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Abstract. In 2017 Kyung-Ah Shim et al proposed a multivariate signature scheme
called Himq-3 which is a submission to National Institute of Standards and
Technology (NIST) standardization process of post-quantum cryptosystems[10].
The Himq-3 signature scheme can be classified into oil vinegar signature scheme
family. It has a multilayer structure but it uses a cycle system to invert the cen-
tral map. The signing process of Himq-3 is very fast, and it has small signatures.
In this paper we present a cryptanalysis of Himq-3. We show that inherent to
the signing process is a leakage of information of the private key. Using this
information one can forge a signature.
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1 Introduction

1.1 Background

The ability to authenticate digital messages has always been an important building
block for any free, secure, and digital society. In 1976, Whitfield Diffie and Martin
Hellman did a major contribution to construct a mathematical framework, known as
digital signature scheme, in this direction. Realizing its practical importance, Rivest,
Shamir and Adleman proposed their idea called RSA in 1978 whose security relies on
the difficulty of the discrete logarithm problem.

The Digital Signature Algorithm (DSA), RSA Digital Signature Algorithm, and The
Elliptic Curve Digital Signature Algorithm were the only signature schemes that were
allowed under the guidelines of the National Institute of Standards and Technology
(NIST)’s up to 2013. However, a mayor drawback to these signature schemes is that
Peter Shor [11] proved that they were weak to a sufficiently powerful quantum com-
puter. So quantum computers seem to be a threat to the Cryptosystems because the
Shor’s algorithm was able to perform the prime factorization of an integer in poly-
nomial time on a quantum computer. Therefore, once these computers are able to
handle the factorization of the large integers of quantum bits, the RSA system will be
of no use. This indicates a significant need to prepare the current communication
system for a post quantum world. For it is no easy nor quick undergoing to transi-
tion our current infrastructure into a post quantum one, a consequential effort will
have to be done in order to develop, standardize, and establish new post quantum
signature schemes.

Since the work of Diffie and Hellman, mathematicians have found many other
groups of cryptosystems that do not rely on Number Theory based problems. Mul-
tivariate PublicKey Cryptosystems (MPKC) are one of the groups that have potential
to resist quantum attack. The security of a MPKC depends on the difficulty of solv-
ing a system of multivariate polynomials over a finite field. A breakthrough in MPKC
was proposed by Matsumoto and Imai [6] in 1988. Instead of looking for a invert-
ible map between kn , they looked at the bigger filed K , degree n extension of k,
where an inverse map can be constructed. Unfortunately, this scheme was broken
by Patarin [8] by using the linearization equation attack. However, inspired by his
attack, Patarin [9] proposed the oil vinegar signature scheme. The idea of oil vine-
gar signature scheme is that certain solvable quadratic equations can be generated if
random values are assigned to some variables. The oil vinegar can be classified into
three groups: Balanced oil vinegar [9] (Patarin 1997), Unbalanced oil vinegar[4] (Kip-
nis et al. 1999) and rainbow [2], a multilayer signature scheme with unbalanced oil
vinegar at each layer (Ding and Schmidt 2005). Despite the fact that the balanced oil
vinegar scheme was broken by Kipnis and Shamir [5] using the method of invariant
subspace, both Rainbow and Unbalanced Oil and Vinegar scheme continue to offer
promise for post quantum cryptography as can be seen by the fact that both Rain-
bow and LUOV (lifted unbalanced oil vinegar) [1] have passed into the second round
for the new NIST standardization project. Himq-3 can be viewed as another develop-
ment of oil vinegar scheme, as it is a multilayer signature scheme where the solution
of each layer becomes the vinegar variables for the next layer.
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1.2 Post Quantum Cryptography Standardization[7]

Due to the rapid development of quantum computers, NIST believes that it is pru-
dent to begin developing standards for post quantum cryptography. Moreover, it is
reasonable to plan ahead because a transition to post quantum cryptography will not
be simple. A significant effort will be required in order to develop, standardize, and
deploy new post quantum cryptosystems. The call for proposals started in Dec 2016.
NIST expects to perform multiple rounds of evaluation, over a period of three to five
years. The goal of this process is to select a number of acceptable candidate cryp-
tosystems for standardization. These new standards will be used as quantum resis-
tant counterparts to existing standards. The evaluation will be based on the following
three criteria: Security, Cost, and Algorithm and Implementation Characteristics. By
the end of 2017, 23 signature schemes and 59 encryption/KEM schemes were sub-
mitted, of which 69 participated in the first round, Himq-3 is a round 1 submission
on the list.

1.3 Our Contributions

We will present an attack to HIMQ-3 by using a new method called the singularity
attack. The method comes from a special property of a particular type of variables
that play an important role in inverting the central map, and such property can not
be hidden even under change of basis. We will show that this flaw will make it pos-
sible for us to obtain a part of a private key, then we can turn the public key into the
form in which forgery can be done.
First, we will recall general construction of a MPKC signature scheme, then we will
describe a system called L-cycle, which makes it possible for the central map of
Himq-3 to be invertible. Next, we will introduce Himq-3 signature scheme. More-
over, we will point out the Achilles’ heel in the design and explain why it will reveal
information about the private key. Before we introduce our attack, we will estimate
how many signatures are needed to perform the attack. The attack will be described
into two parts. First, we will show that given enough signatures, part of private key
can be obtained due to that flaw in the design. Next, using that part of a private key,
we show that one can separate the variables and layers easily using the knowledge
of matrix theory. A complexity analysis will be provided in section 3.13 to show that
Himq-3 does not meet the NIST requirement. Last but not least, we will give some
experimental results.

2 HIMQ-3 signature scheme

2.1 Preliminary

General Construction of Bipolar MPKC signature scheme We first describe the
general construction of a Bipolar MPKC signature scheme. Let Fq be a finite field
of order q . The main idea for the construction of MPKC signature schemes is to
construct a polynomial map F : Fn

q → Fm
q , called the central map, defined by F =

(F (1), · · · ,F (m)) of m equations in n variables such that it is easy to find pre-images
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for a given vector. To hide the ability to find pre-images and thus construct a pub-
lic key from F , one uses two invertible affine maps S : Fm

q → Fm
q , and T : Fn

q → Fn
q .

The public key is the composition P =S ◦F ◦T . The private keys are the invertible
affine maps S and T . The signing process for a document is as follows:

Fm
q

S −1

−−−→ Fm
q

F−1

−−−→ Fn
q

T −1

−−−→ Fn
q

The verification process is just backwards

Fm
q

P←− Fn
q

L-invertible cycle system [3] The Himq-3 scheme contains a system of quadratic
equations called L-invertible cycle system. This system makes it possible to invert
the central map.
Suppose Fq is a field of characteristic 2 and l is an odd positive integer. The cycle
products system Q is defined by:

Q :α1x1x2 =β1,α2x2x3 =β2, · · · ,αl xl x1 =βl

where αi and βi are nonzero elements in Fq .
To find a solution to Q, first write the cycle products in the form

x1x2 = γ1, · · · , xl x1 = γl ,

where γi = βi /αi . Let A = γ1γ2 · · ·γl and B = γ2γ4 · · ·γl−1. It is easy to see that x1 =p
A/B , xi = γi−1/xi−1 for i = 2, · · · , l −1, and xl = γl /x1.

Note: None of the variables xi can be equal to zero in the L-invertible cycle sys-
tem, otherwise, the system does not have a solution. Furthermore, in the signing pro-
cess, this property can not be hidden under change of basis. Thus, this is a weakness
that Himq-3 scheme cannot get rid off; an attacker can use this to forge a signature.

2.2 Description of the HIMQ-3 scheme[10]

The Himq-3 scheme can be described as a combination of rainbow scheme[2], un-
balanced oil vinegar scheme [4], and L-invertible cycle system[3]. First of all, it shares
the layer structure with the rainbow scheme, and the signing process of both schemes
is very fast. Second, each layer contains vinegar variables and oil variables, which are
mixed by the change of basis matrix. The difference is that Himq-3 contains three
types of oil variables that are contained in different layers. Third, Himq-3 uses the L-
invertible cycle system to make its central map invertible. We will now describe the
particulars of the HIMQ-3 central map.

Let us denote Fq to be the finite field of order q = 2k . Let v,o1,o2,o3 be positive
integers where o1 and o2 are odd. Further, let v1 = v +o1, v2 = v +o1 +o2, m = o1 +
o2 +o3 and n = v +o1 +o2 +o3. Let X = (x1, · · · , xn). Let F = (F (1), · · · ,F (m)) be the
central map defined by three layers:
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F (1)(X) =Φ1(X)+δ1xv+1xv+2

F (2)(X) =Φ2(X)+δ2xv+2xv+3

...

F (o1)(X) =Φo1 (X)+δo1 xv+o1 xv+1

F (o1+1)(X) =Ψ1(X)+δo1+1xv1+1xv1+2

F (o1+2)(X) =Ψ2(X)+δo1+2xv1+2xv1+3

...

F (o1+o2)(X) =Ψo2 (X)+δo1+o2 xv1+o2 xv1+1
F (o1+o2+1)(X) = ∑

v+1≤i≤ j≤v1

β(1)
i , j xi x j +Θ1(X)+Θ′

1(X)+ε1xo1+o2+1

...

F (o1+o2+o3)(X) = ∑
v+1≤i≤ j≤v1

β
(o3)
i , j xi x j +Θo3 (X)+Θ′

o3
(X)+εo3 xo1+o2+o3

For i = 1, · · · ,o1, we call F (i ) to be the polynomials of the first layer. The term
Φi (X) is a quadratic polynomial in the variables (x1, · · · , xv ) defined by

Φi (X) =
v∑

j=1
αi , j x j x1+(i+ j−1)(mod v)

where αi , j is a nonzero element in Fq .
The polynomials F (i ) for i = o1+1, · · · ,o1+o2 form the second layer. The termΨi (X)
is a quadratic polynomial in the variables (x1, · · · , xv+o1 ) defined by

Ψi (X) =
v∑

j=1
α′

i , j x j xv+(i+ j−1)(mod o1)

where α′
i , j is a nonzero element in Fq .

This leaves the third layer. The β(k)
i , j are elements in the finite field Fq . Θi and Θ′

i in

the third layer are quadratic equations in variables (x1, · · · , xn) defined by

Θi (X) =
v1∑

j=1
γi , j x j xv1+(i+ j−1)(mod o2), Θ

′
i (X) =

v2∑
j=1

γ′i , j x j xv2+(i+ j−1)(mod o3)

where γi , j and γ′i , j are nonzero elements in Fq . We notice also that there are linear

terms in the third layer defined by some εi in Fq , and that the variables xv2 , · · · , xn are
never multiplied together like oil variables in a oil vinegar scheme.
The design rational of the individualΦi ,Ψi ,Θi ,Θ′

i is the increase the rank of the asso-
ciated symmetric matrices of the polynomial they are in to the maximum amount of
rank for the variables they involve, and they do this using the least amount of terms.
As the field has characteristic 2, the Φi , being quadratics of the first v variables, will
have associated matrices of rank v . TheΨi will have rank 2o1. Combining the terms
of the βi ,Θi ,Θ′

i will lead to a matrix of full rank.
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We notice also that there are linear terms in the third layer defined by some εi in
Fq , and that the variables xv2 , · · · , xn are never multiplied together like oil variables in
a oil-vinegar scheme. The symmetric matrices of each layers can be roughly viewed
as:

2.3 Inverting the central map

Given a M = (M1, · · · , Mm) in Fm
q , to compute F−1(M) = s.

1 Randomly generate sv ∈ Fv
q , and plug sv into the first layer obtaining the cycle

product 
δ1xv+1xv+2 = M1 −Φ1(sv)
...

δo1 xv+o1 xv+1 = Mo1 −Φo1 (sv)

2 If Mi −Φi (sv) 6= 0 for all i , then solve by the process described before. Name this
sv1 ∈ Fv1

q . Otherwise, return to step 1.
3 Plug sv1 into the second layer creating another cycle product

δo1+1xv1+1xv1+2 = Mo1+1 −Ψ1(sv1 )
...

δo1+o2 xv1+o2 xv1+1 = Mo1+o2 −Ψo1 (sv1 )

If Mo1+i −Ψi (sv) 6= 0 for all i , call the solution sv2 ∈ Fv2
q . Else, return to step 1.

4 Plug sv2 into the third layer. It will thus have only linear terms. Use Gaussian
Elimination to see if there is a solution. If so, then the solution is s. Otherwise,
return to step 1.

3 The Singularity Attack

3.1 General idea of our attack

The key observation is that the cycle variables cannot be equal to zero when evalu-
ated at a honestly generated signature. In addition, this fact does not change under
the change of basis T . Since the scheme is constructed over a finite field of 2k el-
ements, it is a basic knowledge that if we raise any nonzero element a in the field
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to the power of 2k −1, then a2k−1 = 1. For this reason, if we evaluate the cycle vari-
ables at the signatures under the change of basis,and then raise the power, we will
obtain some equations. Thus, if we have access to enough signatures, we will obtain
enough equations. Once we solve these equations, we will get part of the private key
up to scalar multiplication. This process consumes the most memory in our attack.
The next step is to use this known part of secrete key to separate the layers and vari-
ables. This is not hard to accomplish, only elementary linear algebra is needed. In
other words, we will perform linear transformations on the public key to turn it in
the form that we can forge signatures. Hence, one can see that our attack is theoret-
ically straightforward. There are several variants of HIMQ-3 as presented by Kyung-
Ah Shim et al. For simplicity’s sake we will present the basis variant, but our attack
will work against Himq-F as well.

3.2 Notations and definitions

We call elements in {x1, · · · , xv } the v variables, in {xv+1, · · · , xv+o1 } the o1 variables, in
{xv1+1, · · · , xv1+o2 } the o2 variables, and in {xv2+1, · · · , xn} the o3 variables. Therefore,
the cycle variables are o1 and o2 variables. We use the notation V to denote the set
of v variables. Likewise, O1,O2 and O3 for o1,o2 and o3 variables respectively. In the
attack, we can not always get the original variables, but we can only get the space
spanned by these variables. For ease of notation, V , O1, O2, and O3 will also mean the
set of basis for the vector space spanned by v , o1, o2, and o3 variables respectively.
Let us define fi to be the first layer polynomial, gi to be the second layer polynomial,
hi to be the third layer polynomial. Furthermore, f ′

i is a first layer polynomial after
change of basis. g ′

i is a second layer polynomial after change of basis, h′
i is a third

layer polynomial after change of basis.

3.3 Finding parts of T

Suppose that a private key (F ,T ,S ) has been generated with its corresponding
public key P =S ◦F ◦T . We may describe the affine map T by an invertible matrix
(ai j )1≤i , j≤n and a vector b = (b1, · · · ,bn) so that for any (x1, · · · , xn) ∈ Fn

q we have that

T ((x1, · · · , xn)) =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann




x1

x2
...

xn

+


b1

b2
...

bn

=


∑n

i=1 a1i xi +b1∑n
i=1 a2i xi +b2

...∑n
i=1 ani xi +bn


The first goal of the attack is to find how this map T changes the variables used

in the cycle products up to a multiplication by a non-zero constant. That is, for v+1 ≤
j ≤ v+o1+o2, we want to find γ j

(∑n
i=1 a j i xi +b j

)
for some γ j ∈ F∗q . This can be done

as if we denote a signature σ= (σ1, · · · ,σn), then for v +1 ≤ j ≤ v +o1 +o2

n∑
i=1

a j iσi +b j 6= 0
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because a cycle variable cannot be zero when evaluated at a signature by the signing
process described above. As Fq is a field, multiplying by a non-zero constant still
yields another non-zero constant. This allows us to say that for any γ ∈ F∗q that for
any signature σ

1 =
(

n∑
i=1

γ j a j iσi +γ j b j

)2k−1

=
k∏

h=1

(
n∑

i=1
γ j a j iσi +γ j b j

)2k−h

As we are working in characteristic two we have that

k∏
h=1

(
n∑

i=1
γ j a j iσi +γ j b j

)2k−h

=
k∏

h=1

(
n∑

i=1
(γ j a j iσi )2k−h + (γ j b j )2k−h

)
.

First we will solve the case when b j 6= 0. We can thus set γ j = b−1
j to obtain

k∏
h=1

(
n∑

i=1
(b−1

j a j iσi )2k−h +1

)
= 1.

For the sake of notation, let ã j i = b−1
j ai j . Thus, we see by performing the above prod-

uct that
ã2k−1

j 1 σ2k−1
1 + ã2k−2

j 1 ã j 2σ
2k−2
1 σ2 +·· ·+ ã j nσn +1 = 1.

We can treat the individual products of the ãi j ’s as individual variables to get a lin-
ear equation with (n+1)k terms. We get another linear equation if we use a different
signature. Hence, by collecting around (n + 1)k signatures we can form a matrix A
which is near full rank. After doing Gaussian Elimination on A, we can then try to
solve for the ã j i ’s. The last k columns of A will be in the variables ãk

j n , ãk−1
j n , · · · , ã j n .

Hence, converting this back into a polynomial means we have a univariate polyno-
mial equation which we can thus solve. This allows getting our possibilities for ã j n

(as the above equation will be true for any of the ã j i ’s 1 ≤ j ≤ n, we will return all of
these values). We then move up the matrix to the first time that ã j ,n−1 appear only
with powers of itself and ã j n . As we already know what ã j n can be, this is also a uni-
variate polynomial equation. For each of our possible solutions to ã j n , we plug in
and get the possible solutions to ã j ,n−1. Continuing this process we collect all the ã j i

for which b j 6= 0. The process is essentially the same for when b j = 0 except that we
then guess the last available ã j i to be non-zero hence enabling us to set γ j = ã−1

j i for

that particular ã j i . Repeat until all of the ã j i are found, which generally is after the
first few guesses. We provide a toy example in the appendix.

Note that the collection of ˜a j i that we found can recover the cycle variables. Thus,
we obtain O1 ∪O2.

3.4 Separating second layer in the public key

Let us recall how the polynomials of the central map are defined for the three differ-
ent layers. A first layer polynomial fi is defined by

fi =Φi (X)+δi xv+i xv+i+1
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where Φi has only the first v variables times one of themselves. A second layer poly-
nomial gi is defined by

gi =Ψi (X)+δi xv1+i xv1+i+1

where Ψi has terms with a cycle variable as a factor. A third layer polynomial hi is
more complicated but must contain terms of one of the first v variables being multi-
plied by one of the last o3 variables. Thus, if we set the cycle product variables to be
zero, the second layer polynomials will vanish but not those from the first and third.
This can be accomplished by forming the quotient ring Fq [X ]/ <O1 ∪O2 >.

The public key can be denoted by

S ◦F ◦T = P =


∑o1

i=1α1,i fi
′+∑o2

i=1β1,i gi
′+∑o3

i=1γ1,i hi
′

...∑o1
i=1αn,i fi

′+∑o2
i=1βn,i gi

′+∑o3
i=1γn,i hi

′

If we place the public key into the quotient ring Fq [X ]/ < O1 ∪O2 >, we see that
the second layer polynomials vanish, leaving the first and third layer polynomials
alive. The public key will be in the form:


∑o1

i=1α1,i f̃i +∑o3
i=1γ1,i h̃i

...∑o1
i=1αn,i f̃i +∑o3

i=1γn,i h̃i

where f̃i , g̃i , h̃i represent f ′
i , g ′

i ,h′
i in the quotient ring. If we take the coefficients of

each term in these m polynomials and build a matrix of these coefficients with an
order, then doing Gaussian Elimination would leave the bottom o2 equations as zero
and thus representing linear combinations of the second layer polynomials in this
quotient ring. Record the transformation that performs the Gaussian Elimination,
and apply it to the public key, we have the second layer separated from the other lay-
ers.

P1 =



∑o1
i=1α1,i fi

′+∑o2
i=1β1,i gi

′+∑o3
i=1γ1,i hi

′
...∑o1

i=1αn,i fi
′+∑o2

i=1βn,i gi
′+∑o3

i=1γn,i hi
′∑o2

i=1β1,i gi
′

...∑o2
i=1β1,i gi

′

Note that the last o2 polynomials are not the original second layer polynomials, they
are actually the linear combinations of the original second layer polynomials. But we
still call these linear combinations the "second layer".
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3.5 Separating a combination of the first and second layers from the rest

We will now use the null-spaces and image-spaces of the symmetric matrices to fur-
ther separate the layers. When we look at the symmetric matrices of each layer, it
can be easily seen that O3 is always contained in the common kernel of second layer.
Hence, O3 can be obtained by intersecting the null-spaces of the symmetric matri-
ces of second layer. On the other hand, V ∪O1∪O2 can be obtained by collecting the
images of the symmetric matrices of second layer. However, we may not always get it
completely. We will provide an estimation of the probability of getting the space with
experimental results in section 3.14.

As we know that in original central map, the o3 variables are only contained in
the third layer, we can see that part of the third layer in P1 by performing a change of
basis defined by a matrix

[
O3

V ∪O1 ∪O2

]
.

Using the change of basis, the symmetric matrices will be in the follow form:

So, we can see that by performing a change of basis which separates the last o3 vari-
ables from the rest we can see if a polynomial from P1 contains anything from the
third layer. Thus, we can perform Gaussian Elimination on part of the matrices that
will contain the last o3 variables. We may leave our bottom layer containing only sec-
ond layer polynomials, so we only need the symmetric matrices of the first o1 + o3

polynomials in P1. Taking the o3 part in the top right of each matrix as a vector,
and forming the matrix of these vectors, we may record the linear transformation T2

which makes this new matrix into Echelon Formation. As there are o1+o3 equations,
but only o3 linearly independent sums, the resulting o1 rows with all zeros represent
linear combinations without third layer part. Finally, we need a matrix that will not
only get rid off the third layer, but also leave the second layer alone. Such matrix can
be built by taking T2 as a sub-matrix with an o2 ×o2 identity matrix. Thus we can get
a combination of the first and second layers separated out.
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P2 =



∑o1
i=1α1,i fi

′+∑o2
i=1β1,i gi

′+∑o3
i=1γ1,i hi

′
...∑o1

i=1αn,i fi
′+∑o2

i=1βn,i gi
′+∑o3

i=1γn,i hi
′∑o1

i=1α1,i fi
′+∑o2

i=1β1,i gi
′

...∑o1
i=1α1,i fi

′+∑o2
i=1β1,i gi

′∑o2
i=1β1,i gi

′
...∑o2

i=1β1,i gi
′

3.6 Separating first layer from first+second layer

Our goal now is to remove the polynomials from the original second layer from our
new second layer made of linear combinations of first and second layer polynomials
and to get these polynomials to have a low rank so that they will almost be in the
form for forging signatures. First we will modify the third layer of P2 such that the
associated symmetric matrices are of lowest rank. We may do this by forming linear
combinations of the matrices, and if the ranks drop, replacing the old polynomial
with the new one. We may get these matrices to rank 2o1 +2. We now focus on the
polynomials in the second layer of P2. Due to how the S might have mixed the poly-
nomials together, it might be impossible to only add polynomials from the second
layer of P2 to themselves to reduce to rank fully. We might remove part of a original
first layer but then add again a second layer leaving the rank unchanged. To defeat
this we examine each second layer polynomial in turn, trying to lower rank alternat-
ing between linear combinations from the same second layer and the third. Even if
the rank is not immediately fully reduced, we move to the next polynomial and re-
peat the process. After several passes through all the polynomials, their rank will be
reduced to v + 1. We do note that even though these polynomials have matrices of
lowest rank, it does not mean that they are in the original forms as having one or two
pairs of cycle products leaves the rank the same.

P3 =



∑o1
i=1α1,i fi

′+∑o2
i=1β1,i gi

′+∑o3
i=1γ1,i hi

′
...∑o1

i=1αn,i fi
′+∑o2

i=1βn,i gi
′+∑o3

i=1γn,i hi
′∑o1

i=1α1,i fi
′

...∑o1
i=1α1,i fi

′∑o2
i=1β1,i gi

′
...∑o2

i=1β1,i gi
′
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3.7 Switch the order

We may simply switch the order, and the matrix that does this job can be easily found.

P4 =



∑o1
i=1α1,i fi

′
...∑o1

i=1α1,i fi
′∑o2

i=1β1,i gi
′

...∑o2
i=1β1,i gi

′∑o1
i=1α1,i fi

′+∑o2
i=1β1,i gi

′+∑o3
i=1γ1,i hi

′
...∑o1

i=1αn,i fi
′+∑o2

i=1βn,i gi
′+∑o3

i=1γn,i hi
′

3.8 Finding V , O1, O2, O3 individually

We will now try to undo the effect of T . Before we invert the change of variables,
we have to find the space V ,O1,O2,O3 individually. These spaces are mixed by the
private key, hence it is difficult to find these individual spaces directly. However, the
known part of T already tells us the O1 ∪O2 space. So, our goal now becomes sepa-
rating these variables.

3.9 Separate o1 variables from o2 variables

Note that in the second layer of central map, o1 variables are multiplied by v vari-
ables, and o2 variables are multiplied by o2 variables. Using this observation, one
can distinguish o1 and o2 variables from the set O1∪O2 obtained in 3.3. Firstly, in the
second layer (obtained in 3.4) one can set all elements in O1∪O2 equal to zero except
one. If the element is an o1 variable, then the v ×o1 block (in a symmetric matrix in
section 2) will be alive. On the other hand, if the element is an o2 variable, then the
v ×o1 block will be killed. Hence, by following this procedure for all the elements of
O1 ∪O2, we can tell which one belongs to O1 and which one belongs to O2. In other
words, we can separate O1 and O2 from O1 ∪O2.

Finding V ∪O1 This can be found by combining the image space of the matrices
from the first layer of P4 as they only contain variables from V ∪O1.

Separate V from V ∪O1 Note that V ∪O1 is contained in the image space of each
matrix of the first layer. We find V by intersecting V ∪O1 with the image spaces of the
matrices until the dimension of the space is v .
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3.10 Invert the change of basis

We now have all the information required to create a change of basis E which will
undo T ’s effect of hiding the cycle structure in the public key. The exact shape of
both the first v variables and the last o3 variables do not matter as they do not appear
in a cycle product. Their values are found by either guessing or Gaussian Elimination.
As long as these variables are mapped to a linear combination of themselves we will
have no problem inverting the central map as done in the original scheme. Hence,
having just V and O3 is enough. However, the variables for the cycle products must
each be mapped to another cycle product variable. That is, we must know exactly
how T changed these variables, and also its affine part cannot be ignored. Fortu-
nately, we have already found this upto a scalar multiple when we found O1 ∪O2.
The change of basis we require can be constructed as follows: Let

E =


V
O1

o2

O3


and the affine part in the order we choose as ci for i = 1, · · · ,o2, and finally let

xT = [
x1, · · · , xv , xv+1 + c1 · · · , xv+o1+o2 + co2 , xv+o1+o2+1, · · · , xv+o1+o2+o3

]
The inverse of change of basis can be done by computing P5 = E−1P4, and P5 is ob-
tained.

3.11 Modify first and second layer into proper form

After change of basis, we can see that the matrices of the first and second layer are
nearly in the form of what we want. However we have to clean the cycle variable part
so that each polynomial in the first and second layer contains only one cycle prod-
uct. This can easily be done by Gaussian Elimination. For ease of coding, it is helpful
to get the cycle products exactly as they were originally. Examining which are mul-
tiplied together and in what order allows easy reindexing. The order of polynomials
may also be off, but it is not difficult to re-order these polynomials by applying a per-
mutation on them so that the cycle product xv+i xv+i+1 is only contained in the i-th
polynomial. We denote the modified public key as P6.

3.12 Forgery

Now we are ready to forge the signature. Let us denote the document m := (M1, · · · , Mm).
The forgery process is almost the same process as signing. We randomly assign val-
ues to v variables in P6, then we will get a cycle system in the first layer, which can be
solved by using exact the same method in the signing process. Next, we plug in the
values of v and o1 to the second layer, and solve the cycle products. Finally plug in
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values of v , o1, o2 in the third layer and solve the linear system. Therefore, we have a
solution

s1 = (s̄1, · · · , s̄v , s̄v+1, · · · , s̄v+o1 , s̄v+o1+1, · · · , s̄v+o1+o2 , s̄v+o1+o2+1, · · · , s̄v+o1+o2+o3 )

Now we apply the inverse of the permutation in section 3.10 to the solution s1. By
doing this, we turn back the order of s1 so that it matches the change of basis ma-
trix. Moreover, we have to add the constants (c1, · · · ,co2 ) of T to the cycle variable
part. Let us call the modified solution s′. Applying the change of basis matrix E, we
obtained the forged signature s = Es′. One can use s to forge signature for the docu-
ment m.

3.13 Complexity

In our attack, the complexity to solve a linear system of dimension (n+1)k in finding
part of T is ((n +1)k )ω, where ω is a constant between 2 and 3. For v = 31, o1 = o2 =
o3 = 15, and k = 8, we approximate the complexity to be from 2100 to 2150. The table
shows the complexity of Himq-3 with the same parameters against other attacks.

Direct KRA Kipnis-Shamir MinRank HighRank
2135 2132 2408 2195 2136

3.14 Experimental Result

In section 3.5, we may not always get the space V ∪O1 ∪O2. We give an analysis of
the probability of this case occurs.
We know that there are o1 column vectors in the v×o1 part of each symmetric matrix
in second layer. So we have o1o2 such vectors. Assume that these o1o2 vectors do not
span the entire V space. So we can take v −1 vectors and look at the span of these
v −1 vectors. Therefore, the probability of the next vector being in the span of these
v −1 vector is 1/q . There are o1o2 − v −1 vectors to check, hence, the probability of
failing to fill the entire space is 1/qo1o2−v−1.
We ran our attack with Magma over two sets of parameters. The first set is:

v = 7,o1 = 3,o2 = 3,o3 = 2,n := 15,m := 8, q = 23,

where in 1000 attempts we can always get some part of T but 163 times we cannot
get the V ∪O1 ∪O2 space.

The second set is:

v = 31,o1 = 15,o2 = 15,o3 = 14,n = 75,m = 44, q = 28.

We cannot run these actual parameters on our computer, but we can analyze the
probability of getting the V ∪O1 ∪O2 space correctly. In 1000 attempts, we get the
space every time.
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A Appendix: Toy example

We provide a toy example to clarify the step 3.1. In this example, we choose k = 3,
thus our field is the Galois field of 23 elements. Let n = 2. We randomly choose a

linear map T represented by the matrix

[
w2 w2

w3 w

]
.

Suppose we obtain a set of signatures (x1, x2):

(w, w5), (w5, w), (w2,1), (w6, w5), (0, w2), (w5, w3), (1, w6), (0, w5),

(0, w2), (1,0), (w5, w6), (0, w), (w5, w3), (1, w), (w5,0), (w6,1), (w6, w3),

(w, w4), (w2, w5), (w3, w), (1, w6), (w,1), (w2, w), (w2, w), (w4, w), (w4,1), (w4, w2).

We first construct a generic polynomial g = a1x1+a2x2. We assume that this polyno-

mial is never equal to zero. Hence, in this Galois field, g 23−1 = (a1x1 +a2x2)23−1 = 1.
By elementary field theory, we can rewrite this equation as

(a1x1 +a2x2)23−1 = (a1x1 +a2x2)23−1
(a1x1 +a2x2)23−2

(a1x1 +a2x2)23−3 = 1

Since this is a field of characteristic 2, the equations turns out to be

((a1x1)23−1 + (a2x2)23−1
)((a1x1)23−2 + (a2x2)23−2

)((a1x1)23−3 + (a2x2)23−3
) = 1

Multiply the product out, we have

a7
1 x7

1+a6
1 a2x6

1 x2+a5
1 a2

2 x5
1 x2

2+a4
1 a3

2 x4
1 x3

2+a3
1 a4

2 x3
1 x4

2+a2
1 a5

2 x2
1 x5

2+a1a6
2 x1x6

2+a7
2 x7

2+1 = 0

We view the products of ai as variables, and xi as coefficients. In other words, we
have the coefficients in the order:

x7
1 , x6

1 x2, x5
1 x2

2 , x4
1 x3

2 , x3
1 x4

2 , x2
1 x5

2 , x1x6
2 , x7

2 ,1

and monomials in the order:

a7
1, a6

1 a2, a5
1 a2

2, a4
1 a3

2, a3
1 a4

2, a2
1 a5

2, a1a6
2, a7

2,1
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If we evaluate these coefficients at the signatures, we get (n +1)k vectors which will
be the rows of the following matrix:



1 w4 w w5 w2 w6 w3 1 1
1 w3 w6 w2 w5 w w4 1 1
1 w5 w3 w w6 w4 w2 1 1
1 w6 w5 w4 w3 w2 w 1 1
0 0 0 0 0 0 0 1 1
1 w5 w3 w w6 w4 w2 1 1
1 w6 w5 w4 w3 w2 w 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 1
1 w w2 w3 w4 w5 w6 1 1
0 0 0 0 0 0 0 1 1
1 w5 w3 w w6 w4 w2 1 1
1 w w2 w3 w4 w5 w6 1 1
1 0 0 0 0 0 0 0 1
1 w w2 w3 w4 w5 w6 1 1
1 w4 w w 5 w2 w6 w3 1 1
1 w3 w6 w2 w5 w w4 1 1
1 w3 w6 w2 w5 w w4 1 1
1 w5 w3 w w6 w4 w2 1 1
1 w6 w5 w4 w3 w2 w 1 1
1 w6 w5 w4 w3 w2 w 1 1
1 w6 w5 w4 w3 w2 w 1 1
1 w6 w5 w4 w3 w2 w 1 1
1 w4 w w 5 w2 w6 w3 1 1
1 w3 w6 w2 w5 w w4 1 1
1 w5 w3 w w6 w4 w2 1 1



We apply echelon form on this matrix and then remove the zero rows. The new matrix
is:



1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 w5 0 w4

0 0 1 0 0 0 w2 0 w6

0 0 0 1 0 0 w4 0 w5

0 0 0 0 1 0 w3 0 w
0 0 0 0 0 1 w6 0 w2

0 0 0 0 0 0 0 1 1


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Our next goal is to turn this matrix back to polynomials. Recall the order of the mono-
mials, we get 7 multivariate polynomials:

a7
1 +1

a6
1 a2 +w5a1a6

2 +w4

a5
1 a2

2 +w2a1a6
2 +w6

a4
1 a3

2 +w4a1a6
2 +w5

a3
1 a4

2 +w3a1a6
2 +w

a2
1 a5

2 +w6a1a6
2 +w2

a7
2 +1

The first and last polynomials do not help, they are trivial. Remember that we are
not looking for the original values for ai , we only need solutions for ai up to unit
multiple.Therefore, we can set a1 = 1, and if we pick the second polynomial, we then
get a univariate polynomial w5a6

2 +a2 +w4. The roots are a2 = 1 and a2 = w5.

Let us we check our solution with the linear map T =
[

w2 w2

w3 w

]
. It is clear that a1 = 1

and a2 = 1 is a unit multiple of a1 = w2 and a2 = w2. Now if we check the second row,
The original values are:

a1 = w3

a2 = w

If we multiply the inverse of w3 by w , we get w−2 which is exactly equal to w5 in the
Galois field of 23 elements.
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