`, then searches a solution ~c to the ROS problem and closes the signing
sessions by sending c1, . . . , c`.

Our modified signing protocol prevents this attack, as now for every opened session the
adversary must guess which of the two challenges the signer will reply to. Only if all its
guesses are correct is the attack successful. As the attack only works for large values of `, this
probability vanishes exponentially.
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CBlSch.Sign((p,G, G,H), x) CBlSch.User(((p,G, G,H), X),m)
r0, r1 ←$Zp
R0 := r0G ;R1 := r1G

R0, R1−−−−−−−−→
α0, β0, α1, β1 ←$Zp
R′0 := R0 + α0G+ β0X
R′1 := R1 + α1G+ β1X
c′0 := H(R′0,m)
c′1 := H(R′1,m)
c0 := c′0 + β0 mod p
c1 := c′1 + β1 mod pc0, c1←−−−−−−−−

b←$ {0, 1}
s := rb + cbx mod p

b, s
−−−−−−−−→

if sG 6= Rb + cbX then return ⊥
s′ := s+ αb mod p
return σ := (R′b, s′)

Fig. 9. The clause blind Schnorr signing protocol.

In Theorem 3 we make this intuition formal; that is, we define a modified ROS game,
which we show any successful attacker (which does not solve OMDL) must solve.

We have used two parallel executions of the basic protocol for the sake of simplicity, but
the idea can be straightforwardly generalized to t > 2 parallel runs, of which the signer closes
only one at random in the last round, that is, it closes (Run1 ∨ . . . ∨ Runt). This decreases
the probability that the user correctly guesses which challenges will be answered by the signer
in ` concurrent sessions.

The Modified ROS Problem. Consider Figure 10. The difference to the original ROS prob-
lem (Figure 7) is that the queries to the Hros oracle consist of two vectors ~ρ0, ~ρ1 and additional
aux information. Analogously, the adversary’s task is to return `+ 1 tuples (~ρi,0, ~ρi,1, auxi),
except that the ROS solution c∗1, . . . , c

∗
` is selected as follows: for every index j ∈ [`] the

adversary must query an additional oracle Select(j, cj,0, cj,1), which flips a random bit bj
and sets the j-th coordinate of the solution to c∗j := cj,bj .

Up to now, nothing really changed, as an adversary could always choose ~ρi,0 = ~ρi,1 and
cj,0 = cj,1 for all indices, and solve the standard ROS problem. What complicates the task
for the adversary considerably is the additional winning condition, which demands that in
all tuples returned by the adversary, the ρ values that correspond to the complement of the
selected bit must be zero, that is, for all i ∈ [`+ 1] and all j ∈ [`]: ρi,1−bj ,j = 0. The adversary
thus must commit to the solution coordinate c∗j before it learns bj , which then restricts the
format of its ρ values.

We conjecture that the best attack against this modified ROS problem is to guess the `
bits bj and to solve the standard ROS problem based on this guess using Wagner’s algorithm.
Hence, the complexity of the attack is increased by a factor 2` and requires time

O
(
2` · (`+ 1)2λ/(1+blg(`+1)c)

)
.
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Game MROSAGrGen,`,Ω(λ)

(p,G, G)← GrGen(1λ)
Tros := ( )
(~ρi,0, ~ρi,1, auxi)i∈[`+1] ← AHros,Select(p)
// ~ρi,b = (ρi,b,1, . . . , ρi,b,`)

return
(
∀ i 6= i′ : (~ρi,0, ~ρi,1, auxi) 6= (~ρi′,0, ~ρi′,1, auxi′)

∧ ∀ i ∈ [`+ 1] :
∑`

j=1 ρi,bj ,jcj ≡p Hros(~ρi,0, ~ρi,0, auxi)

∧ ∀ i ∈ [`+ 1], ∀ j ∈ [`] : ρi,1−bj ,j = 0
)

Oracle Hros(~ρ0, ~ρ1, aux)

if Tros(~ρ0, ~ρ1, aux) = ⊥ then
Tros(~ρ0, ~ρ1, aux)←$Zp

return Tros(~ρ0, ~ρ1, aux)

Oracle Select(j, c′0, c′1)

// must be queried ∀ j ∈ [`]

bj ←$ {0, 1}
cj := c′bj

return bj

Fig. 10. The modified ROS problem.

This estimated complexity is plotted for λ ∈ {256, 512} in Figure 11. This should be compared
to the standard Wagner attack with `+ 1 = 2

√
λ running in time 232 and 245, respectively, for

the same values of the security parameter.

Unforgeability of the Clause Blind Schnorr Signature Scheme. We now prove
that the Schnorr signature scheme from Figure 3, with the signing algorithm replaced by the
protocol in Figure 9 is secure under the OMDL assumption for the underlying group and
hardness of the modified ROS problem.

Theorem 3. Let GrGen be a group generator. Let Aalg be an algebraic adversary against the
UNF security of the clause blind Schnorr signature scheme CBlSch[GrGen] running in time at
most τ and making at most qs queries to Sign1 and qh queries to the random oracle. Then
there exist an algorithm Bros for the MROSqs problem making at most qh + qs + 1 random
oracle queries and an algorithm Bomdl for the OMDL problem w.r.t. GrGen making at most qs

`

lg(τ)

50 100

50

100

150

200

Fig. 11. The estimated complexity τ of the conjectured best attack against the modified ROS problem as a
function of parameter ` for λ = 256 (solid line) and λ = 512 (dashed line).
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queries to its oracle DLog, both running in time at most τ +O(qs + qh), such that

Advunf
BlSch[GrGen],Aalg

(λ) ≤ Advomdl
GrGen,Bomdl(λ) + Advmros

`,Bmros(λ) .

The theorem follows by adapting the proof of Theorem 2; we therefore discuss the changes
and refer to Figure 12, which compactly presents all the details.

The proof again proceeds by one game hop, where an adversary behaving differently in
the two games is used to break the modified ROS problem; the only change to the proof of
Theorem 2 is that when simulating Sign2, the reduction Bmros calls Select(j, cj,0, cj,1) to
obtain bit b instead of choosing it itself. By definition, Game1 aborts in line (I) if and only if
Bmros has found a solution for MROS.

The difference in the reduction to OMDL of the modified game is that the adversary can
fail to solve MROS in two ways: (1) its values ((ρi,bj ,j)i,j , (cj)j) are not a ROS solution; in
this case the reduction can solve OMDL as in the proof of Theorem 2; (2) these values are a
ROS solution, but for some i, j, we have ρi,1−bj ,j 6= 0. We show that in this case the OMDL
reduction can compute the discrete logarithm of one of the values Rj,1−bj .

More in detail, the main difference to Theorem 2 is that the representation of the values
R∗i in the adversary’s forgery depend on both the Rj,0 and the Rj,1 values; we can thus write
them as

R∗i = γ∗iG+ ξ∗iX +
∑`
j=1 ρ

∗
i,bj ,j

Rj,bj +
∑`
j=1 ρ

∗
i,1−bj ,jRj,1−bj

(this corresponds to Eq. (10) in Theorem 2). Validity of the forgery implies R∗i = s∗iG− c∗iX,
which together with the above yields

(c∗i + ξ∗i )X +
∑`
j=1 ρ

∗
i,bj ,j

Rj,bj = (s∗i − γ∗i )G−
∑`
j=1 ρ

∗
i,1−bj ,jRj,1−bj .

By definition of sj , we have Rj,bj = sjG− cjX for all j ∈ [`]; the above equation becomes thus(
c∗i + ξ∗i −

∑`
j=1 ρ

∗
i,bj ,j

cj
)
X =

(
s∗i − γ∗i −

∑`
j=1 ρ

∗
i,bj ,j

sj
)
G−

∑`
j=1 ρ

∗
i,1−bj ,jRj,1−bj (15)

(which corresponds to Eq. (13) in Theorem 2). In Theorem 2, not solving ROS implied that for
some i, the coefficient of X in the above equation was non-zero, which allowed computation of
logX.

However, if the adversary sets all these coefficients to 0, it could still fail to solve MROS
if ρ∗i∗,1−bj∗ ,j∗ 6= 0 for some i∗, j∗ (this is exactly case (2) defined above). In this case Game1
does not abort and the OMDL reduction Bomdl must succeed. Since in this case the left-hand
side of Eq. (15) is then 0, Bomdl can, after querying DLog(Rj,1−bj ) for all j 6= j∗, compute
DLog(Rj∗,1−bj∗ ), which breaks OMDL.

We finally note that the above case distinction was merely didactic, as the same OMDL
reduction can handle both cases simultaneously, which means that our reduction does not
introduce any additional security loss. In particular, the reduction obtains X and all values
(Rj,0, Rj,1) from its OMDL challenger, then handles case (2) as described, and case (1) by
querying R1,1−b1 , . . . , R`,1−b` to its DLog oracle. In both cases it made 2` queries to DLog
and computed the discrete logarithms of all 2`+ 1 challenges.

Figure 12 presents the unforgeability game and Game1, which aborts if the adversary solved
MROS. The gray and dark gray comments also precisely define how a reduction Bmros solves
MROS whenever Game1 aborts in line (I), and how a reduction Bomdl solves OMDL whenever
Aalg wins Game1.
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Game0
(
UNFAalg

CBlSch[GrGen](λ)
)
, Game1

(p,G, G)← GrGen(1λ)
x←$Zp ; X := xG

k1 := 0 ; k2 := 0 ; S := ∅ ; T := ( ) ; U := ( )

(m∗i , (R∗i [γi,ξi,~ρi,0,~ρi,1], s
∗
i ))i∈[`+1]

← AH,Sign1,Sign2
alg (p,G, G,X)

// R∗i = γiG+ ξiX + Σρi,0,jRj,0 + Σρi,1,jRj,1

if k2 > ` then return 0
if ∃ i 6= i′ ∈ [`+ 1] : (m∗i , R∗i ) = (m∗i′ , R∗i′)

then return 0

for i = 1 . . . `+ 1 do
if T(R∗i ,m∗i ) = ⊥ then

T(R∗i ,m∗i )←$Zp
// T(R∗i ,m

∗
i ) := Hros(~ρi,0, ~ρi,1, (γi, ξi,m∗i ))− ξi

U(R∗i ,m∗i ) := (γi, ξi, ~ρi,0, ~ρi,1)

for i = 1 . . . `+ 1 do

c∗i := H̃(R∗i ,m∗i ) // does not modify T in Game1

(γ∗i , ξ∗i , ~ρ ∗i,0, ~ρ ∗i,1) := U(R∗i ,m∗i )

if ∀ i ∈ [`+ 1] :
∑`

j=1 ρ
∗
i,bj ,j

cj ≡p c∗i + ξ∗i

∧ ∀ i ∈ [`+ 1], ∀ j ∈ [`] : ρ∗i,1−bj ,j = 0
then return 0 (I)
// ((~ρ ∗i,0, ~ρ

∗
i,1, (γ

∗
i , ξ
∗
i ,m

∗
i ))i∈[`+1]) solves MROS

return (∀ i ∈ [`+ 1] : s∗iG = R∗i + c∗iX)

//



ϕi := s∗i − γ
∗
i −Σ`

j=1 ρ
∗
i,bj ,j

sj

if χi := c∗i + ξ∗i −Σ`
j=1 ρ

∗
i,bj ,j

cj 6≡p 0
x := χ−1

i ϕi mod p
for j ∈ [`] : rj,1−bj

←DLog(Rj,1−bj
)

else if ψ := ρ∗i,1−b̂,̂
6= 0 for some i, ̂

for j 6= ̂ : rj,1−bj
←DLog(Rj,1−bj

)
r̂,1−b̂

:= ψ−1(ϕi −Σj 6=̂ ρ
∗
i,1−bj ,j

rj,1−bj
)

x← DLog(X)
for j ∈ [`] : rj,bj

:= sj − cjx
(x, r1,0, . . . , r`,0, r1,1, . . . , r`,1) solves OMDL

Oracle H̃(R,m)

if T(R,m) = ⊥ then
T(R,m)←$Zp

return T(R,m)

Oracle H(R[γ,ξ,~ρ0,~ρ1],m)

// R = γG+ ξX + Σρ0,jRj,0 + Σρ1,jRj,1

if T(R,m) = ⊥ then
T(R,m)←$Zp
// T(R,m) := Hros(~ρ0, ~ρ1, (γ, ξ,m))− ξ

U(R,m) := (γ, ξ, ~ρ0, ~ρ1)

return T(R,m)

Oracle Sign1()

k1 := k1 + 1
rk1,0, rk1,1 ←$Zp
Rk1,0 := rk1,0G // Rk1,0 ← Chal()

Rk1,1 := rk1,1G // Rk1,1 ← Chal()

S := S ∪ {k1}
return (k1, Rk1,0, Rk1,1)

Oracle Sign2(j, cj,0, cj,1)

if j /∈ S then return ⊥
bj ←$ {0, 1}
// bj ← Select(j, cj,0, cj,1)

cj := cj,bj

sj := rj,bj + cjx

// sj ← DLog(Rj,bj
+ cjX)

S := S \ {j}
k2 := k2 + 1
return (bj , sj)

Fig. 12. Games used in the proof of Theorem 3. Game0 is the unforgeability game for the clause blind Schnorr
signature scheme in the ROM for an algebraic adversary Aalg. The comments in light gray show how Bmros
solves MROS; the dark comments show how Bomdl solves OMDL.
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Blindness of the Clause Blind Schnorr Signature Scheme. Blindness of the “clause”
variant in Figure 9 follows via a hybrid argument from blindness of the standard scheme
(Figure 6). In the game defining blindness the adversary impersonates a signer and selects two
messages m0 and m1. The game flips a bit b, runs the signing protocol with the adversary
for mb and then for m1−b. If both sessions terminate, the adversary is given the resulting
signatures and must determine b.

In the blindness game for scheme CBlSch, the challenger runs two instances of the issuing
protocol from BlSch for mb of which the signer finishes one, as determined by its message
(βb, sb) in the third round (βb corresponds to b in Figure 9), and then two instances for m1−b.

If b = 0, the challenger thus asks the adversary for signatures on m0,m0,m1 and then m1.
We define a hybrid game where the order of the messages is m1,m0,m0,m1; this game thus
lies between the blindness games for b = 0 and b = 1, where the messages are m1,m1,m0,m0.
The original games differ from the hybrid game by exactly one message pair; intuitively, they
are thus indistinguishable by blindness of BlSch.

A technical detail is that this argument only works when β0 = β1, as otherwise in the
reduction to BlSch blindness, both reductions (between each original game and the hybrid
game) abort one session and do not get any signatures from its challenger. The reductions
thus guess the values β0 and β1 (and return a random bit if the guess turns out wrong). The
hybrid game then replaces the β0-th message of the first two and the β1-th of the last two (as
opposed to the ones underlined as above). Following this argument, in Appendix B, where we
formally define the game BLINDABS, we prove the following:

Theorem 4. Let A be a p.p.t. adversary against blindness of the scheme CBlSch. Then there
exist two p.p.t. algorithms B1 and B2 against blindness of BlSch such that

Advblind
CBlSch,A(λ) ≤ 4 ·

(
Advblind

BlSch,B1(λ) + Advblind
BlSch,B2(λ)

)
.

Since the (standard) blind Schnorr signature scheme is perfectly blind [CP93], by the above
our variant also satisfies perfect blindness.

6 Schnorr-Signed ElGamal KEM

A public key for the ElGamal key-encapsulation mechanism (KEM) is a group element Y ∈ G.
To encrypt a message under Y , one samples a random x ∈ Zp and derives a key K := xY to
encrypt the message. Given the encapsulation X := xG, the receiver that holds y = log Y can
derive the same key as K := yX.

Under the decisional Diffie-Hellman assumption (DDH), keys are pseudorandom when
given an encapsulation. By hashing the key, that is, defining k := H(xY ), the assumption can
be relaxed to CDH in the random-oracle model. In the AGM, the (standard) ElGamal KEM
was shown to satisfy CCA1 security (where the adversary can only make decryption queries
before it has seen the challenge key) under a parameterized variant of DDH [FKL18].

The idea of Schnorr-signed ElGamal is that, in addition to X, the encapsulation contains
a proof of knowledge of the used randomness x = logX, in the form of a Schnorr signature on
message X under the public key X. The scheme is detailed in Figure 13.

The strongest security notion for KEM schemes is indistinguishability of ciphertexts
under chosen-ciphertext attack (IND-CCA2), where the adversary can query decryptions of
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SEGK.Setup(λ)

(p,G, G)← GrGen(1λ)
Select H : {0, 1}∗ → Zp
Select H′ : {0, 1}∗ → K
return par := (p,G, G,H,H′)

SEGK.Enc(pk)

(p,G, G,H,H′, Y ) := pk
x, r←$Zp ; X := xG ; R := rG

k := H′(xY ) ; s := r + H(R,X) · x mod p
return (k, (X,R, s))

SEGK.KeyGen(par)

(p,G, G,H,H′) := par
y←$Zp ; Y := yG

sk := (par, y) ; pk := (par, Y )
return (sk, pk)

SEGK.Dec(sk, (X,R, s))

(p,G, G,H,H′, y) := sk
if sG 6= R+ H(R,X) ·X then

return ⊥
return k := H′(yX)

Fig. 13. The Schnorr-signed ElGamal KEM scheme SEGK[GrGen] for key space K.

encapsulations of its choice even after receiving the challenge. The (decisional) game IND-CCA2
is defined in Figure 14.

We now prove that the Schnorr-signed ElGamal KEM is tightly IND-CCA2-secure against
algebraic adversaries in the random-oracle model under the discrete logarithm assumption.

Theorem 5. Let GrGen be a group generator. Let Aalg be an algebraic adversary against the
IND-CCA2 security of the Schnorr-signed ElGamal KEM scheme SEGK[GrGen] making at most
qd decryption queries and qh queries to both random oracles. Then there exists an algorithm B
solving the DL problem w.r.t. GrGen, such that

Advind-cca2
SEGK[GrGen],Aalg

(λ) ≤ 2 · Advdl
GrGen,B(λ) +

qd + 1
2λ−1 (qd + qh)

2λ−2 .

We give the proof idea here; a formal proof can be found in Appendix A. Let Y be the
public key and let (X∗ = x∗G,R∗, s∗) be the challenge ciphertext. If the adversary never
queries H′(x∗Y ) then it has no information about the challenge key kb; but in order to query
K∗ := x∗Y , the adversary must solve the CDH problem for (Y,X∗). A CDH solution cannot

Game IND-CCA2AKEM(λ)

par← KEM.Setup(λ)
(pk, sk)← KEM.KeyGen(par)
b←$ {0, 1}
b′ ← AEnc,Dec(pk)
return (b = b′)

Oracle Enc() // one time

(k0, c
∗)← KEM.Enc(pk) ; k1 ←$K

return (kb, c∗)

Oracle Dec(c)

if c = c∗ then return ⊥
return KEM.Dec(sk, c)

Fig. 14. The IND-CCA2 security game for a KEM scheme KEM.
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be recognized by the reduction, so it would have to guess one of A’s H′ queries, which would
make the proof non-tight.

In the AGM we can give a tight reduction to a weaker assumption, namely DL: Given a DL
challenge Y , we set it as the public key, pick a random z and set X∗ := zY . If the adversary
makes the query H′(K∗) then we have K∗ = zy2G. On the other hand, the adversary must
provide a representation (γ, υ, ξ, ρ) of K∗ w.r.t. (G, Y,X∗, R∗), and thus

K∗ = γG+ υY + ξX∗ + ρR∗ = (γ + υy + ξzy + ρs∗ − ρc∗zy)G , (16)

using the fact that R∗ = s∗G− c∗X∗. Setting these two representations of logK∗ equal yields
the following quadratic equation in y:

zy2 − (υ + ξz − ρc∗z)y ≡p γ + ρs∗ .

If one of the solutions is the DL of Y , we are done; otherwise, the adversary’s query was not
of the form K∗ and the challenge bit remains information-theoretically hidden.

The rest of the game is simulated without knowledge of logX∗ and log Y as follows: The
Schnorr signature under X∗ contained in the challenge encapsulation can be simulated by
programming the random oracle H as in the proof of Theorem 1. Decryption queries leverage
the fact that the Schnorr signature contained in an encapsulation (X,R, s) proves knowledge
of x with X = xG. By extracting x, the reduction can answer the query with k = H′(xY ),
but this extraction is trickier than in the proof of Theorem 1, since both X and R can also
depend on Y , X∗ and R∗ (if the query is made after seeing the challenge ciphertext, which is
the harder case).

In more detail, given the representations (γ, υ, ξ, ρ) and (γ′, υ′, ξ′, ρ′) of R and X provided
by the adversary, we can write (analogously to Eq. (16)):

r = logR ≡p γ + υy + ξzy + ρs∗ − ρc∗zy ≡p αy + (γ + ρs∗) and
x = logX ≡p γ′ + υ′y + ξ′zy + ρ′s∗ − ρ′c∗zy ≡p α′y + (γ′ + ρ′s∗)

(17)

with α := υ + (ξ − ρc∗)z mod p and α′ := υ′ + (ξ′ − ρ′c∗)z mod p. Since the signature (R, s)
contained in the query must be valid, we have s ≡p r + cx. Plugging the above two equations
into the latter yields

(α+ α′c)y ≡p s− (γ + ρs∗)− (γ′ + ρ′s∗)c .

If α + α′c 6≡p 0 then solving the above for y solves the challenge DL and the reduction
can stop. Since c = H(R,X) was chosen by the experiment after the adversary provided
representations of R and X, which define α and α′, we have that α+ α′c ≡p 0 happens with
probability 1

p , unless α
′ = 0.

In the latter case however, from Eq. (17) we have x = γ′+ρ′s∗ mod p, meaning the reduction
can compute x and can therefore answer the decryption query by returning H′(xY ) = H′(yX).
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A Proof of Theorem 5

Consider the games Game0 through Game3 in Figure 15, where in Game3 the adversary’s
advantage is 0. Game0 has the same behavior as IND-CCA2Aalg

SEGK[GrGen]; the only syntactical
change is that the value X∗ used in the Enc oracle is already set before running A (which
ensures that in later games it is defined in the abort conditions for lines (I), (III) and (IV)
even when Enc has not been called yet). We prove the theorem by bounding the probability
that the adversary behaves differently in two consecutive games Gamei and Gamei+1.

We start with the difference between Game0 and Game1, which consists in a possible abort
in line (I) in oracle Dec. This happens when the experiment randomly chooses c as one
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Game0 Game1 Game2 Game3

(p,G, G)← GrGen(λ)
y←$Z∗p ; Y := yG

b←$ {0, 1}

T := ( ) ; T′ := ( ) ; U := ( ) ; c∗ := 0
x∗ ←$Zp ; X∗ := x∗G

//z ←$Z∗p ; X∗ := zY

b′ ← AH,H′,Enc,Dec
alg ((p,G, G), X)

return (b = b′)

Oracle H̃(R,X)

if T(R,X) = ⊥ then T(R,X)←$Zp
return T(R,X)

Oracle H̃′(K)

if T′(K) = ⊥ then T′(K)←$K
return T′(K)

Oracle Enc() // one-time oracle

// only Game0 and Game1

r∗ ←$Zp ; R∗ := r∗G

c∗ := H̃(R∗, X∗)
s∗ := r∗ + c∗x∗ mod p
k0 := H̃′(x∗Y ) ; k1 ←$K
return (kb, (X∗, R∗, s∗))

Oracle Enc() // one-time oracle

c∗, s∗ ←$Zp ; R∗ := s∗G− c∗X∗

if T(R∗, X∗) = ⊥ then
T(R∗, X∗) := c∗

else abort game and
return b′ ←$ {0, 1} (II)

k0 := H̃′(x∗Y ) ; k1 ←$K

return (k1, (X∗, R∗, s∗))

return (kb, (X∗, R∗, s∗))

Oracle H(R[γ,υ,ξ,ρ], X[γ′,υ′,ξ′,ρ′])

// R = γG+ υY + ξX∗ + ρR∗

// X = γ′G+ υ′Y + ξ′X∗ + ρ′R∗

// (if Enc has not been called yet,

// then ξ = ξ′ = ρ = ρ′ = 0)

if T(R,X) = ⊥ then
T(R,X)←$Zp
U(R,X) := (γ, υ, ξ, ρ, γ′, υ′, ξ′, ρ′)

return T(R,X)

Oracle H′(K[γ,υ,ξ,ρ])

if K = yX∗ then
abort game and return b′ ←$ {0, 1} (III)

// solve zy2 − (υ + (ξ − ρc∗)z)y ≡p γ + ρs∗

if T′(K) = ⊥ then T′(K)←$K
return T′(K)

Oracle Dec(X[γ′,υ′,ξ′,ρ′], R[γ,υ,ξ,ρ], s)

if (X,R, s) = (X∗, R∗, s∗) then return ⊥

c := H̃(R,X)
if sG 6= R+ cX then return ⊥

if U(R,X) 6= ⊥ then
(γ, υ, ξ, ρ, γ′, υ′, ξ′, ρ′) := U(R,X)

z := x∗y−1 mod p
α := υ + (ξ − ρc∗)z mod p
α′ := υ′ + (ξ′ − ρ′c∗)z mod p

if α+ α′c 6≡p 0 then
abort game and return b′ ←$ {0, 1} (IV)

// y = (α+ α′c)−1(s− (γ + ρs∗)− (γ′ + ρ′s∗)c) mod p

if α+ α′c ≡p 0 and α′ 6= 0 then
abort game and return b′ ←$ {0, 1} (I)

// α′ = 0 ⇒ x = γ′ + ρ′s∗, thus k = H′(xY )

k := H̃′(yX)
return k

Fig. 15. The IND-CCA2 security game for the Schnorr-Signed ElGamal KEM scheme IND-CCA2Aalg
SEGK[GrGen](λ)

(Game0) and games Game1–Game3 used in the proof. The comments in dashed boxes show how the DL reduction
simulates Game3 without knowledge of x∗ and y.
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particular value. (Note that Game1 sets c∗ := 0, so the value is defined in Dec when Enc has
not been called yet.)

Observe that at any point T(R∗, X∗) is the only value in T that was not set during
an adversary’s call to H or Dec, and that thus does not have a corresponding entry in U.
Moreover, if a call (X,R, s) to Dec is not answered by ⊥, we must have (X,R) 6= (X∗, R∗),
since otherwise by the 3rd line s = logR∗ + T(R∗, S∗) logX∗ = s∗ and the oracle would have
returned ⊥ in the 1st line.

Game1 sets the values (γ, υ, ξ, ρ, γ′, υ′, ξ′, ρ′) that were given as the representation of X and
R when T(X,R) = c was defined. As we argued above, this must have been during a call from
the adversary. The value c is thus independent of (γ, . . . , ρ′), the values that define α and α′.

The two games Game0 and Game1 behave identically unless Game1 aborts in line (I), that
is, if α+ cα′ ≡p 0 and α′ 6= 0. By the above argument, the probability that c was chosen such
as c = −α · (α′)−1 mod p is upper-bounded by 1

2λ−1 . We thus have

Advgame1
Aalg

(λ) = 2 · Pr[1← Game1]− 1

≥ 2 ·
(

Pr[1← Game0]− qd/2λ−1)− 1 = Advgame0
Aalg

(λ)− qd
2λ−2 . (18)

The two games Game1 and Game2 behave identically unless oracle Enc generates values
(R∗, X∗) that have already been assigned a value in the table T. The values R∗ and X∗ are
uniformly random in G. Moreover, after the adversary has made qh queries to H and qd to
Dec, at most qh + qd values in T are assigned. Thus, the probability that (R∗, X∗) collides
with one of the entries is bounded by qh+qd

(2λ−1)2 , and we thus have

Advgame2
Aalg

(λ) ≥ Advgame1
Aalg

(λ)− 2 · (qd + qh)
(2λ−1)2 . (19)

Reduction to DL. We now construct an adversary B solving DL whenever Game3 differs
from Game2, that is, when there is an abort in line (III) or (IV). Given a DL challenge Y ,
the reduction B sets Y as the public key, chooses a random z←$ Z∗p and sets X∗ := zY . It
simulates Enc() by computing (R∗, s∗) as prescribed by the oracle, but setting kb := k1, a
random key. (We argue below that when this introduces an inconsistency, the game aborts in
line (III) anyway). B simulates the other oracles in Game3 for A without knowledge of y and
x∗ as follows (cf. the comments in dashed boxes in Figure 15):

– Queries to H′: whenever A queries K[γ,υ,ξ,ρ] with

K = γG+ υY + ξX∗ + ρR∗ = (γ + υy + ξzy + ρs∗ − ρc∗zy)G ,

B checks whether K = yX∗ (which equals zy2G) by solving the following equation for y

zy2 − (υ + ξz − ρc∗z)y ≡p γ + ρs∗

and checking whether some solution y satisfies Y = yG (in this case Game3 would abort in
line (III)); if so, B stops and returns y.
Note that otherwise, K 6= yX∗ and thus k1 still perfectly simulates H′(yX∗) = kb.
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– Queries to Dec: when queried (X,R, s), Dec returns ⊥ if sG 6= R + H(R,X)X or
(X,R, s) = (X∗, R∗, s∗). Since s is determined by (R,X), the latter implies (R,X) 6=
(R∗, X∗) if Dec did not return ⊥. By the first lines in the box in Dec, we have that
(γ, υ, ξ, ρ) and (γ′, υ′, ξ′, ρ′) are such that

R = γG+ υY + ξX∗ + ρR∗ = (γ + υy + ξzy + ρs∗ − ρc∗zy)G
X = γ′G+ υ′Y + ξ′X∗ + ρ′R∗ = (γ′ + υ′y + ξ′zy + ρ′s∗ − ρ′c∗zy)G .

(20)

As in Dec, we let α := υ + (ξ − ρc∗)z mod p and α′ := υ′ + (ξ′ − ρ′c∗)z mod p and thus
from Eq. (20) we have

r := logR = γ + ρs∗ + αy mod p
x := logX = γ′ + ρ′s∗ + α′y mod p .

(21)

Since the oracle did not return ⊥ in the 3rd line, we have s ≡p r + cx, and thus, by
substituting r and x from Eq. (21):

(α+ α′c)y ≡p s− (γ + ρs∗)− (γ′ + ρ′s∗)c .

If α+α′c 6≡p 0 then Game3 would abort in line (IV); in this case B returns the DL solution
y = (α+ α′c)−1(s− (γ + ρs∗)− (γ′ + ρ′s∗)c) mod p.
If α + α′c ≡p 0 and α′ 6= 0 then both Game2 and Game3 (and thus B) abort in line (I).
Otherwise we must have α′ = 0 and, from Eq. (21): x = γ′ + ρ′s∗ mod p. The reduction
can thus simulate the decryption query by returning H′(xY ) (which might define a new H′
value or not).

This shows that whenever Game3 differs from Game2 (in lines (III) or (IV)), reduction B solves
the DL problem, which yields:

Advgame3
Aalg

(λ) ≥ Advgame2
Aalg

(λ)− 2 · Advdl
GrGen,B(λ) . (22)

Inspecting Game3, we note that A’s output is independent of b and if the game aborts it
outputs a random bit; we thus have:

Advgame3
Aalg

(λ) = 2 · Pr[1← Game3]− 1 = 0 . (23)

The theorem now follows from Equations (18), (19), (22) and (23).

B Blindness of the Clause Blind Schnorr Signatures

In this section we formally prove blindness of the clause blind Schnorr signature scheme CBlSch,
whose signing protocol is defined in Figure 9, by reducing it to blindness of the (standard)
blind Schnorr signature scheme BlSch (Figure 6).

In the game defining blindness for BlSch, the adversary plays the role of the signer and
interacts with oracles that simulate a user running two signing sessions. Oracle U1 reproduces
the first interaction BlSch.User1 of session i, in which the user sends a challenge c. Oracle
U2 is the second interaction BlSch.User2, which, once both sessions are finished, outputs the
resulting signatures.

The formal game BLINDBlSch for adversary B is specified in Figure 16, where we follow
the definition from Hauk, Kiltz and Loss [HKL19]. As usual, B’s advantage is defined as
Advblind

BlSch,B(λ) := 2 · Pr
[
1← BLINDBBlSch(λ)

]
− 1.
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Game BLINDBBlSch(λ)

b←$ {0, 1}
b0 := b ; b1 := 1− b
b′ ← BInit,U1,U2 (1λ)
return (b′ = b)

Init(pk,m0,m1)

sess0 := init

sess1 := init

Oracle U1(i, Ri)

if i /∈ {0, 1} ∨ sessi 6= init then return ⊥
sessi := open

(statei, ci)← BlSch.User1(pk, Ri,mbi )
return ci

Oracle U2(i, si)

if sessi 6= open then return ⊥
sessi := closed

σbi ← BlSch.User2(statei, si)
if sess0 = sess1 = closed then

if σ0 = ⊥ ∨ σ1 = ⊥ then (σ0, σ1) := (⊥,⊥)
return (σ0, σ1)

else return ε

Game BLINDACBlSch(λ), GA(λ)

b←$ {0, 1}
b0 := b ; b1 := 1− b

β̂0, β̂1 ←$ {0, 1}

b′ ← AInit,U1,U2 (1λ)

if β̂0 6= β0 ∨ β̂1 6= β1 then b′ ←$ {0, 1}

return (b′ = b)

Init(pk,m0,m1)

sess0 := init

sess1 := init

Oracle U1(i, Ri,0, Ri,1)

if i /∈ {0, 1} ∨ sessi 6= init then return ⊥
sessi := open

(statei,0, ci,0)← BlSch.User1(pk, Ri,0,mbi )
(statei,1, ci,1)← BlSch.User1(pk, Ri,1,mbi )
return (ci,0, ci,1)

Oracle U2(i, si, βi)

if sessi 6= open then return ⊥
sessi := closed

σbi ← BlSch.User2(statei,βi , si)

σbi ← BlSch.User2(statei,β̂i
, si)

if sess0 = sess1 = closed then
if σ0 = ⊥ ∨ σ1 = ⊥ then (σ0, σ1) := (⊥,⊥)
return (σ0, σ1)

else return ε

Fig. 16. The blindness game for the blind Schnorr signature scheme BlSch (top) and (bottom) for the clause
blind Schnorr signature scheme CBlSch (ignoring boxes) and game G (including the boxes) used in the proof.

Proof of Theorem 4. Figure 16 shows the blindness game for clause blind Schnorr signatures,
where we have replaced CBlSch.User1 and CBlSch.User2 by their instantiations in terms of
BlSch.User1 and BlSch.User2: the user first runs two instances of BlSch.User1, and the signer
calls U2 with an additional input β, which specifies which instance the signer completes.
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To reduce blindness of CBlSch to blindness of BlSch, we will guess the bits β0 and β1 that
the adversary will use in its calls to U2: game GA(λ), specified in Figure 16, is defined like
BLINDACBlSch, except that it picks two random bits β̂0 and β̂1 and aborts if its guess was wrong.
(We also make a syntactical change in that U2 continues session β̂i instead of βi; when β̂i 6= βi,
the simulation is not correct, but the game ignores A’s output anyway.) When β̂0 6= β0 or
β̂1 6= β1, the bit b′ is random, so we have

Pr
[
1← GA(λ)

∣∣ β̂0 6= β0 ∨ β̂1 6= β1
]

= 1
2 . (24)

On the other hand, when β̂0 = β0 and β̂1 = β1, the game is the same as the original
blindness game, whose output is independent of the guess, which yields

Pr
[
1← GA(λ)

∣∣ β̂0 = β0 ∧ β̂1 = β1
]

= Pr
[
1← BLINDACBlSch(λ)

]
. (25)

From Eqs. (24) and (25), we have

Pr
[
1← GA(λ)

]
= 1

2 ·
3
4 + Pr

[
1← BLINDACBlSch(λ)

]
· 1

4 ,

and thus
Advg

A(λ) = 2 · Pr
[
1← GA(λ)

]
− 1 = 1

4 · Advblind
CBlSch,A(λ) . (26)

In the remainder of the proof, we will show that the adversary’s behavior only changes
negligibly when the bit b changes from 0 to 1. To do so, we define GA0 and GA1 by modifying GA
as follows: the bit b is fixed to 0 and 1, respectively, and the game directly outputs bit b′. The
games are specified in Figure 17 and we define BLINDB0,BlSch and BLINDB1,BlSch analogously.
We have:

Advg
A(λ) = Pr

[
1← GA(λ)

∣∣ b = 1
]

+ Pr
[
1← GA(λ)

∣∣ b = 0
]
− 1

= Pr
[
1← GA1 (λ)

]
− Pr

[
1← GA0 (λ)

]
. (27)

We now define a hybrid game G∗ which lies “between” G0 and G1 and is also specified in
Figure 17. It differs from G0 in the β̂i-th message used in signing session i and from G1 in the
(1− β̂i)-th message. Since

Advg
A(λ) = Pr[1← GA1 (λ)]− Pr[1← GA∗ (λ)] + Pr[1← GA∗ (λ)]− Pr[1← GA0 (λ)] , (28)

it suffices to bound these two differences. For the first, we construct an adversary B1 playing
game BLINDBlSch and simulating G to A so that if B1 plays BLIND0,BlSch, it simulates G0
to A; whereas if it plays BLIND1,BlSch, it simulates G∗ to A. Adversary B1 thus embeds its
interaction with its challenger as the two sessions that A will conclude (provided that β̂0 and
β̂1 are guessed correctly); it is specified in Figure 18. By inspection, we have

Pr
[
1← BLINDB1

0,BlSch(λ)
]

= Pr
[
1← GA0 (λ)

]
and

Pr
[
1← BLINDB1

1,BlSch(λ)
]

= Pr
[
1← GA∗ (λ)

]
.

(29)

We also construct an adversary B2 that simulates game GA∗ (λ) or GA1 (λ). It embeds its
interaction as the sessions that A will abort and executes the concluding sessions (which are
the same in G∗ and G1) on its own. Adversary B2 is also specified in Figure 18 (note that in
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GA0 (λ) GA∗ (λ) GA1 (λ)

β̂0, β̂1 ←$ {0, 1}
b′ ← AInit,U1,U2 (1λ)
if β̂0 6= β0 ∨ β̂1 6= β1 then b′ ←$ {0, 1}
return b′

Init(pk,m0,m1)

sess0 := init

sess1 := init

Oracle U1(i, Ri,0, Ri,1) // in G0 and G1

if i /∈ {0, 1} ∨ sessi 6= init then return ⊥
sessi := open

(statei,0, ci,0)← BlSch.User1(pk, Ri,0,mi)
(statei,1, ci,1)← BlSch.User1(pk, Ri,1,mi)

(statei,0, ci,0)← BlSch.User1(pk, Ri,0,m1−i)
(statei,1, ci,1)← BlSch.User1(pk, Ri,1,m1−i)

return (ci,0, ci,1)

Oracle U2(i, si, βi)

if sessi 6= open then return ⊥
sessi := closed

σi ← BlSch.User2(statei,β̂i
, si) // only in G0

σ1−i ← BlSch.User2(statei,β̂i
, si) // in G∗ and G1

if sess0 = sess1 = closed then
if σ0 = ⊥ ∨ σ1 = ⊥ then (σ0, σ1) := (⊥,⊥)
return (σ0, σ1)

else return ε

Oracle U1(i, Ri,0, Ri,1) // only in G∗

if i /∈ {0, 1} ∨ sessi 6= init then return ⊥
sessi := open

if β̂i = 0 then
(statei,0, ci,0)← BlSch.User1(pk, Ri,0,m1−i)
(statei,1, ci,1)← BlSch.User1(pk, Ri,1,mi)

else if β̂i = 1 then
(statei,0, ci,0)← BlSch.User1(pk, Ri,0,mi)
(statei,1, ci,1)← BlSch.User1(pk, Ri,1,m1−i)

return (ci,0, ci,1)

Fig. 17. Description of the games G0 and G1 which fix the bit b in game G from Figure 16. G∗ is a hybrid
game that makes the transition between G0 and G1.

its simulation of U2, the variable statei,β̂i is always defined because of our syntactical change
in Figure 16). We have

Pr[1← BLINDB2
0,BlSch(λ)] = Pr[1← GA∗ (λ)] and

Pr[1← BLINDB2
1,BlSch(λ)] = Pr[1← GA1 (λ)] .

(30)

From Eqs. (28) – (30) we get

Advg
A(λ) = Advblind

BlSch,B1(λ) + Advblind
BlSch,B2(λ) ,

which, together with Eq. (26), concludes the proof.

35



BInitB,UB1 ,U
B
2

1 (1λ) BInitB,UB1 ,U
B
2

2 (1λ)

β̂0, β̂1 ←$ {0, 1}

b′ ← AInitA,UA1 ,U
A
2 (1λ)

if β̂0 6= β0 ∨ β̂1 6= β1 then // βi could be ⊥

b′ ←$ {0, 1}
return b′

InitA(pk,m0,m1)

sess0 := init

sess1 := init

InitB(pk,m0,m1)

Oracle UA1 (i, Ri,0, Ri,1) // simulated by B1

if β̂i = 0 then

ci,0 ← UB1 (i, Ri,0)
(statei,1, ci,1)← BlSch.User1(pk, Ri,1,mi)

if β̂i = 1 then
(statei,0, ci,0)← BlSch.User1(pk, Ri,0,mi)

ci,1 ← UB1 (i, Ri,1)
return (ci,0, ci,1)

Oracle UA2 (i, si, βi) // simulated by B1

out← UB2 (i, si)
// out can be ε, (σ0, σ1), or (⊥,⊥)

return out

Oracle UA2 (i, si, βi) // simulated by B2

if sessi 6= open then return ⊥
sessi := closed

σ1−i ← BlSch.User2(statei,β̂i
, si)

if sess0 = sess1 = closed then
if σ0 = ⊥ ∨ σ1 = ⊥ then (σ0, σ1) := (⊥,⊥)
return (σ0, σ1)

else return ε

Oracle UA1 (i, Ri,0, Ri,1) // simulated by B2

if i /∈ {0, 1} ∨ sessi 6= init then return ⊥
sessi := open

if β̂i = 0 then
(statei,0, ci,0)← BlSch.User1(pk, Ri,1,m1−i)

ci,1 ← UB1 (i, Ri,1)

if β̂i = 1 then

ci,0 ← UB1 (i, Ri,0)
(statei,1, ci,1)← BlSch.User1(pk, Ri,1,m1−i)

return (ci,0, ci,1)

Fig. 18. Description of adversaries B1 and B2.
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