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Abstract. In this note, we present a polynomial time and memory adaptive attack on the 2-SIDH
protocol. The 2-SIDH protocol is a special instance of the countermeasure proposed by Azarderakhsh,

Jao and Leonardi to perform isogeny-based key exchange with static keys in the presence of an adaptive

attack. This countermeasure has also been recently explicitly proposed by Kayacan.
Our attack extends the adaptive attack by Galbraith, Petit, Shani and Ti (GPST) by recovering a

static secret using malformed points. The extension of GPST is non-trivial and requires learning more

information. In particular, the attack needs to recover intermediate elliptic curves in the isogeny path,
and points on them. We will use this extra information to show how the attacker recover the secret

isogeny path from a partial path.

1. Introduction

The Supersingular Isogeny Diffie–Hellman (SIDH) protocol was introduced in 2011 by David Jao and
Luca de Feo [JF11, FJP14] as a post-quantum key exchange scheme. The adaptive attack on SIDH due
to Galbraith, Petit, Shani and Ti [GPST16] (GPST) shows that SIDH cannot be used for non-interactive
key exchange. Similarly if SIDH is being used for ElGamal then one needs to use a padding scheme to
check correctness of the ciphertexts (in other words, SIDH-KEM can only be safely used with CCA2
protection). On the other hand, CSIDH can be used for non-interactive key exchange or CCA1-secure
encryption.

Azarderakhsh, Jao and Leonardi [AJL17] give a solution to this problem. By running k instances in
parallel (e.g. for k = 60) they prove that the scheme is classically secure. In the non-interactive key
exchange setting this requires Alice and Bob to compute about k2 isogenies to obtain the shared key,
which is very inefficient. When k is large this variant of the protocol is very inefficient, so a natural
question is whether k = 2 is sufficient for secure non-interactive key exchange. If it were the case that
k = 2 was secure for non-interactive key exchange then the SIDH approach would be faster than CSIDH
[CLM+18].

The aim of this paper is to give an attack on the scheme with k = 2. Our methods clearly extend
to k > 2, and in future work we will estimate how the complexity of the attack grows with k. Unlike
the original GPST attack, we cannot just “read off” the bits of the secret directly by engaging in key
exchange sessions. Instead, it seems to be necessary to gradually recover the intermediate elliptic curves
and certain points on them. This is because at various stages when need to compute “random” branches
in the isogeny graph.

We now sketch the basic idea in the ElGamal setting, where a user Alice has k = 2 secret keys and
Bob sends a single curve. Fix SIDH parameters E/Fp with 2n3m | #E(Fp). Let P,Q ∈ E be a basis for

E[2n]. Alice has two private keys α(1) and α(2) and her public key is the pair

E
(1)
A = E/〈P + [α(1)]Q〉, E

(2)
A = j(E/〈P + [α(2)]Q〉.

Figure 1 shows the isogeny paths for Alice’s two keys. There is also a pair of points on E that generate

E[3m] and Alice sends the images of those points on E
(1)
A and E

(2)
A under her isogenies. In encryption,

Bob computes a random 3m-isogeny φ : E → EB and sends EB , φ(P ) and φ(Q). Alice and Bob compute
the shared key

Hash
(
j
(
EB/〈φ(P ) + [α(1)]φ(Q)〉

)
, j
(
EB/〈φ(P ) + [α(2)]φ(Q)〉

))
.

A malicious Bob will try to learn Alice’s secrets α(1) and α(2) by sending (E,U, V ) for carefully and

adaptively chosen points U, V ∈ E[2n]. The attack will gradually learn the sequence of curves E
(1)
i and

E
(2)
i in the below figure. Knowledge of the secret key α(k) is equivalent to knowledge of the kernel of the

isogeny from E to E
(k)
A , and we gradually determine this by computing the kernels of the isogenies φ

(k)
i .

The astute reader has already noticed that this model of 2-SIDH is not the same as that presented in
[AJL17, Kay19]. The equivalence of looking at this model will be presented in Section 4.1. We now give
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the outline of the paper. Section 2 will introduce some notation and definitions. Section 3 then recalls
the GPST attack. We present the k = 2 protocol in Section 4. Section 5 explains the attack. We have
implemented the attack in MAGMA, and code is available at the following URL

https://github.com/kiwi-crypto/2SIDH-Extended-Adaptive-Attack

2. Notation and Definitions

We begin with some important definitions and notation which we will use throughout the paper. The
notation is summarised in Figure 1. As shown in the figure, we have two isogenies from E, so we will
use superscripts to denote which isogeny we are on. Subscripts will be used to denote bit numbers. We
will use the convention that the 0-th bit is the parity bit, thus α0 refers to the first (least significant) bit
of a key α. We will often use that a key α can be written in the form α = Ki + α′2i for some α′. Here
the i-th partial key Ki of a key α is defined as

Ki =

i−1∑
k=0

αk2k

We denote point halving with [12 ]P = {Q | [2]Q = P}, i.e. the set of all points Q such that P = [2]Q.
The 2-neighbours of an elliptic curve E are the codomains of all possible 2-isogenies emanating from E,
and similarly the 4-neighbours are those curves which are two 2-isogeny (non-backtracking) “steps” from
E.

The φ
(k)
i are 2-isogenies from E

(k)
i → E

(k)
i−1, while the ψ

(k)
i are compositions of φ(k)s, such that

ψ
(k)
i : E → E

(k)
i and ψ

(k)
0 is the secret 2n-isogeny generated by the chosen secret keys in the protocol.

We will use A(k) to denote the kernel generators P + [α(k)]Q. We define A
(k)
i = ψ

(k)
i (A(k)), and

Q
(k)
i = ψ

(k)
i (Q).

E = En

E
(1)
i

E
(1)
i−1

E
(1)
0 = E

(1)
A

φ
(1)
i

ψ
(1)
i−1

ψ
(1)
i

E = En

E
(2)
i

E
(2)
i−1

E
(2)
0 = E

(2)
A

φ
(2)
i

ψ
(2)
i−1

ψ
(2)
i

Figure 1. Isogeny paths for the two instances.

3. Adaptive Attack on SIDH

First we recall the SIDH scheme itself. Setup of the scheme involves the choice of a prime of the form
p = `nA · `mB · f ± 1, where `A, `B are small primes, `nA ≈ `mB , and f is a small cofactor. Typically, `A = 2
and `B = 3, so we will assume this case in the following discussion, although the same shall always apply
to the general case too. A supersingular elliptic curve E is then constructed over the field Fp2 , and made
public along with chosen bases 〈PA, QA〉 = E[2n], 〈PB , QB〉 = E[3m] (these torsion subgroups have order
22n and 32m respectively).

To perform the key exchange, Alice will select 0 ≤ a1, a2 < 2n not both divisible by 2, and similarly
Bob will select 0 ≤ b1, b2 < 3m not both divisible by 3. These integers allow each party to compute a
secret subgroup each

GA = 〈[a1]PA + [a2]QA〉, GB = 〈[b1]PB + [b2]QB〉.

These subgroups are then used via Vélu’s formulae [Vél71] to construct isogenies φi : E → Ei = E/Gi, i ∈
{A,B}. Alice will send to Bob the triple

(
EA, φA(PB), φA(QB)

)
and Bob will reciprocate appropriately,

and the exchanged points will allow Bob (and in the same manner Alice) to compute

〈[b1]φA(PB) + [b2]φA(QB)〉 = 〈φA([b1]PB + [b2]QB)〉 = φA(GB).

With these new subgroups, Vélu’s formulae can then be used to compute isogenies EA → EA/φA(GB) '
EB/φB(GA) ' E/〈GA, GB〉. Because the j-invariant j (E/〈GA, GB〉) of these curves is isomorphism-
invariant, it can be used as the shared key. This is summarised in Figure 2.
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E E/〈A〉

E/〈B〉 E/〈A,B〉

φA

φB

φ′A

φ′B

Figure 2. The SIDH key exchange.

As is now standard (see for example Lemma 1 of [GPST16]) any choice of secret integers (a1, a2) is
equivalent to either (1, α) or (α′, 1). It thus suffices to consider only these cases. For the rest of the
paper we use keys of the form (1, α).

The adaptive GPST attack is an active attack, in which one party (we shall assume Alice) uses a
fixed key for each exchange. This could, for example, be a webserver using a static key when deriving
secrets with each visitor to the site. The other party uses the key exchange protocol to slowly leak secret
information and eventually reveal Alice’s static secret key. The adaptive attack works in the two attack
models defined, each in terms of access to a different oracle:

(1) O(E,R, S) = E/〈R+ [α]S〉.
(2) O(E,R, S,E′) = 1 if j (E/〈R+ [α]S〉) = j (E′) and 0 otherwise.

The second is weaker so the attack is described in this model for illustration of its potency.
The first step of the attack simultaneously reveals which of these two cases we are in as well as the

first bit of α. This is done by honestly generating the ephemeral key (EB , R = φB(PA), S = φB(QA)),
and querying the oracle on (EB , R, S+ [2n−1]R,EAB). A result of 1 from the oracle informs the attacker
that

EAB ' EB/〈R+ [α](S + [2n−1]R)〉
so 〈R+[α](S+[2n−1]R)〉 = 〈R+[α]S〉. Hence, the key is of the first form, and α is even, by the following
lemma ([GPST16], Lemma 2)

Lemma 3.1. Let R,S ∈ E[2n] be linearly independent points of order 2n and let α ∈ Z. Then

〈R+ [α](S + [2n−1]R)〉 = 〈R+ [α]S〉

if and only if α is even.

Otherwise, the attacker learns that α is odd.
We now describe the remainder of the attack. Suppose we have learnt the first i bits of α. We can write

α in the form α = Ki+αi2
i+α′2i+1, Ki is the i-th partial key defined above, αi ∈ {0, 1} is the next bit of α

we hope to learn, and α′ is unknown. The attacker will honestly generate (EB , R = φB(PA), S = φB(QA))
and EAB as before, according to the protocol. He will then query the oracle with(

EB , [θ](R− [2n−i−1Ki]S), [θ]([1 + 2n−i−1]S), EAB

)
where θ is a scaling parameter included to avoid detection of the attack with Weil pairing validation
(this will not be discussed further here, please see [GPST16] for full details). Both points sent to the
oracle have the correct order so the attack is not detectable by order validation. If the response of the
oracle is 1, then αi = 0, otherwise αi = 1, because

〈R− [2n−i−1Ki]S + [α][1 + 2n−i−1]S〉
= 〈R+ [α]S + [−2n−i−1Ki + 2n−i−1(Ki + 2iαi + 2i+1α′)]S〉
= 〈R+ [α]S + [αi2

n−1]S〉

=

{
〈R+ [α]S〉 if αi = 0 ,

〈R+ [α]S + [2n−1]S〉 if αi = 1 .

The last two bits αn−2, αn−1 should be brute-forced because for these last two bits, there may not exist
a suitable scaling θ, making the attack detectable otherwise.
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4. 2-SIDH

The usual way to secure SIDH when one party is using static keys is the Fujisaki–Okamoto transform,
which allows to detect malicious behaviour. But this cannot be used in the static-static setting.

A different countermeasure proposed by Azarderakhsh, Jao and Leonardi [AJL17] circumvents the
attack by having each party generate multiple instances of the SIDH protocol. This is known as the
k-SIDH key agreement protocol. In their work, they proposed the use of k = 60 if the static-key user
is working in 2n-torsion group to achieve 128-bits of classical security, and k = 113 to achieve 128-bits
of quantum security. If the static-key user is working in the 3m-torsion group, they proposed k = 50
and k = 94 to achieve 128-bits of classical and quantum security respectively. More recently, Kayacan
[Kay19] proposed two countermeasures to thwart the adaptive attack. The first protocol proposed is
simply the 2-SIDH key agreement protocol.

The 2-SIDH protocol has the same set-up as the SIDH protocol with an addition of a preimage resistant
hash function H. A prime number p = 2n · 3m · f ± 1 is chosen, and a supersingular elliptic curve E/Fp2

and four points PA, QA, PB , QB ∈ E(Fp2) are chosen such that 〈PA, QA〉 = E[2n] and 〈PB , QB〉 = E[3m].

Alice chooses secrets α(1) ←R Z/2nZ and α(2) ←R Z/2nZ which she would use to compute the
isogenies

φ
(k)
A : E → E

(k)
A = E/〈PA + [α(k)]QA〉

for k = 1, 2, and the points R(k) = φ
(k)
A (PB) and S(k) = φ

(k)
A (QB). She then sends Bob her public key(

(E
(1)
A , R(1), S(1)), (E

(2)
A , R(2), S(2))

)
.

Bob will perform a similar procedure with points in E[3m]. He chooses secrets β(1) ←R Z/3mZ and
β(2) ←R Z/3mZ and computes

φ
(k)
B : E → E

(k)
B = E/〈PB + [β(k)]QB〉

for k = 1, 2, and the points U (k) = φ
(k)
B (PA) and V (k) = φ

(k)
B (QA). He then sends Alice his public key(

(E
(1)
B , U (1), V (1)), (E

(2)
B , U (2), V (2))

)
.

To obtain the shared secret, Alice takes Bob’s public key and computes

zk,l = j
(
E

(k)
B /〈U (k) + [α(l)]V (k)〉

)
and the hash

h = Hash (z1,1, z1,2, z2,1, z2,2) .

She will use the hash as the shared secret with Bob.

4.1. Attack Models. We will frame our attack by the use of oracle models that will model the informa-
tion learned by an attacker against a user with a static secret key. In the following, we will assume that
Alice is the user with a static secret key and the attacker is playing the role of Bob. This is the same
as the oracle models of the original adaptive attack which will serve as the basis for the oracle model
that we will use here. We will see that the oracle model used later will differ slightly from the 2-SIDH
protocol as presented in §4, however we will show that this simpler model is equivalent to the original
2-SIDH protocol.

Adapting the oracle model found in [GPST16], we see that in our case, we have the following two
oracle models:

(1) O(E(1), E(2), R(1), S(1), R(2), S(2)) = Hash (z1,1, z1,2, z2,1, z2,2), where

zk,l = j
(
E(k)/〈R(k) + [α(l)]S(k)〉

)
.

(2) O(E(1), E(2), R(1), S(1), R(2), S(2), h) which returns 1 if h = Hash (z1,1, z1,2, z2,1, z2,2), where zk,l
is as above, and 0 otherwise.

We will focus on the second model. Furthermore, we can simplify this oracle model by having Bob
send Alice a specific form of public key in the attack. Rather than generating two secret keys β(1), β(2)

and sending Alice his public key as described above, his behaviour can be modelled by selecting a single
β(1) and duplicating the curves and points he sends in his public key(

(E
(1)
B , U (1), V (1)), (E

(1)
B , U (1), V (1))

)
.
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Note that it would also suffice for Bob to hold his second secret key constant and vary only the first
between queries. Upon receipt of this key, Alice will compute

Hash

j (E(1)
B /〈U (1) + [α(1)]V (1)〉

)
, j
(
E

(1)
B /〈U (1) + [α(2)]V (1)〉

)
,

j
(
E

(1)
B /〈U (1) + [α(1)]V (1)〉

)
, j
(
E

(1)
B /〈U (1) + [α(2)]V (1)〉

) 
= Hash(z1,1, z1,2, z1,1, z1,2)

If we consider a tweaked hash function

H ′(m1,m2) = Hash(m1,m2,m1,m2)

it becomes obvious that we define a third oracle model in the following way

(3) O(E(1), R(1), S(1), h) which returns 1 if h = H ′ (z1,1, z1,2), where zk,l is as above, and 0 otherwise.

Making this simplification, we can assume that the 2-SIDH protocol during the attack has the following
description. Without loss of generality, we continue assuming that Alice is using a normalised static
key (α(1), α(2)), and that Bob is dishonest and is trying to recover the long-term secret (α(1), α(2)).
The discussion to come will assume that the points are in the 2n-torsion, but it can be shown that the
following methods and arguments will carry over to other torsion points.

Let p be a prime such that p = 2n · 3m · f ± 1, where f is small and 2n ≈ 3m. More generally,
we allow p = `nA · `mB · f ± 1 where `A, `B are small primes, but for ease of exposition, we will let
`A = 2 and `B = 3. Fix the field k = Fp2 , and let E be a supersingular elliptic curve over k. We
fix generators PA, QA for the torsion subgroup E[2n], and PB , QB for E[3m].

Alice picks two random integers 0 ≤ α(k) < 2n, where k = 1, 2. Alice will then compute

G
(k)
A = 〈PA + [α(k)]QA〉,

for k = 1, 2. At this step, we will use the normalised kernels (see [GPST16, Lemma 1]), and

represent G
(k)
A = 〈PA + [α(k)]QA〉. She will use Vélu’s formula to compute φ

(k)
A : E → E

(k)
A ,

where kerφ
(k)
A = G

(k)
A . She will compute and send to Bob the following tuple:(
E

(1)
A , E

(2)
A , φ

(1)
A (PB), φ

(1)
A (QB), φ

(2)
A (PB), φ

(2)
A (QB)

)
.

Bob would perform a similar computation but only select a single pair of random integers, and
output the tuple: (

E
(1)
B , E

(1)
B , φ

(1)
B (PA), φ

(1)
B (QA), φ

(1)
B (PA), φ

(1)
B (QA)

)
.

Upon receiving of Bob’s message, to derive the shared key, Alice would compute the two
subgroups

H
(k)
A = 〈φ(1)B (PA) + [α(k)]φ

(1)
B (QA)〉 = φ

(1)
B (G

(k)
A ).

and the isogenies from E
(1)
B , with kernel equal to these subgroups. Call the codomain of these

isogenies E
(k)
AB , then Alice uses

H ′
(
j
(
E

(1)
AB

)
, j
(
E

(2)
AB

))
as the shared key.

From the attacker’s point of view, we have the following setup: Let E be a supersingular elliptic curve
with 〈P,Q〉 = E[2n]. Now let (α(1), α(2)) ∈ {1, . . . , 2n}2 be the secrets unknown to the attacker, and let
E(1) = E/〈P + [α(1)]Q〉 and E(2) = E/〈P + [α(2)]Q〉. The attacker’s goal is to recover secrets equivalent
to α(1) and α(2).

5. The Extended Adaptive Attack

5.1. Overview of the Attack. At a high level, the attack follows the same methodology as the GPST
attack. However there is one major difficulty that needs to be overcome. Suppose at step i we have
computed the first i bits of α(1) and α(2), so that we have

α(1) = K
(1)
i + α

(1)
i 2i + α′(1)2i+1 and α(2) = K

(2)
i + α

(2)
i 2i + α′(2)2i+1.

To learn the next bit of α(1) we will make an oracle query on points U = R − [2n−i−1K
(1)
i ]S and

V = [1 + 2n−i−1]S and get back a hash value h = H ′(j(E/〈U + [α(1)]V 〉), j(E/〈U + [α(2)]V 〉)). To learn

the next bit we need to check whether or not j(E/〈U + [α(1)]V 〉) = j(E
(1)
A ). But we do not see this

5



j-invariant, we only see the hash value h. Since H ′ is a hash function, the only way to check equality

of the j invariant is to compute H ′(j(E
(1)
A , ?) for some appropriate j-invariant ?. The difficulty is that

j(E/〈U + [α(2)]V 〉) is not necessarily close in the isogeny graph to j(E
(2)
A ). The solution is to use the

available partial knowledge of α(2) to compute a small list of candidate j-invariants, so that we can

compute a few hash values and determine whether or not j(E/〈U + [α(1)]V 〉) = j(E
(1)
A ).

To do this we need to compute what we call the “intermediate images” of the kernel and the point

Q. More precisely we compute candidates for A
(k)
i+1 and [2n−(i+1)]Q

(k)
i+1. Hence, the extended adaptive

attack we will present in this section has two stages: one to recover the bits of the secret scalar, and
another to recover the intermediate images.

The first stage for the recovery of bits is almost identical to the adaptive attack presented in [GPST16].
The difference from the GPST adaptive attack arises from the way one instance interferes with the other.
This results in the necessity of making more guesses (but bounded at each step) to recover the bit. The
guesses are generated by intermediate images which we recover in the second stage.

In the second stage, the goal is to recover the intermediate images required for the first stage of the
next step. At this stage, we will use the bits recovered from the first stage to pull back the intermediate
images used in the first stage. Not all the points in the pull back are suitable for use in the next step,
so we will need to remove those points using queries to the oracle. We will show that the number of
intermediate images remains constant at each step.

We now give some basic facts that will help us determine these points.

Lemma 5.1. Consider the intermediate 2-isogeny φ
(k)
i : E

(k)
i → E

(k)
i−1. Then it holds that

(1) kerφ
(k)
i = 〈[2i−1]A

(k)
i 〉, and

(2) ker φ̂
(k)
i = 〈[2n−1]Q

(k)
i−1〉.

Proof. The first part (1) is apparent from the fact that A(k) has order 2n so A
(k)
i has order 2i, and by

inspecting Figure 1.

For the second part (2), since Q /∈ kerφ
(k)
i by (1), we have that Q is not the identity under φ

(k)
i . Since

[2n−1]Q
(k)
i−1 is a point of order 2, it will generate a 2-isogeny θ. One can then check that composing φ

(k)
i

with θ annihilates the two-torsion in E
(k)
i , hence by the uniqueness of the dual isogeny, θ must be the

dual of φ
(k)
i . �

We remark that these properties do not uniquely determine the points A
(k)
i+1 and [2n−(i+1)]Q

(k)
i+1. For

example, kerφ
(k)
i = 〈[2i−1λ]A

(k)
i 〉 for any odd integer λ. Similarly, ker φ̂

(k)
i = 〈[2n−1λ]Q

(k)
i−1〉 for any odd

integer λ. So the points we are computing are not uniquely determined.

5.2. Determining the First Bits and Intermediate Curves. The recovery of the first bits will be
different from the subsequent bits. In this subsection, we will show how an attacker can recover the first
bits using only the public information sent by Alice. This will provide the basis for the iterative step to
recover the entire secret in the next section.

Recovering the first bit of each secret. To recover the first bits, we first send Alice the points P , [1+2n−1]Q
and note that she would compute

P + [α(1)]Q+ [α(1)][2n−1]Q = A(1) + [α
(1)
0 ][2n−1]Q

=

{
A(1) if α

(1)
0 = 0 ,

A(1) + [2n−1]Q if α
(1)
0 = 1 ,

and

P + [α(2)]Q+ [α(2)][2n−1]Q = A(2) + [α
(2)
0 ][2n−1]Q

=

{
A(2) if α

(2)
0 = 0 ,

A(2) + [2n−1]Q if α
(2)
0 = 1 .

Now, let E′(k) = E/〈A(k) + [2n−1]Q〉. We receive a response from the oracle with which we can recover

the first bit of the two secrets. This is done by computing all the 4-neighbours E
′(k)
` of E

(k)
0 (` =
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1..6), computing the hash of different combinations of the known j(E(k)) and the j-invariants of the

4-neighbours jk,` = j
(
E
′(k)
`

)
, and using them as oracle queries (see the following figure). If the oracle

returns 1, then we will be able to recover the bits. For example, if we find a match h = H ′(j(E
(1)
0 ), j2,4),

we know that the α
(1)
0 = 0 and α

(2)
0 = 1. In the case of α

(k)
0 = 1, we have also recovered the curve

E′(k) = E
′(k)
4 in the process.

E
(1)
2

E
(1)
1

E
(1)
0

E′(1)

φ
(1)
2

φ
(1)
1

E
(2)
2

E
(2)
1

E
(2)
0

E′(2)

φ
(2)
2

φ
(2)
1

Figure 3. Branching at the first bit of the secrets

Recovering the first intermediate curves. Having recovered the α
(k)
0 bits, we would like to recover the

curves E′(k). This is done using a branch, as in Figure 3 - if we have E
(k)
0 and E′(k), we can find E

(k)
1

simply by finding their common neighbour in the isogeny graph. If either of the bits α
(k)
0 = 1, a branch

would already have occurred and we would know E′(k). But if α
(k)
0 = 0, we need to force a branch to

happen. This is done by sending Alice the points P + [2n−1]Q, [1 + 2n−1]Q. One can verify that this

indeed produces a branch, and again finding the common neighbour will reveal E
(k)
1 . Additionally, we

can recover E
(k)
2 since there are only three 2-isogenies from E

(k)
1 , and two are known.

Pulling back A and Q’s. We currently know

E
(k)
0 , E

(k)
1 , E

(k)
2 , E′(k).

Given these curves, it is not hard to find the 2-isogenies

φ
(k)
2 : E

(k)
2 → E

(k)
1 , φ

(k)
1 : E

(k)
1 → E

(k)
0 .

The kernels of the φ
(k)
1 are A

(k)
1 = ψ

(k)
1 (A(k)) by Lemma 5.1. Also, we can obtain [2n−1]Q

(k)
1 =

ψ
(k)
1 ([2n−1]Q) as the kernels of the duals φ̂

(k)
2 .

Now we set

A(k)
1 =

{
A

(k)
1

}
, Q(k)

1 =
{

[2n−1]Q
(k)
1

}
and proceed to the main iterative step in §5.3 to recover the remaining bits of the secrets.

5.3. The Main Iterative Step. Now that we are set up with the bootstrap information from the
previous section, we may proceed to recover the remaining 2(n − 1) bits of Alice’s secret (α(1), α(2)).
The rough outline of the attack is that for each additional pair of bits we proceed in two stages: A

combination of the GPST attack (cf. § 3) to determine the bits α
(1)
i , α

(2)
i , and an additional step that

pulls back generator points between intermediate curves and filters out invalid preimages.
We will need a few supporting lemmas, which we state now.

Lemma 5.2. Let T = A
(k)
i−1 and X = Q

(k)
i−1 be the images of the kernel generators under the partial

2n−(i−1)-isogeny ψ
(k)
i−1 : En → E

(k)
i−1. Then the following holds:

(1) The preimage of T under φ
(k)
i is given by{

A
(k)
i , [1 + 2i−1]A

(k)
i

}
.

(2) The preimage of X under φ
(k)
i is given by{

Q
(k)
i , Q

(k)
i + [2i−1]A

(k)
i

}
.

Proof. The preimage of T under φ
(k)
i is exactly given by A

(k)
i + kerφ

(k)
i and since kerφ

(k)
i is a 2-torsion,

the result follows from Lemma 5.1 (1). The same argument holds for the preimage of X under φ
(k)
i . �

7



Lemma 5.3. Using the notation from Lemma 5.2, 〈T 〉 = 〈[λ]T 〉 if λ is odd. Furthermore, all points in

the pull-back of both A
(k)
i−1 and [λ]A

(k)
i−1 under φ

(k)
i generate the same subgroups.

Proof. The first statement is clear.

From the previous lemma, we have that the preimage of A
(k)
i−1 under φ

(k)
i−1 is A

(k)
i and [1 + 2i−1]A

(k)
i .

Hence, using the first statement, we are done.

Next, the preimage of [λ]A
(k)
i−1, where λ is odd is given by [λ]A

(k)
i and [λ][1+2i−1]A

(k)
i , so the statement

follows. �

Remark. For the ease of exposition we will assume that

K
(1)
i −K(2)

i 6∈ 2Z, (1)

i.e. that the difference of the partial keys is odd. This is the case if and only if the first bits of the two

secrets α
(1)
0 6= α

(2)
0 . Special care has to be taken in case Equation (1) does not hold, see Appendix B and

the attack implementation for details.

Theorem 5.4 (2-SIDH Key Recovery). Let α(1)−α(2) odd. Assuming there exists an oracle O(E1, R1, S1, h)
as in §4.1 (3), then there exists a polynomial-time algorithm that finds Alice’s secrets in the 2-SIDH pro-
tocol.

Proof. We are able to recover the first bits using §5.2, so the task is to recover the rest of the bits, which
we will do by induction. The induction step is given by the following two stages and a boundedness
argument showing that the algorithm is polynomial-time. The tuple (a, b) is either (1, 2) or (2, 1),
distinguishing the two instances.

Stage 1 (Recovering Bits): Assume we have recovered the first i bits of each secret, and are

attempting to recover the (i+ 1)-th bits. Also assume we are given A(b)
i , a set of valid pull backs

for A
(b)
i−1, and Q(b)

i a set of valid pull backs for [ 12 ][2n−(i−1)]Q
(b)
i−1. Thus points in A(b)

i and Q(b)
i

are on the curve E
(b)
i .

First, we set

P ′ = P − [K
(a)
i ][2n−(i+1)]Q and Q′ = [1 + 2n−(i+1)]Q.

For each A ∈ A(b)
i and for each Y ∈ [ 12 ]Q(b)

i we compute

E′ = E/〈A+ [K
(b)
i −K

(a)
i ]Y 〉.

For all 2-neighbours E′` of E′ (` = 1, 2, 3) we determine jb,` = j (E′`).
To recover the bit, we query the oracle on O(E,P ′, Q′, h) with h = H ′(j1,`, j2) (or h =

H ′(j1, j2,`), depending on the instance) for all ` = 1, 2, 3. The oracle will have the following
intermediate computations:

P + [α(a)]Q− [K
(a)
i ][2n−(i+1)]Q+ [K

(a)
i ][2n−(i+1)]Q+ [α

(a)
i ][2n−1]Q

=A(a) + [α
(a)
i ][2n−1]Q

=

{
A(a) if α

(a)
i = 0 ,

A(a) + [2n−1]Q if α
(a)
i = 1 ,

(2)

and

P + [α(b)]Q− [K
(a)
i ][2n−(i+1)]Q+ [K

(b)
i ][2n−(i+1)]Q+ [α

(b)
i ][2n−1]Q

=A(b) + [K
(b)
i −K

(a)
i ][2n−(i+1)]Q+ [α

(b)
i ][2n−1]Q

=

{
A(b) + [K

(b)
i −K

(a)
i ][2n−(i+1)]Q if α

(b)
i = 0 ,

A(b) + [K
(b)
i −K

(a)
i ][2n−(i+1)]Q+ [2n−1]Q if α

(b)
i = 1 ,

=

{
φ
(b)
i (A(b)) + [K

(b)
i −K

(a)
i ]φ

(b)
i ([2n−(i+1)]Q) if α

(b)
i = 0 ,

φ
(b)
i (A(b)) + [K

(b)
i −K

(a)
i ]φ

(b)
i ([2n−(i+1)]Q) + φ

(b)
i ([2n−1]Q) if α

(b)
i = 1 .

(3)

Hence, it can be checked that if any of the oracle outputs is 1, we must have that α
(a)
i = 0 and

α
(a)
i = 1 otherwise. This yields the (i+ 1)-th partial keys

K
(a)
i+1 = K

(a)
i + α

(a)
i 2i.
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Stage 2 (Pulling Back Generators): Recall that Stage 1 used the sets A(b)
i and Q(b)

i . In this

stage we determine valid pull backs of A
(b)
i and [ 12 ][2n−i]Q

(b)
i that are going to form the sets A(b)

i+1

and Q(b)
i+1. We note that from Lemma 5.1 (2), for any Y ∈ Q(b)

i we have that [2i−1]Y = [2n−1]Q
(b)
i

determines the dual intermediate isogeny φ̂
(b)
i+1 : E

(b)
i → E

(b)
i+1 which allows us to compute the

pull back.

First, we compute the preimages of points A ∈ A(b)
i and Y ∈ [ 12 ]Q(b)

i under the intermediate

isogeny φ
(b)
i+1 : E

(b)
i+1 → E

(b)
i and record them as candidates for A

(b)
i+1 and [2n−(i+1)]Q

(b)
i+1, and call

those sets A(b)
i+1 and Q(b)

i+1.

We now test the validity of the points in A(b)
i+1 and in Q(b)

i+1. Similar to Stage 1, we set

P ′ = P − [K
(a)
i+1][2n−(i+1)]Q and Q′ = [1 + 2n−(i+1)]Q.

Note that this time, we use the (i+ 1)-th partial keys K
(a)
i+1,K

(b)
i+1 that we recovered in Stage 1.

For each A ∈ A(b)
i+1 and for each Y ∈ Q(b)

i+1 we compute

jb = j
(
E/〈A+ [K

(b)
i+1 −K

(a)
i+1]Y 〉

)
(4)

and set ja = j
(
E(a)

)
. We then query the oracle on O(E,P ′, Q′, h) with h = H ′(j1, j2).

Using Equations (2) and (3), one can check that if the oracle output is 1, we keep the points

A and Y as valid data for the next round, else we remove the points from the sets A(b)
i+1 and

Q(b)
i+1, respectively. The reason for this second stage is to decimate the number of preimages, as

we will explain further in the following boundedness argument.

Boundedness: We will now argue that in general it is enough for the sets A(b)
i and Q(b)

i to be

polynomially sized to successfully complete Stages 1 and 2. Thus the next preimage sets A(b)
i+1

and Q(b)
i+1 will again be of polynomial size.

Roughly this works because there are certain relations between the elements of A(b)
i and Q(b)

i

which we will now elaborate on.
Note that at the beginning of Stage 2 we effectively quadruple the number of points in Q(b)

i by

computing [ 12 ]Q(b)
i and then we double this number by determining the preimages of the halved

points under the intermediate isogeny φ
(b)
i+1 : E

(b)
i+1 → E

(b)
i . Hence it is crucial to ensure that we

reduce the total amount again.

Let T = A
(b)
i+1 and X = [2n−(i+1)]Q

(b)
i+1 be the correct images of the kernel generators. Looking

back at Equation 4, we anticipate matching hashes (i.e. the oracle outputs 1) if the following
two subgroups are equal

〈[λ]T + [x]([µ]X + [ν]T )〉 = 〈T + [x]X〉, (5)

where x = K
(b)
i −K

(a)
i , and λ, µ ∈

(
2(Z/2i+1Z) + 1

)
and ν ∈ Z/2i+1Z. Here 〈T + [x]X〉 is the

correct kernel. On the other hand, we see from Lemma 5.2 that the points we compute as pull
backs are generally of the form [λ]T , and [µ]X + [ν]T . Equation (5) certainly holds for λ = µ

and ν = 0, i.e. when A(b)
i+1 and Q(b)

i+1 both contain scalar multiples of T and X, respectively, and
such that the scalars are equal.

We now want to understand what happens to such pure scalar multiples when pulling back.

The situation for points in A(b)
i is given by Lemma 5.3. Thus, assuming we are given [λ]A

(b)
i , its

preimage will be [λ]T which again contains only scalar multiples of T . Regarding the preimage of

[ 12 ][2n−i]Q
(b)
i , Lemma 5.2 and considering the point halving tells us that it contains the following

points

X =
{

[2n−(i+1)]Q
(b)
i+1, [1 + 2i][2n−(i+1)]Q

(b)
i+1

}
,

among others. Hence, the preimage of [µ][ 12 ][2n−i]Q
(b)
i will contain [µ]X and so ultimately we

find a solution to Equation (5) with λ = µ and ν = 0.
We just saw that pure scalar multiples pull back to pure scalar multiples and thus it suffices

that we start with A(b)
i and Q(b)

i such that they contain at least one such matching pair with
λ = µ, ν = 0. Using the oracle query in Stage 2 we then restrict the amount of valid elements

in Q(b)
i+1 according to Equation (5). We also see that it is enough for A(b)

i+1 to contain only one
9



element as Q(b)
i+1 will necessarily contain the corresponding scalar multiple of X as one of its

elements.

Initially, A(k)
1 and Q(k)

1 for k = 1, 2 are constructed in §5.2 such that they contain at least one matching
pair with λ = µ, ν = 0, see Equation (5). �

Remark. Stage 1 (Recovering Bits): We check the 2-neighbours of E′ because the first step of

the isogeny actually maps into E
(k)
i+1. Hence the isogeny from E

(k)
i , where the points originate from

cannot reach the curve mapped from E. Therefore, the attacker has to compute the 2-neighbours
of E′ to bridge that gap.

Boundedness: Heuristically, the sizes of A(k)
i and Q(k)

i are 1 and 4.

The code referenced at the start of this work contains the implementation of this attack. As such,
implementation details can be found in the code.

5.4. Dividing the Work by Three. In this section, we will make an observation about the GPST
adaptive attack if more information is recovered at each step.

For the simplicity of the following exposition, we will assume that the torsion subgroup used by Alice
is of this particular form: E[23n]. The following diagram illustrates the isogeny path corresponding to
the static key:

EB → E3n−1 → E3n−2 → · · · → E2 → E1 → EBA

Note the order of the indices of the intermediate curves between EB and EBA. Also, we let the isogeny
ψi : EB → Ei be the isogeny from EB to Ei, and let P and Q be points such that 〈P,Q〉 = E[23n].

Now, suppose, hypothetically, that such an attacker is also able to learn [23n−i]Qi along with the
(i − 1)-st bit of the secret at each stage of the attack. Then, such an attacker will only need to run
the adaptive attack n times. This is because, at the n-th stage of the attack, the attacker would have
recovered the following information:

α (mod 2n), and [23n−i]Qi for 0 ≤ i ≤ n .

Using α (mod 2n), the attacker would be able to compute

EB → E3n−1 → E3n−2 → · · · → E2n+1.

Then, the parent curve of the points [23n−i]Qi for 0 ≤ i ≤ n, would give us the curves (and the isogenies
between them)

En → En−1 → En−2 → · · · → EBA.

Finally, using the point [22n]Qn, we are able to obtain the path

E2n → E2n−1 → E2n−2 → · · · → En.

Indeed, this is because we have taken the convention that the kernel of φ : EB → EBA is of the form
P + [α]Q for some secret α, therefore Q /∈ kerφ.

One can see that this exposition clearly applies to the extended adaptive attack described in the
earlier parts of this section. Hence, an attack would be able to recover the entire secret with just a
partial recovery.
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Appendix A. Adaptive Attack with Points of Small Order

In this section, we show an attack that works, but can be foiled by a simple check on the order of the
points.

Again, we will suppose that Alice’s secret is (α(1), α(2)), and our strategy in this section is to recover
the secrets by sending points P and [2k]Q.

To recover the first bits, we do the following: First, we send points P, [2n−1]Q to the oracle and receive
a response. Notice that the oracle would compute the following values:

P + [α(1)][2n−1]Q =

{
P if α

(1)
0 = 0 ,

P + [2n−1]Q if α
(1)
0 = 1 ,

P + [α(2)][2n−1]Q =

{
P if α

(2)
0 = 0 ,

P + [2n−1]Q if α
(2)
0 = 1 .

Since we know E and P and Q, we are able to work out the two points

P, P + [2n−1]Q

and the elliptic curves E′ and E′′, which are the codomain for isogenies whose kernels are generated
by the two points. We are also able to compute the four hash values given by h(E′, E′), h(E′, E′′),
h(E′′, E′), h(E′′, E′′). By comparing the response from the oracle and the four values, we are able to
determine the first bits of α(1), α(2).

Now, suppose we would like to recover the (i − 1)-st bit of each secret (i.e. α
(1)
i , α

(2)
i ). We send the

points P and [2n−i−1]Q to the oracle and receive the response. The oracle would compute

P + [α(1)][2n−i−1]Q =

{
P + [K1]Q if α

(1)
i = 0 ,

P + [K1]Q+ [2n−1]Q if α
(1)
i = 1 ,

P + [α(2)][2n−i−1]Q =

{
P + [K2]Q if α

(2)
i = 0 ,

P + [K2]Q+ [2n−1]Q if α
(2)
i = 1 .

Since we have P , Q and K1,K2, we are able to compute all four points and obtain the elliptic curve
mapped by the isogeny whose kernel is generated by these points. We compare the four values with the

value obtained from the oracle and conclude the two bits α
(1)
i , α

(2)
i .

Appendix B. Forcing a Branch

In this section we will deal with the case when α(2) − α(1) is arbitrary, and in particular even.

Theorem B.1 (2-SIDH Key Recovery). Assuming there exists an oracle O(E1, R1, S1, h) as in §4.1 (3),
then there exists a polynomial-time algorithm that finds Alice’s secrets in the 2-SIDH protocol.

Sketch of proof. Suppose that we are in the situation given by Stage 1 of Theorem 5.4, and so the aim
is to recover the i-th bit of α(1) and α(2).

Stage 1: As in Stage 1 of Theorem 5.4, the attacker sets

P ′ = P − [K
(1)
i ][2n−i]Q and Q′ = [1 + 2n−i]Q.

Hence the attacker can determine the bits by querying the oracle with the information in Stage
1. In the case where α(2) − α(1) is even, we do not need to check the 2-neighbours of E′ since

the first isogeny no longer maps into E
(k)
i+1. However, the guesses that the attacker makes must

align with Equations (2) and (3).
Stage 2: The aim at this stage is the same as before: to find suitable images of points to use in

the recovery of the next bit. The complication with having an even parity in α(2) − α(1) is that
the ambiguities in the pull-back of Q∗∗ are killed by the even parity of the scalar. The solution
is to query the oracle with the following points

P ′ = P − [K
(a)
i+1 + x][2n−i]Q and Q′ = [1 + 2n−i]Q.

for some odd x, and noting that we are using information from the previous stage. This results
in the following intermediate computations:

A
(1)
i + [x][2n−i]Qi and A

(2)
i + [x+K

(2)
i+1 −K

(1)
i+1][2n−i−1]Qi.

We can then recover the candidates using the same procedure as before.
11



Boundedness: The boundedness argument from Theorem 5.4 carries over verbatim to this case.

�

Note that this is the slower case. This is due to the fact that the implementation has to test the two
branches simultaneously instead of testing each branch at a time. Refer to implementation for details.
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