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Abstract

Although Byzantine Agreement (BA) has been studied for three decades, perhaps somewhat
surprisingly, there still exist significant gaps in our understanding regarding its round complexity.
First, although expected constant-round protocols are known in the honest majority setting, it
is unclear whether one has to settle for expected constant-round or whether there exist better
protocols that are worst-case constant-round. Second, for the corrupt majority setting, the
existence of sublinear-round BA protocols continues to ellude us except for the narrow regime
when only sublinearly more than a half are corrupt.

In this paper, we make a couple important steps forward in bridging this gap. We show two
main results:

1. No (even randomized) protocol that completes in worst-case o (log(1/δ)/ log log(1/δ))
rounds can achieve BA with 1 − δ probability, even when only 1% of the nodes are
corrupt. In comparison, known expected constant-round, honest-majority protocols com-
plete in O(log(1/δ)) rounds in the worst-case. Therefore, our lower bound is tight upto a
log log factor for the honest majority setting.

2. There exists a corrupt-majority BA protocol that terminates in O(log(1/δ)/ε) rounds in the
worst case and tolerates (1− ε) fraction of corrupt nodes. Our upper bound is optimal upto
a logarithmic factor in light of the elegant Ω(1/ε) lower bound by Garay et al. (FOCS’07).

∗A subset of the work was done while the authors were consulting for Thunder Research.



1 Introduction

A central abstraction in distributed systems and cryptography is Byzantine Agreement (BA), where
a designated sender aims to communicate a bit to multiple receivers. We require two security
properties, consistency and validity. Consistency requires that all honest nodes output the same
bit; and validity requires that they all output the sender’s bit if the sender is honest. Since the
beginning of distributed computing, a foundational and important question is the round complexity
of Byzantine Agreement. A line of elegant works have investigated this question. The celebrated
work of Dolev and Strong [6] showed that there exists an (f + 1)-round BA protocol that tolerates
upto f Byzantine corruptions for any f < n. Further, they showed that f + 1 rounds is optimal
for deterministic protocols. Subsequently, it was shown that randomized protocols can overcome
this f + 1 round complexity lower bound. Notably, a sequence of works [3,7, 11], beginning with
Feldman and Micali [7]’s ingenious work, showed the existence of expected constant-round protocols
in the honest-majority setting.

Perhaps somewhat surprisingly, despite three decades of research, significant gaps still exist in
our understanding regarding the round complexity of BA. Based on the state of the affairs, two
very natural and important questions are the following:

1. Do we have to settle for expected constant-round protocols in the honest majority setting? Can
we further improve the round complexity and obtain worst-case constant-round protocols?

2. In the corrupt majority setting, can we design randomized BA protocols that reach agreement
in sublinear number of rounds?

To the best of our knowledge no work has provided an answer for first question. All known
expected constant-round protocols [2, 3, 7, 11] incur O(log(1/δ)) rounds in the worst case for the
protocol’s failure probability to be bounded by δ. Typically we require δ to be negligibly small
in some security parameter κ and thus all known expected constant-round protocols incur super-
logarithmic (in κ) number of rounds. So far the only known round complexity lower bound for
randomized BA is due to Garay et al. [9] — they show any (even randomized) protocol that achieves
BA must incur at least Ω(n/(n − f)) rounds where n denotes the total number of nodes and f
denotes the number of corrupt nodes. Unfortunately for the honest majority setting, their result
gives rise to a constant-round lower bound which neither confirms nor rejects the existence of
worst-case constant round protocols.

A couple works have partially explored the second question and provided a positive answer
but only in a very limited parameter regime. Specifically, Fitzi and Nielsen [8] showed that if the
number of corrupt nodes is n/2 + k, then an O(k)-round (randomized) BA protocol exists assuming
the existence of a PKI and secure signatures (and their work improves the earlier result by Garay et
al. [9]). In other words, so far we only know how to construct sublinear-round BA protocols in the
corrupt majority setting when the number of corruptions is n/2 + o(n), i.e., not too much more
than a half.

1.1 Our Results and Contributions

In this paper, we revisit the round complexity of Byzantine Agreement, and make an endeavor to
address the long-standing gaps in our understanding. We advance the theoretical state of the art
with two novel results as explained below.

Main result 1: a new round complexity lower bound. We answer the first of the above
questions negatively by proving a new round complexity lower bound. Concretely, we show that
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even when only 1% (or an arbitrarily small constant fraction) of the nodes are corrupt, no (even

randomized) protocol that terminates in worst-case o
(

log(1/δ)
log log(1/δ)

)
rounds can achieve BA with 1− δ

probability. In comparison, known expected constant-round, honest-majority protocols [2, 3, 7, 11]
incur O(log(1/δ)) rounds in the worst case. Thus for the honest majority setting, our lower bound
is tight upto a log log factor; moreover, we stress that previously, it was not known how to prove
even a super-constant lower bound for this regime.

More formally, our first main theorem is the followng.

Theorem 1 (Near-logarithmic worst-case round complexity is necessary). Let f ≥ 1 and n ≥ f + 2.
Suppose that R ≤ f and 2nR

f · (n+ 0.5) · (2n/bf/Rc+ 1)R−1 · δ < 1. Then, no (possibly randomized)
protocol that terminates in R rounds (with probability 1) can achieve Byzantine Agreement with
1− δ probability among n nodes in the presence of f corruptions. Furthermore, the lower bound
holds even when assuming that the adversary is constrained to static Byzantine corruptions, and
under any reasonable setup assumptions such as the existence of a public-key infrastructure (PKI),
random oracles (RO), the ability for honest nodes to erase secrets from memory, and cryptographic
hardness assumptions.

In other words, if f
n = Θ(1) is some constant and δ ≤ 1

poly(n) , then the number R of rounds has

to be Ω(
log 1

δ

log log 1
δ

).

Main result 2: nearly round-optimal BA protocols in the corrupt majority setting. We
next show a new positive result in the corrupt majority setting. Assuming the existence of a public-
key infrastructure and standard cryptographic assumptions. For any 0 < ε, δ < 1, suppose that the
adversary corrupts at most (1− ε)n nodes and runs in time polynomial in some security parameter
κ, then we can construct a BA protocol that reaches agreement in O(log(1/δ)/ε) number of rounds
with probability 1− δ − negl(κ) where negl(κ) is a negligibly small function in κ corresponding to
the probability that the cryptographic primitives employed are broken. Note that in light of the
elegant Ω(1/ε)-round lower bound by Garay et al. [9], our upper bound is nearly optimal except for
a log(1/δ) factor. Note that our result allows for ε to be a function in n. For example, for ε = O(1),
we give an O(log(1/δ))-round protocol; and for ε = O(1/

√
n), we give an O(

√
n · log(1/δ))-round

protocol. Finally, for any f ≤ n− ω(log(1/δ)), we acheive sublinear (in n) number of rounds which
is asymptotically better than the celebrated Dolev-Strong protocol [6].

Theorem 2 (Nearly round-optimal protocols for corrupt majority). Assume the existence of a
public-key infrastructure (PKI) and standard cryptographic assumptions. For parameters ε, δ ∈ (0, 1)
which are allowed to be functions in n, there exists a protocol that terminates in O(log(1/δ)/ε)
number of rounds and achieves BA with 1− δ − negl(κ) probability in the presence of an adversary
that adaptively corrupts at most (1− ε)n nodes and runs in time polynomial in κ.

We stress that previously, except for the narrow parameter regime f = 0.5n+ o(n), no sublinear-
round protocol is known for the corrupt majority setting, not even under static corruption and
making any conceivable assumption including very strong ones such as random oracles and the
ability of honest nodes to erase secrets from memory. Our protocol works in a model where the
adversary may adaptively corrupt nodes in the middle of the execution, as long as the adversary
cannot retroactively erase messages that were already sent before the corruption took place.
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2 Preliminaries

2.1 Protocol Execution Model

We assume a standard protocol execution model with n nodes indexed with [n] := {1, 2, . . . , n}. An
external party called the environment and denoted Z provides inputs to honest nodes and receives
outputs from the honest nodes. An adversary denoted A controls a subset of the nodes which are
said to be corrupt; all other nodes are said to be honest. All corrupt nodes are under the control of
A, i.e., the messages they receive are forwarded to A, and A controls what messages they will send
once they become corrupt. The adversary A and the environment Z are allowed to freely exchange
messages any time during the execution. To capture protocols that employ cryptography, we assume
that all nodes as well as A and Z are Interactive Turing Machines that run in time polynomial in
some security parameter κ; further, we assume that κ is known to all nodes as well as A and Z.

We assume a standard synchronous network model. Whenever honest nodes send a message,
the message is delivered to honest recipients at the beginning of the next round. For our lower
bound, we shall assume a static adversary that corrupts nodes in advance before the start of the
execution. For our upper bound, we shall assume an adaptive adversary that can corrupt nodes in
the middle of the execution. Note that this makes our lower and upper bounds both stronger. In the
adaptive corruption case, we shall assume that the adversary can observe all currently honest nodes’
messages in round r before deciding which subset of these nodes to corrupt in round r. Suppose an
honest node P sends a message in some round r and then becomes corrupt in the same round — in
this case we assume that the adversary cannot perform “after-the-fact” removal and a-posteriori
delete the message that was sent by P in round r before it became corrupt. However, now that P is
corrupt, the adversary may now inject additional round-r messages on behalf of P .

2.2 Byzantine Agreement

In this section we formally define Byzantine Agreement. Recall that there are n nodes numbered
1, 2, . . . , n. Without loss of generality, we shall assume that node 1 is the designated sender.

Syntax. Prior to protocol start, the sender receives an input b ∈ {0, 1} from the environment Z.
At the end of the protocol, every node i (including the sender) outputs a bit bi to the environment
Z.

Security definition. We say that a protocol (satisfying the above syntax) achieves BA with
probability p with respect to (A,Z), iff with probability at least p over the choice of the randomized
execution, the following properties are satisfied:

• Consistency. If an honest honest node outputs bi and another honest node outputs bj to Z, then
it must hold that bi = bj .

• Validity. If the designated sender remains honest throughout and its input is b, then any honest
node’s output to Z must be b.

We say that a protocol terminates in worst-case R rounds iff it terminates in R rounds with
probability 1.

3 Near-Logarithmic Worst-Case Round Complexity is Necessary

In this section, we will prove Theorem 1. For convenience, we will use a variant of the BA definition
in our lower bound proof. In this variant, instead of having a designated sender, every node receives
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an input bit. The consistency requirement is the same as before; for validity, we require that if
all nodes are honest and they all receive the same input b, then all nodes should output b. The
literature also refers to this variant as “agreement” and the variant defined earlier in Section 2.2 as
“broadcast”. It is not hard to see that if there exists a worst-case R-round broadcast protocol Πbcast

secure against f Byzantine corruptions, then we can construct an agreement protocol Πagree that
completes in worst-case R rounds and secure against the same number of corruptions. Basically,
Πagree runs n instances of Πbcast where in instance i ∈ [n], node i is the designated sender and tries
to broadcast its input bit to everyone. At the end of R rounds, a node outputs 0 if all Πbcast

instances output 0. Else, it outputs 1.

3.1 Warmup: f+1 Round Complexity Lower Bound for Deterministic Protocols

We begin by reviewing the famous f + 1 round complexity lower bound for deterministic protocols.
We will present a re-exposition [1] of Dolev and Strong’s proof [6] that is conducive to our proof for
randomized protocols later. Since we are concerned about the round complexity of the protocol,
without loss of generality, we may assume that in every round, everyone sends a message to everyone.

Consider a deterministic protocol that terminates in f rounds where f is the number of corrupt
nodes. To show that such a protocol cannot achieve BA, we will consider a sequence of executions.
In each execution, some nodes may drop a subset to all of the messages they ought to send in some
rounds but all nodes otherwise follow the honest protocol. Anyone who ever drops a message is
corrupt and everyone else is honest. The idea is to show that there exists a sequence of executions
beginning at the all-honest execution where every node receives the input bit 0, and ending at
the all-honest execution where every node receives the input bit 1; furthermore, the following two
invariants must be respected:

1. Neighboring constraint: for any pair of adjacent executions, there exists at least one node
that is honest in both executions, and moreover its view has not changed in between these
executions.

2. Corruption constraint: in every execution in the sequence, in each round no more than one
node’s outgoing messages may be dropped — since the protocol has f rounds, the total number
of corrupt nodes in any execution is at most f .

Now, assume this f -round protocol achieves BA, then we can reach a contradiction in the
following way. In the first all-honest, all-0-input execution, by validity, every node should output 0.
Now, due to the neighboring constraint, there must be a node P that is honest in both the first
and the second executions, and its view is identical in both executions. Now P must output 0
too in the second execution. Recall that every execution has at most f corrupt nodes, and thus
by consistency, all honest nodes must output 0 in the second execution. We can now apply this
reasoning inductively. Suppose that all honest nodes output 0 in the i-th execution, we can show
that due to the neighboring and the corruption constraints, all honest nodes must output 0 in the
(i+ 1)-st execution too. We thus conclude that all honest nodes must output 1 in the final execution,
which is an all-honest, all-1-input execution; but this violates validity.

Therefore, the crux of the proof is how to construct a sequence of executions satisfying the above
requirements. Dolev and Strong [6] show that indeed this can be accomplished by dropping or
restoring one message pertaining to one round at a time in a carefully crafted fashion. In Appendix C,
we will present a concrete example for the special case f = 2, i.e., no 2-round deterministic protocol
can realize BA in the presence of 2 corruptions.
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3.2 Our Randomized Lower Bound

To prove a near-logarithmic lower bound for randomized protocols, we adopt a similar idea to go
through a sequence of executions, starting at the all-honest all-0-input execution and ending at the
all-honest all-1-input execution. One crucial difference is that now each execution is randomized,
and this raises several new challenges for our proof.

First, we modify the aforementioned two invariants as follows:

1. Neighboring constraint: for every pair of adjacent executions, there exists at least one node P
that is honest in both executions, such that P ’s view is identically distributed in both executions.

2. Corruption constraint: in every execution, some nodes may drop a subset to all of the messages
they are supposed to send — we require that the total number of nodes that drop messages is
upper bounded by f .

Recall that earlier in the proof for deterministic protocols [6], it suffices to show that such
a sequence of executions exists. When the executions are randomized, showing existence is no
longer sufficient. We need to show a stronger statement, i.e., there is a relatively short sequence
of executions satisfying the aforementioned requirements — specifically, as we argue below, the
probability that all honest nodes output 0 will degrade with each execution.

More concretely, suppose that there is an R-round randomized protocol that achieves BA where
R satisfies the constraints in the theorem statement. If we can indeed construct a sequence of M
executions satisfying the aforementioned requirements for a sufficiently small M , we can now reach
a contradiction as follows. By validity, we have that in the first all-honest all-0-input execution,
all honest nodes must output 0 with 1 − δ probability. Now, due to the neighboring constraint,
if all honest nodes output 0 with probability 1 − ν in execution (i − 1), then some honest node
(whose distribution on view has not changed between executions i− 1 and i) must output 0 with
probability 1− ν in execution i too. Now, by the consistency requirement of execution i, we may
conclude that every honest node outputs 0 with probability at least 1− ν − δ in execution i. In this
way we may conclude that the probability that all honest nodes output 0 in the final, all-honest
all-1-input execution is lower bounded by 1−Mδ where M denotes the total number of executions
in this sequence. Therefore as long as 1−Mδ > δ, we violate the validity requirement of the final
execution thus leading to a contradiction.

Now the biggest challenge is how to construct a short sequence of executions satisfying the above
invariants. A näıve approach, obviously, is to adopt the same sequence in the known deterministic
proof (see earlier works [1, 6] and Appendix C). Since this particular sequence drops or restores one
message at a time, it results in a long sequence of length O

(
(C · n)R

)
where C is a suitable constant.

To satisfy the relation 1−Mδ > δ, R must be O(log(1/δ)/ log n). For the typical parameter regime
where n is a polynomial function in κ and δ is negligibly small in κ, this results in a super-constant
(in κ) lower bound assuming that the number of corrupt nodes f is also super-constant. Note that
even this simple super-constant lower bound is interesting since it already rules out the existence of
worst-case constant-round protocols that achieve negligibly small in κ failure probability.

Our goal, however, is to prove a stronger lower bound. To see our key insight, consider the
typical case when f = Θ(n) and we would like to rule out R = o (log(1/δ)/ log log(1/δ))-round
protocols. Since R is relatively small w.r.t. f , in each execution, we can afford to have more nodes
dropping messages in each round. Our proof therefore adopts a batching idea to shorten the sequence
of executions. First, we allow for upto B := bf/Rc nodes to drop messages per round such that the
corruption constraint is respected. Now, instead of altering one message at a time, we alter a may
batch of messages from B sources to B destinations at a time for any non-final round. However, for
technical reasons that will become obvious later, in the final round we still need to drop or restore

5



one message at a time — this turns out to be necessary for satisfying the neighboring constraint for
the final round.

3.2.1 Terminology and Notations

We begin by defining some useful notations.

Batch. Let B := bf/Rc ≥ 1 denote the batch size. We may divide the nodes n into m = dn/Be
batches. We use the notation 〈i〉 to denote the i-th batch, that is

〈i〉 :=

{
{(i− 1)B + 1, (i− 1)B + 2, . . . , iB} if i ∈ [m− 1]

{(m− 1)B + 1, (m− 1)B + 2, . . . , n} if i = m

Representing an execution as a communication graph. Henceforth we use the notation
i
r−→ j to denote the r-th round message from node i to node j where r ∈ [R] and i, j ∈ [n]. Similarly,

for S, S′ ⊆ [n], S
r−→ S′ denotes the set of all round-r messages from any node in S to any node in

S′. For convenience, we often use ∗ to denote wildcard, i.e., ∗ := [n]. We often abuse the notation
j ∈ [n] to denote a singleton set {j} whenever convenient.

For convenience, we shall henceforth describe each execution as a communication graph of R
rounds, tagged with a set of input bits for all nodes. A message i

r−→ j is called an edge of the
communication graph. Therefore, an all-honest execution would result in a complete graph with the
entire edge set {[n]

r−→ [n]}r∈[R]. If an edge i
r−→ j is missing from the graph, it means that i drops

the message it ought to send to j in the r-th round.

3.2.2 Recursive Algorithm for Defining a Sequence of Executions

We now define a recursive algorithm for specifying the sequence of executions in Figure 1. The entire
sequence of executions is defined by the procedure Main, which invokes the recursively defined
algorithms Delete and Restore. All algorithms modify a global communication graph G. Initially,
when Main is invoked, this graph G is initialized to be a complete communication graph of R round
with all-0 inputs.

Intended functionalities. We state the intended functionalities of the algorithms and later we
will prove correctness in Facts 1 and 2.

• Suppose that currently the graph G has a complete set of edges in any round r′ ≥ r (henceforth
this is said to be the input assumption for Delete). Then, Delete(〈i〉, r) removes from G all

edges 〈i〉 r′−→ ∗ for any round r′ ≥ r. The sequence of intermediate graphs encountered during
the process are output.

• Suppose that in the current graph G, all edges {〈i〉 r′−→ ∗}r′≥r are missing but all other
edges in round r′ ≥ r are complete (henceforth this is said to be the input assumption for

Restore). Then, Restore(〈i〉, r) restores in G all edges 〈i〉 r′−→ ∗ for any r′ ≥ r. The sequence
of intermediate graphs encountered during the process are output.

• If the Main function is invoked for the complete R-round communication graph with all-0
input, then the final graph will be the complete R-round communication graph with all-1
input. All intermediate graphs encountered along the way will be output.

The following facts state the correctness of the algorithms in Figure 1 and are easy to verify.
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Delete(〈i〉, r):

If r = R:

For j ∈ [n]: DeleteOne(〈i〉, j, R)

Else:

For j ∈ [m]:

– Delete(〈j〉, r + 1)
– DeleteOne(〈i〉, 〈j〉, r)
– Restore(〈j〉, r + 1)

Delete(〈i〉, r + 1)

Restore(〈i〉, r):

If r = R:

For j ∈ [n]: RestoreOne(〈i〉, j, R)

Else:

Restore(〈i〉, r + 1)

For j ∈ [m]:

– Delete(〈j〉, r + 1)
– RestoreOne(〈i〉, 〈j〉, r)
– Restore(〈j〉, r + 1)

Main():

For i ∈ [m]:

– Delete(〈i〉, 1)

– Flip input bits for 〈i〉 and output

– Restore(〈i〉, 1)

DeleteOne(S, S′, r):

Delete all edges S
r−→ S′ and output

RestoreOne(S, S′, r):

Restore all edges S
r−→ S′ and output

Figure 1: Recursive algorithm for defining a sequence of executions. All algorithms modify
a global graph. Initially, when Main is invoked, the graph is a complete communication graph of R
rounds with all-0 inputs. Whenever output is called, the current graph’s state is output as the
next execution in the sequence.

Fact 1. The Delete and Restore algorithms are correct in the following sense:

1. they realize the intended functionalities stated earlier in Section 3.2.2; and

2. if Delete or Restore is invoked upon a graph that satisfies its respective input assumption,
then all recursive calls it makes to Delete and Restore will satisfy the respective input
assumptions.

Proof. Straightforward through line-by-line mechanical verification of the pseudocode and through
induction on the parameter r.

Fact 2. Suppose that the Main function is invoked for the complete communication graph with
all-0 input, and that the Delete and Restore functions are correct as defined in Fact 1. Then, the
calls to Delete and Restore made by Main satisfy the respective input assumptions. Furthermore,
the final graph G is the complete communication graph with all-1 input.

Proof. Straightforward.

3.2.3 Analysis

Henceforth we always assume that the Main function is invoked for the complete communication
graph with all-0 input. We first prove that the sequence of graphs output respect the neighboring
and the corruption constraints defined earlier.

Lemma 1 (Corruption constraint). The sequence of graphs output respect the corruption constraint.
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Proof. Last round: DeleteOne(〈i〉, j, R) can only be invoked from within Delete(〈i〉, R). By
Facts 1 and 2, when DeleteOne(〈i〉, j, R) must be invoked upon a graph G whose last-round edges
are all complete. Therefore, at any time, at most B nodes can have last-round outgoing messages
missing.

All other rounds r < R: DeleteOne(〈i〉, 〈j〉, r) can only be invoked from within Delete(〈i〉, r).
DeleteOne(〈i〉, 〈j〉, r) must be invoked upon a graph G whose edges in rounds r and greater are all
complete, except that outgoing edges from 〈j〉 in rounds r+ 1 and greater are all missing. Therefore,
at any time, at most B nodes can have round-r outgoing messages missing.

Lemma 2 (Neighboring constraint). The sequence of graphs output respect the neighboring con-
straint.

Proof. Last round: DeleteOne(〈i〉, j, R) can only be invoked from within Delete(〈i〉, R). By
Facts 1 and 2, when DeleteOne(i, R) must be invoked upon a graph G whose last-round edges are all

complete. Now, each call to DeleteOne(〈i〉, j, R) where j ∈ [n] removes the edges 〈i〉 R−→ j. Due to
Lemma 1 and the facts that B = bf/Rc and n ≥ f + 2, every time a last-round edge is removed in
this way, there must exist at least one remaining honest node P whose view is completely unaffected,
i.e., P ’s view is identically distributed before and after the removal of this last-round edge.

Similarly, RestoreOne(〈i〉, j, R), can only be invoked upon a graph G whose last-round edges are
all complete except that the last-round edges from 〈i〉 are missing. Each call to DeleteOne(〈i〉, j, R)

where j ∈ [n] restores the edges 〈i〉 R−→ j. Due to Lemma 1 and the facts that B = bf/Rc and
n ≥ f + 2, every time a last-round edge is restored in this way, there must exist at least one
remaining honest node P whose view is completely unaffected.

All other rounds r < R: DeleteOne(〈i〉, 〈j〉, r) can only be invoked from within Delete(〈i〉, r).
The line Delete(〈j〉, r + 1) deletes all edges in rounds r + 1 or greater outgoing from 〈j〉. At
this moment, DeleteOne(〈i〉, 〈j〉, R) obviously does not affect any honest nodes’ view. Similarly,
RestoreOne(〈i〉, 〈j〉, r) can only be invoked inside Restore(〈i〉, r). The line Delete(〈j〉, r+1) deletes
all edges in rounds r + 1 or greater outgoing from 〈j〉. At this moment, RestoreOne(〈i〉, 〈j〉, R)
obviously does not affect any honest nodes’ view.

Inside Main, the line Delete(〈i〉, 1) deletes all edges outgoing from 〈i〉. Obviously at this
moment, changing 〈i〉’s input bits do not affect any honest nodes’ view.

Lemma 3 (Number of executions). A call to Main() for a complete R-round communication graph

with all-0 inputs would output at most M = 2m · ( (2m+1)R−1−1
2 + n · (2m+ 1)R−1) graphs.

Proof. Let Tdelete(d) denote the number of graphs output by a call to Delete( , R− d+ 1), and let
Trestore(d) denote the number of graphs output by a call to Restore( , R− d+ 1). We thus have
the following recurrence:

Tdelete(d) = m · (Tdelete(d− 1) + Trestore(d− 1) + 1) + Tdelete(d− 1), Tdelete(1) = n

Trestore(d) = m · (Tdelete(d− 1) + Trestore(d− 1) + 1) + Trestore(d− 1), Trestore(1) = n

Solving the recurrence, we have that

Tdelete(d) = Trestore(d) =
(2m+ 1)d−1 − 1

2
+ n · (2m+ 1)d−1

The bound follows because the Main() function consists of m calls to Delete(〈∗〉, 1), followed
by m calls to Restore(〈∗〉, 1).
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Proof of Theorem 1. We are now ready to use Lemmas 1, 2 and 3 to prove the lower bound
result.

Lemma 1 says that in each execution graph produced, there are at most f corrupted nodes.
Lemma 2 states that between adjacent execution graphs, there exists at least one honest node whose
(distribution of) view does not change. Finally, Lemma 3 gives the number M of execution graphs
produced. Therefore, as argued earlier in our intuition explanation, if the probability of validity is
at least 1− δ for each execution graph, and (M + 1)δ < 1, then the first execution graph (with all
inputs 0) and the last execution graph (with all inputs 1) will cause the desired contradiction.

4 Nearly Round-Optimal BA for Corrupt Majority

We now proceed to describe our upper bound for the corrupt majority setting and thus prove
Theorem 2.

4.1 Warmup: Any Constant Fraction of Static Corruption

For simplicity, let us first focus on the simpler case when the adversary is constrained to making
static corruptions. Let ε denote the fraction of honest nodes, where ε can potentially be a function of
n; however, as a warmup, we assume ε to be some arbitrarily small constant in this section. We will
later extend our approach to more general choices of ε and to the case of adaptive corruptions. We
stress, however, that except for the narrow parameter regimes in Garay et al.’s result [9], previously
it was unknown how to achieve sublinear-round BA in the corrupt majority setting even assuming
static corruptions. We use δ > 0 to denote the failure probability (for consistency).

Flawed strawman approach. One tempting but flawed approach is to randomly elect a small
committee of log(1/δ) nodes — for the time being, imagine that a random leader election oracle
exists — and have the committee run a corrupt-majority BA protocol such as Dolev-Strong [6].
For the special case ε = Θ(1) and static corruption, it is not hard to show that except with O(δ)
probability, the committee consists of at least 1 honest node. Thus all honest nodes within the small
committee can reach agreement on a bit b∗ in log(1/δ) number of rounds. Unfortunately, there does
not seem to be any straightforward to securely convey this bit to the non-committee nodes (note
that the common approach of taking a majority vote among the committee fails to work in the
corrupt majority setting).

To resolve this challenge, our insight is to combine the random committee election idea and the
Dolev-Strong protocol in a non-blackbox manner.

Background: the Dolev-Strong protocol. We start by reviewing the classical Dolev-Strong
protocol [6] that achieves linear round complexity and tolerates any number of corruptions —
henceforth the term “multicast” means “send to everyone”:

• Every node i maintains an Extractedi set that is initialized to be empty. In round 0, the sender
signs its input bit b, and multicasts b and the signature.

• For each round r = 1 . . . n: for each bit b ∈ {0, 1}, if node i has observed valid signatures on b
from at least r distinct nodes including the designated sender and b /∈ Extractedi: compute a
signature on b; multicast b and all signatures it has observed on b (including its own); include b
in Extractedi.

• At the end of the protocol, each node i outputs the bit contained in Extractedi if |Extractedi| = 1;
else it outputs a canonical bit 0.

9



This protocol retains consistency, if the number K of rounds is strictly larger than the number
f of (eventually) corrupt nodes. First, if an honest node i first adds a bit b to its Extractedi set in
any round r < K, then by the end of round r + 1, b must be in every honest node’s Extracted set.
Further, if a honest node i first adds a bit b to its Extractedi set in the last round K (which is at
least f + 1), then at least one out of the K ≥ f + 1 signatures it has observed in round K must be
from an honest node — it holds that this honest node must have added b to its Extracted set in
some round r < K before the last round; and thus by the end of the last round K, every honest
node will have b in its Extracted set.

Achieving agreement for non-committee members. Recall that the problem with the näıve
committee election approach is how to convey the committee’s decision to the non-committee
members. To this end we will combine the committee election idea with Dolev and Strong’s protocol
in a non-blackbox manner. Suppose that a leader election oracle exists that helps us elect a
committee of log(1/δ) nodes after the adversary chooses the corrupt nodes. As argued earlier, except
with probability O(1/δ), there is at least one honest node in the committee.

Henceforth we assume that only the committee members are authorized signers and signatures
from any non-committee node will be ignored. Our key insight is to divide each round r of the
Dolev-Strong protocol into two mini-rounds:

• Every node i maintains an Extractedi set that is initialized to be empty. In round 0, the sender
signs its input bit b, and multicasts b and the signature.

• For each round r = 1, 2, . . . , S + 1 where S = log(1/δ) denotes the committee size,

1. In the first mini-round, if any node i receives a bit b /∈ Extractedi with r signatures from
distinct signers, it adds b to Extracted and multicasts b tagged with all signatures observed
so far for b.

2. In the second mini-round, only the committee members perform the actions above and
moreover a committee member always appends its own signature for b when multicasting b
(and all other seen signatures on b).

• Each node i outputs the bit contained in Extractedi if |Extractedi| = 1; else it outputs a canonical
bit 0.

Note that this approach guarantees that if any honest node newly adds a bit b to its Extracted
set in round r, then all committee nodes must have signed it by the end of round r (if not earlier)
and multicast the corresponding signature. Thus in the first mini-round of round r+ 1, every honest
node will have added b to its Extracted set. At this moment, it is not difficult to see that as long as
one committee member is honest, if the above protocol is executed for at least f + 1 rounds then we
can argue consistency using a similar approach as Dolev-Strong.

4.2 Achieving Adaptive Security and Removing the Leader Election Oracle

The above protocol enables the committee to securely convey its decision to non-committee nodes;
unfortunately, the protocol does not defend against adaptive corruptions. Specifically, since the
elected committee is small relative to n, an adaptive adversary can simply corrupt all committee
members after they are elected. We now present an approach for achieving adaptive security
borrowing the “bit-specific committee election” idea that was previously employed in the construction
of small-bandwidth honest-majority BA protocols by Abraham et al. [2] and Chan et al. [4]. As a
by-product we will have instantiated the leader election oracle that was needed earlier.
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Our idea is to tie the committee election to each individual bit, i.e., there is a separate committee
that are allowed to vote on 0 and 1 respectively (henceforth called the 0-committee and the 1-
committee respectively), and the designated sender is in both committees. Specifically, Abraham et
al. [2] and Chan et al. [4] describe how to realize bit-specific committee election using a suitable
Verifiable Random Function (VRF) with adaptive security. Take b = 0 as an example. For a node i
to determine if he is on the 0-committee, he checks the following:

let (ρ, π) := VRFski(0), and check if ρ < Dp

Here ski is his private key, Dp is an appropriate difficulty parameter that determines the success
probability (denoted p) of each election attempt, and π is a proof generated by the VRF which
will be used below for verification. Concretely, the probaiblity p is chosen such that the expected
number of nodes elected into either the 0-committee or 1-committee is log(1/δ). , To convince
others that i is indeed an eligible member of the 0-committee, i reveals both ρ and π, and everyone
can now verify, using i’s public key, that indeed ρ is the correct outcome of the VRF.

We now explain how to use bit-specific committee election to achieve adaptive security. Suppose
a 0-committee member i becomes immediately corrupt after signing 0 and multicasting signatures
on 0. However, corrupting node i does not necessarily help voting for the bit 1 — in particular,
since the two committees are independently selected, node i is only as good as any other node in
terms of its likelihood of being elected into the 1-committee. Thus, corrupting node i is only as good
as corrupting any other node at this point. In our proofs in the appendices, we will formalize the
above intuition.

Putting it altogether. We say that a tuple (b, i, π) is a valid vote on b iff either 1) i = 1 is the
designated sender and π is a valid signature on b from i; or 2) i 6= 1 and π is a valid VRF proof
proving i to be in the b-committee. The protocol is described below.

• Every node i initializes Extractedi := ∅. The sender signs its input bit b and multicasts b as well
as the signature.

• For round r = 1, . . . , log(1/δ), every node i performs the following:

1. First mini-round: for every b /∈ Extractedi such that the node has observed at least r votes
from distinct nodes including the sender: add b to Extractedi; multicast b and all observed
votes on b.

2. Second mini-round: for every b /∈ Extractedi, if node i belongs to the b-committee and moreover
the node has observed at least r votes from distinct nodes including the sender: add b to
Extractedi; compute a new vote on b; multicast b and all observed votes on b (including the
newly created one).

• Every node i outputs the bit contained in Extractedi if |Extractedi| = 1; else output a canonical
bit 0.

4.3 Deferred Technical Contents

In the appendices, we shall formally present our upper bound result for the corrupt majority setting
and extend it to more general choices of ε. We will also provide formal proofs of security.
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A Formal Description of Fmine-Hybrid Protocol

In the sections to follow, we will formally present our upper bound for the corrupt majority case.
We will first describe our protocol assuming an idealized oracle called Fmine that is in charge of
random eligibility election — this approach allows us to “abstract away” the cryptography and focus
on analyzing the stochastic properties of the protocol first. Later in Section B, we will show how to
leverage standard techniques to remove the Fmine assumption and instantiate it with appropriate,
adaptively secure cryptography.
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A.1 Ideal Functionality Fmine for Random Eligibility Determination

The idealized oracle Fmine provides the following functionality. A node i can query Fmine to check if
it is an eligible member of the b-committee where b ∈ {0, 1}. Upon receiving such a query, Fmine

flips a random coin (with appropriate probability) to determine the answer; further Fmine stores
this answer and returns it to any node that queries it henceforth.

More formally, the Fmine ideal functionality has two activation points:

• Whenever a node i calls mine(b) for the first time where b ∈ {0, 1}, Fmine flips a random coin
(parametrized with an appropriate probability p) to decide if i is a committee member for b.

Henceforth if a node i calls Fmine.mine(b), we also say that i makes a mining attempt for the bit
b.

• If node i has called mine(b) and the attempt is successful, anyone who calls Fmine.verify(b, i)
will obtain an answer of 1; all other calls to Fmine.verify(b, i) will return 0.

Henceforth in the paper, we assume that the choice of the success probability p is a global,
public parameter. We will describe how to choose p later.

A.2 Formal Protocol in the Fmine-Hybrid World

We describe how to achieve adaptively secure BA with sublinear round complexity, tolerating 1− ε
fraction of corruption for any arbitrarily small positive constant ε. Recall that without loss of
generality, we assume that node 0 is the designated sender.

Valid vote. With respect to some moment in time, a valid vote for the value b from node i is of
the following form:

• If i = 0, i.e., i is the sender, then a valid vote is of the form (b, 0, Sig0(b)), where Sig0(b) denotes
a valid signature from the sender on the bit b.

• For i 6= 0, a valid vote w.r.t. some time t is of the form (b, i) such that Fmine.verify(b, i) returns
1 at time t, i.e., by time t, node i must have called Fmine.mine(b) and the result must have been
successful.

Valid vote batch. For r ≥ 1, a valid r-batch of votes for value b consists of valid votes for value b
from r distinct nodes, one of which must be the sender 0. Note that just like the definition of a
valid vote, a valid vote batch is also defined w.r.t. to some moment of time (which we sometimes
omit writing explicitly if the context is clear).

Since we have explained the intutition behind our protocol earlier, we now give a formal
presentation of the protocol in Figure 2 — here “multicast” means sending a message to everyone.

A.3 Analysis in the Fmine-Hybrid World

In this subsection, we shall prove the following theorem for our Fmine-hybrid-world protocol described
in Figure 2.

Theorem 3. Assume that the signature scheme is secure. For any 0 < ε, δ < 1 (that can be functions
of n), the Fmine-hybrid Byzantine agreement protocol described in Figure 2 satisfies consistency (with
probability at least 1−δ) and validity (subject to the security of the signature scheme) and terminates
in 2 · d3ε ln 2

δ e rounds (with probability 1) w.r.t. any non-uniform p.p.t. (A,Z) that corrupts no more
than (1− ε)n nodes.
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Byzantine Agreement: Synchronous Network with Corrupt Majority

Parameters: Let ε be the fraction of forever honest nodes and δ be the desired failure probability.
Fmine is instantiated with a probability p := min{1, 1

εn log 2
δ}. Let R = d3ε · ln

2
δ e be the total

number of stages.

Stage 0: Initialization. No message is multicast in this stage.

• The sender 1 produces a valid 1-batch of vote for its value b0 by producing a signature Sig1(b1).
• Every node i sets Extractedi ← ∅.

Stage r ∈ [1..R]. Each such stage consists of 2 rounds.

1. In the first round, every node i performs the following:

• For each bit b, if node i has seen a valid r-batch of votes for b and b /∈ Extractedi, then it
multicasts any such r-batch for b to everyone, and sets Extractedi ← Extractedi ∪ {b}.

2. In the second round, each node i 6= 1 does the following. For each bit b, if it has seen a
valid r-batch of votes for b and node i has never called Fmine.mine(b) before, then it calls
Fmine.mine(b) and executes the following if the result is successful:

• It sets Extractedi ← Extractedi ∪ {b}.
• It multicasts a valid (r+ 1)-batch of votes for b, possibly by adding its own valid vote (b, i).

Stage R+ 1: Termination. No message is multicast in this stage. Every node i performs the
following:

• For each bit b, if node i has seen a valid (R+1)-batch for b, it sets Extractedi ← Extractedi∪{b}.
• Output to Z. If |Extractedi| = 1, then it outputs the unique bi ∈ Extractedi to Z; otherwise,

outputs the default value 0 to Z.

Figure 2: Our protocol. The protocol is described in the Fmine-hybrid world. Section B will
explain how to instantiate Fmine with cryptographic assumptions.
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A.3.1 Assumptions and Notations

Additional terminology for corruption status. To make our proofs more precise, we define
some additional terminology. At any time in the protocol, nodes that remain honest so far are
referred to as so-far honest nodes; nodes that remain honest till the end of the protocol are referred
to as forever honest nodes.

Committee. Without loss of generality, we consider a modification to the protocol, where Fmine

flips a coin for each (b, i) pair upfront. When Fmine receives mine queries, it simply retrieves the
corresponding coin that has already been flipped earlier. In this world, we can define the notion of
committees more easily: For each bit b, a node i 6= 1 is in the committee Comb for b, if Coin[b, i] = 1.

Honest and corrupt votes. A (valid) vote for a bit b from a node i is said to be honest if
the node is so-far honest at the moment the vote is cast, which is the moment when node i calls
Fmine.mine(b); otherwise, the (valid) vote is said to be corrupt or dishonest.

Handling signature failure. Assume that the signature scheme is secure, and that A and Z are
probabilistic polynomial time, it must hold that except with negligible probability, no so-far honest
node should have a forged signature in view. This is formalized in the following fact:

Fact 3 (No signature failure). Assume that the signature scheme is secure. Then, except with
negligible probability over the choice of view, the following holds: at any time in view, if the sender
is so-far honest and did not sign the bit b ∈ {0, 1}, then no so-far honest node has seen a valid
signature on b from the sender.

Proof. By straightforward reduction to signature security.

There are two types of bad events that can cause our protocol’s security to fail: 1) signature
failure (captured by Fact 3); and 2) other stochastic bad events related to Fmine’s coin flips. In the
next subsection, we will bound the probability of the latter type of bad events — and there we will
pretend that the signature scheme is “ideal” and there are no signature failures — but we stress
that technically, we are actually taking a union bound over signature failure and the stochastic bad
events analyzed in the next subsection.

A.3.2 Proofs: Bounding Stochastic Bad Events

The protocol clearly satisfies termination; and validity also follows trivially from Fact 3. Thus the
remainder of this section will focus on the consistency proof. Our proofs work for general choices of
parameters, including the honest fraction ε (which can be a function of n) and the failure probability
δ. As a special case, assuming that ε is any arbitrarily small positive constant and moreover, the
mining difficulty parameter p and the total number of stages R are chosen as in Figure 2, then the
failure probability δ = e−ω(log κ) would be a negligible function in the security parameter κ.

To prove consistency, we will prove that there is no discrepancy for either bit (except with δ
probability), which is formally defined as follows.

Discrepancy for b. A discrepancy for b ∈ {0, 1} occurs if at the end of the protocol there exist
two honest nodes such that b is in exactly one of the two corresponding extracted sets. We further
classify the following two types of discrepancy if, in addition, the following conditions are satisfied.

Type-A. A type-A discrepancy for b occurs when b is first added to some honest node’s extracted
set in some stage in [1..R].

Type-B. A type-B discrepancy for value b occurs when R+ 1 is the only stage in which b is added
to any honest node’s extracted set.
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Fact 4. If an honest vote is cast for value b (at the second round of some stage) during the protocol,
then for each forever honest node i, it holds at termination that b ∈ Extractedi.

Lemma 4 (Type-A Discrepancy). Suppose the probability of success for Fmine.mine(·) is p :=
min{1, 1

εn · log 1
δ}. For any value b, a type-A discrepancy for value b happens with probability at

most δ.

Proof. It suffices to prove the claim that if a type-A discrepancy for value b occurs, then there
are at least εn nodes, each of which has called Fmine.mine(b) with unsuccessful result at some
moment when it is still so-far honest. For the trivial case e−εn ≥ δ, we have p = 1 and every mining
attempt must be successful. For the case e−εn < δ, this event happens with probability at most
(1− p)εn ≤ exp(−εnp) ≤ δ, which implies the result of the lemma.

The rest of the proof establishes the above claim. Observe that a type-A discrepancy implies
that at some moment, there is a first time when an so-far honest node adds b to its extracted set
in some stage r ∈ [1..R]. If this happened in the second round of stage r, then this so-far honest
node is in Comb and would have been able to cast a valid (r + 1)-batch of votes that can be seen by
everyone in stage r + 1. Therefore, a type-A discrepancy means that b is first added to an so-far
honest node i in the first round of stage r, which means node i has seen some valid r-batch of votes.

Since this node i is so-far honest, it will multicast this batch to everyone, and every so-far honest
node that has not tried to call Fmine.mine(b) before will call Fmine.mine(b) in the second round of
stage r.

Since a type-A discrepancy occurs, it must be case that all (previous or present) trials of
Fmine.mine(b) by so-far honest nodes have returned unsuccessful. Since at any moment, the number
of so-far honest nodes is at least εn, we conclude that the claim is true, and this completes the
proof.

Fact 5 (Chernoff Bound). Suppose X is the sum of independent {0, 1}-independent random variables.
Then, for any τ > 0, the following holds:

Pr[X ≥ (1 + τ)E[X]] ≤ exp(−τ ·min{τ, 1} · E[X]

3
)

Lemma 5 (Type-B Discrepancy). Let p := min{1, 1
εn log 1

δ} as in Lemma 4, and set R := d3ε · ln
1
δ e.

Then, for any value b, a type-B discrepancy for b happens with probability at most δ.

Proof. A type-B discrepancy for b occurs implies that some honest node i sees a valid (R+ 1)-batch
of votes, which are all cast by dishonest nodes. This is because if one of the votes was cast by an
so-far honest node (in the second round) of some stage r ∈ [1..R], then everyone would have seen a
valid (r + 1)-batch in stage r + 1, in which case a discrepancy would not have occurred.

Observe that a dishonest vote is cast only if a node is corrupted before it calls Fmine.mine(b) for
the first time. There are at most (1− ε)n dishonest node and each of them can call Fmine.mine(b)
successfully independently with probability p. Important: Note that even if nodes are corrupted
adaptively (for instance, based on mining results of other values), the success probability of mining
value b is still p.

For the trivial case, δ ≤ e−εn, R ≥ 3n is not interesting; hence, it suffices to consider δ > e−εn

and p < 1. We next consider two cases.
Case ε ≥ 1

4 . Set τ := 3ε
1−ε ≥ 1. By Chernoff Bound, the probability that there are more than

R = d3ε · ln
1
δ e ≥ (1 + τ)(1− ε)np dishonest votes is at most exp(− τ(1−ε)np

3 ) = δ.
Case ε < 1

4 . Set τ = 1. By Chernoff Bound, the probability that there are more than R =

d3ε · ln
1
δ e ≥ (1 + τ)(1− ε)np dishonest votes is at most exp(− (1−ε)np

3 ) ≤ δ.
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Corollary 1. Suppose that with probability 1, there are at least ε fraction of forever honest nodes and
let δ be the desired failure probability. By setting the mining success probability p := min{1, 1

εn log 2
δ}

and R := d3ε · ln
2
δ e, the protocol satisfies consistency with probability at least 1− δ.

Proof. For the trivial case δ
2 ≤ e−εn, the bound R ≥ 3n is not interesting. Hence, it suffices to

consider δ
2 > e−εn and p < 1.

To use union bound over type-A and type-B discrepancy for both values of b, we set the failure
probability to be δ

2 in Lemmas 4 and 5.

B Removing the Idealized Functionality Fmine

So far, we have assumed the existence of an Fmine ideal functionality. In this section, we describe
how to instantiate the protocols in the real world. Our techniques follow the approach described
by Abraham et al. [2]. Although this part is not a contribution of our paper, for completeness, we
describe all the building blocks and the approach in a self-contained manner.

B.1 Preliminary: Adaptively Secure Non-Interactive Zero-Knowledge Proofs

We use f(κ) ≈ g(κ) to mean that there exists a negligible function ν(κ) such that |f(κ)−g(κ)| < ν(κ).
A non-interactive proof system henceforth denoted nizk for an NP language L consists of the

following algorithms.

• crs← Gen(1κ,L): Takes in a security parameter κ, a description of the language L, and generates
a common reference string crs.

• π ← P(crs, stmt, w): Takes in crs, a statement stmt, a witness w such that (stmt, w) ∈ L, and
produces a proof π.

• b ← V(crs, stmt, π): Takes in a crs, a statement stmt, and a proof π, and outputs 0 (reject) or
1 (accept).

Perfect completeness. A non-interactive proof system is said to be perfectly complete, if an
honest prover with a valid witness can always convince an honest verifier. More formally, for any
(stmt, w) ∈ L, we have that

Pr [crs← Gen(1κ,L), π ← P(crs, stmt, w) : V(crs, stmt, π) = 1] = 1

Non-erasure computational zero-knowledge. Non-erasure zero-knowledge requires that under
a simulated CRS, there is a simulated prover that can produce proofs without needing the witness.
Further, upon obtaining a valid witness to a statement a-posteriori, the simulated prover can explain
the simulated NIZK with the correct witness.

We say that a proof system (Gen,P,V) satisfies non-erasure computational zero-knowledge iff
there exists a probabilistic polynomial time algorithms (Gen0,P0,Explain) such that

Pr
[
crs← Gen(1κ),AReal(crs,·,·)(crs) = 1

]
≈ Pr

[
(crs0, τ0)← Gen0(1

κ),AIdeal(crs0,τ0,·,·)(crs0) = 1
]
,

where Real(crs, stmt, w) runs the honest prover P(crs, stmt, w) with randomness r and obtains the
proof π, it then outputs (π, r); Ideal(crs0, τ0, stmt, w) runs the simulated prover π ← P0(crs0, τ0, stmt, ρ)
with randomness ρ and without a witness, and then runs r ← Explain(crs0, τ0, stmt, w, ρ) and outputs
(π, r).
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Perfect knowledge extration. We say that a proof system (Gen,P,V) satisfies perfect knowledge
extraction, if there exists probabilistic polynomial-time algorithms (Gen1,Extr), such that for all
(even unbounded) adversary A,

Pr [crs← Gen(1κ) : A(crs) = 1] = Pr [(crs1, τ1)← Gen1(1
κ) : A(crs1) = 1] ,

and moreover,

Pr

[
(crs1, τ1)← Gen1(1

κ); (stmt, π)← A(crs1);w ← Extr(crs1, τ1, stmt, π) :
V(crs1, stmt, π) = 1
but (stmt, w) /∈ L

]
= 0

B.2 Adaptively Secure Non-Interactive Commitment Scheme

An adaptively secure non-interactive commitment scheme consists of the following algorithms:

• crs← Gen(1κ): Takes in a security parameter κ, and generates a common reference string crs.

• C ← com(crs, v, ρ): Takes in crs, a value v, and a random string ρ, and outputs a committed
value C.

• b← ver(crs, C, v, ρ): Takes in a crs, a commitment C, a purported opening (v, ρ), and outputs
0 (reject) or 1 (accept).

Computationally hiding under selective opening. We say that a commitment scheme
(Gen, com, ver) is computationally hiding under selective opening, iff there exists a probabilistic
polynomial time algorithms (Gen0, com0,Explain) such that

Pr
[
crs← Gen(1κ),AReal(crs,·)(crs) = 1

]
≈ Pr

[
(crs0, τ0)← Gen0(1

κ),AIdeal(crs0,τ0,·)(crs0) = 1
]

where Real(crs, v) runs the honest algorithm com(crs, v, r) with randomness r and obtains the commit-
ment C, it then outputs (C, r); Ideal(crs0, τ0, v) runs the simulated algorithm C ← comm0(crs0, τ0, ρ)
with randomness ρ and without v, and then runs r ← Explain(crs0, τ0, v, ρ) and outputs (C, r).

Perfectly binding. A commitment scheme is said to be perfectly binding iff for every crs in the
support of the honest CRS generation algorithm, there does not exist (v, ρ) 6= (v′, ρ′) such that
com(crs, v, ρ) = com(crs, v′, ρ′).

Theorem 4 (Instantiation of our NIZK and commitment schemes [10]). Assume standard bilinear
group assumptions. Then, there exists a proof system that satisfies perfect completeness, non-erasure
computational zero-knowledge, and perfect knowledge extraction. Further, there exist a commitment
scheme that is perfectly binding and computationally hiding under selective opening.

Proof. The existence of such a NIZK scheme was shown by Groth et al. [10] via a building block
that they called homomorphic proof commitment scheme. This building block can also be used to
achieve a commitment scheme with the desired properties.

B.3 NP Language Used in Our Construction

In our construction, we will use the following NP language L. A pair (stmt, w) ∈ L iff

• parse stmt := (ρ, c, crscomm, b), parse w := (sk, s);

• it must hold that c = comm(crscomm, sk, s), and PRFsk(b) = ρ.
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B.4 Removing Fmine with Cryptography

We can remove the Fmine oracle by leveraging cryptographic building blocks including a pseudoran-
dom function family, a non-interactive zero-knowledge proof system that satisfies computational
zero-knowledge and computational soundness, and a perfectly binding and computationally hiding
commitment scheme. Essentially, with these primitives we can construct an appropriate VRF with
adaptive security. Note that some earlier works [5, 12] also achieved such an adaptively secure VRF
using unique signatures and random oracles. Here we adopt Abraham et al. [2]’s approach since it
removes the random oracle assumption.

We now provide a formal description of how to compile our Fmine-hybrid protocols into real-world
protocols using cryptography. The intuition is very simple. Every node commits to a PRF secret
key in its public key. This committed secret key is used to evaluate a PRF on b = 0 or b = 1 to
determine whether the node belongs to the b-th committee. The node can then prove to everyone
that the eligibility determination is performed correctly by employing a NIZK. Below we give a
more formal description of how to rely on this idea to compile the earlier Fmine-hybrid protocol to
the real world.

• PKI setup. Upfront, a trusted party runs the CRS generation algorithms of the commitment
and the NIZK scheme to obtain crscomm and crsnizk. It then chooses a secret PRF key for every
node, where the i-th node has key ski. It publishes (crscomm, crsnizk) as the public parameters,
and each node i’s public key denoted pki is computed as a commitment of ski using a random
string si. The collection of all users’ public keys is published to form the PKI, i.e., the mapping
from each node i to its public key pki is public information. Further, each node i is given the
secret key (ski, si).

• Instantiating Fmine.mine. Recall that in the ideal-world protocol a node i calls Fmine.mine(b)
to check if it is in the b-th committee. Now, instead, the node i calls ρ := PRFski(b), and computes
the NIZK proof

π := nizk.P((ρ, pki, crscomm, b), (ski, si))

where si the randomness used in committing ski during the trusted setup. Intuitively, this
zero-knowledge proof proves that the evaluation outcome ρ is correct w.r.t. the node’s public key
(which is a commitment of its secret key).

The mining attempt for b is considered successful if ρ < Dp where Dp is an appropriate difficulty
parameter such that a random string of appropriate length is less than Dp with probability p —
the probability p is selected in the same way as the earlier Fmine-hybrid world in Figure 2.

Recall that earlier in our Fmine-hybrid protocol, every message multicast by a so-far honest
node i is a vote of the form (b, i) where node i has successfully called Fmine.mine(b). Each such
message (b, i) that node i wants to multicast is translated to the real-world protocol as follows:
we rewrite (b, i) as (b, i, ρ, π) where the terms ρ and π are those generated by i in place of calling
Fmine.mine(b) in the real world (as explained above). Note that in our Fmine-hybrid protocols
a node j 6= i may also relay a message (b, i) mined by i — in the real world, node j would be
relaying (b, i, ρ, π) instead.

• Instantiating Fmine.verify. In the Fmine-hybrid world, a node would call Fmine.verify to
check the validity of votes upon receiving them, In the real-world protocol, we perform the
following instead: upon receiving the vote (b, i, ρ, π), a node can verify the vote’s validity by
checking:
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1. ρ < Dp where p is an appropriate difficulty parameter parametrized in the same way as
Figure 2 and

2. π is indeed a valid NIZK for the statement formed by the tuple (ρ, pki, crscomm, b). The tuple
is discarded unless both checks pass.

Now using the same proofs as Abraham et al. [2], we can prove that the compiled real-world
protocols enjoy the same security properties as the Fmine-hybrid protocols. Since the proofs follow
identically, we omit the details and refer the reader to Abraham et al. [2]. In the following
theorem we assume that the pseudorandom function family employed is secure, the non-interactive
zero-knowledge proof system employed satisfies computational zero-knowledge and computational
soundness, and moreover, the commitment scheme is perfectly binding and computationally hiding.

Theorem 5 (Real-world protocol: restatement of Theorem 2). Assume that the cryptographic
primitives employed are secure in the sense mentioned above. For parameters ε, δ ∈ (0, 1) which
are allowed to be functions in n, the aforementioned real-world protocol terminates in O(log(1/δ)/ε)
number of rounds and achieves BA with 1− δ − negl(κ) probability in the presence of an adversary
that adaptively corrupts at most (1− ε)n nodes and runs in time polynomial in κ.

Proof. Note our techniques for instantiating Fmine with actual cryptography is borrowed from
Abraham et al. [2]. Their proof for showing that that the real-world protocol preserves the security
properties proved in the ideal world is immediately applicable to our case.

C Background: f + 1 Round Complexity Lower Bound for Deter-
ministic Protocols

We begin by reviewing the famous f + 1 round complexity lower bound for deterministic protocols.
We will present a re-exposition [1] of Dolev and Strong’s proof [6] that is conducive to our proof
for randomized protocols later. For simplicity, we will first consider the special case for f = 2 and
later extend the proof to more general f . More concretely, we would like to show that no 2-round
deterministic protocol can realize BA in the presence of 2 corruptions. Recall that n ≥ f + 2. Since
we are concerned about the round complexity of the protocol, without loss of generality, we may
assume that in every round, everyone sends a message to everyone; for convenience, we assume in
this example that nodes do not send messages to themselves.

The proof proceeds in a sequence of executions as depicted in Figure 3. In every execution,
every node runs the honest protocol; however, a network adversary may erase some of the messages.
The messages erased are denoted by dashed lines in Figure 3.

Alternatively, instead of viewing the attack as being conducted by a network-only adversary, we
can imagine that a subset of the nodes are corrupt: corrupt nodes suppress a subset to all of the
messages it ought to send but otherwise follow the honest protocol. Thus, if a node i’s message is
partially or completely being erased in some round (i.e., there exist dashed edges outgoing from i)
then node i is treated as corrupt. Henceforth we use the notation i

r−→ j to denote the r-th round
message from node i to node j where r ∈ {1, 2} and i, j ∈ [n]. Similarly, for S, S′ ⊆ [n], S

r−→ S′

denotes the set of all round-r messages from any node in S to any node in S′. For convenience, we
often use ∗ to denote wildcard, i.e., ∗ := [n]. We often use j ∈ [n] to denote a singleton set {j}
whenever convenient.

Invariants. The sequence of executions in Figure 3 are constructed with two important invariants
in mind.
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Figure 3: Sequence of executions for proving the famous f+1 lower bound for deterministic protocols.
Dashed lines denote communication that is removed by the adversary. The arrow 7→ denotes a

single transition to the next execution in this sequence (also called a “small step”); the arrow
n−1
==⇒

denotes a collection of n− 1 transitions (also called a “big step”) where the n− 1 edges concerned
are removed or added back one by one.
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1. Neighboring constraint: for any pair of adjacent executions, there exists at least one node
that is honest in both executions, and moreover its view has not changed in between these
executions.

2. Corruption constraint: in every execution, there exist at most one sender whose messages can
be erased in each round (i.e., only one node can have outgoing dashed edges in each round) —
in this way the total number of corrupt nodes is upper bounded by f = 2.

Sequence of executions. With these two important invariants in mind, we now describe the
sequence shown in Figure 3.

• To start with, in Execution 0, everyone receives the input bit 0 and no message is erased. In
this case, everyone should output 0 due to validity.

• In Execution 1, message 2
2−→ 1 is erased. Now, observe nodes 3 and 4 are honest in both

Execution 0 and Execution 1, and moreover, their views have not changed in between the two
executions. Since these nodes output 0 in Execution 0, they must output 0 in Execution 1
as well. Since only one node is corrupt in Execution 2, by the consistency requirement, all
honest nodes (i.e., everyone except node 2) should output 0 in Execution 1.

• In Executions 2 and 3, we erase the messages 2
2−→ 3 and 2

2−→ 4 one by one. In both Executions
2 and 3, only node 2 is corrupt. Moreover, we respect the neighboring constraint as we remove
the edges one by one. We thus conclude in a similar fashion that in both Executions 3 and 4,
every honest node should output 0.

• In Execution 4, we erase the message 1
1−→ 2. Since in Execution 3, node 2 does not send

any second-round messages, erasing 1
1−→ 2 does not change node 3 or 4’s view in these two

adjacent executions. Obviously, Execution 4 respects the corruption constraint. Therefore by
a similar argument, we conclude that all honest nodes output 0 in Execution 4.

• Now, we restore the messages 2
2−→ ∗ one by one, leading to Execution 4 + (n− 1). It is not

hard to verify that each step respects both the neighboring and the corruption constraints.
Thus all honest nodes must output 0 in these executions.

• Now one by one, we erase the second-round message 3
2−→ ∗ leading to Execution 4 + 2(n− 1).

Both above constraints are respected in each step.

• At this moment, we may erase the message 1
1−→ 3.

• We now continue this process as shown in Figure 3. When we reach Execution 7 + 6(n− 1),
node 1 no longer sends any message and thus we can flip its input to 1 without affecting any
honest nodes’ views.

• We now continue this process to flip every node’s input bit in a similar fashion, until we reach
the final execution where all nodes are honest and receive the input 1. Since in all steps we
respect the neighboring constraint as well as the corruption constraint, we may conclude that
even in the final execution all honest nodes must output 0. However, this violates the validity
requirement and thus we have reached a contradiction.
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