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Abstract. The increasing communication capabilities of vehicles are
paving the way for promising road safety and traffic management ap-
plications. But the rise of connected vehicles also potentially introduces
many security and privacy concerns. Thus, a vision of a successful coop-
erative vehicular network relies on strong security properties. Proposals
such as the Security Credential Management System (SCMS) fulfil these
security requirements with the concept of pseudonym certificates, rely-
ing on large-scale PKI. But since the on-board units performing these
cryptographic operations are usually resource-constrained devices, it is
important to consider ways to optimize and devise efficient implementa-
tions of the proposed algorithms.

In this work, we study optimizations on the mathematical and algorith-
mic aspects of the validation of implicit certificates and the verification of
ECDSA signatures used in the SCMS. We propose efficient algorithms to
validate batches of implicit certificates, providing significant savings com-
pared to the sequential validation of the individual certificates. We also
propose optimizations to the verification of ECDSA signatures when the
verification is performed with an implicit certificate. Although we focus
our work on the SCMS and V2X communications, our contributions are
more general and apply to every system combining ECQV and ECDSA.
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1 Introduction

In recent years, the automotive industry has started to explore several devel-
opments in Intelligent Transportation Systems (ITS). For example, in January
2017, the U.S. Department of Transportation (USDOT) issued a notice of pro-
posed rulemaking [20] to mandate that vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communication technology (collectively referred to as V2X)
be deployed in all newly-manufactured vehicles in the next few years. In a more
recent development, the US government has issued a Notice of Request for Com-
ments on the topic of V2X Communications [21].



In a V2X system, vehicles communicate by means of broadcasting crypto-
graphically signed Basic Safety Messages (BSMs) to nearby participants, con-
taining information such as their speed, position and direction, in order to ac-
curately inform neighbouring vehicles about the sender’s current position and
anticipated behaviour. According to the USDOT, broadcasting BSMs is expected
to eliminate up to 80% of vehicle crashes [23].

However, the introduction of V2X communication technology also raises a
number of security and privacy concerns, such as large-scale vehicle tracking
based on the cryptographic material used to sign BSMs or attackers broadcasting
invalid data resulting in dangerous road incidents. One common way to address
these challenges revolves around the concept of pseudonym certificates, which
provide authentication in an anonymous manner.

For instance, this approach is adopted by the Security Credential Manage-
ment System (SCMS). Developed under a cooperative agreement with the US-
DOT, the SCMS is one of the most promising candidates for securing vehicular
communications, particularly in the United States and Canada.

When deployed, Certificate Authorities (CAs) in the SCMS will issue billions
of pseudonym certificates per year (estimate based on the current proposal of
issuing batches of 20 pseudonym certificates per week per vehicle), making it the
largest PKI ever deployed by several orders of magnitude. In the current SCMS
proposal, pseudonym certificates are implemented with ECQV certificates [9],
the most common form of implicit certificates.

When receiving batches of certificates, vehicles have to validate their au-
thenticity. However, contrary to their explicit counterpart, implicit certificates
do not contain a public key and a signature, but only a reconstruction value,
effectively collapsing key and signature in a single value. As such, validating a
received implicit certificate is achieved by first reconstructing public and private
keys, and then checking that they form a valid key pair.

Since vehicles have limited computation power, it is crucial to optimize the
operations they perform. The importance of optimization also applies, and ar-
guably even more so, to the verification of BSMs. In the SCMS proposal, after
having reconstructed their certificates, vehicles use the Elliptic Curve Digital
Signature Algorithm (ECDSA) [14] to sign the messages they broadcast. The
current scheme proposes that BSMs be broadcasted at a frequency of 10 per
second. One can imagine that in a traffic-heavy situation, vehicles will thus have
to verify hundreds of digital signatures per second.

Contributions. In this paper, we study optimizations on the mathematical and
algorithmic aspects of the validation of implicit certificates and the verification of
ECDSA signatures used in the SCMS. We propose efficient algorithms to validate
batches of implicit certificates, providing significant savings compared to the
sequential validation of the individual certificates. We also propose optimizations
to the verification of ECDSA signatures when the issuer of those signatures
provides an implicit certificate to verify it. Although we focus our work on the
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SCMS and V2X communications, our contributions are more general and apply
to every system combining ECQV and ECDSA.

Related work. Optimizations related to the batch processing of cryptographic
operations have been an area of significant research ever since the concept of
batch verification was first proposed [19].

However, efficient batch processing of implicit certificates when combined
with a signature algorithm has not been studied as extensively, perhaps because
no real-world system mandated their use to this day.

For instance, in [22], the author looks only at combining one signature ver-
ification and key reconstruction, and does not look at the batch processing of
multiple signature verifications.

However, with the growing interest around the SCMS proposal, the topic of
algorithmic improvements and optimizations of these two primitives has started
to spark more attention.

In [17], the authors propose optimizations to signature verification when the
chain of trust in a system is composed of a chain of shared intermediate implicit
certificates.

More recently, a modification to the implicit certification scheme used in the
SCMS was proposed [4], in order to make the key reconstruction operations
more efficient. In this paper, we show that significant improvements can also be
obtained with the primitives used in the current SCMS proposal.

Organization of the paper. In Section 2 we set up the notation we use in
the remainder of the paper and present the algorithms used in the SCMS for
which we propose optimizations, while in Section 3 we briefly discuss the rele-
vant components and protocols of the SCMS. Our first contribution is presented
in Section 4, where we propose performance optimizations for the validation
of batches of implicit certificates. In Section 5 we present our second contribu-
tion, consisting of performance optimizations for the verification of batches of
ECDSA signatures being verified with an implicit certificate. We implemented
the proposed algorithms and give some concrete timings and speedup factors
in Section 6. The concluding Section 7 highlights our contributions and some
potential future research directions.

2 Preliminaries

Notation

Let p be a prime power and let E be an elliptic curve defined over the finite
field Fp. Let the generator of the group of points on the elliptic curve E(Fp) be
denoted by G, and let q be the prime order of G. For simplicity, we sometimes
omit the reduction modulo q in the algorithms presented in this paper.
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Implicit Certificate Signing

Alice Bob

u,U = uG

a←$Zq
A = aG

A

c←$Zq
C = cG

V = A+ C

Cert = {V,meta}
h = H(Cert)

s = hc+ u mod q

Cert, s

Private Key : α = ha+ s

Public Key : Qα = hV + U
Verification : αG

?
= Qα

Fig. 1. ECQV

We denote by x←$Zq the action of randomly sampling an element x from

Zq. The notation a
?
= b represents the procedure by which one checks whether

the quantities a and b are equal.

ECQV

The SCMS proposal mandates the use of implicit certificates for V2X commu-
nication. Contrary to more traditional forms of certificates, implicit certificates
save space by combining the public key and the signature into a single value,
called the reconstruction value.

In order to verify a message signed by the owner of this certificate, the recipi-
ent first has to reconstruct the associated public key by combining the CA’s pub-
lic key and the reconstruction value. The SCMS uses perhaps the most common
form of implicit certificates: Elliptic Curve Qu-Vanstone (ECQV) certificates [9].

Figure 1 describes the procedure by which an ECQV Implicit Certificate is
issued by Bob to Alice, where u,U is the issuer key pair, V is the public key
reconstruction value, s is the private key reconstruction value, H is a collision-
resistant hash function and meta corresponds to some metadata associated with
the certificate, such as the validity period or some identification information for
the subject or the issuer.
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ECDSA

Additionally, the SCMS proposal mandates the use of the Elliptic Curve Digi-
tal Signature Algorithm (ECDSA) [14], standardized in [1,11] as the signature
algorithm for V2X communication.

We present the signing and verification algorithms of ECDSA in Figure 2,
where the function φ(R) returns the x-coordinate of the elliptic curve point R.

Parameters

Signing Key: u

Verification Key: U = uG

Sign(u,M)

1 : k←$Zq

2 : R = kG

3 : r = φ(R)

4 : s = k−1(H(M) + ru)

5 : return σ = (r, s)

Verify(U, σ = (r, s),M)

1 : k′ = s−1 mod q

2 : R′ = k′(H(M)G+ rU)

3 : r′ = φ(R′)

4 : r′
?
= r

Fig. 2. ECDSA Signing and Verification algorithms

3 The Security Credential Management System

This section describes some of the general ideas behind the Security Creden-
tial Management System (SCMS). The SCMS is a large and complex system,
composed of more than a dozen entities covering aspects such as enrolment of
entities, certificate issuance and certificate revocation. Most of these entities are
not relevant to our work. Since our focus is on the pseudonym certificate provi-
sioning process, namely the batch certificate reconstruction, and the verification
of the signatures on BSMs, we only describe the entities relevant for these pro-
cesses, for the sake of simplicity. A detailed description of the complete proposed
system can be found in [8].

3.1 Relevant Entities in the SCMS

The following entities take part in the pseudonym certificate provisioning process
and in the signing and verifying of BSMs.

– End-Entities (EEs), be they in-vehicle On-Board Equipment (OBE) or Road-
Side Equipment (RSE) located in the traffic infrastructure, are the actual
participants in V2X communications. They are the recipients of implicit cer-
tificates and they send and verify signed BSMs.
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– The Registration Authority (RA) is the main point of contact for EEs. It
validates and processes their requests for pseudonym certificates before for-
warding them to the PCA, and forwards the batches of certificates issued
back to the EEs.

– The Pseudonym Certificate Authority (PCA) is in charge of issuing short-
lived pseudonym certificates for devices.

3.2 Implicit Certificate Provisioning

Figure 3 describes the implicit certificate provisioning process proposed in the
SCMS, where implicit certificates are ECQV certificates as defined in [9]. Note
that we also sometimes refer to these implicit certificates as pseudonym certifi-
cates, since this is the name they are given in the SCMS.

The certificate provisioning process in the SCMS includes a proposal called
the butterfly key expansion process, which is used to efficiently implement the
pseudonym certificate concept in the SCMS. More specifically, it allows EEs to
obtain a large number of pseudonym certificates, anonymous to the PCA and
RA, with a single short request message. In Figure 3, the function fk() is known
as the expansion function, and is a pseudo-random function parameterized by a
unique secret key k of length m bits shared only between the EE and the RA;
u,U is the CA key pair, and H is a suitable hash function.

Upon reception of a batch of certificates, EEs have to validate the certificates
that the batch contains. Validation of an implicit certificate essentially achieves
two purposes: first, it assures the EE that it was indeed the PCA that issued the
certificate and second, it ensures that the value certified was the one submitted:
which, as a result, ensures that the public reconstructed key corresponds to the
private reconstructed key and that other participants will thus be able to verify
signatures on messages.

To further illustrate the necessity of certificate validation, we refer the reader
to the standard [9, Section 3.6], where the Section Processing the Response to
a Cert Request: Cert Reception requires that this validation step be performed
upon reception of an implicit certificate issued by the CA.

An additional and more pragmatic point in favour of batch validation is the
fact that the presence of one invalid certificate may mean that the RA, or worse,
the PCA, was compromised. In this case, knowing precisely which certificate was
invalid might be a secondary concern, and instead the whole batch should be
dropped as a precaution.

3.3 Signed BSM Broadcasting in the SCMS

After having validated and reconstructed their pseudonym certificates, EEs may
participate in V2X communication by signing and broadcasting Basic Safety
Messages (BSMs). BSMs are broadcasted upwards of 10 times per second. To
sign a message M , an EE uses its private, reconstructed key, α, as computed in
Figure 3, to sign a message using ECDSA, Sign(α,M) = σM .
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Implicit Certificate Provisioning in the SCMS

EE RA PCA

u,U = uG

a←$Zq
A = aG

k←$ {0, 1}m

A, k

B1 = fk(1)G+A

... Bi

Bn = fk(n)G+A ci ←$Zq
Ci = ciG

Vi = Ci +Bi

Certi = {Vi,meta}
si = H(Certi)ci + u

Certi, si←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
hi = H(Certi)
αi = hi(a+ fk(i)) + si

αiG
?
= Qαi = hiVi + U

Fig. 3. Implicit Certificate Provisioning in the SCMS

The EE then broadcasts the message M , together with its signature σM and
the corresponding certificate, Cert, containing the public information associated
with the private key that the EE used for signing M .

In order to verify the signature σM , any entity receiving must first recon-
struct the corresponding public key. This is done by first hashing the certificate
h = H(Cert), then computing the public key Qα by taking the public key recon-
struction value included in the certificate V and computing Qα = hV + U .

In the following sections, we look at various methods to optimize these op-
erations.

4 Batch Validation of Implicit Certificates

As already discussed in 3.2 and since the validation of implicit certificates is
mandated by the standard [9], it is interesting to look at ways this computation
can be optimized.

Let us consider a batch of n implicit certificates, Cert1, . . . , Certn received
by an end-entity. The EE has to validate the certificates received by checking
that:

αiG
?
= Qαi

= hiVi + U for 1 ≤ i ≤ n.

This requires two elliptic curve scalar multiplications and one elliptic curve
scalar addition. To this we must add the two integer additions and the integer
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multiplication required to compute

αi = hi(a+ fk(i)) + si.

By naively validating each of the n certificates independently, the EE must
compute 2n elliptic curve scalar multiplications, n elliptic curve scalar additions
as well as n integer multiplications and 2n integer additions.

Computationally, the most expensive operation performed when validating
implicit certificates is the elliptic curve scalar multiplication. We therefore pro-
pose a method to reduce the amount of such scalar multiplications by validating
implicit certificates in batches.
An individual implicit certificate validation is:

(hi(a+ fk(i)) + si)G = hiVi + U .

Inverting hi and multiplying through leaves the Vi with unit multiples:

(a+ fk(i) + h−1i si)G = Vi + h−1i U .

Summing n validations together yields:(
n∑
i=1

a+ fk(i) + h−1i si

)
G =

(
n∑
i=1

h−1i

)
U +

n∑
i=1

Vi.

With this transformation, the batch certificate validation can be performed with
two elliptic-curve point multiplications (and these of points known well in ad-
vance) and a sum of elliptic curve points.

In order to obtain the inverse values h−1i , another batch operation is useful,
that is simultaneous inversion (also known as Montgomery’s trick) [18]. First,
start by setting m1 = h1, m2 = h1h2, . . . , mn = h1h2 · · ·hn, and then invert
mn. We can thus obtain the inverse of the last element by computing h−1n =
mn−1m

−1
n . Subsequently, we can obtain m−1n−1 = m−1n hn, which brings us to

where we would be with only the first n− 1 values for hi, allowing us to obtain
successively all the inverses with 3(n− 1) finite field multiplications and a single
inverse.

Another important technique we will employ is Shamir’s trick [12], which is
used to efficiently compute the quantity aP+bQ, for scalars a, b and elliptic curve
points P,Q. More specifically, the elliptic curve doubles needed to compute the
linear combination can be shared, compared with the two scalar multiplications
and one point addition needed were we to do it naively.

What performance improvement can be had by batching the certificate veri-
fication? First we move the elliptic curve point multiplications to one side, since
it is possible to compute them simultaneously and save elliptic curve point dou-
blings: (

n∑
i=1

a+ fk(i) + h−1i si

)
G+

(
n∑
i=1

−h−1i

)
U =

n∑
i=1

Vi. (1)
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The points G and U are long-term and can be supplied with tables to improve
performance. Consider a minimal scheme for tables on G and U consisting of the
extra values Ghi = 2dt/2eG and Uhi = 2dt/2eU , where t is the length of the point
multipliers (the points scaled by 2 to the power halfway up the length of the
multiplier). This precomputed value reduces the number of doubles required to
compute the linear combination, breaking down a multiple

γG = γhiG+ γloG,

where γhi and γlo are half-size multiples, which are just the high and low bits of
γ divided at dt/2e. If this linear combination is performed with a bitwise left-
to-right add and accumulator double, then the number of accumulator doubles
is halved. The same transformation can be made for a multiple of U . In this
way, a linear combination of G and U can also be performed, saving half of the
accumulator doubles.

With this precomputation, what is the cost of computing Eq. 1? In the US
SCMS system, the NIST P256 curve is specified. This curve is often implemented
with Jacobian coordinates. From the explicit formula database [7], each double
requires four finite field multiplies and five squares: 4M + 5S. Assuming squares
are implemented as multiplication, this is 9M . Each addition requires 10M+3S,
or roughly 13M . Assume that we have the scaled values of G and U allowing us
to save half the doubles. Table entries for this curve are 2 × 28/23 = 26 = 64
bytes, so these two entries take only 128 bytes. Assume that roughly half of
the bits are one, which require adds into a (point) accumulator, and that the
accumulator is doubled. Then each 128-bit (half) multiplier requires on average
64 adds. The linear combination then requires four of these half multipliers to be
processed, plus the accumulator doubles: 4×64×13M+128×9M = 4480M . The
sum of the Vi costs n× (13M + 3M) (where the 3M is for the batch inversion).
We ignore the cost of the normalization of the point from Jacobian coordinates.

What does the naive approach cost, applying a similar level of implemen-
tation optimization? This will need n invocations of point multiply for G, Vi
and an addition of U . The Vi will not be known in advance, requiring 256 dou-
bles and the G and Vi multiples will each require 128 adds on average. This is
256× 13M + 256× 9M = 5632M . This needs to be computed n times.

One way of comparing these alternatives is to state that the linear combi-
nation of the batched version is already cheaper than a single naive validation,
and that adding certificates adds only 16M for the batched version but 5632M
for the naive version, or about 350 times less incremental cost for each new
certificate.
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5 Batch Verification of ECDSA Signatures from Implicit
Certificates

In this section, we propose optimizations to the verification of ECDSA signatures
when verified with implicit certificates.

When verifying a batch of signatures, and particularly in the setting of the
SCMS, messages may be signed by different private keys, whether from one
signer that is rotating certificates or from different signers. We thus focus on
this case, as opposed to the more traditional case where all signatures are is-
sued by the same private key which has already been extensively covered in the
literature [16,15,10].

We consider a common variant of ECDSA, known as ECDSA* [2], where
the signature on a message includes the point R, and not just the x-coordinate
of the point, denoted r in Figure 2. More specifically, an ECDSA signature
(r, s) becomes (R, s) with ECDSA*. The first step when verifying an ECDSA*
signature is thus to take the x-coordinate of the point R to obtain r, and then
proceed to verify the signature by checking that the reconstructed point obtained
R′ is equal to the point received.

This variant was proven to be equivalent in terms of security to the standard
ECDSA [2], and the standard upon which the SCMS proposal is based endorses
its use as an alternative to the standard ECDSA [13].

With ECDSA*, the signature verification computation equation thus be-
comes:

R
?
= s−1(H(M)G+ rU).

Substitute the value of the public key U = H(Cert)V + U to get

R = s−1(H(M)G+ r(H(Cert)V + U)).

Now, consider a batch of signatures:

R1 = s−11 (H(M1)G+ r1(H(Cert1)V1 + U)),

R2 = s−12 (H(M2)G+ r2(H(Cert2)V2 + U)),

...

Rn = s−1n (H(Mn)G+ rn(H(Certn)Vn + U)).

Similarly to what we presented in Section 4, we can thus verify the whole
batch of signatures by verifying that

n∑
i=1

Ri =

n∑
i=1

s−1i (H(Mi)G+ ri(H(Certi)Vi + U)) (2)

At this point, it is important to note that naive batch verification as per-
formed above is vulnerable to some specific kinds of forgeries, where an attacker
might be able to generate signatures that pass the batch verification test while
being invalid on their own.
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This was highlighted in [6], where the authors presented two attacks against
a batch verification scheme similar to Eq. 2, proposed in [16]. In Appendix A,
we show an attack that applies to the naive Eq. 2 batch verification proposal.

To protect against such attacks, we introduce the notion of a randomizer ρi,
initially proposed in [19]. This random integer is used to multiply both sides of
the batch verification equation and renders the attacks described in [6] and A
infeasible.

Thus, with randomizing multiplier ρi, the relation to be checked for a single
ECDSA validation is:

ρiRi = ρis
−1
i (H(Mi)G+ ri(H(Certi)Vi + U))

= ρis
−1
i H(Mi)G+ ρis

−1
i riH(Certi)Vi + ρis

−1
i ri U .

Set βi = ρis
−1
i riH(Certi), and multiply through by β−1i to obtain:

β−1i ρiRi = β−1i ρis
−1
i H(Mi)G+ Vi + β−1i ρis

−1
i ri U .

Again β−1i can be calculated in a batch, with only one inversion, using Mont-
gomery’s trick as already presented in Section 4.

This form will yield a batch verification system where the Vi need only be
added together:

n∑
i=1

β−1i ρiRi =

(
n∑
i=1

β−1i ρis
−1
i H(Mi)

)
G+

n∑
i=1

Vi +

(
n∑
i=1

β−1i ρis
−1
i ri

)
U .

The other elliptic curve point which is not known long-term is Ri. If we want
to balance the multiple of Vi and Ri, this can be done in the same way as was
done in [2].

More concretely, set γi = β−1i ρiRi and write γi = νi/δi, where νi and δi are
(almost) half length values. Then multiply through by δi:

νiRi = δiβ
−1
i ρis

−1
i H(Mi)G+ δiVi + δiβ

−1
i ρis

−1
i ri U . (3)

This yields a batch validation with half-length multiples for each elliptic curve
point not known long-term. This will allow half of the doubles to be removed in
the simultaneous calculation of 3 as a whole:

n∑
i=1

νiRi =

(
n∑
i=1

δiβ
−1
i ρis

−1
i H(Mi)

)
G+

n∑
i=1

δiVi +

(
n∑
i=1

δiβ
−1
i ρis

−1
i ri

)
U .

(4)

Let’s make a rough performance evaluation along the lines of Section 4 above.
Since the multiples of previously unknown points are half length, at least 128
doubles are required. Assuming that on average half of the bits of the two half-
length multiples are one, then we need 256/2 = 128 additions as well. Together,
this is 128 × 9M + 128 × 13M = 2816M for each signature, for an incremental
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cost of 2816M . The multiples of G and U , if we assume one scaled value each,
half-way up (as in [2]), and assume one-half one bits on average, will require
256 additions, but no extra doubles, which can be shared with the half-length
multiples. This is a base cost of 256M = 3328M .

The naive verification will take one linear combination of known points, plus
a multiple of an unknown point, or with the same assumptions 256 × 13M +
128 × 13M + 256 × 9M = 7296M per signature. This is more than twice the
incremental cost of the batch verification.

Note on different implicit certificate issuers. Finally, note that up to this point
we have considered the case where the certificate issuer was the same for all
implicit certificates. While this is likely in practice, it may be the case that some
signatures an EE must verify are from certificates issued by different PCAs. It is
easy to see from Eq. 4 that the optimizations we propose could also be applied
to a situation where different Us are used, even though the performance gain
would decrease for every new CA.

6 Performance Evaluation

Table 1 summarizes the performance of the batch ECQV certificate validation
and of the batch ECDSA verification presented in Sections 4 and 5, respectively.

Algorithm Performance Example (n = 20)

Naive Batch ECQV validation 5683n 113660

Efficient Batch ECQV validation 16n+ 4480 4800 (∼ 23.7× faster)

Naive Batch ECDSA verification 7296n 145920

Efficient Batch ECDSA verification 2816n+ 3328 59648 (∼ 2.4× faster)

Table 1. Performance comparison of the batch algorithms presented above. The per-
formance is measured in finite field multiplications M. The value of n used in the
example corresponds to the currently proposed size of a batch of implicit certificates,
and also represents a reasonable amount of signatures to be verified simultaneously by
a vehicle driving in moderate traffic.

To confirm our findings related to performance optimization, we implemented
the proposed algorithms using the RELIC toolkit [3] for benchmarking purposes.
We implemented both our implicit certificate batch validation algorithm and our
efficient batch ECDSA verification.

The benchmarks were run using RELIC’s default settings, 10k times, on an
Intel Core i7 processor running at 2.2 GHz. The results are presented in Table 2.
We see that we obtain speedup factors comparable to the ones obtained through
our rough performance evaluation presented in the later parts of Sections 4 and
5, respectively.
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Algorithm n = 20 Speedup factor

Naive Batch ECQV validation 13963 µs ∼ 23.91× faster
Efficient Batch ECQV validation 584 µs

Naive Batch ECDSA verification 33059 µs ∼ 2.34× faster
Efficient Batch ECDSA verification 14114 µs

Table 2. Benchmarks of our algorithms, implemented using the RELIC toolkit [3].
Results are reported in microseconds, for a batch size of 20.

7 Conclusion

In this paper, we presented several methods to speed up operations performed
by end-entities in the SCMS. We proposed optimizations for the validation of
batches of implicit certificates, allowing EEs to efficiently determine whether a
batch of pseudonym certificates is valid or not.

We also proposed optimizations to the verification of ECDSA signatures
when verification is performed with an implicit certificate. Since the computa-
tion power of EEs might be limited, these optimizations may have a significant
impact on the number of operations that EEs can perform, thereby increasing
the security of the system as a whole.

Finally, we implemented the algorithms presented in this paper to support
our performance claims. We obtained timings and speedup factors comparable
to the expected performance devised through our rough performance evaluation.

In terms of future work, an interesting avenue would be to look at the different
tradeoffs between speed and size of the precomputated tables for efficient elliptic
curve arithmetic. This is of particular interest in memory-constrained devices
that might have limited storage available.

Additionally, proving the security of our batch implicit certificate validation
algorithm might be a worthwhile direction for future development. However, this
would probably be a significant undertaking, since it would require to start by
clearly defining a security model encompassing implicit certificates, the butterfly
key expansion process in the SCMS and the batched operations we propose.
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A Attack on Naive Batch Verification

Recall ECDSA verify:
R′ = s−1(H(M)G+ rQ).

A simple path to forgery is as follows: Pick ρ1, ρ2 ∈ Zq, compute R1 := ρ1G and
R2 := ρ2G and derive r1, r2 as the integer representation of the x-coordinates of
R1, resp., R2, namely r1 = φ(R1) and r2 = φ(R2). Then set

s1 =
(r2/r1)H(M1)−H(M2)

(r2/r1)(ρ1 + ρ2)
=
r2H(M1)− r1H(M2)

r2(ρ1 + ρ2)

and

s2 = −s1
(r2
r1

)
= −r2H(M1)− r1H(M2)

r2(ρ1 + ρ2)
· r2
r1

= −r2H(M1)− r1H(M2)

r1(ρ1 + ρ2)

We verify that a naive batch verification succeeds.

R1 +R2 = s−11 (H(M1)G+ r1Q) + s−12 (H(M2)G+ r2Q)

=

(
r2H(M1)− r1H(M2)

r2(ρ1 + ρ2)

)−1
(H(M1)G+ r1Q)+

(
− r2H(M1)− r1H(M2)

r1(ρ1 + ρ2)

)−1
(H(M2)G+ r2Q)

=

(
r2(ρ1 + ρ2)

r2H(M1)− r1H(M2)

)
(H(M1)G+ r1Q)−

( r1(ρ1 + ρ2)

r2H(M1)− r1H(M2)

)
(H(M2)G+ r2Q)

=
r2(ρ1 + ρ2)(H(M1)G+ r1Q)

r2H(M1)− r1H(M2)
− r1(ρ1 + ρ2)(H(M2)G+ r2Q)

r2H(M1)− r1H(M2)

=
r2(ρ1 + ρ2)(H(M1)G+ r1Q)− r1(ρ1 + ρ2)(H(M2)G+ r2Q)

r2H(M1)− r1H(M2)

=
(ρ1 + ρ2)

(
r2(H(M1)G+ r1Q)− r1(H(M2)G+ r2Q)

)
r2H(M1)− r1H(M2)

=
(ρ1 + ρ2)

(
r2H(M1)G− r1H(M2)G

)
r2H(M1)− r1H(M2)

=
(ρ1 + ρ2)G

(
r2H(M1)− r1H(M2)

)
r2H(M1)− r1H(M2)

= (ρ1 + ρ2)G

= R1 +R2
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