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Abstract.       
   Non-commutative cryptography studies  cryptographic primitives and systems which are 

based on algebraic structures like groups, semigroups and noncommutative rings. We continue 

to investigate inverse protocols of Non-commutative cryptography defined in terms of sub-

semigroups of Affine Cremona Semigroups over finite fields or arithmetic rings Zm and homo-

morphic images of these semigroups  as possible instruments of Post Quantum Cryptography. 

This approach allows to construct cryptosystems which are not public keys, as outputs of the  

protocol  correspondents receive mutually inverse transformations on affine space Kn or variety 

(K*)n where K is a field or an arithmetic ring.  

      The security of such inverse protocol rests on the complexity of word problem to decom-

pose element of Affine Cremona Semigroup given in its standard form into composition of 

given generators. We discuss the idea of the usage of combinations of two cryptosystems with 

cipherspaces (K*)n and Kn to form a new cryptosystem with the plainspace (K*)n, ciphertext  Kn 

and nonbijective highly nonlinear encryption map.  

  Keywords: Multivariate Cryptography, Noncommutative Cryptography,  stable transfor-

mation groups and semigroups, semigroups of monomial transformations,  word problem for 

nonlinear multivariate maps , hidden tame homomorphisms, key exchange protocols, cryp-

tosystems, linguistic graphs. 

 

1. Introduction. 
 

Post-Quantum Cryptography (PQC) is an answer to a threat coming from a full-scale 

quantum computer able to execute Shor’s algorithm. With this algorithm implemented  

on a quantum computer, currently used public key schemes, such as RSA  and elliptic 

curve cryptosystems, are no longer secure. The U.S. NIST made a step toward miti-

gating the risk of quantum attacks by announcing the PQC standardisation process 

[1]. In March 2019 NIST published a list of candidates qualified to the second round 

of the PQC process. Nowadays hardware performance of Round 1 candidates was 

reported for only a small percentage of all submissions. Few  public key candidates  

are implemented like PQC Round 2 candidate called Round 5 (see [2]) or  code based 

classic Mc Eliece algorithm  (see [3]). 

     In this publication we continue to develop  new cryptosystems within  alternative 

approach ([4], [5],  [6])  to public key cryptography  based on the idea of  modified 

Diffie Hellman type protocol which output is a pair of mutually inverse multivariate 

transformations of affine  space  Kn defined over finite commutative ring K. Security 

of these algorithms rests on the complexity of word problem to decompose given 

multivariate map into generators of affine Cremona [7] semigroup. The first usage of  

the complexity of word problem for groups was considered in [8].  
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    In the algorithms of this paper the encryption rule is not given publicly. We intro-

duce new cryptosytems defined in terms of stable semigroups of transformations of 

affine   Kn  which consist of transformations of degree bounded by small constant.  

Main instruments are the following. Let K be a commutative ring,  K[x1, x2,…,xn] be a 

ring of polynomials in n variable. Semigroup of endomorphisms End(K[x1, 

x2,…,xn])=S(Kn) of K[x1, x2,…,xn] is known as Affine Cremona Semigroup , element f 

of S(Kn)  acts  naturally on affine space Kn  and can be given its standard form 

x1→f1(x1,x2,…,xn), x2→f2(x1,x2,…,xn), … xn→fn(x1,x2,…,xn),  where f1ϵK[x1, x2,…,xn]. 

          We assume that K is a finite commutative ring. Symbol C(Kn) stands for Affine 

Cremona Group of all invertible elements from S(Kn).  

          Density of the map f is the total number of monomial terms in all fi. We say that 

fϵC(Kn)  is computationally tame if  densities of f and f-1 are of sizes O(nd) and  O(nt) 

for some constants d and t.  Let us consider illustrative examples of the usage of these 

objects in Cryptography. 

   1.1. Commutative case, group based inverse Diffie-Hellman protocol.    
Alice generates  pair g and  g-1  from the subgroup G of C(Kn).  Correspondents work 

with cyclic group  <g> of large order.   Alice  computes h=gα where α is her positive  

key. She sends h to Bob together with g-1. Bob computes f=(gα)β with his key β and 

sends (g-1)β to Alice. She computes f-1   as (g-β)α. 

   So Alice and Bob can use free module Kn as plainspace, maps  f-1  and f-  as encryp-

tion tools. They can decrypt via application of their  f-1  and f . 

The implementation of this scheme is computationally heavy because for g and h in 

‘’general position degree’’ of g(h(x)) coincides with degree of h(g(x)) and equals 

deg(g)∙deg(h). The density of gx is growing fast when x  grows. 

We know two conditions   

(1)  stability condition,  group G such that for each g ϵ G  maximal degree 

deg(g) is d (the cases d=2 or d=3 are probably the most important). 

(2) minimality of density condition (transformation gϵG has to be toric, i.e. its 

standard form is written as xi→ti(x1,x2,…,xn), where ti  are monomial expres-

sions. We refer to g as Eulerian map if coefficients are  regular coefficients and 

the map g is bijective one  on the variety  (K*)n. Correspondents use this variety 

as the plainspace. Let  nEG(K) be Eulerian group of all such transformations. 

  PLATFORMS. We discover classes of subgroups of kind (1) or (2) and fast  

algorithm to generate pairs g and g-1. Look at cryptology e-print archive   papers 

[9] and [6] and further references. 

SECURITY rests on the complexity of DISCRETE LOGARITHM PROBLEM 

(D.L.P.) FOR GROUP G. The complexity heavily  depends on  G and the way  

group data is given (F*q  breakable by Quantum Computer, D.L.P. for various 

elliptic curves, in case of C(Kn) depends on the choice of the generator). 

1.2. Commutative case, inverse protocol in the case of semigroups. 

        Inverse Diffie Hellman protocol. Let S’< S(Kn) be a subsemigroup of affine 

Cremona semigroup and φ be a homomorphism from S’ onto G< S(Kn), n>m. 
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     Alice takes f and h from S’ such that φ(fh)=1. Let g=φ(f). She computes gα where 

α is positive integer and sends it to Bob together with h. 

    Bob computes  z=(gα)β where β-positive integer together with y=hβ. He sends y to 

Alice. 

     She compute φ(yα) which coincides with  z-1.  

    Then they can use plainspace Km and  z and z-1 as encryption and decryption func-

tion. 

ADVERSARY has to solve DISCRETE LOGARITHM PROBLEM FOR 

SEMIGROUP S’ (solve  hx =y). 

 Recall that subsemigroup  S’ and group G have  to be stable , i. e.  degree of ele-

ments bounded by  d (d=2, 3) or S’  is a subsemigroup  of toric maps on  Kn and G 

<mEG(K).   

PLATFORMS (pairs S’, G can be found in texts of cryptology e-print archive [32], 

[6] (see further references). In the case of finite fields platforms are defined in terms 

of algebraic graphs of large girth and incidence graphs of finite geometries. 

 1.3. Elements of Non-Commutative Cryptography with multivariate transfor-

mations.  

     Notice that security of Diffie-Hellman algorithm for groups depends not only on 

abstract group G but on the way of its generation in computer memory. For instance if 

G=Z*p is multiplicative group of large prime field then discrete logarithm problem 

(DLP) is difficult one and guarantees the security of the protocol, if the same abstract 

group is given as additive group of Zp-1 protocol is insecure because DLP will be giv-

en by linear equation.  

      If G is noncommutative group correspondents can use conjugations of elements 

involved in protocol, some algorithms of this kind were suggested in [10], [11], [12], 

[13], where group G is given with the usage of generators and relations. Security of 

such algorithms is connected with Conjugacy Search Problem (CSP) and Power Con-

jugacy Search Problem (PCSP), which combine CSP and Discrete Logarithm Problem 

and their generalisations. 

     This direction belongs to Non-commutative cryptography which is an active  

area of cryptology, where the.cryptographic primitives and systems are based on al-

gebraic structures like groups, semigroups and noncommutative rings (see  [14], [15], 

[16], [17], [18], [19], [20], [23], [24]. One of the earliest applications of a non-

commutative algebraic structure for cryptographic purposes was the usage of braid 

groups to develop cryptographic protocols. Later several other non-commutative 

structures like Thompson groups and Grigorchuk groups have been  identified as 

potential candidates for cryptographic post quantum applications. The standard way 

of presentations of groups and semigroups is the usage of generators and relations 

(Combinatorial Group Theory). Semigroup based cryptography consists of general 

cryptographical schemes defined in terms of wide classes of semigroups and their 

implementations for chosen semigroup families (so called platform semigroups). 

As we already mentioned we work with subsemigroups of affine Cremona semi-

group S(Kn) on generalisations and modifications of Diffie – Hellman protocols for 
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the case of several generators. Elements of the subsemigroup are presented in their 

standard form of multivariate cryptography. 

2. Some schemes of noncommitative cryptography with multivari-

ate platforms. 

  2.1. Under conditions of section 1. 1 in the case of stable subsemigroup S , 

S’<S<S(Kn)  and  stable group H, G<H<C(Km). Alice selects elements s1, s2, … , sr , 

r >1 of subsemigroups S’ and computes φ(si )-1  = ui. She takes invertible elements 

hϵS(Kn)  of kind  av, deg(a)=1, vϵ S  and fϵC(Kn),  f=bg, deg(b)=1, gϵH and forms 

pairs (ai=hsih-1, bi=f ui f-1) and sends them to Bob.  

   He forms word w=(ai(1))α(1)(ai(2))α(2)… (ai(t))α(t), t>r-1, i(j)ϵ{1,2,…,r}, α(j)>0, 

j=1,2,…,t and sends it to Alice. Bob changes alphabet via the substitution of bi in-

stead of ai and keeps the reverse word u=(bi(t))α(t)(bi(t-1))α(t-1)… (bi(t))α(t).    

 Alice computes  u-1 as fφ(h-1wh)f -1. 

So Alice and Bob when the protocol ends have mutually inverse encryp-

tion/decryption tools  u-1 and u  for the plainspace Km.  

Description of some implemetations of this algorithm can be found in [6].  

         2.2. Let us consider above algorithms in the case when semigroup S consists 

on toric elements and H<mEG(K) and S=S’. 

Alice forms h and h-1 from nEG(K) together with pair f,  f -1 from mEG(K) and proceed 

with the  modification of previous algorithm. 

Alice selects elements s1, s2, … , sr , r >1 of semigroups S and computes φ(si )-1  = ui. 

She takes invertible elements h and f to form pairs (ai=hsih-1, bi=f ui f-1) and sends 

them to Bob.  The rest of the algorithm is identical to case of procedure 2.1. 

 After the completion of inverse protocol Alice and Bob have bijective maps  u-1 and 

u  on the plainspace (K*)m. 

 Security  base: The adversary has to solve the word problem for the subsemigroup 

S’, i. e., find the decomposition of w from S’ into generators ai , i = 1, 2,..., t. The 

general algorithm to solve this problem  in polynomial time for the variable n is un-

known, as well as a procedure to get its solution in terms of quantum computations. 

The problem depends heavily on the choice of group. 

Remark. Of course in each case alternative ways of  computation of the value ϭ(w)  

of antiisomorphism  ϭ between semigroup  <a1, a2, …,,ar> and group <b1, b2, …,,br> 

given by the rule ϭ(ai)= bi have to be investigated. 

 

2.3. On platforms acting in tandem. 

2.3.1. Alice and Bob use algorithm 2.1 with output  u-1 and u  on Km as  leading pro-

cedure. Supporting procedure is algorithm of kind 2.2 with the same commutative 

ring K and parameter m.  Alice (or Bob)  deforms the input of 2.2  for her/his corre-

spondent  via the change of  ai ,bi for ai ,biv , i=1,2,…, r’ where v is  u-1  or u. Notice 

that the maps biv are well defined injective maps of (K*)m  into  Km, they have poly-

nomial density. 
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     Bob (or Alice) computes pairs (ai ,bi) because of his/her possession of v-1. After 

the completion of supporting procedure Alice and Bob get mutually inverse elements 

z-1 and z of mEG(K). They use (K*)m as plainspace and Km as cipherspace. 

   To encrypt Alice maps her message p to z-1(p)=m  and then she computes the ci-

phertext c= u-1 (m). 

   Bob decrypts via application of u to c and computation z(u(c)). 

     Similarly Bob encrypts p via consecutive computation of z(p)  and u(z(p)). 

Alice applies u-1 to ciphertext c and computes the plaintext as z-1 (u-1 (c)).  

Remark. Encryption and decryption functions of the above algorithm can be treated 

as polynomial maps  of Km to Km because elements of  mEG(K) act naturally on Km. 

Between encryption and decryption functions there is a density gap because decryp-

tion map is not a transformation of polynomial density. Such pairs can be used as 

non-bijective stream ciphers in a spirit of [25]. In the  tandem procedure interception 

of plaintexts with corresponding ciphertext attacks  are unfeasible without the com-

putation of ϭ(w). 

2.3.2 Alice and Bob can use algorithm 2.2 with output  u-1 and u  on (K*)m as  leading 

procedure. Supporting procedure is algorithm of kind  2.1 with the same commuta-

tive ring K and parameter  m. 

2.4.  Let us consider the simplifications of 2.3.1. and 2.3.2.  

      Instead of supporting inverse protocols Alice generate pair of elements z and z-1 

from mEG(K) (the case of 2.1)  or pair of computationally tame elements y and y-1 of 

C(Km) (case of 2.2).   

Correspondents execute procedure 2.1 (or 2.2) and Alice sends u-1(z) (or u-1(y)) to 

Bob. He  uses his map u to compute  z (or y).  

 Alice encrypts her message p from (K*)m via the computation u-1( z-1 (p))(the case 

2.1) or computation of z-1(u-1(p)) (the case 2. 2). 

Bob gets the ciphertext and decrypts it as z((u(c))) (case 2.1) or u(z(c))(case 2.2).  

      In his term Bob encrypts his plaintext as u(z(p)) case 2.1 or z(u(p)) case 2.2 and 

Alice decrypts via computation of  z-1(u-1(c)) (2.1) or u-1( z-1 (c))(case 2.2). 

Remark. In the case 2.2 Alice (or Bob) instead of mutually invertible y ,  y-1  can use  

elements w , w’ϵ S((K)m  of polynomial density such that their y-1  restrictions on 

(K*)m are injective maps to Km and composition ww’ acts on (K*)m as identical map.  

Algorithm of generation such pairs is introduced in [26] and [27].  

Algorithms of generation of pairs (z, z-1) from  mEG(K) are described in [6]. 

3. On groups and semigroups defined in terms of linguistic graphs. 

      3.1. On linguistic graphs over commutative rings and skating on them.  
The missing definitions of graph-theoretical concepts which appear in this paper 

can be found in [28]. All graphs we consider are simple graphs, i.e. undirected with-

out loops and multiple edges. Let V(G) and E(G) denote the set of vertices and the set 

of edges of G respectively.  
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 When it is convenient we shall identify G with the corresponding anti-reflexive 

binary relation on V(G), i.e. E(G) is a subset of V(G)◦V(G) and write v G u for the 

adjacent vertices u and v (or neighbours).  

We refer to |{ x ϵ V(G)| xGv }| as degree of the vertex v. 

   The incidence structure is the set V with partition sets P(points) and L (lines) and 

symmetric binary relation I such that the incidence of two elements implies that one 

of them is a point and another one is a line. We shall identify I with the simple graph 

of this incidence relation or bipartite graph. The pair  x,  y ,  x ϵ P, yϵ L such that  x I y  

is called a  flag of incidence structure I. 

    Let K be a finite commutative ring. We refer to an incidence structure with a point 

set P=Ps,m=Ks+m and a line set L=Lr,m=Kr+m as linguistic incidence structure Im  if 

point   x=(x1, x2,…, xs, xs+1, xs+2, …,  xs+m) is incident to line  y=[y1, y2, … , yr , 

,yr+1,yr+2 , …, yr+s ] if and only if the following relations hold 

a1xs+1-b1yr+1=f1 (x1,x2 ,… , xs, y1, y2, …  , yr) 

 a2xs+2-b2yr+2=f2 (x1,x2 ,… , xs, xs+1, y1, y2, …  , yr, yr+1) 

                                … 

amxs+m-bmyr+m=fm (x1,x2 ,… , xs, xs+1,…, xs+m, y1, y2, …  , yr, yr+1, …,  yr+m) 

where  aj, and bj, j=1,2,,,,m are not zero divisors, and fj are multivariate polynomials 

with coefficients from K [29]. Brackets and parenthesis allow us to distinguish points 

from lines. 

   The colour ρ(x)=ρ((x)) (ρ(y)=ρ([y])) of point  x  (line [y])  is defined as projection of 

an element (x) (respectively [y]) from a free module on its initial s (relatively r) coor-

dinates. As it follows from the definition of linguistic incidence structure for each 

vertex of incidence graph there exists unique neighbour of a chosen colour. 

We refer to ρ((x))=(x1, x2 ,… , xs) for  (x)=(x1, x2 ,… , xs+m) and ρ([y])=(y1, y2, …  , 

yr) for [y]=[y1, y2, …  , yr+m] as the colour of the point and the colour of the line re-

spectively. For each b ϵ Kr and p=(p1, p2 ,… , ps+m)  there is a unique neighbour of the 

point [l]=Nb(p) with the colour b. Similarly for each cϵKs and line l=[l1, l2 ,… , lr+m]  

there is a unique neighbour of the line (p)= Nc([l]) with the colour c. The triples of 

parameters s,r,m defines type of linguistic graph. 

We consider also linguistic incidence structures defined by infinite number of equa-

tions.  

Linguistic graphs are defined up to isomorphism. We refer to written above equations 

as canonical equations of linguistic graph.      

     In the case of linguistic graph defined over commutative ring  the walk consisting 

of its vertices v0, v1, v2, …,vk  is uniquely defined by initial vertex v0, and colours 

ρ(vi,), i=1, 2,..., k of other vertices from the path. We consider the equivalence rela-

tions on partition sets such that (p)≈(p’)([l] ≈ [l’])if pi+s=p’i+s  (li+r=l’i+r ) for 

iϵ{1,2,..m}. 

We define jump operator J(p, a), aϵKs on partitions set P (J(l,a), aϵKr on partion 

set L) by conditions J(p,a)≈(p) and ρ(J(p,a))=a ( J([l],a)≈[l] and ρ(J([l],a))=a). 

Already defined neighbour computation operator (or ground moving operator) 

N(v, a) acts on PUL by rules N(p, a)=[l] where (p)I[l],ρ([l])=a and N([l],a)=(p) 

where (p)I[l],ρ((p))=a. 
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Let us consider skating chain of the linguistic graph with starting point p which is a 

sequence(p, p0, l1, l2, p3, p4, …, lt-3, lt-2, pt-1,pt), t=4k, k≥0 such that p≈p0,l2i+1≈l2i+2, i≥0, 

p2i+1≈p2i+2 and p2iIl2i+1for i ≥0. 

Colours of elements from the skating chain and the starting point determine the se-

quence. Obviously sequence of alternating jump operators Ja and  ground moving 

operators form the skating chain from starting point (p). In fact term skating chain is 

selected because of the similarity of computation the sequence with competitions on  

skating boards, roller skates, figure skating (various jumps and skate surface moves). 

3.2. Semigroups of  infinite symbolic strings and linguistic compression 

maps.  
Let us consider semigroup S(Ks) and the totality Ss,r(K) of maps of kind G:(y1, 

y2,…, yr)→(f1(x1, x2,… ,xs),  f2(x1, x2,… , xs),…, fr(x1, x2,… , xs)). If HϵS(Ks) then G(H) 

for GϵSs,r(K)  is the map (y1, y2,…, yr)→(f1(H(x1),H(x2),…, H(xs)), f2(H(x1),H(x2),…, 

H(xs)),…,fr(H(x1),H(x2),…, H(xs))). 

When it is convenient we will identify elements of S(Ks) with tuples from K[x1, 

x2,…, xs]s and elements of Ss,r(K) with tuples of K[x1,x2,…,xs]r. 

        Let us consider a to totality sBSr(K) of sequences of  kind 

u=(H0, G1, G2, H3,H4,G5, G6,…, Ht-1, Ht), t=4i, where Hkϵ S(Ks), 

 Gj ϵSs,r(K).  We refer to sBSr(K)   as a totality of bigraded symbolic strings. 

  We define a product of u with u’=(H’0, G’1, G’2, H’3, H’4, G’5, G’6,…, H’l-1, Hl) 

as w=(H0, G1, G2, H3, H4, G5, G6,…, Ht-1, H’0(Ht), G’1(Ht), G’2(Ht),  H’3(Ht), H’4(Ht),  

G’5(Ht), G’6(Ht), …, H’l-1(Ht),  H’l(Ht)). 

It is easy to see that this operation transforms sBSr(K) into the semigroup with the 

unity element (H0), where E0 is an identity transformation from S(Ks).  

Elements of kind  (H0, G1, G2, H3, H4) are  generators of the semigroup. 

We refer to generator with H4=E0  as loop element. Let L= sLr(K) be the totality of 

loop elements. The semigroup generated by loop elements is isomorphic to free semi-

group F(L)=sFr(K) of words in the alphabet L. We refer to F(L) as semigroup of loop 

strings. 

It is easy to see that  sBSr(K) is isomorphic to semidirect product of F(L) and affine 

Cremona semigroup  S(Ks). 

    Let us consider the homomorphism of the group sBSr(K) into Cremona 

Semigroup S(Ks+m) defined in terms of linguistic graph I=Im(K). Notice that one can 

consider graph Im(K’) over the extension K’ of K with the usage of the same equa-

tions.Let us take K’=K[x1, x2,…, xm+s] where xi are formal variables and consider an 

infinite graph  I m(K[x1,x2,…,xn]), n=m+s 

with partition sets P’=K[x1,x2,…, xm+s]m+s and L’=K[x1, x2,…, xm+s]m+r. After that we 

take a bipartite string u=(H0, G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) formed by a totality 

of multivariate polynomials from the subring  K[x1, x2,…,xs] of K[x1, x2,…,xn] and the  

point (x)=(x1, x2,…, xn) formed by generic elements of K’. This data defines uniquely 

a skating chain 

(x),J((x),H0)=(1x),N((1x),G1)=[2x],J([2x],G2)=[3x],N([3x],H3)=(4x),J((4x),H4)=(5x),

…, J([t-2x],Gt-2)=[t-1x],N([t-1x],Ht-1)=(tx),J((tx),Ht)=(tx). 
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Let (tx)be the tuple (Ht, F2, F3,…,Fn) where Fi ϵK[x1, x2,…, xn]. We define IΨ(u) as 

the map (x1, x2,…, xn)→(Ht, F2, F3,…,Fn) and refer to it as chain transition of point 

variety. 

The statement written below follows from the definition of the map.    

Lemma 1. The map ψ=Iψ: sBSr(K)→S(Kn) is a homomorphism of semi-

groups. 
We refer to Iψ(sBSr(K))=ICT(K) as a chain transitions semigroup of linguistic 

graph I(K) and to map ψ as linguistic compression map. Notice that in the case of the 

finite commutative ring homomorphism ψ maps infinite semigroup into finite set of  

chain transitions. 

3.3. Some subsemigroups of symbolic strings and their homomorphic 

linguistic graphs over commutative rings and skating on them.  
We define subsemigroup sGSr(K) of symbolic ground strings as a totality of bipar-

tite strings u=(H0, G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) in sBSr(K) with 

H0=E0, G1=G2, H3=H4,G5=G6,…, Ht-1=Ht  and refer to Iψ(sGSr(K)=IGCT(K) as 

semigroup of ground chain transitions on linguistic graph I. 

    Let us assume that Ht is bijective map and its inverse is a polynomial map (in the 

case of infinite ring K).  Then we can consider a reverse bigraded string Rev(u)= (Ht-

1(Ht
-1), Gt-2(Ht

-1), Gt-3,(Ht
-1), Ht-4(Ht

-1),Ht-5
1(Ht), …,G2(Ht

-1),  G1(Ht
-1), H0(Ht

-1), Ht
-1) 

and refer to u as reversible string.  Let sBRr(K) stand for the semigroup of reversible 

strings. 

Lemma 2. The homomorphic image Iψ(sBRr(K))=BCTI(K) is a subgroup of 

affine Cremona group C(Kn). 
Really Iψ(u·Rev(u)), uϵsBRr(K) is an identity map. 

We refer to BCTI(K) as subgroup of bijective chain transitions of linguistic graph I. 

3.4. Special homomorphisms of linguistic graphs and  corresponding 

semigroups. 
Let I(K) be linguistic graph  over commutative ring K defined in section 3.1. and M 

= {m1, m2,…, md} be a subset of {1, 2, …, m} (set of indexes for equations). Assume 

that equations indexed by elements from M of the following kind 

am1xm1 -bm1ym1=fm1(x1, x2 ,  …, xs ,y1, y2, …  , yr) 

am2xm2 -bm2ym2 = fm2(x1, x2, … ,xs,xm1,y1, y2, …  , yr,, ym1) 

… 

amdxmd -bmdymd =fmd (x1, x2, … , xs,xm1,xm2,… , xm d-1, y1, y2, …  , yr,, ym1, ym2,,… , ym d-1,)   

define other linguistic incidence structure  IM. Then the natural projections 

δ1,: (x)→(x1, x2, … , xs,xm1, xm2,… , xmd) and δ2: [y]→[y1, y2, … , yr, ym1,ym2,… , ymd] of 

free modules define  the natural homomorphism δ of incidence structure I onto IM.. 

We will use the same symbol ρ for the colouring of linguistic graph IM.. 

It is clear, that δ is colour preserving homomorphism of incidence structures (bipartite 

graphs). We refer to δ as symplectic homomorphism and graph IM  as symplectic quo-

tient of linguistic graph I. In the case of linguistic graphs defined by infinite number 

of equations we may consider symplectic quotients defined by infinite subset M (see 

[30], where symplectic homomorphism was used for the cryptosystem construction). 

Lemma 3. A symplectic homomorphism  ἠ of linguistic graph I  of type (r, s, 

m) onto I’  defined over commutative ring K induces the semigroup homo-
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morphism ἠ* of ICT(K) into I’CT(K)  and the following diagram is commuta-

tive 
sBSr(K)→ICT(K) 

↓             ∕ 
I’CT(K)   

where horizontal and vertical arrows corresponds to linguistic compression 

homomorphisms Iψ and I’ψ and symbol  ∕ corresponds to η*. 
      If S is a stable subsemigroup of ICT(K) (or BCTI(K))  of degree d then ἠ*(S) is 

also a stable subsemigroup (or subgroup).The degree of ἠ*(S) is bounded above by 

d.We will search for subsemigroup X of  sBSr(K) and linguistic graphs I(K) such that 

Ψ(X) is a  stable subsemigroups of  ICT(K).   

         We consider more general concept of linguistic homomorphism ξ 

of linguistic  incidence systems P, L, I(K) over commutative ring K  and  induced by 

linear projections δ of P and δ’of L defined  via deleting of some coordinates of col-

our tuples ( x1, x1, …, xs) and [y1, y2, …, yr] together with simultaneous deleting of xi+r 

and yi+s for i from some subset of  {1, 2,…, m}.The image of ξ is a linguistic graph of 

type s1 ,r1, m1 where s1≤s, r1≤r, m1 ≤ m. 

Let A={j(1), j(2),…, j(s’)} and B={k(1), k(2),….,k(r’)} be subsets of {1,2,…s} and 

{1.2,…, r} respectively. Let us consider subsemigroup AS(Ks) in S(Ks) of maps sending 

xj, jϵA to fj(xj(1), xj(2),…, xj(s’)) and the totality BSs,r(K) in Ss,r(K) of maps sending yj, j ϵ B 

to  fj(yk(1), yk(2),…, yk(r’)). Totality ABSB(K) of strings (H0, G1, G2, H3, H4, G5, G6,…, Ht-1, 

Ht) with Hi from AS(Ks) and Gi from BSs,r(K) is a subsemigroup of sBSr(K). If (H0, G1, 

G2, H3, H4, G5, G6,…, Ht-1, Ht) is in  ABSB(K) then (H’0, G’1, G’2, H’3, H’4, G’5, G’6,…, 

H’t-1, H’t) where G’i and H’i are restrictions of Gi and Hi on tuples (xj(1), xj(2),…, xj(s’)) 

and  (yk(1), yk(2),…, yk(r’)) is in s’BSr’(K). Let symbol µ stand for this homomorphism. 

We refer to ABSB(K) as parabolic semigroup. The image IPT(K)  of ABSB(K)  under the 

linguistic compression homomorphism ψ  of  sBSr(K) onto  ICT(K) is a subsemigroup 

of ICT(K). 

Lemma 4. Let ψ and ψ’’ be the linguistic compression maps of sBSr(K) 

and s’BSr’(K) onto ICT(K) and I’CT(K) respectively, ψ’ stands for the re-

striction of ψ onto ABSB(K), arrow between ABSB(K) and sBSr(K) and between  
IPT(K) and  ICT(K) are natural embedding. IPT(K) and I’CT(K) are connected 

by projection homomorphism of point spaces of graphs I and I’.  Then the 

following diagram is commutative. 
s’BSr’(K)←    ABSB(K)  →      sBSr(K) 

  ↓ ψ’’               ↓  ψ’         ↓  ψ 
I’CT(K)   ←     IPT(K) →    ICT(K) 

4. On semigroups and groups related to Double Schubert graphs 

and  corresponding inverse protocols. 
    4.1. Construction of graphs, related semigroups and their homomorphisms.    
     We define Double Schubert Graph  DS(k,K) over commutative ring K as incidence 

structure defined as disjoint union of  partition sets PS=Kk(k+ 1)  consisting of points 

which are tuples of kind x =(x1 , x2, … , xk, x11 , x12, … , xkk ) and LS=Kk(k+1) consisting 

of lines which are tuples of kind y =[y1 ,y2, … ,yk, y11 ,y12, … ,ykk], where x is incident 
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to y, if and only if xij - yij=xi yj for i=1, 2,..., k and j=1, 2,..., k. It is convenient to as-

sume that the indices of kind i,j are placed for tuples  of Kk(k+1) in the lexicographical 

order. 

Remark. 

The term Double Schubert Graph is chosen, because points and lines of DS(k, Fq)  can 

be treated as subspaces of Fq
(2k+1) of dimensions k+1 and k, which form two largest 

Schubert cells. Recall that the largest Schubert cell is the largest orbit of group of 

unitriangular  matrices acting on the variety of subsets of given dimensions. We will 

consider these connection in details in the next section. 

    We define the colour of point x =(x1 , x2, … , xk, x11 , x12, … , xkk )  from  PS as 

tuple(x1 , x2, … , xk,) and the colour of a line y =[y1 ,y2, … ,yk,y11 ,y12, … ,ykk] as the 

tuple (y1 , y2, … ,yk). For each vertex v  of DS(k, K), there is the unique neighbour  

y=Na(v) of a given colour a=(a1,a2, … ,ak). It means the graphs  DS(k, K) form a fami-

ly of linguistic graphs.  

Let us consider the subsemigroup kY(d, K)  of  kBSk(K) consisting of strings u=(H0, 

G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) such that maximum of parameters 

deg(H0)+deg(G1), deg(G2)+deg(H3), deg(H4)+deg(G5), 

deg(G6)+deg(H7), deg(Gt-2)+deg(Ht-1),  deg(Ht)=1 

equals d, d>1. 

Theorem 1. Let I(K) be an incidence relation of Double Schubert graph DS(k, 

K). Then Iψ(kY(d, K))=kU(d,K) form a family of stable semigroups of degree d.  
         The proof is based on the fact that the chain transition u from kU(d, K) moves xi,j 

into expression xi,j+T(u), where T(u) is a linear combination of products fϵK[x1, x2,…, 

xk],  gϵK[y1, y2,…, yk] where deg( f)+deg(g)≤d. 

New semigroup kU(d, K) consists of transformations of the free module Kt, t=(k+1)k. 

If d=2 then kU(d, K) contain semigroups of quadratic transformation defined in [9], 

which consists of ground chain transitions.  

        Let J be subset of the Cartesian square of M={I,2,…,k}. We can identify its ele-

ment (i,j) with the index ij of  Double Schubert Graph DS(k,K). 

Proposition 1. Each subset J of M2 defines symplectic homomorphism δJ of DS(k, K) 

onto linguistic graph DSJ (k,K). 

     It is easy to see that in the case of empty set J the image of the map is a complete 

bipartite graph with the vertex set KkUKk. 

       Corollary 1. Let I(J, K)) be an incidence relation of linguistic graph    DSJ (k, 

K). Then I(J,K)ψ(kY(d, K))=kUJ
 (d,K) form a family of stable semigroups of degree d.  

    4.2. Implementation of inverse protocols and their extensions with 

double Schubert graphs and their symplectic homomorphisms.    

    Let us consider the implementation of algorithm 2.1 in the case of S=S’ and G=H. 

We consider the family of graphs DS(k, K) and form the family DSJ(k)(k, K). We as-

sume that j(k)=|J(k)| and   c’(k2)<j(k)<c(k2) for some  constants 0<c’<c<1.  We set 

S= kS= Iψ(kY(d, K))=kU(d,K) which is a subgroup of affine Cremona group C(Kn), 

n=k+k2 and G=kG= kUJ(d,K)<C(Km),  m=k+j(k)2. Alice selects elements   ui=( iH0,  
iG1, iG2, iH3, iH4, iG5, iG6,…, iHt-1, iHt(i)), i=1,2, … , r, r >1 of subsemigroup kY(d, K) 

and computes Rev(ui). 



11 

 

She takes hϵ kY(d, K) together with Rev(h). Alice forms elements  ui  and Rev(ui)=vi 

and computes φ(huiRev(h))=a’i for φ= Iψ.   

She takes f from kY(d, K) and forms strings fRev(ui)Rev(f).  Alice computes I(J,K)ψ(f 

Rev(ui)Rev(f))=b’i.  She takes invertible affine j=1,2,…,t transformations T and L of 

free modules Kn and Km of kind and forms pairs (ai=Ta’iT-1, bi=L bi L-1) and sends 

them to Bob.  

   He forms word w=(ai(1))α(1)(ai(2))α(2)… (ai(t))α(t), t>r-1, i(j)ϵ{1,2,…,r}, α(j)>0, and 

sends it to Alice. Bob changes alphabet via the substitution of bi instead of ai and 

keeps the reverse word u=(ai(t))α(t)(ai(t-1))α(t-1)… (ai(t))α(t).    

 Alice computes  u-1 as Lψ(f)fϭ( φ(h)-1(T-1wT) 1φ(h))ψ( f) -1).L-1 where ψ= I(J,K)ψ and ϭ 

homomorphism of kU(d,K) onto kUJ
 (d,K) induced by graph homomorphism δJ. So 

Alice and Bob when the protocol ends have mutually inverse encryption/decryption 

tools  u-1 and u  for the plainspace Km.  

 The algorithm is implemented in the cases of K=Zp, p=2t  and K=Fp, p=2t  t=7, 8,…, 

32 for d=2. 

REMARK. Let K be a commutative ring.  One can generalise described above al-

gorithm via selection of h ϵ kU(d,Q) and f from  kU(d,R) where  Q and R are exten-

sions of K. Affine transformations T and L have to be chosen among transformations 

of affine space  Qn and plainspace Rm respectively. 

 4. 3. Remarks on complexity. 

   We present complexity estimates in the case of the finite number of 

used words of length bounded by independent constant and d=2. We 

assume additionally that commutative rings K and R are finite 

extensions of the ring Q and strings consist of linear polynomials. So 

Alice can generate symbolic strings in time O(k) .She is able to 

compute their reverses for O(k3). Really if F=(F1, , F2, , … , Ft )  is a 

reversible  string then Ft, 
-1 can be computed for O(k3) for the 

computation of Rev(F). Alice needs t-1 matrix multiplications executed 

in time O(k2). 

It is easy to see that computation of skating homomorphism requires O(k4) elementary 

operations  (additions and multiplications) of commutative ring Q. Alice needs to 

compute images of symplectic projections for several elements. It costs her O(k4) 

elementary operations. Additionally she computes composition of linear map and 

quadratic map of density O(k2) from k2+2k variables. Alice can do this in time O(k6). 

Finally she has to compute a composition of quadratic and linear map in k2+2k varia-

bles. It takes her O(k8) operations. 

     It means that Alice can prepare all data to start algorithm in time O(k8). 

Let us estimate the complexity of computations for Bob. He needs to create two 

words of finite lengths in corresponding affine Cremona semigroup via several com-

positions of quadratic polynomials in n=k2+2k variables. It takes him O(n7) elemen-

tary ring operations. Computation of quadratic map in given point of Kn, n=k2+2k 

takes time O(k6). Thus the total complexity of computations for Bob is O(n7).  
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Let us estimate the complexity of decryption process for Alice. She needs computa-

tion of product of linear and quadratic maps, product of two quadratic maps of densi-

ties O(k2) and O(k4), product of two quadratic maps of densities O(k4) and O(k2). It 

requires O(k10) operations. 

4.4. On the example with the nonsymplectic homomorphism.  

     Let e1, e2 …, ek,e11, e12, , …,ekk be natural basis in which graph DS(k,K) is defined. 

We take an affine space W(J) spanned  by e1, e2 …, el and ep, d, where {p, d}ϵJ for cho-

sen subset J of Cartesian square of {1, 2,…, l} . We work with the linguistic  homo-

morphism ϕ = ϕl which is simply projection of point (p) an line [l] onto subspace 

W(J).    

 Below is the diagram of lemma 4 with s=r=k, A=B={1,2,…,l}, s’=r’=l, I=DS(k, K) 

and I’=DSJ(l,K) is the image of ϕ. 
s’BSr’(K)←    ABSB(K)  →      sBSr(K) 

  ↓ ψ’’               ↓  ψ’         ↓  ψ 
I’CT(K)   ←     IPT(K) →    ICT(K) 

     We define the following implementation of algorithm 2.1, We take the intersection  

klY(d, K)  of  kY(d, K) with ABSB(K).   Let α be the homomorphism of ABSB(K) onto 

s’BSr’(K) of the diagram. Alice takes strings  ui=(iH0, iG1, iG2, iH3, iH4, iG5, iG6,…, iHt-

1, iHt), i=1,2, m from klY(d, K)  such that first l coordinates of Ht  defines bijective map 

of W. She selects u from sBSr(K) and forms uuiRev(u). Alice selects v from s’BSr’(K) 

and computes vRev(α(ui))Rev(v). She computes a’i= ψ(uuiRev(u)) and b’i= 

ψ’’(vRev(α(ui))Rev(v)) and sends these 

pairs to Bob. Alice selects affine transformations a  and b of affine spaces Kn, n=k+k2 

and  Kl+ j(l) respectively. She computes ai =aa’ia-1 and bi =bb’ib-1  and sends them to 

Bob. Alice keeps for herself elements ψ(u), ψ(Rev(u)), ψ’’(v) and ψ’’(Rev(v)). The 

rest of the protocol is going accordingly to general scheme of algorithm 2.1. 

 

5. On Eulerian groups and semigroups and multiplicative linguistic 

graphs. 
5. 1. Eulerian groups and  and multiplicative linguistic graphs. 
Let K be a finite commutative ring with the multiplicative group K* of regular el-

ements of the ring. We take Cartesian power nE(K) =(K*)n  and consider an Eulerian 

semigroup nES(K) of transformations of kind x1 → ϻ1x1
a(1,1)x2

a(1,2) … xn
a(1,n) , x2 → 

ϻ2x1
a(2,1)x2

a(2,2) … xn
a(2,n),…, xn →ϻnx1

a(n,1)x2
a(n,2) … xn

a(n,n), where a(i,j) are elements of 

arithmetic ring Zd, d=|K*|, ϻiϵK*. 

Let nEG(K) stand for Eulerian group of invertible transformations from nES(K). It 

is easy to see that the group of monomial linear transformations Mn  is a subgroup of 
nEG(K).  So semigroup nES(K) is a highly noncommutative algebraic system.  Each 

element from nES(K) can be considered  as transformation of a free module Kn.  

        The problems of constructions of large subgroups G of  nEG(K), pairs (g, g-1), 

gϵG, and tame Eulerian homomorphisms ϻ:G→H, i. e. computable in polynomial 

time t(n) homomorphisms of subgroup G of  nEG(K) onto  H< mEG(K) are motivated 

by the tasks of Nonlinear Cryptography. 

    Let π and δ be two permutations on the set {1,2,..., n}. Let us consider a trans-

formation of (K*)n, K=Zm or K= Fq and d =|K*|. We define transformation AJG(π, δ), 
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where A is triangular matrix with positive integer entries 0≤a(i,j)≤d, i≥d defined by 

the following closed formula. 

yπ(1)=ϻ1xδ(1)
a(1,1)

 

yπ(2)= ϻ2xδ(1)
a(2,1)xδ(2)

a(2,2)
  

… 

yπ(n)= ϻnxδ(1)
a(n,1) xδ(2)

a(n,2)
 …xδ(n)

a(n,n)   
where (a(1,1),d)=1, (a(2,2),d)=1,…,(a(n,n),d)=1. 

          We refer to  AJG(π, δ) as Jordan Gauss multiplicative transformation or simp-

ly JG element. It is an invertible element of  nES(K) with the inverse of kind  BJG(δ, π) 

such that a(i,i)b(i,i)=1 (mod d). Notice that in the case K= Zm  straightforward process 

of computation of the inverse of JG element is connected with the factorization prob-

lem of integer m. If n=1 and m is a product of two large primes p and q the complexi-

ty of the problem is used in RSA public key algorithm.  

 We refer to the composition of several JG elements as computationally tame mul-

tiplicative transformation.  

Let nES’(K) stand for the group of computationally tame elements from nES(K). 

 Similarly to the case of commutative ring we introduce a linguistic graph I(G)= 

Г(G) over abelian group G defined as bipartite graph  with partition sets P=Ps,m=Gs+m 

and L=Lr,m=Gr+m such that x=(x1, x2,…, xs, xs+1, xs+2, …,  xs+m)Iy=[y1, y2, … , yr , 

,yr+1,yr+2 , …, yr+s ] if and only if  x2/y2=g2w2(x1, ,y1), x3/ y3=g3w3(x1, x2, y1, y2), …, 

xn/yn=gnwn(x1, x2,  …., xn-1, y1, y2, …, yn-1), where gi ϵ G , i≥2 and wi are words in char-

acters xi  and yj  from G. We define colours ρ((p)) and  ρ([l]) of the point (p) and the  

line [l] as the tuple of their   first coordinates of kind  a=(p1,  p2,  …, ps) or  a=(l1 , l2 , 

…, lr )  and introduce well defined operator N(v, a)  of computing the neighbour of 

vertex v of colour aϵGsor aϵGr. Similarly to the case of linguistic graph over commu-

tative ring we define  jump operator J(p, a), aϵKs on partition set  P and J(l,a), aϵKr  

on partion set L by conditions J(p,a)=(a1,  a2, … as, p1+s,  p2+s,  …, ps+n) and 

ρ(J(l,a))=[a1,  a2, … ar, p1+r,  p2+r,  …, pr+m].  We also consider symplectic and linguistic 

homomorphisms of linguistic graphs over groups defined similarly 

 to the case of commutative rings.  

5.2. Homomorphisms of linguistic compression for semigroups of mono-

mial strings. 
  Let us use various linguistic graphs over the multiplicative group G=K* and sub-

semigroup of monomial strings sBSr(K*) from sBSr(K), 0<s<n, 0<r<n  for generation 

of pairs of mutually inverse elements of  nEG(K). 

 Let us consider the homomorphism of the semigroup sBSr(K) into Eulerian semigroup 
nES(K), n=s+m defined in terms of linguistic graph I=I(K*) over K* of type (s,r,m).  

   Let  Na  be an operator of taking neighbour of given vertex with the colour a in the  

graph I. Let us consider the commutative group  K’=K*[x1, x2,…,xs, xs+1, …, xn]  of 

monomial terms of K[x1, x2,…,xs, xs+1, …, xn] with coefficients from K*  and linguistic 

graphs I’ over group  K’  defined by the same equations with I but over the larger 

commutative group K’. We assume that Na  and N’a  are operators of taking neighbour 

of given vertex with the colour a in the graph I and I’ respectively.  Let us consider 

the string of kind v=(x1, x2, …, xs, xs+1, xs+2, …, xs+m) from Ks+m (or (K’) s+m ). We 
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define jump operator sJ(v, a), a=(y1, y2, …, ys,)     moving  v  to (y1, y2, …, yt, ,  xs+1, xs+2, 

…, xs+m) from Kt+m.  

    An infinite graph  I’(K’), n=m+s with partition sets P’=(K’)m+s and L’=(K’)m+r. 

After that we take a string u=(H0, G1, G2, H3, H4, G5, G6,…, Ht-1, Ht) from sBSr(K*) 

and the  point (x)=(x1, x2,…, xn) formed by generic elements of K’. This data defines 

uniquely a skating chain 

(x), J((x),H0)=(1x), N((1x),G1)=[2x], J([2x],G2)=[3x],N([3x],H3)=(4x), 

J((4x),H4)=(5x),…, J([t-2x],Gt-2)=[t-1x],N([t-1x],Ht-1)=(tx),J((tx),Ht)=(tx). 

Let(tx)be the tuple (Ht, F2, F3,…,Fn) where Fi ϵK[x1, x2,…, xn]. We define 
IΨ(u) as the map (x1, x2,…, xn)→(Ht, F2, F3,…,Fn) and refer to it as chain transition 

of point variety. 

The statement written below follows from the definition of the map.    

Lemma 5. The map ψ=Iψ: sBSr(K*)→ nES(K) is a homomorphism of semi-

groups. 
We refer to Iψ(sBSr(K*))=ICT(K*) as a chain transitions semigroup of linguistic 

graph I(K*) over K* and to map ψ as multiplicative linguistic compression map. 

5.3. Examples of linguistic graphs over K*, related semigroups, their ho-

momorphisms and inverse protocol.    
     We define Double Schubert Graph  DS(k,K*) over the multiplicative group K* of 

commutative ring K as incidence structure defined as disjoint union of  partition sets 

PS*=(K*)k(k+ 1)  consisting of points which are tuples of kind x =(x1 , x2, … , xk, x11 , 

x12, … , xkk ) and LS*=(K*)k(k+1) consisting of lines which are tuples of kind y =[y1 ,y2, 

… ,yk, y11 ,y12, … ,ykk], where x is incident to y, if and only if xij / yij=xi yj for i=1, 2,..., 

k and j=1, 2,..., k. It is convenient to assume that the indices of kind i,j are placed for 

tuples of (K*)k(k+1) in the lexicographical order. 

    We define the colour of point x =(x1 , x2, … , xk, x11 , x12, … , xkk )  from  PS as 

tuple(x1 , x2, … , xk,) and the colour of a line y =[y1 ,y2, … ,yk,y11 ,y12, … ,ykk] as the 

tuple (y1 , y2, … ,yk). For each vertex v  of DS(k, K*), there is the unique neighbour  

y=Na(v) of a given colour a=(a1,a2, … ,ak). It means the graphs  DS(k, K*) form a 

family of linguistic graphs over abelian group K*.  

       Let e1, e2 …, ek,e11, e12, , …,ekk be natural basis in which graph DS(k,K*) is defined. 

We take an affine space W(J) spanned  by e1, e2 …, el and ep, d, where {p, d}ϵJ for cho-

sen subset J of Cartesian square of {1, 2,…, l}. We work with the linguistic  homo-

morphism ϕ = ϕl which is simply projection of point (p) an line [l] onto subspace 

W(J). 

Below is the analogue of commutative diagram from section 4  where 

A={1,2,…,l},*I=DS(k, K*) and *I’=DSJ(l, K*) is the image of ϕ, ABSA(K*) is 

the totality of strings from kBSk(K*) with coordinates  of kind (h1, h2,…, hk) where hi ϵ 

K*[x1,x2,…, xl]   for i=1,2,…,l. Symbol ψ stands for linguistic compression homomor-

phism of  kBSk(K*) defined by *I, ψ’ stands for the restriction of ψ onto ABSA(K*).  

Map ψ’’  is a linguistic compression homomorphism of lBSl(K*) defined by graph *I’.     

lBSl(K*)←    ABSA(K*)  →     kBSk(K*) 

  ↓ ψ’’               ↓  ψ’         ↓  ψ 
*I’CT(K*)   ←    *IPT(K*) → *ICT(K*) 
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Arrow between ABSA(K*) corresponds to homomorphism µ of projection of each  

coordinate (h1, h2,…, hk) of the string onto the tuple (h1, h2,…, hl).  Symbol  *IPT(K*) 

stands for ψ’(ABSA(K*)) . Arrow between *IPT(K*) and *I’CT(K*) corresponds to ho-

momorphism of semigroups *ϕ induced by linguistic homomorphism ϕ of *I   onto 

*I’.    

      The protocol. Let  lBRl(K*)) be a subsemigroup of all reversible strings from  

lBSl(K*).     Alice  takes reimage S of µ of  lBRl(K*)) in the semigroup  ABSA(K*). She 

takes strings  ui=(iH0, iG1, iG2, iH3, iH4, iG5, iG6,…, iHt-1, iHt(i)), i=1,2,…, m from S.  

She selects u from kBRk(K*) and forms uuiRev(u). Alice selects v from  lBRl(K*))  and 

computes vRev(µ(ui))Rev(v).She computes a’i= ψ(uuiRev(u)) and b’i= 

ψ’’(vRev(α(ui))Rev(v)), selects tame transformations a  and b of from spaces nEG(K), 

n=k+k2 and  l+j(l)EG(K) respectively. Alice computes ai =aa’ia-1 and bi =bb’ib-1  and 

sends them to Bob. Alice keeps for herself elements ψ(u), ψ(Rev(u)), ψ’’(v) and 

ψ’’(Rev(v)). The rest of the protocol is going accordingly to general scheme of algo-

rithm 2.2. 

6. Conclusion.    
          The usage of stable inverse platforms was discussed in [4].  For instance 

correpondents can use  cubical collision rules keeping in mind attacks by adversary 

with the interception of plaintext – ciphertext pairs. In the case of plainspace Kn ad-

versary has to intercept O(n3) pairs to conduct successful linearization attack in time 

O(n10).  Thus correspondents can follow natural recommendation to start a new ses-

sion of the inverse protocol after the exchange of O(n2) messages. Instead of a new  

protocol Alice can use idea of deformation rule. She can use same platform to gener-

ate its element  g  together with its inverse g-1, combine g with two affine bijective 

maps T1 and T2, use her encryption map eA already elaborated  during the session of 

inverse protocol and send  eA(T1gT2) (or T1gT2(eA)) to Bob. He can restore T1gT2 and 

use it as the new encryption rule. Alice can decrypt because of her knowledge of the 

inverse map. 

 We believe that the case of single toric inverse algorithm has similarity with the case 

of stable protocol. Adversary has to intercept set of pairs plaintext /ciphertext of poly-

nomial cardinality to interpolate encryption function. 

Research on finding of exact upper bounds is an in interesting task. Other interesting 

question is about the existence of polynomial algorithm to find the inverse of element 

g from n nEG(K) (or nEG’(K)). Similarly to the problem of finding the inverse of bi-

jective multivariable map  a polynomial algorithm to invert g is currently unavailable. 

   Despite the difference in interpolation of encryption functions security of both toric 

and stable inverse protocols rests on the same difficult word decomposition problem 

for the large semigroup, which is intractable with ordinary Turing machine and Quan-

tum Computer.  

    The  usage of tandem which consists of toric and stable inverse protocol allows to 

create ‘’eternal’’ encryption rule similar to public key but not given publicly. Let us 

assume that toric and stable protocols of tandem algorithm elaborate pairs of maps 

(teA ,  seA) and (teB ,  seB)  for Alice and Bob. The problem to interpolate composition 
seA(teA ), which is non-bijective  map of (K*)n to Kn of unbounded degree and poly-
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nomial density is unfeasible task and  decryption function has non polynomial densi-

ty. 

 Example of inverse protocols based on  toric and stable platforms with outputs  act-

ing on (K*)n and Kn gives algorithms 5.3 with arbitrary parameter k and l+|J|=n to-

gether with algorithm 4.4 with usage graphs DS(k’, K) and DSJ’(l’,K) where l’+|J’|=n 

and K is a finite field or arithmetic ring.   Implementation of different from 4.4  stable 

algorithms is given in [31], [32], [33], alternative to procedure of 5.3 is given in [6]. 

      Notice that in all mentioned above platforms group enveloped inverse Diffie – 

Hellman protocol [4] can be used instead of inverse ptotocols 2.1 and 2.2. 
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