
Simulation-Sound Proofs for LWE and
Applications to KDM-CCA2 Security

Benoît Libert1,2, Khoa Nguyen3, Alain Passelègue4,2, and Radu Titiu5,2

1 CNRS, Laboratoire LIP, France
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), France

3 Nanyang Technological University, SPMS, Singapore
4 Inria, France

5 Bitdefender, Bucharest, Romania

Abstract. The Naor-Yung paradigm is a well-known technique that con-
structs IND-CCA2-secure encryption schemes by means of non-interactive
zero-knowledge proofs satisfying a notion of simulation-soundness. Un-
til recently, it was an open problem to instantiate it under the sole
Learning-With-Errors (LWE) assumption without relying on random
oracles. While the recent results of Canetti et al. (STOC’19) and Peikert-
Shiehian (Crypto’19) provide a solution to this problem by applying
the Fiat-Shamir transform in the standard model, the resulting con-
structions are extremely inefficient as they proceed via a reduction to
an NP-complete problem. In this paper, we give a direct, non-generic
method for instantiating Naor-Yung under the LWE assumption outside
the random oracle model. Specifically, we give a direct construction of an
unbounded simulation-sound NIZK proof system for the LWE relation. In
turn, this relation makes it possible to express the equality of plaintexts
encrypted under different keys in the dual Regev cryptosystem. As an
application, we obtain an LWE-based public-key encryption scheme for
which we can prove key-dependent message (KDM-CCA2) security under
chosen-ciphertext attacks in the standard model.
Keywords. LWE, standard model, Naor-Yung, KDM-CCA security,
NIZK proofs, simulation-soundness.

1 Introduction

The Fiat-Shamir transformation [47] is a well-known technique that turns any
3-move honest-verifier zero-knowledge proof system (a.k.a. Σ-protocol [40]) into a
non-interactive zero-knowledge proof (NIZK) by replacing the verifier’s challenge
by a hash value of the transcript so far. Bellare and Rogaway [14] showed that
this approach is secure if the underlying hash function is modeled as a random
oracle. Since then, the Fiat-Shamir heuristic has been used in the design of
countless cryptographic schemes, including digital signatures [91,57,73] and
chosen-ciphertext-secure public-key encryption schemes [94,48,1,17]. In the
standard model, however, counter-examples [60] showed that it may fail to
guarantee soundness. Until recently, it was not known to be securely instantiable

without random oracles under any standard assumption. This situation drastically
changed with the works of Canetti et al. [29] and Peikert and Shiehian [89], which
imply the existence of Fiat-Shamir-based NIZK proofs for all NP languages under
the sole Learning-With-Errors (LWE) assumption [92]. Their results followed a
line of research [95,31,70,28] showing that Fiat-Shamir can provide soundness in
the standard model if the underlying hash function is correlation intractable (CI).
In short, correlation intractability for a relation R captures the infeasibility of
finding an x such that (x,Hk(x)) ∈ R given a random hashing key k. Intuitively,
the reason why this property provides soundness is that a cheating prover’s
first message cannot be hashed into a verifier message admitting an accepting
transcript, except with negligible probability.

While [29,89] resolve the challenging problem of realizing NIZK proofs for all
NP under standard lattice assumptions, they leave open the question of building
more efficient instantiations of Fiat-Shamir for specific languages, such as those
arising in the context of chosen-ciphertext security [87,93,48].

In order to instantiate the Naor-Yung paradigm of CCA2-secure encryption
[87] in the lattice setting, the only known solution is to proceed via a general NP
reduction to graph Hamiltonicity and apply the Σ-protocol of Feige, Lapidot and
Shamir [46] with the modifications suggested by Canetti et al. [29,34]. In addition,
a direct application of [29,34,89] to CCA2 security requires to apply the generic
compiler of [43] that turns any NIZK proof system into simulation-sound [93]
proofs. In this paper, we consider the problem of more efficiently instantiating
the Naor-Yung paradigm in the standard model under lattice assumptions. Using
correlation intractable hash functions, our goal is to directly construct simulation-
sound proofs of plaintext equality without going through a reduction to an NP
complete problem.

1.1 Our Contributions

We describe the first non-trivial instantiation of the Naor-Yung paradigm under
lattice assumptions. As an application, we obtain a direct construction of a public
key encryption scheme for which we can prove key-dependent message security
under chosen-ciphertext attacks (or KDM-CCA2 security for short) under the
standard Learning-With-Errors (LWE) assumption [92]. By “non-trivial” and
“direct construction”, we mean that our scheme is not the result of merely
combining generic NIZK techniques [93,43] with the recent results [29,34,89] on
NIZK proofs based on correlation intractable hash functions. In particular, we
bypass the use of a proof system for the graph Hamiltonicity language [46,29,34].

Instead, as a key building block, we directly construct a simulation-sound
NIZK proof system showing that two dual Regev ciphertexts [55] are encryptions
of the same plaintext. We show that our proof system provides unbounded
simulation-soundness [43] (as opposed to one-time simulation-soundness [93,79]),
meaning that the adversary remains unable to prove a false statement, even after
having seen simulated proofs for polynomially many (possibly false) statements.
This makes our proof system suitable to prove KDM-CCA2 security by applying
the Naor-Yung technique to variants [4,66] of the dual Regev cryptosystem that

2

are known to provide key-dependent message security for affine functions.
As a result, we obtain a public-key encryption (PKE) scheme for which we

can prove KDM-CCA2 security under the LWE assumption with polynomial
approximation factors. Recall that KDM security is formalized by an experiment
where the adversary obtains N public keys. On polynomially many occasions,
it sends encryption queries (i, f), for functions f ∈ F belonging to some family,
and expects to receive an encryption of f(SK1, . . . , SKN) under PKi. Security
requires the adversary to be unable to distinguish the real encryption oracle from
an oracle that always returns an encryption of 0. Our KDM-CCA2 construction
supports the same function family (namely, affine functions) as the KDM-CPA
system it builds on. However, like previous LWE-based realizations [7,4], it can
be bootstrapped using Applebaum’s technique [6] so as to retain KDM security
for arbitrary functions that are computable in a priori bounded polynomial time.

1.2 Technical Overview

Our starting point is a trapdoor Σ-protocol [29,34] for the LWE language. Namely,
it allows proving that a given vector y ∈ Zmq is of the form y = B> · s + e,
for a public matrix B ∈ Zn×mq and secret vectors s ∈ Znq , e ∈ [−B,B]m such
that m > n and B � q. Recall that a standard Σ-protocol [40,39] is a 3-move
protocol with transcripts of the form (a, c, z) where c is the verifier’s challenge
and messages a and z are sent by the prover. In the common reference string
model, a trapdoor Σ-protocol [29,34] has the property that, for any statement x
outside the language L and any first message a sent by the prover, a trapdoor
makes it possible to determine the unique challenge c for which a valid response
z exists. There is an efficiently computable function BadChallenge that takes as
input a trapdoor τ , a false statement x 6∈ L, and a first prover message a, and
computes the unique c such that there exists an accepting transcript (a, c, z)
(that is, there is no accepting transcript of the form (a, c′, z) for any c′ 6= c).

Our first observation is that the Σ-protocol of Asharov et al. [9,8] can be
turned into a trapdoor Σ-protocol for the LWE language. Indeed, if we know a
short basis for the lattice Λ⊥(B), we can determine the unique binary challenge
for which a given first prover message a admits a valid response z (assuming
that the statement y is not a vector of the form y = B> · s + e, for some small
e ∈ Zm). While very simple, the resulting trapdoor Σ-protocol actually requires
a super-polynomial modulus q as its honest-verifier zero-knowledge property
relies on the noise flooding technique (see, e.g., [9]). In order to work with a
polynomial modulus and inverse error rate in the LWE assumption, we can actu-
ally use a statistical honest-verifier zero-knowledge protocol due to Micciancio
and Vadhan [86], which was previously used to prove similar languages in [61].
Again, we rely on the observation that a BadChallenge function is efficiently
computable using a trapdoor for the lattice Λ⊥(B). Using the Micciancio-Vadhan
protocol, we thus obtain a trapdoor Σ-protocol for proving that two dual Regev
ciphertexts decrypt to the same plaintext since this is equivalent to stating that
a ciphertext-dependent vector y ∈ Zmq is of the form y = B> · s + e, for some
small e ∈ Zm.

3

The main difficulty, however, is to turn the aforementioned trapdoor Σ-
protocol into a non-interactive proof system with unbounded simulation-soundness.
This problem is non-trivial since the Canetti et al. protocol [29,34] is not known to
satisfy this security notion6. The NIZK simulator of [29,34] generates simulated
proofs by “programming” the CI hash function from which the verifier’s challenge
is derived. In the context of unbounded simulation-soundness [93,43], we cannot
proceed in the same way since the simulator would have to program the hash
function for each simulated proof (and thus for each challenge ciphertext in the
proof of KDM-CCA2 security). Since the number of simulated proofs is not a
priori bounded, it is not clear how to do that using a hashing key of length
independent of the number of adversarial queries.

Our solution to this problem is inspired by the modification introduced by
Canetti et al. [34,29] in the original Feige-Lapidot-Shamir protocol [46]. In [34,
Section 5.2], the first prover message a is computed using a lossy encryption
scheme [16,13] instead of an ordinary commitment. Recall that, depending on the
distribution of the public key PK, a lossy encryption scheme behaves either as
an extractable non-interactive commitment or a statistically-hiding commitment.
The extractable mode is used to prove the soundness property (by using the
secret key SK corresponding to PK to compute the BadChallenge function) while
the statistically hiding mode allows proving zero-knowledge. Our unbounded
simulation-sound proof system exploits the observation made by Bellare et al.
[13,16] that specific lossy encryption schemes [58,88] admit an efficient opening
algorithm. Namely, ciphertexts encrypted under a lossy public key can be equiv-
ocated in the same way as a trapdoor commitment using the lossy secret key
SK. This suggests that, if the protocol of Canetti et al. [34,29] is instantiated
using a lossy encryption scheme with efficient opening, we can use a strategy
introduced by Damgård [42] to simulate NIZK proofs without programming the
CI hash function. Namely, we can generate the first prover message as a lossy
encryption of 0. When receiving the verifier’s challenge c, we can run the HVZK
simulator to obtain (a, z) before using the lossy secret key SK to explain the
lossy ciphertext as an encryption of the simulated a.

However, standard lossy encryption schemes with efficient opening do not
suffice to prove unbounded simulation-soundness: We do not only need to equiv-
ocate lossy ciphertexts in all simulated proofs, but we should also make sure
that the adversary’s fake proof is generated for a statistically binding (and even
extractable) commitment. For this reason, we rely on a lossy encryption flavor,
called R-lossy encryption by Boyle et al. [23], where a tag determines whether a
ciphertext is lossy or injective. The public key is generated for a (computationally
hidden) initialization value K ∈ K and ciphertexts are encrypted under a tag
t ∈ T . If R ⊂ K×T is a binary relation, the syntax of R-lossy encryption [23] is
that a ciphertext encrypted for a tag t ∈ T is injective if R(K, t) = 1 and lossy
otherwise. Boyle et al. [23] gave R-lossy encryption schemes that (with noticeable

6 It can be generically achieved using NIZK for general NP relations [43] but our goal
is to obtain a more efficient solution than generic NIZK techniques. In fact, even
one-time simulation-soundness is not proven in [29,34]

4

probability) are lossy for polynomially many tags and injective on an adversarially
chosen tag. For our purposes, we need to enrich the syntax of R-lossy encryption
in two aspects. First, we require lossy ciphertexts to be efficiently equivocable
(i.e., the secret key SK should make it possible to find random coins that explain
a lossy ciphertext as an encryption of any target plaintext). Second, in order to
simplify the description of our NIZK simulator, we need the syntax to support
lossy/injective tags and lossy/injective keys. When the public key PK is lossy,
all ciphertexts are lossy, no matter which tag is used to encrypt. In contrast,
injective public keys lead to injective ciphertexts whenever R(K, t) = 1. Our
NIZK simulator actually uses lossy public keys while injective keys only show up
in the proof of simulation-soundness.

We then provide a construction of R-lossy encryption that satisfies our syn-
tactic/security definitions under the LWE assumption. The scheme can be viewed
as a combination of the primal Regev cryptosystem [92] – which is known [90]
to be a lossy PKE scheme and is easily seen to support efficient openings as
defined in [16,13] – with the lattice trapdoors of Micciancio and Peikert [85]. An
injective public key consists of a matrix A ∈ Zn×mq with short vectors in its row
space. In order to encrypt µ ∈ {0, 1}n0 under a tag t, we sample a short Gaussian
r ∈ Z2m and compute c = [A | A ·Rt + (1−R(K, t)) ·G] · r + [0 | µ · (q/2)]>,
for some small-norm Rt ∈ Zm×m, where G ∈ Zn×mq is the gadget matrix of [85].
In each lossy tag, we have R(K, t) = 0, in which case the matrix Rt can be used
as a trapdoor (using the techniques of [3,85]) to sample a Gaussian r ∈ Z2m

that explains c as an encryption of any arbitrary µ ∈ {0, 1}n0 . In injective
tags, we have R(K, t) = 1, so that the gadget matrix vanishes from the matrix
At = [A | A ·Rt + (1−R(K, t)) ·G]. Since A has short vectors in its row space,
so does At and we can thus use these short vectors to recover µ from c exactly as
in the primal Regev cryptosystem. When the public key PK is lossy, the matrix
A is replaced by a statistically uniform matrix over Zn×mq . We can then use a
trapdoor for Λ⊥(A) to equivocate lossy ciphertexts for any arbitrary tag.

Our simulation-sound proof system uses our R-lossy encryption scheme – with
the standard trick of using the verification key of a one-time signature as a tag
– to compute the first prover message a by encrypting the first message a′ of a
basic trapdoor Σ-protocol. In the security proof, we have a noticeable probability
that: (i) For all adversarially-chosen statements, proofs can be simulated by
equivocating lossy ciphertexts; (ii) When the adversary comes up with a proof of
its own, the underlying commitment is an injective ciphertext. If these conditions
are fulfilled, we can annihilate the adversary’s chance of proving a false statement
by using a hash function which is statistically CI for the relation that evaluates
the BadChallenge function on input of the decryption of an R-lossy ciphertext.

At a high-level, our simulation-sound proof system bears similarities with inter-
active zero-knowledge protocols described by Garay, MacKenzie and Yang [52,82]
and Gennaro [54]. Our extension ofR-lossy encryption actually resembles their no-
tion of simulation-sound trapdoor commitments. The difference is that, while [82]
only requires commitments to be computationally binding for tags that have

5

never been equivocated, we need adversarially-chosen tags to be statistically
binding and even extractable.

1.3 Related Work

Fiat-Shamir in the Standard Model. The Fiat-Shamir methodology was
shown [60] not to be sound in the standard model in general as it may fail to
preserve the soundness of pathological 3-move arguments, regardless of which
hash function is used. Known negative results (see [60,18] and references therein)
nevertheless left open the existence of secure instantiations of the paradigm when
specific protocols are transformed using concrete hash functions. Of particular
interest is the notion of correlation intractable hash function [32], which rules
out specific relations between an input and its hash value. It was actually shown
[64] that correlation intractability for all sparse relations7 suffices to ensure
soundness as long as the underlying protocol is statistically sound. A recent line of
work [95,31,70,28] focused on the design of correlation intractable hash functions
leading to sound instantiation of Fiat–Shamir in the standard model. For a broad
class of assumptions, this was first achieved [30,95,70] using indistinguishability
obfuscation [53] or non-standard exponential hardness assumptions [31]. Canetti
et al. [29] showed that it is actually sufficient to obtain correlation intractable
hash families for efficiently searchable relations (i.e., where each x has at most one
corresponding y, which is computable within some polynomial time bound). This
opened the way to CI hash candidates based on more established assumptions
like the circular security of fully homomorphic encryption (FHE) schemes [34].
Peikert and Shiehian [89] recently gave an elegant FHE-based solution relying on
the hardness of the LWE problem [92] with polynomial approximation factors.
While specific to the Gentry-Sahai-Waters (GSW) FHE [56], their construction
does not require any non-standard circular security assumption. Together with
the techniques of [34,29], it implies NIZK for all NP languages.

In [34,29], Canetti et al. showed that, besides the language of Hamiltonian
graphs considered in [46], trapdoor Σ-protocols also exist of other languages like
that of quadratic residues modulo a composite integer [59]. Using the CI hash
function of [89], they thus obtained a NIZK proof for the Quadratic Residuosity
language under the LWE assumption. Choudhuri et al. [38] showed that the hash
families of [29] make the transformation sound for the sumcheck protocol [81].
Here, we exploit the observation that existing Σ-protocols [86,9] for the LWE
relation can easily be turned into trapdoor Σ-protocols.
KDM Security. Key-dependent message security is not implied by standard
security notions like IND-CPA security (see, e.g., [2,35]). It was first formalized by
Black, Rogaway and Shrimpton [19] and motivated by applications in anonymous
credentials [26] or in the context of disk encryption (e.g., in the BitLocker
encryption utility [22]), where the encryption key may be stored on the disk
being encrypted. The first examples of KDM-secure secret-key encryption were
7 A relation R ⊂ X × Y is sparse if, for a given x ∈ X , the fraction of y ∈ Y for which

(x, y) ∈ R is negligible.

6

given by Black et al. [19] in the random oracle model.
In the standard model, the feasibility of KDM security remained open during

several years. Hofheinz and Unruh [69] described a secret-key encryption scheme
for which they proved KDM-CPA security against adversaries that obtain a
bounded number of encryptions. In the public-key setting, Boneh, Halevi, Ham-
burg, and Ostrovsky [22] constructed a scheme for which they proved KDM-CPA
security w.r.t. all affine functions under the decisional Diffie-Hellman (DDH) as-
sumption. Applebaum et al. [7] showed that a variant of Regev’s cryptosystem [92]
is also KDM secure for all affine functions under the LWE assumption. They
also described a secret-key construction based on the hardness of the Learning
Parity with Noise (LPN) problem and Döttling subsequently gave a public key
variant [45]. Under the Quadratic (QR) and Composite Residuosity (DCR) [88]
assumptions, Brakerski and Goldwasser [24] gave alternative constructions that
additionally provide security under key leakage. In the context of identity-based
encryption (IBE) [21], Alperin-Sheriff and Peikert [4] showed that a variant of the
IBE scheme of Agrawal et al. [3] provides KDM security for a bounded number of
challenge ciphertexts. We note that applying the Canetti-Halevi-Katz transform
[33] to the IBE scheme of [4] does not immediately give KDM-CCA security as
this would require to begin with an IBE system providing KDM security with
respect to master secret keys [51].

Haitner and Holenstein [63] gave black-box impossibility results when the ad-
versary makes encryption queries for poly-wise independent functions. Brakerski,
Goldwasser, and Kalai [25] and Barak et al. [11] independently came up with dif-
ferent techniques that bypass the impossibility results of [63] so as to prove KDM
security for richer function families. Malkin et al. [83] suggested a much more
efficient scheme with ciphertexts of O(d) group elements for function families
containing degree d polynomials. Applebaum [5,6] put forth a generic technique
that turns any PKE scheme with KDM security for projection functions – where
each output bit only depends on a single input bit – into a scheme providing
bounded-KDM security [11] (i.e., for any circuit of a priori bounded polynomial
size). Bellare et al. [12] suggested a more efficient amplification technique but,
unlike Applebaum’s transformation, it only applies in the KDM-CPA setting
and does not preserve CCA security. Kitagawa et al. [75] later extended the
optimized transformation of [12] to the KDM-CCA case.

KDM-CCA Security. The first standard model realization of PKE scheme
with KDM security under chosen-ciphertext attacks appeared in the work of
Camenisch, Chandran, and Shoup [27]. They gave a generic construction based
on the Naor-Yung paradigm that combines a KDM-CPA system, a standard
CPA-secure encryption scheme, and a simulation-sound NIZK proof system. For
their purposes, they crucially need unbounded simulation-soundness since the
KDM setting inherently involves many challenge ciphertexts and single-challenge
security is not known to imply multi-challenge security. They instantiated their
construction using the DDH-based KDM-CPA system of Boneh et al [22] and
Groth-Sahai proofs [62]. Our scheme is an instantiation of the generic construction
of [27] in the lattice setting, where we cannot simply use Groth-Sahai proofs.

7

Hofheinz [67] subsequently obtained chosen-ciphertext circular security (i.e.,
for selection functions where f(SK1, . . . , SKN) = SKi for some i ∈ [N]) with
shorter ciphertexts. The latter scheme builds on different ideas and relies on the
Composite Residuosity assumption and bilinear maps.

A first attempt to obtain KDM-CCA security without bilinear maps was
made by Lu, Li, and Jia [80]. Han, Liu, and Lyu [65] identified a bug in [80] and
gave a patch using the same methodology. They achieved KDM-CCA security
for bounded-degree polynomial functions (with ciphertexts of polynomial size
in the degree of the functions) under the DDH and DCR assumptions. More
recently, Kitigawa and Tanaka [77] described a framework for the design of
KDM-CCA secure PKE schemes under a single number theoretic assumption.
Their framework extends ideas from [96] and provides instantiations under the
DDH, QR, and DCR assumptions. Since the framework of [77] relies on hash proof
systems [41], it is not known to provide LWE-based realizations (indeed, hash
proof systems do not readily enable chosen-ciphertext security from LWE so far).

In the random oracle model, several well-known constructions happen to
remain secure under KDM queries. For example, Backes et al. [10] gave evi-
dence that RSA-OAEP [15] provides KDM-CCA2 security. Kitigawa et al. [76]
demonstrated a similar result for the Fujisaki-Okamoto transformation of [50].

2 Background

Here we define some of the tools involved in our constructions. A few additional
standard tools, such as NIZK, are defined in Appendix A.

2.1 Lattices

For any q ≥ 2, we let Zq denote the ring of integers with addition and multiplica-
tion modulo q. If x ∈ Rn is a vector, then ‖x‖ =

√
x2

1 + x2
2 + · · ·x2

n denotes its
Euclidean norm and ‖x‖∞ = maxi |xi| its infinity norm. If M is a matrix over R,
then ‖M‖ := supx6=0

‖Mx‖
‖x‖ and ‖M‖∞ := supx6=0

‖Mx‖∞
‖x‖∞ denote its induced

norms. For a finite set S, we let U(S) denote the uniform distribution over S.
If X and Y are distributions over the same domain, then ∆(X,Y) denotes their
statistical distance.

Let Σ ∈ Rn×n be a symmetric positive-definite matrix, and c ∈ Rn. We
define the Gaussian function on Rn by ρΣ,c(x) = exp(−π(x − c)>Σ−1(x − c))
and if Σ = σ2 · In and c = 0 we denote it by ρσ. For an n dimensional lattice
Λ ⊂ Rn and for any lattice vector x ∈ Λ the discrete Gaussian is defined by
ρΛ,Σ,c(x) = ρΣ,c

ρΣ,c(Λ) .
For an n-dimensional lattice Λ, we define ηε(Λ) as the smallest r > 0 such

that ρ1/r(Λ̂ \ 0) ≤ ε with Λ̂ denoting the dual of Λ, for any ε ∈ (0, 1).
For a matrix A ∈ Zn×mq , we define Λ⊥(A) = {x ∈ Zm : A · x = 0 mod q}

and Λ(A) = A> · Zn + qZm. For an arbitrary vector u ∈ Znq , we also define the
shifted lattice Λu(A) = {x ∈ Zm : A · x = u mod q}.

8

Definition 2.1 (LWE). Let m ≥ n ≥ 1, q ≥ 2 and α ∈ (0, 1) be functions of a
security parameter λ. The LWE problem consists in distinguishing between the
distributions (A,As + e) and U(Zm×nq × Zmq), where A ∼ U(Zm×nq), s ∼ U(Znq)
and e ∼ DZm,αq. For an algorithm A : Zm×nq × Zmq → {0, 1}, we define:

AdvLWE
q,m,n,α(A) = |Pr[A(A,As + e) = 1]− Pr[A(A,u) = 1| ,

where the probabilities are over A ∼ U(Zm×nq), s ∼ U(Znq), u ∼ U(Zmq) and
e ∼ DZm,αq and the internal randomness of A. We say that LWEq,m,n,α is hard
if, for any PPT algorithm A, the advantage AdvLWE

q,m,n,α(A) is negligible.

Micciancio and Peikert [85] described a trapdoor mechanism for LWE. Their
technique uses a “gadget” matrix G ∈ Zn×wq , with w = n log q, for which anyone
can publicly sample short vectors x ∈ Zw such that G · x = 0.

Lemma 2.2 ([85, Section 5]). Assume that m̄ ≥ n log q + O(λ) and m =
m̄+ndlog qe. There exists a PPT algorithm GenTrap that takes as inputs matrices
Ā ∈ Zn×m̄q , H ∈ Zn×nq and outputs matrices R ∈ {−1, 1}m̄×n·dlog qe and

A =
[
Ā | ĀR + H ·G

]
∈ Zn×mq

such that if H ∈ Zn×nq is invertible, then R is a G-trapdoor for A with tag H;
and if H = 0, then R is a punctured trapdoor.

Further, in case of a G-trapdoor, one can efficiently compute from A,R
and H a basis (ti)i≤m of Λ⊥(A) such that maxi ‖ti‖ ≤ O(m3/2).

Lemma 2.3 ([55, Theorem 4.1]). There is a PPT algorithm that, given a
basis B of an n-dimensional Λ = Λ(B), a parameter s > ‖B̃‖ · ω(

√
logn), and a

center c ∈ Rn, outputs a sample from a distribution statistically close to DΛ,s,c.

2.2 Correlation Intractable Hash Functions

We consider unique-output searchable binary relations [29] are binary relations
such that for every x, there is at most one y such that R(x, y) = 1, and y is
efficiently computable from x. For simplicity, we abuse notation and often omit
unique-output.

Definition 2.4. A relation R ⊆ X × Y is searchable in time T if there exists
a function f : X → Y which is computable in time T and such that, if there exists
y such that (x, y) ∈ R, then f(x) = y.

Letting λ ∈ N denote a security parameter, a hash family with input
length n(λ) and output length m(λ) is a collection H = {hλ : {0, 1}s(λ) ×
{0, 1}n(λ) → {0, 1}m(λ)} of keyed hash functions implemented by efficient algo-
rithms (Gen,Hash), where Gen(1λ) outputs a key k ∈ {0, 1}s(λ) and Hash(k, x)
computes a hash value hλ(k, x) ∈ {0, 1}m(λ).

9

Definition 2.5. For a relation ensemble {Rλ ⊆ {0, 1}n(λ) × {0, 1}m(λ)}, a hash
function family H = {hλ : {0, 1}s(λ)×{0, 1}n(λ) → {0, 1}m(λ)} is R-correlation
intractable if, for any PPT adversary A, we have

Pr
[
k ← Gen(1λ)), x← A(k) : (x, hλ(k, x)) ∈ R

]
= negl(λ) .

Definition 2.6 ([34,29]). Given a collection of relation ensemble R, a hash
family H is somewhere statistically correlation intractable w.r.t. R if
there is an efficient algorithm StatGen with the following properties:

• StatGen(1λ, aux) is a fake key generation that takes as input a security pa-
rameter λ and an auxiliary input aux. It outputs a hashing key k.
• For any relation R ∈ R, there exists an auxiliary input auxR with the following
properties:
- Key indistinguishability: The distributions {k | k ← Gen(1λ)} and
{k | k ← StatGen(1λ, auxR)} are computationally indistinguishable. For
any PPT distinguisher A, the following function should be negligible:

Advindist-CI
A (λ) := |Pr[k ← Gen(1λ) : 1← A(k)]

− Pr[k ← StatGen(1λ, auxR) : 1← A(k)]| .

- Statistical Correlation Intractability:With overwhelming probability
over the choice of k ← StatGen(1λ, auxR), no pair (k, h(k, x)) satisfies R:

Pr
k←StatGen(1λ,auxR)

[
∃x ∈ {0, 1}n(λ) : (x, h(k, x)) ∈ R

]
≤ 2−Ω(λ) .

Clearly, a somewhere statistical correlation intractable hash function for a re-
lation classR is also an R-correlation intractable for any relation ensemble R ∈ R.

Peikert and Shiehian [89] recently described a somewhere correlation-intractable
hash family for any searchable relation (in the sense of Definition 2.4) defined by
functions f of bounded depth. Their construction relies on the standard LWE
assumption with polynomial approximation factors.

2.3 Admissible Hash Functions

Admissible hash functions were introduced by Boneh and Boyen [20] as a com-
binatorial tool for partitioning-based security proofs for which Freire et al. [49]
gave a simplified definition.

Definition 2.7 ([20,49]). Let `(λ), L(λ) ∈ N be functions of a security parame-
ter λ ∈ N. Let AHF : {0, 1}` → {0, 1}L be an efficiently computable function. For
every K ∈ {0, 1,⊥}L, let the partitioning function FADH(K, ·) : {0, 1}` → {0, 1}
such that

FADH(K,X) :=
{

0 if ∀i ∈ [L] (AHF(X)i = Ki) ∨ (Ki =⊥)
1 otherwise

10

We say that AHF is an admissible hash function if there exists an effi-
cient algorithm AdmSmp(1λ, Q, δ) that takes as input Q ∈ poly(λ) and a non-
negligible δ(λ) ∈ (0, 1] and outputs a key K ∈ {0, 1,⊥}L such that, for all
X(1), . . . , X(Q), X? ∈ {0, 1}` such that X? 6∈ {X(1), . . . , X(Q)}, we have

Pr
K

[
FADH(K,X(1)) = · · · = FADH(K,X(Q)) = 1 ∧ FADH(K,X?) = 0

]
≥ δ(Q(λ)) .

It is known that admissible hash functions exist for `, L = Θ(λ).

Theorem 2.8 ([71, Theorem 1]). Let (C`)`∈N be a family of codes C` :
{0, 1}` → {0, 1}L with minimal distance c·L for some constant c ∈ (0, 1/2). Then,
(C`)`∈N is a family of admissible hash functions. Furthermore, AdmSmp(1λ, Q, δ)
outputs a key K ∈ {0, 1,⊥}L for which η = O(log λ) components are not ⊥ and
δ(Q(λ)) is a non-negligible function of λ.

In [71], Jager actually proved the result of Theorem 2.8 for balanced admissible
hash functions which provide both a lower bound and a close upper bound for the
probability in Definition 2.7. In our setting, we only need the standard definition
of admissible hash functions since we use them to prove security in a game where
the adversary aims at outputting a hard-to-compute result (rather than breaking
an indistinguishability property). However, the result of Theorem 2.8 still applies
to standard admissible hash functions.

In the context of LWE, the standard use of admissible hash functions (used
in, e.g., [36]) is to encode K using Θ(λ) matrices of the form A ·Ri + Ki ·G.
Yamada [97] observed that, since the admissible hash function of [71] has
sparse keys K with only η = O(log λ) non-⊥ entries, it can be more compactly
encoded using O(log λ) integers of size O(log λ) each. Yamada defined a modified
partitioning function FMAH(·), which is equivalent to FADH(·) and operates over
a compact representation T of K. The homomorphic operations of GSW then
make it possible to homomorphically compute A ·R′x + FMAH(T, X) ·G from
GSW encryptions of a compact encoding T of K.

Lemma 2.9 ([97]). Let KMAH = {K ⊂ [2`] | |K| < η} and X = {0, 1}`.
For any key K ∈ {0, 1,⊥}L with at most η = O(log λ) entries in {0, 1}, define
K = EncodeMAH(K) as

K := {2i−Ki | i ∈ [L], Ki 6=⊥} ∈ KMAH .

Then, the partitioning function

FMAH(K, X) :=
{

0 if K ⊆ S(X) where S(X) = {2i− AHF(X)i | i ∈ [L]}
1 otherwise

satisfies FADH(K,X) = 0⇔ FMAH(K, X) = 0. Moreover, η′ := |K| = O(log λ), so
that K costs u = O(log2 λ) bits to represent. Finally, there exist deterministic
polynomial-time algorithms (PubEvalMAH,TrapEvalMAH) where PubEvalMAH (resp.
TrapEvalMAH) takes as input X ∈ {0, 1}` and {Ai = A ·Ri + κi ·G}i∈[u] (resp.

11

X and {Ri, κi}i∈[u]), where u = O(log2 λ) and κi ∈ {0, 1}, Ri ∈ {−1, 0, 1}m×m
for all i ∈ [u]. It outputs a matrix AF,X = PubEvalMAH(X, {Ai}i∈[u]) (resp.
RF,X = TrapEvalMAH(X, {κi,Ri}i∈[u])) such that

AF,X = A ·RF,X · FMAH(K, X) ·G ∈ Zn×mq

and RF,X ∈ Zm×m has norm ‖RF,X‖∞ ≤ m3u(L+ 1).

2.4 Trapdoor Σ-protocols

Canetti et al. [34] considered a definition of Σ-protocols that slightly differs from
the usual formulation [40,39].

Definition 2.10 (Adapted from [34,9]). Let a language L = (Lzk,Lsound)
associated with two NP relations Rzk, Rsound. A 3-move interactive proof system
Π = (Genpar,GenL,P,V) in the common reference string model is a Gap Σ-protocol
for L if it satisfies the following conditions:

– 3-Move Form: The prover and the verifier both take as input crs = (par, crsL),
with par ← Genpar(1λ) and crsL ← GenL(1λ,L), and a statement x and
proceed as follows: (i) The prover takes as input w ∈ Rzk(x), computes
(a, st)← P(crs, x, w) and sends a to the verifier; (ii) The verifier then sends
back a random challenge c from the challenge space C; (iii) The prove finally
sends a response z = P(crs, x, w,a, c, st) to the verifier; (iv) On input of a
transcript (a, c, z), V outputs 1 or 0.

– Completeness: If (x,w) ∈ Rzk and the prover honestly computes (a, z) for a
challenge c sent by V, V(crs, x, (a, c, z)) outputs 1 with probability 1−negl(λ).

– Special Honest Verifier Zero-Knowledge (SHVZK): There is a PPT
simulator HVSim that, on input of crs, x ∈ Lzk and a random c ∈ C, outputs
(a, z)← HVSim(crs, x, c) such that (a, c, z) is computationally indistinguish-
able from a real transcript with challenge c (for w ∈ Rzk(x)).

– Special soundness: For any common reference string crs← Gen(1λ), any
x 6∈ Lsound, and any first message a sent by the prover, there is at most
one challenge c = f(crs, x,a) for which an accepting transcript (crs, x,a, c, z)
exists for some third message z. The function f is called the “bad challenge
function” associated with Π. That is, if x 6∈ Lsound and the challenge differs
from the bad challenge, the verifier never accepts.

Definition 2.10 is taken from [34,9] and relaxes the standard special soundness
property in that extractability is not required. Instead, it considers a bad challenge
function f , which may not be efficiently computable. Canetti et al. [34] define
trapdoor Σ-protocols as Σ-protocols where the bad challenge function is efficiently
computable using a trapdoor. They also define instance-dependent trapdoor Σ-
protocol where the trapdoor τΣ should be generated as a function of some
instance x 6∈ Lsound. Here, we use a definition where x need not be known in
advance (which is not possible in applications to chosen-ciphertext security, where
x is determined by a decryption query) and the trapdoor does not depend on a

12

specific x. However, the common reference string and the trapdoor may depend
on the language (which is determined by the public key in our application).

The common reference string crs = (par, crsL) consists of a fixed part par and
a language-dependent part crsL which is generated as a function of par and a
language parameter L = (Lzk,Lsound).

Definition 2.11 (Adapted from [34]). A Σ-protocol Π = (Genpar,GenL,P,V)
with bad challenge function f for a trapdoor language L = (Lzk,Lsound) is a
trapdoor Σ-protocol if it satisfies the properties of Definition 2.10 and there
exist PPT algorithms (TrapGen,BadChallenge) with the following properties.

• Genpar inputs λ ∈ N and outputs public parameters par← Genpar(1λ).
• GenL is a randomized algorithm that on input the public parameters outputs
the language-dependent part crsL ← GenL(par,L) of crs = (par, crspar).
• TrapGen(par, τL) takes as input public parameters par and a membership-
testing trapdoor τL for the language Lsound. It outputs a common reference
string crsL and a trapdoor τΣ ∈ {0, 1}`τ , for some `τ (λ).
• BadChallenge(τΣ , crs, x,a) takes as inputs a trapdoor τΣ, a common reference
string crs = (par, crsL), an instance x, and a first prover message a. It outputs
a challenge c.

In addition, the following properties are required.

• CRS indistinguishability: For any par ← Genpar(1λ), and any trapdoor
τL for the language L, an honestly generated crsL is computationally indis-
tinguishable from a CRS produced by TrapGen(par, τL). Namely, for any aux
and any PPT distinguisher A, we have

Advindist-Σ
A (λ) := |Pr[crsL ← GenL(par,L) : 1← A(par, crsL)]
− Pr[(crsL, τΣ)← TrapGen(par, τL) : 1← A(par, crsL)]| ≤ negl(λ) .

• Correctness: There exists a language-specific trapdoor τL such that, for any
instance x 6∈ Lsound and all (crsL, τΣ)← TrapGen(par, τL), we have

BadChallenge(τΣ , crs, x,a) = f(crs, x,a) .

Note that the TrapGen algorithm does not take a specific statement x as input,
but only a trapdoor τL allowing to recognize elements of Lsound. For this reason,
in Section 4.1, we compute the challenge c by hashing both x and a using a
somewhere correlation intractable hash function.

2.5 R-Lossy Public-Key Encryption With Efficient Opening

We generalize the notion of R-lossy public-key encryption introduced by Boyle et
al. [23]. As defined in [23], it is a tag-based encryption scheme [74] where the tag
space T is partitioned into a set of injective tags and a set of lossy tags. When
ciphertexts are generated for an injective tag, the decryption algorithm correctly

13

recovers the underlying plaintext. When messages are encrypted under lossy
tags, the ciphertext is statistically independent of the plaintext. In R-lossy PKE
schemes, the tag space is partitioned according to a binary relation R ⊆ K × T .
The key generation algorithm takes as input an initialization value K ∈ K and
partitions T in such a way that injective tags t ∈ T are exactly those for which
(K, t) ∈ R (i.e., all tags t for which (K, t) 6∈ R are lossy).

From a security standpoint, the definitions of [23] require the initialization
value K to be computationally hidden by the public key. For our purposes, we
need to consider a stronger notion of R-lossy PKE scheme which imposes some
additional requirements.

First, we require the existence of a lossy key generation algorithm LKeygen
which outputs public keys with respect to which all tags t are lossy (in contrast
with injective keys where the only lossy tags are those for which (K, t) 6∈ R).
Second, we also ask that the secret key makes it possible to equivocate lossy
ciphertexts (a property called efficient opening by Bellare et al. [13]) using an
algorithm called Opener. Finally, we use two distinct opening algorithms Opener
and Opener′. The former operates over injective public keys for lossy tags while
the latter can equivocate ciphertexts encrypted under lossy keys for any tag.

Definition 2.12. Let R ⊆ Kλ × Tλ be an efficiently computable binary rela-
tion. An R-lossy public-key encryption scheme with efficient opening is a 7-uple
of PPT algorithms (Par-Gen,Keygen, LKeygen,Encrypt,Decrypt,Opener,Opener′)
such that:

Parameter generation: On input a security parameter λ, Par-Gen(1λ) outputs
public parameters Γ .

Key generation: For an initialization value K ∈ Kλ and public parameters Γ ,
algorithm Keygen(Γ,K) outputs an injective public key pk ∈ PK, a decryption
key sk ∈ SK and a trapdoor key tk ∈ T K. The public key specifies a ciphertext
space CtSp and a randomness space RLPKE.

Lossy Key generation: Given an initialization value K ∈ Kλ and public pa-
rameters Γ , the lossy key generation algorithm LKeygen(Γ,K) outputs a lossy
public key pk ∈ PK, a lossy secret key sk ∈ SK and a trapdoor key tk ∈ T K.

Decryption under injective tags: For any initialization value K ∈ K, any
tag t ∈ T such that (K, t) ∈ R, and any message Msg ∈ MsgSp, we have

Pr
[
∃r ∈ RLPKE : Decrypt

(
sk, t,Encrypt(pk, t,Msg; r)

)
6= Msg

]
< ν(λ) ,

for some negligible function ν(λ), where (pk, sk, tk)← Keygen(Γ,K) and the
probability is taken over the randomness of Keygen.

Indistinguishability: The key generation algorithm LKeygen and Keygen sat-
isfy the following properties:

(i) For any K ∈ Kλ, the distributions Dinj = {(pk, tk) | (pk, sk, tk) ←
Keygen(Γ,K)} and Dloss = {(pk, tk) | (pk, sk, tk)← LKeygen(Γ,K)} are
computationally indistinguishable. Namely, for any PPT adversary, we

14

have Advindist-LPKE-1(λ) ≤ negl(λ), where

Advindist-LPKE-1(λ) := |Pr[(pk, tk)← Dinj : 1← A(pk, tk)]
− Pr[(pk, tk)← Dloss : 1← A(pk, tk)]| .

(ii) For any distinct initialization values K,K ′ ∈ Kλ, the two distribu-
tions {pk | (pk, sk, tk) ← LKeygen(Γ,K)} and {pk | (pk, sk, tk) ←
LKeygen(Γ,K ′)} are statistically indistinguishable.

Lossiness under lossy tags: For any initialization value K ∈ Kλ and tag
t ∈ Tλ such that (K, t) 6∈ R, any (pk, sk, tk) ← Keygen(Γ,K), and any
Msg0,Msg1 ∈ MsgSp, the following distributions are statistically close:

{C | C ← Encrypt(pk, t,Msg0)} ≈s {C | C ← Encrypt(pk, t,Msg1)}.

Efficient opening under lossy tags: Let DR denote the distribution, defined
over the randomness space RLPKE, from which the random coins used by
Encrypt are sampled. For any message Msg ∈ MsgSp and ciphertext C, let
DPK,Msg,C,t denote the probability distribution on RLPKE with support

SPK,Msg,C,t = {r ∈ RLPKE | Encrypt(pk, t,Msg, r) = C} ,

and such that, for each r ∈ SPK,Msg,C,t, we have

DPK,Msg,C,t(r) = Pr
r′←↩DR

[r′ = r | Encrypt(pk, t,Msg, r′) = C] .

There exists a PPT sampling algorithm Opener such that, for any K ∈ Kλ,
any keys (pk, sk, tk)← Keygen(Γ,K) and (pk, sk, tk)← LKeygen(Γ,K), any
random coins r ←↩ DR, any tag t ∈ Tλ such that (K, t) 6∈ R, and any messages
Msg0,Msg1 ∈ MsgSp, takes as inputs C = Encrypt(pk, t,Msg0, r), t, and tk.
It outputs an independent sample r from a distribution statistically close to
DPK,Msg1,C,t.

Efficient opening under lossy keys: There exists a PPT sampling algorithm
Opener′ such that, for any K ∈ Kλ, any keys (pk, sk, tk)← LKeygen(Γ,K),
any random coins r ←↩ DR, any tag t ∈ Tλ, and any distinct messages
Msg0,Msg1 ∈ MsgSp, takes as input C = Encrypt(pk, t,Msg0, r), t and sk. It
outputs a sample r from a distribution statistically close to DPK,Msg1,C,t.

In Definition 2.12, some of the first four properties were defined in [23,
Definition 4.1]. The last two properties are a natural extension of the definition
of efficient opening introduced by Bellare et al. [13]. We note that property of
decryption under injective tags does not assume that random coins are honestly
sampled, but only that they belong to some pre-defined set RLPKE.

For our applications to simulation-sound proofs, it would be sufficient to have
algorithms (Opener,Opener′) that have access to the initial messages Msg0 and
the random coins r0 of the ciphertext to be equivocated (as was the case in
the opening algorithms of [13,68]). In our LWE-based construction, however, the
initial messages and random coins are not needed.

As in [23], we consider R-lossy PKE schemes for the bit-matching relation,
which evaluates to 1 if t agrees with K in all positions where the latter is not ⊥.

15

Definition 2.13. Let K = {0, 1,⊥}L and T = {0, 1}`, for some `, L ∈ poly(λ)
such that ` < L. Let FADH the partitioning function defined by an admissible hash
function AHF : {0, 1}` → {0, 1}L in Definition 2.7. The bit-matching relation
RBM : K × T → {0, 1} for AHF is the relation where we have RBM(K, t) = 1
if and only if K = K1 . . .KL and t = t1 . . . t` satisfy FADH(K, t) = 0 (namely,∧L
i=1(Ki =⊥) ∨ (Ki = AHF(t)i)).

3 An R-Lossy Public-Key Encryption Scheme with
Efficient Opening from LWE

We describe an RBM-lossy PKE scheme for the bit-matching relation. Our scheme
builds on a variant of the primal Regev cryptosystem [92] suggested in [55].

Let AHF : {0, 1}` → {0, 1}L an admissible hash function with key space
K = {0, 1,⊥}L and let RBM ⊂ K × {0, 1}` the corresponding bit-matching
relation. We construct an RBM-lossy PKE scheme in the following way.

Par-Gen(1λ): Given a security parameter λ ∈ N, let n0 = poly(λ) denote the
bit length of encrypted messages. Choose a prime modulus q = poly(λ);
dimensions n = n0 +Ω(λ) and m = 2ndlog qe+O(λ). Define the tag space as
T = {0, 1}` where ` = Θ(λ). Define the initialization value space K = {0, 1}L
and Gaussian parameters σ = O(m4) · u(L + 1) and α ∈ (0, 1) such that
mαq · (1 +m3u(L+ 1)) · σ

√
2m < q/4. Set Γ = (`, L, n0, q, n,m, α, σ).

Keygen(Γ,K): On input of public parameters Γ and an initialization value
K ∈ {0, 1,⊥}L, generate a key pair as follows.

1. Generate a key pair for the primal Regev encryption scheme. Namely,
sample a matrix B̄←↩ U(Z(n−n0)×m

q) and compute

A =
[

B̄
S> · B̄ + E>

]
∈ Zn×mq ,

where S←↩ U(Z(n−n0)×n0
q) and E←↩ χm×n0 .

2. Let u = O(log2 λ) as specified by Lemma 2.9. Compute K = EncodeMAH(K)
and let κ1 . . . κu ∈ {0, 1}u its u-bit encoding. Define matrices

Ai = A ·Ri + κi ·G ∈ Zn×mq ∀i ∈ [u]

where G ∈ Zn×mq is the gadget matrix and Ri ←↩ U({−1, 1}m×m) for all
i ∈ [u].

Define RLPKE = {r ∈ Z2m | ‖r‖ ≤ σ
√

2m} and output

pk :=
(
A, {Ai}ui=1

)
, sk = (K,S), tk = (K, {Ri}ui=1).

LKeygen(Γ,K): This algorithm proceeds identically to Keygen except that steps
1 and 2 are modified in the following way.

16

1. Run (A,TA) ← GenTrap(1λ, 1n, 1m, q) so as to obtain a statistically
uniform matrix A ∼ U(Zn×mq) with a trapdoor for the lattice Λ⊥(A).
Notice m = 2ndlog qe+O(λ) is required by Lemma 2.2 in order to run
algorithm GenTrap.

2. Define matrices

Ai = A ·Ri + κi ·G ∈ Zn×mq ∀i ∈ [u]

where Ri ←↩ U({−1, 1}m×m) for all i ∈ [u].

Define RLPKE as in Keygen and output

pk :=
(
A, {Ai}ui=1

)
, sk = TA, tk = (K, {Ri}ui=1).

Encrypt(pk, t,Msg): To encrypt Msg ∈ {0, 1}n0 for the tag t = t1 . . . t` ∈ {0, 1}`,
conduct the following steps.
1. Compute AF,t = PubEvalMAH(t, {Ai}i∈[u]) ∈ Zn×mq using the PubEvalMAH

algorithm of Lemma 2.9. Note that AF,t = A ·RF,t + FMAH(K, t) ·G for
some RF,t ∈ Zm×m of norm ‖RF,t‖∞ ≤ m3u(L+ 1).

2. Choose r←↩ DZ2m,σ and output ⊥ if r 6∈ RLPKE. Otherwise, compute and
output the ciphertext

c = [A | AF,t] · r +
[

0n−n0

Msg · bq/2c

]
∈ Znq . (1)

Decrypt(sk, t, c): Given the secret key sk = (K,S) and the tag t ∈ {0, 1}`,
compute K = EncodeMAH(K) and return ⊥ if FMAH(K, t) = 1. Otherwise,
compute w = [−S> | In0] · c ∈ Zn0

q . Then, for each i ∈ [n0], do the following:
1. If neither w[i] nor |w[i]− bq/2c| is close to 0, halt and return ⊥.
2. Otherwise, set Msg[i] ∈ {0, 1} so as to minimize |w[i]−Msg[i] · bq/2c|.
Return Msg = Msg[1] . . .Msg[n0].

Opener(pk, tk, c,Msg1): Given tk = (K, {Ri}ui=1) and t ∈ {0, 1}`, compute
K = EncodeMAH(K) and return ⊥ if FMAH(K, t) = 0. Otherwise,
1. Compute the matrix RF,t = TrapEvalMAH(t, {κi,Ri}i∈[u]) ∈ Zm×m such

that AF,t = A ·RF,t + G and ‖RF,t‖∞ ≤ m3u(L+ 1).
2. Use RF,t ∈ Zm×m as a trapdoor for the matrix

ĀF,t = [A | AF,t] = [A | A ·RF,t + G] ∈ Zn×2m
q

to sample a Gaussian vector r̄ ∈ Z2m such that

ĀF,t · r̄ = c−
[

0n−n0

Msg1 · bq/2c

]
. (2)

Namely, defining cMsg1 = c − [(0n−n0)> | Msg>1 · bq/2c]>, sample and
output fake random coins r̄←↩ D

Λ
cMsg1
q (ĀF,t),σ

.

17

Opener′(pk, sk, t, c,Msg1): Given sk = TA and t ∈ {0, 1}`, use TA to derive a
trapdoor TA,t for the lattice Λ⊥(ĀF,t) and use TA,t to sample a Gaussian
vector r̄←↩ D

Λ
cMsg1
q (ĀF,t),σ

satisfying (2).

We prove the following theorem, stating that the above construction satisfies
all the required properties under the LWE assumption, in Appendix B.

Theorem 3.1. The above construction is an RBM-lossy public-key encryption
scheme with efficient opening under the LWE assumption.

4 Direct Constructions of Unbounded Simulation-Sound
NIZK Arguments

In this section, we first provide a method that directly compiles (i.e., without
relying on generic NIZK techniques [43]) any trapdoor Σ-protocol into an un-
bounded simulation-sound NIZK argument system using an R-lossy encryption
scheme and a correlation intractable hash function.

In a second step, we show a trapdoor Σ-protocol based on the Micciancio-
Vadhan protocol [86] which can be used to prove plaintext equalities in the dual
Regev cryptosystem.

4.1 A Generic Construction from Trapdoor Σ-Protocols and
R-lossy PKE

We construct unbounded simulation-sound NIZK proofs by combining trapdoor
Σ-protocols and R-lossy public-key encryption schemes. Our proof system is
inspired by ideas from [52,82,54] and relies on the following ingredients:

- A trapdoor Σ-protocol Π′ = (Gen′par,Gen′L,P′,V′) with challenge space C, for
the same language L = (Lzk,Lsound) and which satisfies the properties of
Definition 2.11. In addition, BadChallenge(τΣ , crs, x,a) should be computable
within time T ∈ poly(λ) for any input (τ, crs, x,a).

- A one-time signature scheme OTS = (G,S,V) with verification keys of length
` ∈ poly(λ).

- An admissible hash function AHF : {0, 1}` → {0, 1}L, for some L ∈ poly(λ)
such that L > `, which induces the relationRBM : {0, 1,⊥}L×{0, 1}` → {0, 1}
of Definition 2.13.

- An R-lossy PKE scheme R-LPKE = (Par-Gen,Keygen, LKeygen,Encrypt,
Decrypt, Opener,Opener′) for the relation RBM : {0, 1,⊥}L×{0, 1}` → {0, 1}
with public (resp. secret) key space PK (resp. SK). We assume that the
decryption algorithm Decrypt is computable within time T . We denote the
message (resp. ciphertext) space by MsgSp (resp. CtSp) and the randomness
space by RLPKE. Let also DLPKE

R denote the distribution from which the
random coins of Encrypt are sampled.

18

- A somewhere correlation intractable hash family H = (Gen,Hash) for the
relation class RCI of relations that are efficiently searchable within time T .

We also assume that these ingredients are compatible in the sense that P′ outputs
a first prover message a that fits in the message space MsgSp of R-LPKE. Our
construction Πuss = (Genpar,GenL,P,V) goes as follows.

Genpar(1λ): Run par← Gen′par(1λ) and output par.
GenL(par,L): Given public parameters par and a language L ⊂ {0, 1}N , let
K = {0, 1,⊥}L and T = {0, 1}`. The common reference string is generated
as follows.
1. Generate a common reference string crs′L ← Gen′L(par,L) for the trapdoor
Σ-protocol Π′.

2. Generate public parameters Γ ←↩ Par-Gen(1λ) for the RBM-lossy PKE
scheme where the relation RBM : K×T → {0, 1} is defined by an admissi-
ble hash function AHF : {0, 1}` → {0, 1}L. Choose a random initialization
value K ← K and generate lossy keys (pk, sk, tk)← LKeygen(Γ,K).

3. Generate a key k ← Gen(1λ) for the somewhere correlation intractable
hash function.

Output the language-dependent crsL :=
(
crs′L, pk, k,AHF,OTS

)
and the

simulation trapdoor τzk := sk, which is the lossy secret key of R-LPKE. The
global common reference string consists of crs = (par, crsL).

P(crs, x, w) : To prove a statement x using a witness w ∈ Rzk(x), generate a
one-time signature key pair (VK,SK)← G(1λ). Then, do the following.

1. Compute (a′, st′)← P′(crs′L, x, w) as a first prover message for Π′. Then,
compute a ← Encrypt(pk,VK,a′; r) using random coins r ←↩ DLPKE

R

sampled from the distribution DLPKE
R over RLPKE.

2. Compute c = Hash(k, (x,a,VK)).
3. Compute z′ = P′(crs′L, x, w,a′, c, st′) and define the prover’s response to

be z = (z′,a′, r).
4. Generate a one-time signature sig ← S(SK, (x,a, z)) and output

π =
(
VK, (a, z), sig

)
. (3)

V(crs, x,π) : Given a statement and a candidate proof π, parse π as in (3). If
V(VK, (x,a, z), sig) = 0, return 0. Otherwise,

1. Write z as z = (z′,a′, r) and return 0 if it does not parse properly. Return
0 if a 6= Encrypt(pk,VK,a′; r) or r 6∈ RLPKE.

2. Compute c = Hash(k, (x,a,VK)). If V′(crs′L, x, (a′, c, z′)) = 1, return 1.
Otherwise, return 0.

Our NIZK simulator uses a technique due to Damgård [42], which uses a
trapdoor commitment scheme to achieve a straight-line simulation of 3-move
zero-knowledge proofs in the common reference string model.

19

Theorem 4.1. The above argument system is multi-theorem zero-knowledge
assuming that the trapdoor Σ-protocol Π′ is special honest-verifier zero-knowledge.

Proof. To prove the result, we describe a simulator (Sim0,Sim1) which uses the
lossy secret key τzk = sk of R-LPKE to simulate transcripts (a, c, z) without
using the witnesses. Namely, on input of par← Genpar(1λ), Sim0 generates crsL
by proceeding identically to GenL while Sim1 is described hereunder.

Sim1(crs, τzk, x, ε): On input a statement x ∈ {0, 1}N and the simulation trap-
door τzk = sk, algorithm Sim1 proceeds as follows.
1. Generate a one-time signature key pair (VK,SK)← G(1λ). Let 0|a′| the

all-zeroes string of the same length as the first prover message of Π′.
Compute

a← Encrypt(pk,VK,0|a
′|; r0)

using random coins r0 ←↩ DLPKE
R sampled from the distribution DLPKE

R .
2. Compute c = Hash(k, (x,a,VK)).
3. Run the HVZK simulator (a′, z′) ← HVSim(crs′L, x, c) of Π′ so as to

obtain a simulated transcript (a′, c, z′) of Π′ for the challenge c.
4. Using the lossy secret key sk of R-LPKE, compute random coins r ←

Opener′(pk, sk,VK,a,a′) which explain a as an encryption of (x,a′) under
the tag VK. Then, define z = (z′,a′, r)

5. Generate a one-time signature sig ← S(SK, (x,a, z)) and output the
proof π =

(
VK, (a, z), sig

)
.

We now prove that the simulation is statistically indistinguishable from
proofs generated by the real prover. The honest-verifier zero-knowledge property
of Π′ implies that its simulator produces (a′, z′)← HVSim(crs′L, x, c) such that
(a′, c, z′) is computationally indistinguishable from a real transcript with challenge
c. This implies that the distribution

{(a,a′, r, z′) | r0 ←↩ DLPKE
R , a← Encrypt(pk,VK,0|a

′|; r0) ,

(a′, z′)← HVSim(crs′L, x, c), r← Opener′(pk, sk,VK,a,a′)} , (4)

is computationally indistinguishable from

{(a,a′, r, z′) | r0 ←↩ DLPKE
R , a← Encrypt(pk,VK,0|a

′|; r0) ,

(a′, st′)← P′(crs′L, x, w), z′ = P′(crs′L, x, w,a′, c, st′) , (5)
r← Opener′(pk, sk,VK,a,a′)} .

By the property of efficient opening under lossy keys, we know that the above is
statistically indistinguishable from

{(a,a′, r, z′) | (a′, st′)← P′(crs′L, x, w), r←↩ DLPKE
R

a← Encrypt(pk,VK,a′; r) , (6)
z′ = P′(crs′L, x, w,a′, c, st′)} .

20

Clearly, the distribution (4) corresponds to proof generated by the simulator while
(6) is the distribution generated by the real prover. This implies that simulated
proofs are computationally (resp. statistically) indistinguishable from real proofs
if the simulator of Π′ is computationally (resp. statistically) HVZK. ut

Our proof of unbounded simulation-soundness builds on techniques used
in [42,52,82,54]. The interactive proof systems of [82,54] rely on commitment
schemes where the adversary cannot break the computational binding property
of the commitment for some tag after having seen equivocations of commitments
for different tags. Here, in order to use a correlation-intractable hash function,
we need a commitment scheme which is equivocable on some tags but (with
noticeable probability) becomes statistically binding on an adversarially-chosen
tag. For this purpose, we exploit the observation that an R-lossy PKE scheme can
be used as a commitment scheme with the aforementioned properties. Namely,
it can serve as a trapdoor commitment to equivocate lossy encryptions of the
first prover message in Π′ while forcing the adversary to create a fake proof on a
statistically binding commitment.

At a high level, our proof of simulation-soundness also bears similarities with
[78] in that they also use a commitment scheme that is statistically hiding in
adversarial queries but becomes statistically binding in the adversary’s output.
The difference is that we need to equivocate the statistically-hiding commitment
(i.e., the lossy ciphertext) in simulated proofs here.

Theorem 4.2. The above argument system provides unbounded simulation-
soundness assuming that: (i) OTS is a strongly unforgeable one-time signature;
(ii) R-LPKE is an RBM-lossy PKE scheme; (iii) The hash family H is somewhere
correlation-intractable for all relations that are searchable within time T , where
T denotes the maximal running time of algorithms BadChallenge(·, ·, ·, ·) and
Decrypt(·, ·, ·).

Proof. To prove the result, we consider a sequence of games. For each i, we define
a variable Wi ∈ {true, false} where W0 = true if and only if the adversary
wins in Game0.

Game0: This is the real game of Definition A.2. Namely, the challenger runs
(crs, τzk)← Sim0(par, 1N) and gives crs = (par, crsL) to the adversary A. At
the same time, the challenger generates a trapdoor τL for the language Lsound
in such a way that it can efficiently test if A’s output satisfies the winning
condition (ii). The adversary is granted oracle access to Sim1(crs, τzk, ·, ·). At
each query, A chooses a statement x ∈ {0, 1}N and the challenger replies
by returning a simulated proof π ← Sim1(crs, τzk, x, ε). When the adver-
sary A halts, it outputs (x?,π?), where π? =

(
VK?, (a?, z?), sig?

)
. The

Boolean variable W0 is thus set to W0 = true under the conditions: (i)
(x?,π?) 6∈ Q, where Q = {(xi,πi)}Qi=1 denotes the set of queries to the oracle
Sim1(crs, τzk, ·, ·) and the corresponding responses πi =

(
VK(i), (ai, zi), sigi

)
;

(ii) x? 6∈ Lsound; and (iii) V (crs, x?,π?) = 1. We may assume w.l.o.g. that

21

the one-time verification keys {VK(i)}Qi=1 are chosen ahead of time at the
beginning of the game. By the definition of the adversary’s advantage, we
have Advuss

A (λ) = Pr[W0].

Game1: This game like Game0 except that the challenger B sets W1 = false if
A outputs a fake proof (x?,π?), where π? =

(
VK?, (a?, z?), sig?

)
contains

a VK? that coincide with the verification key VK(i) contained in an output
πi =

(
VK(i), (ai, zi), sigi

)
of Sim1(crs, τzk, ·, ·). The strong unforgeability of

OTS implies that Pr[W1] cannot noticeably differ from Pr[W0]. We can easily
turn B into a forger such that |Pr[W1]− Pr[W0]| ≤ Advots

B (λ).
Game2: This game is like Game1 with the following changes. At step 2 of GenL,

the challenger runs K ← AdmSmp(1λ, Q, δ) to generate a key K ∈ {0, 1,⊥}L
for an admissible hash function AHF : {0, 1}` → {0, 1}L, where Q is an upper
bound on the number of adversarial queries. When the adversary halts and
outputs x?, the challenger checks if the conditions

FADH(K,VK(1)) = · · · = FADH(K,VK(Q)) = 1 ∧ FADH(K,VK?) = 0 (7)

are satisfied, where VK? is the one-time verification key in the adversary’s
output and VK(1), . . . ,VK(Q) are those in adversarial queries. If these condi-
tions do not hold, the challenger aborts and sets W2 = false. For simplicity,
we assume that B aborts at the very beginning of the game if it detects that
there exists i ∈ [Q] such that FADH(K,VK(i)) = 0 (recall that {VK(i)}Qi=1 are
chosen at the outset of the game by B). If conditions (7) are satisfied, the
challenger sets W2 = true whenever W1 = true. Letting Fail denote the
event that B aborts because (7) does not hold, we have W2 = W1 ∧ ¬Fail.
Since the key K of the admissible hash function is statistically independent
of the adversary’s view, we can apply Theorem 2.8 to argue that there is a
noticeable function δ(λ) such that Pr[¬Fail] ≥ δ(λ). This implies

Pr[W2] = Pr[W1 ∧ ¬Fail] ≥ δ(λ) · Pr[W1] , (8)

where the inequality stems from the fact that Fail is independent of W1 since
K is statistically independent of A’s view.

We remark that, if conditions (7) are satisfied in Game2, the sequence of one-
time verification keys (VK(1), . . . ,VK(Q),VK?) satisfies RBM(K,VK?) = 1 and
RBM(K,VK(i)) = 0 for all i ∈ [Q].

Game3: In this game, we modify the oracle Sim1(crs, τzk, ·, ·) and by exploiting
the efficient opening property of R-LPKE for lossy tags (instead of lossy keys).
At the i-th query xi ∈ {0, 1}N , we must have FADH(K,VK(i)) = 1 (meaning
that VK(i) is a lossy tag as RBM(K,VK(i)) = 0) if B did not abort. This allows
B to equivocate a using the trapdoor key tk instead of the lossy secret key sk
of R-LPKE. Namely, at step 4 of Sim1, the modified Sim1(crs, τzk, ·, ·) oracle
computes random coins r ← Opener(pk, tk,VK,a,a′) instead of running

22

Opener′ using sk. We define the Boolean variable W3 exactly as W2. Since
Opener and Opener′ output samples from the same distribution DLPKE

R over
RLPKE, this implies that |Pr[W3]− Pr[W2]| ≤ 2−λ.

Game4: We now modify the distribution of crs. Namely, at step 2 of Gen, we
generate the keys for R-LPKE as injective keys (pk, sk, tk)← Keygen(Γ,K)
instead of lossy keys (pk, sk, tk)← LKeygen(Γ,K). The indistinguishability
property (i) of R-LPKE guarantees Pr[W4] is within negligible distance
from Pr[W3]. Recall that this indistinguishability property ensures that
the distributions of pairs (pk, tk) produced by Keygen and LKeygen are
computationally indistinguishable. We can thus easily build a distinguisher
B against R-LPKE that bridges between Game3 and Game4 (by using tk to
simulate Sim1(crs, τzk, ·, ·) as in Game3). It comes that

|Pr[W4]− Pr[W3]| ≤ Advindist-LPKE-1
B (λ) .

We note that the modification introduced in Game4 implies that, if the condi-
tions (7) are satisfied, we have RBM(K,VK?) = 1, meaning that the adversary’s
fake proof π? =

(
VK?,

(
a?, z? = (z′?,a′?, r?)

)
, sig?

)
involves an injective tag VK?.

Since pk is now an injective key, this implies that a? is an injective encryption of
a′? under the tag VK? using the randomness r?.

Game5: We change again the distribution of crs =
(
crs′, pk, k,AHF,OTS

)
by

leveraging the CRS indistinguishability property of the trapdoor Σ-protocol
Π′. Namely, we use the TrapGen′ algorithm of Definition 2.11 to generate
crs′L as (crs′L, τΣ) ← TrapGen′(par, τL) instead of crs′L ← Gen′L(par,L). We
immediately have |Pr[W5]− Pr[W4]| ≤ Advindist-Σ

A (λ).

We note that the trapdoor τΣ produced by TrapGen′ in Game5 can henceforth
be used to compute the BadChallenge function of the trapdoor Σ-protocol Π′.
In order to evaluate BadChallenge, we also use the secret key sk produced by
(pk, sk, tk)← Keygen(Γ,K) which allows decrypting the ciphertext a? contained
in π? when RBM(K,VK?) = 1.

Game6: We introduce another change in the distribution of crsL. We consider
the relation Rbad defined by

((x,a,VK), c) ∈ Rbad ⇔ c = BadChallenge(τΣ , crs′L, x,Decrypt(sk,VK,a)).

We now generate the key of the correlation-intractable hash function as k ←
StatGen

(
1λ, auxRbad

)
instead of k ← Gen(1λ). By the key indistinguishability

property of H, we have |Pr[W6]− Pr[W5]| ≤ Advindist-CI
A (λ).

In Game6, we claim that Pr[W6] ≤ 2−Ω(λ). Indeed, if B did not fail, we
know that the adversary’s output π? =

(
VK?,

(
a?, z? = (z′?,a′?, r?)

)
, sig?

)
involves an injective tag VK?, so that a? is a statistically binding commitment
to a′?. With probability 2−Ω(λ), there thus exists only one message a′? such
that a? = Encrypt(pk,VK?,a′?; r?) for some r? ∈ RLPKE. Said otherwise, there

23

exists only one a′? for which a pair (a′?, r?) satisfies step 1 of the verification
algorithm. Moreover, since a? uniquely determines a′?, the statistical correlation
intractability property of H implies that we can only have

Hash(k, (x?,a?,VK?)) = BadChallenge
(
τΣ , crs′L, x?,Decrypt(sk,VK?,a?)

)
with exponentially small probability. The probability to have W6 = true is thus
smaller than 2−Ω(λ) as claimed.

Putting the above altogether, we obtain

Advuss
A (λ) ≤ Advots

B (λ) + 1
δ(λ) ·

(
Advindist-LPKE-1

B (λ) + Advindist-Σ
B (λ)

+ Advindist-CI
B (λ) + 2−Ω(λ)

)
,

which completes the proof. ut

The work of Peikert and Shiehian [89] implies a somewhere statistically
correlation intractable hash function for the relation Rbad defined in the proof
of Theorem 4.2 (in Game6). The bootstrapping theorem of [89] actually implies
the existence of such a hash family under the LWE assumption with polynomial
approximation factors.

4.2 A Trapdoor Σ-Protocol based on the Micciancio-Vadhan SZK
Proof System

In Appendix C, we show that the Gap Σ-protocol of Asharov et al. [9,8] provides
a very simple trapdoor Σ-protocol for the LWE relation. Its disadvantage is
that the gap between its languages Lzk and Lsound is very large due to the use
of the noise flooding technique, which is necessary for the honest-verifier zero-
knowledge property. In this section, we describe a trapdoor Σ-protocol based
on the Micciancio-Vadhan protocol [86] which yields a polynomial gap between
Lzk and Lsound. In turn, this will make it possible to work with a polynomial-size
modulus q in Section 5.

Let integers m > n, a modulus q and rational numbers γ, d > 0. Given
B ∈ Zm×nq , consider the language Lγ,d = {Lzk,Lsound}, where

Lzk :=
{
y ∈ Zmq | ∃s ∈ Zn : ‖y−B · s‖ ≤ d

}
,

Lsound :=
{
y ∈ Zmq | ∃s ∈ Zn : ‖y−B · s‖ ≤ γ · d

}
.

For γ = m0.5+Ω(1), Micciancio and Vadhan [86] gave a 3-move interactive
statistical zero-knowledge proof for Lγ,d = {Lzk,Lsound}, where the length of a
proof is O(ξ ·m · log q) bits, for ξ = ω(1). We show that it implies a trapdoor
Σ-protocol for the language Lγ,d. The protocol of [86] allows a prover P in
possession of witnesses s ∈ Znq and e ∈ Zm such that y = B · s + e and ‖e‖ ≤ d
to convince a verifier V that y ∈ Lsound.

24

The trapdoor Σ-protocol is parameterized by an integer ξ = ω(1). We assume
that the language Lγ,d specifies a distribution DB of matrices over Zm×nq for
which there exists an efficient algorithm TrapSampB(1λ, 1n, 1m, q) which outputs
a matrix B ∈ Zm×nq whose distribution is statistically close to DB together with a
small-norm full-rank integer matrix TB ∈ Zm×m such that TB ·B = 0m×n mod q.

Genpar(1λ) : On input of a security parameter λ, choose a modulus q, dimensions
n,m, and error rate α > 0. Define par = {λ, q, n,m, α}.

GenL(par,Lγ,d) : Given public parameters par and a description of a language
Lγ,d which specifies real numbers γ, d > 0 and a matrix distribution DB,
sample a matrix B←↩ DB and define crsL = {B, γ, d}. The global common
reference string consists of

crs =
(
{λ, q, n,m, α}, {B, γ, d, ξ}

)
.

TrapGen(par, τLγ,d) : On input of public parameters par and a membership-
testing trapdoor τLγ,d for Lγ,d consisting of a matrix Lγ,d = TB obtained
as (B,TB) ← TrapSampB(1λ, 1n, 1m, q), output crsL = {B, γ, d, ξ}, which
defines crs =

(
{λ, q, n,m, α}, {B, γ, d, ξ}

)
, as well as τΣ = TB.

P
(
crs,y, (s, e)

)
↔ V(crs,y) : Given crs, a statement y ∈ Zmq and P (who has the

witness e ∈ Zm such that ‖e‖ ≤ d) and V interact in the following way.

1. The prover P chooses an arbitrary basis LB ∈ Zm×m for the q-ary lattice
Λ(B) = B · Zn + q · Zm and does the following.

a. Choose random bits c1 . . . cξ ←↩ U({0, 1}) as well as ξ random vectors
r1, . . . , rξ ∈ Zm of norm ‖ri‖ ≤ γ · d/2 which are uniformly sampled
in a ball centered in 0m. Check if there exists i? ∈ [ξ] such that
‖ri? + (2ci? − 1) · e‖ ≤ γ · d/2. If not, repeat the process of choosing
r1, . . . , rξ ∈ Zm until such an i? exists.

b. For each i ∈ [ξ], compute mi ∈ Zmq as

mi = (ci · y + ri)− LB ·
⌊
L−1

B · (ci · y + ri)
⌋

mod q ,

which can be seen as reducing ci · y + ri modulo the lattice basis LB
and taking the result modulo q.

Then, P sends a := {mi}i∈[ξ] to V.
2. V sends a random challenge Chall ∈ {0, 1} to P.
3. If Chall = ⊕ξi=1ci, set c̄i = ci and r̄i = ri for all i ∈ [ξ]. If Chall 6= ⊕ξi=1ci,

set

c̄i? = 1− ci? , r̄i? = ri? + (2ci? − 1) · e .

c̄i = ci, r̄i = ri ∀i ∈ [ξ] \ {i?} .

Compute zi = mi − (c̄i · y + r̄i) mod q for each i ∈ [ξ]. Then, send the
response z = {zi, c̄i}i∈[ξ] to V.

25

4. Upon receiving {zi, c̄i}i∈[ξ], V checks whether the following two conditions
are satisfied: (i) Chall = ⊕ξi=1c̄i; (ii) For each i ∈ [ξ], zi is in the lattice
Λ(B) and ‖mi − (zi + c̄i · y)‖ ≤ γ · d/2. If these conditions do not both
hold, V halts and returns ⊥.

BadChallenge
(
par, τΣ , crs,y,a

)
: Given τΣ = TB, parse the first prover message

a as a = {mi}i∈[ξ] where mi ∈ Zmq for each i ∈ [ξ]. For i = 1 to ξ, conduct
the following steps for each b ∈ {0, 1}.
1. Compute `i,b = TB · (mi − b · y) mod q.
2. Solve TB · ri,b = `i,b over Q by computing T−1

B · `i,b. If the solution is
an integer vector ri,b ∈ Zm such that ‖ri,b‖ ≤ γ · d/2, set ci = b.

If there exists an i ∈ [ξ] such that ci was not defined, set Chall =⊥. Otherwise,
output the bad challenge Chall = ⊕ξi=1ci ∈ {0, 1}.

Lemma 4.3. The above construction is a trapdoor Σ-protocol for the language
Lγ,d = {Lzk,Lsound}.

Proof. We prove that the given construction satisfies the requirements Defini-
tion 2.10 and Definition 2.11.

Completeness. We show that, if y ∈ Lzk, then an honest prover P runs in
polynomial time and produces (a, z) that always gets accepted by the verifier V .

First, given B, one can efficiently compute an arbitrary basis LB of the lattice
Λ(B). Next, in Step (1.a.), the probability that P – in possession of the witness
e ∈ Zm such that ‖e‖ ≤ d – has to repeat the sampling of c1, . . . , cξ, r1, . . . , rξ is
negligible. In fact, as analyzed by Micciancio and Vadhan [86], the probability
that there does not exist i? ∈ [ξ] such that ‖ri? + (2ci? − 1) · e‖ ≤ γ · d/2 is
at most 2

(
1 − β(2/γ)

)ξ, where β(ε) is the relative volume of the intersection
of two m-dimensional unit spheres whose centers are at distance ε. Since β(ε)
satisfies β(ε) ≥ max(3e−ε2m/2, 1− ε

√
m), such probability is negligible in m for

γ = m0.5+Ω(1) and ξ = ω(1). Then, at the end of Step (1.b.), the prover can obtain
and send a = {mi}i∈[ξ] where, for each i ∈ [ξ], the vector mi− (ci ·y + ri) mod q
is in the lattice Λ(B) for some ci ∈ {0, 1} and ‖ri‖ ≤ γ · d/2.

Upon receiving Chall from V , in the event that Chall 6= ⊕ξi=1ci, P flips the bit
ci? and modifies ri? accordingly, ensuring that the response z contains {zi, c̄i}ξi=1
satisfying Chall = ⊕ξi=1c̄i and zi ∈ Λ(B) for all i ∈ [ξ]. Furthermore, we have
‖mi − (c̄i · y + zi)‖ ≤ γ · d/2 for all i ∈ [ξ]. In particular, for i = i? and in the
case where ci? is flipped, we have

zi? = mi? − (c̄i? · y + r̄i?) = mi? − (1− ci?) · y− ri? − (2ci? − 1) · e
=
(
mi? − (ci?y + ri?)

)
+ (2ci? − 1)(y− e) ,

which belongs to Λ(B) since both mi? − (ci?y + ri?) and y− e do, and which
satisfies

‖mi? − (c̄i? · y + zi?)‖ = ‖r̄i?‖ = ‖ri? + (2ci? − 1) · e‖ ≤ γ · d/2 ,

26

as established in Step (1.a.). As a result, V always outputs 1 and the protocol
has perfect completeness.

Statistical honest verifier zero-knowledge. As in [86], the simulator exploits
the fact that the distribution of {mi}ξi=1 can be efficiently sampled without
knowing the witness e (which determines a lattice point B · s close to y). The
simulator also uses the standard techniques for OR-proofs to simulate c̄1, . . . , c̄ξ
such that ⊕ξi=1c̄i = Chall. On input crs, statement y ∈ Lzk and a random challenge
Chall ∈ {0, 1}, the simulator chooses an arbitrary basis LB of Λ(B) and then
proceeds as follows.

1. Pick ξ − 1 bits c̄1, . . . , c̄ξ−1 ←↩ U({0, 1}) and let c̄ξ = ⊕ξi=1c̄i ⊕ Chall.
2. For all i ∈ [ξ], pick ri ∈ Zm uniformly at random in the ball that has radius
γ · d/2 and center at 0m. Then, compute

mi = (c̄i · y + ri)− LB ·
⌊
L−1

B · (c̄i · y + ri)
⌋

mod q;
zi = mi − (c̄i · y + ri) mod q.

3. Output
(
{mi}ξi=1,Chall, {zi, c̄i}ξi=1

)
.

It can be checked that the transcript output by the simulator is accepted by the
verifier and its distribution is statistically indistinguishable from a real transcript
with challenge Chall.

Special soundness. Towards a contradiction, assume that y 6∈ Lsound and there
exist valid transcripts

(
{mi}ξi=1, 0, {zi,0, c̄i,0}

ξ
i=1
)
and

(
{mi}ξi=1, 1, {zi,1, c̄i,1}

ξ
i=1
)

with the same first message a = {mi}ξi=1 and distinct challenges Chall0 = 0,
Chall1 = 1. Since ⊕ξi=1c̄i,0 6= ⊕

ξ
i=1c̄i,1, there must exist an index i′ ∈ [ξ] such that

c̄i′,0 6= c̄i′,1. Note that c̄i′,1 − c̄i′,0 ∈ {−1, 1}.
Since the two transcripts are valid, we have ‖mi′ − (zi′,1 + c̄i′,1 · y)‖ ≤ γ · d/2

and ‖mi′ − (zi′,0 + c̄i′,0 · y)‖ ≤ γ · d/2. The triangle inequality thus implies
‖(c̄i′,1− c̄i′,0) ·y− (zi′,0−zi′,1)‖ ≤ γ ·d. Since zi′,0, zi′,1 ∈ Λ(B) and c̄i′,1− c̄i′,0 ∈
{−1, 1}, the vector v′ := (zi′,0 − zi′,1)/(c̄i′,1 − c̄i′,0) also belongs to the lattice
Λ(B). This implies that there exists s′ ∈ Zn such that ‖y − B · s′‖ ≤ γ · d.
However, this contradicts the hypothesis that y 6∈ Lsound.

CRS indistinguishability. This property follows directly from the fact that the
distribution of matrix B obtained from TrapSampB(1λ, 1n, 1m, q) is statistically
close to DB.

Correctness of BadChallenge. In the BadChallenge algorithm, we observe that,
if y 6∈ Lsound, for each i ∈ [ξ], at most one b ∈ {0, 1} can lead to an `i,b such that
the corresponding ri,b satisfies ‖ri,b‖ ≤ γ · d/2. Indeed, if there exits an index
i ∈ [ξ] such that the inequality is satisfied for both ci ∈ {0, 1}, we would have

TB · (ri,0 − ri,1) = `i,0 − `i,1 = TB · y mod q,

which would contradict that y 6∈ Lsound.

27

We also remark that a bad challenge can only exist if

‖T−1
B · (TB · (mi − bi · y) mod q)‖ ≤ γ · d/2

for some bi ∈ {0, 1}. Indeed, the verifier only accepts responses when zi ∈ Λ(B)
for all i ∈ [ξ]. In the verification equation, the condition ‖mi−(zi+c̄i ·y)‖ ≤ γ ·d/2
implies that mi = c̄i ·y+ri+LB ·wi for some wi, ri ∈ Zm such that ‖ri‖ ≤ γ ·d/2.
In this case, the BadChallenge algorithm can always correctly decode c̄i ∈ {0, 1}.
Hence, if BadChallenge outputs Chall =⊥, there exists no valid response {(c̄i, zi)}
regardless of the value of Chall. ut

Combining the result of [89] with theorems 4.1, 4.2, 4.3, and 3.1, we obtain
the following corollary.

Corollary 4.4. For the language Lγ,d = {Lzk,Lsound} with γ = m0.5+Ω(1), there
exists a NIZK argument system that is statistically NIZK and provides unbounded
simulation-soundness under the LWE assumption.

5 Public-Key Encryption with KDM-CCA2 Security
from LWE

In this section, we describe a PKE scheme with KDM-CCA2 security under
the LWE assumption by applying a technique suggested by Chandran et al. [27].
In [27], it was shown that applying the Naor-Yung paradigm to two schemes
providing KDM-CPA security and standard IND-CPA security, respectively,
can give KDM-CCA2 security as long as the underlying NIZK proof system is
unbounded simulation-sound. Our scheme is obtained by applying this idea to a
variant of the LWE-based system for which Alperin-Sheriff and Peikert [4] gave a
proof of KDM-CPA security.

5.1 Definition

A public-key encryption scheme consists of a tuple of efficient algorithms (Par-Gen,
Keygen,Encrypt,Decrypt), where Par-Gen takes as input a security parameter 1λ
and generates common public parameters Γ , Keygen inputs Γ and outputs a key
pair (SK,PK), while Encrypt and Decrypt proceed in the usual way.

We recall the definition of KDM-CCA2 security given by Chandran et al. [27],
which extends the definition of Boneh et al. [22] to the chosen-ciphertext setting.
As in [22,27,7], the adversary is restricted to encryption queries for functions
from a certain family F ⊂ {f | f : SKN →M}, for a polynomial N ∈ poly(λ),
where SK andM are the keyspace and the message space, respectively.

Definition 5.1 ([27]). A public-key encryption scheme for a function family F
provides KDM-CCA2 security if no PPT adversary has noticeable advantage in
the following game.

28

Initialization. The challenger generates public parameters Γ ← Par-Gen(1λ)
and N key pairs (PKi, SKi)← Keygen(Γ). The adversary A is given Γ and
{PKi}i∈[N]. The challenger also flips a fair coin d←↩ U({0, 1}).

Queries. On polynomially many occasions, A adaptively makes encryption and
decryption queries.
- Encryption queries: The adversary chooses a pair (j, f), where j ∈ [N]
and f ∈ F . If d = 0, the challenger computes µ = f(SK1, . . . , SKN) ∈M
and C ← Encrypt(PKj , µ). If d = 1, the challenger computes C ←
Encrypt(PKj ,0|µ|). In either case, the ciphertext C is returned to A.

- Decryption queries: The adversary chooses a ciphertext-index pair
(j, C). The challenger returns ⊥ if C was produced in response to an
encryption query (j, ∗). Otherwise, the challenger computes and returns
µ← Decrypt(SKj , C) (which may be ⊥ if C is an invalid ciphertext).

Guess. After polynomially many queries, A halts and outputs d′ ∈ {0, 1}. The
adversary is declared successful if d′ = d and its advantage is defined to be

Adv(A) = |Pr[1← AOEnc,ODec({PKi}Ni=1) | d = 0]
− Pr[1← AOEnc,ODec({PKi}Ni=1) | d = 1]|

5.2 Construction

In order to apply the Naor-Yung paradigm to the scheme of Alperin-Sheriff and
Peikert [4], we have to take into account that the encryption algorithm of [4]
relies on the HNF form of LWE [7] and requires the LWE secret s ∈ Zn to be
sampled from the noise distribution. The reason is that their scheme uses public
keys of the form u = −A · z0 + z1, where A ∼ U(Zn×mq) and z0, z1 are short
vectors with Gaussian entries. Their public key can be seen as dual Regev public
keys where a perturbation term z1 ∈ Zn has been introduced to prove security
in the KDM setting. Since this term z1 gets multiplied by s in the encryption
algorithm, s has to be small with respect to q in order not to hinder decryption.

In our setting, one difficulty is that the Micciancio-Vadhan proof system does
not easily make it possible to prove the smallness of the random vector s. For
this reason, we rely on a modification of the Alperin-Sheriff-Peikert construction
[4], which was proven KDM-CPA secure by He et al. [66]. In [66], it was proven
that the perturbation term z1 can be removed from the public key of Alperin-
Sheriff and Peikert [4] as long as the dimension n is large enough to give a few
LWE samples without noise [44]. In turn, this modification allows the encryption
algorithm to use a random vector s sampled from the uniform distribution U(Znq).

The construction goes as follows.

Par-Gen(1λ): Given λ, select dimensions n,m, moduli q, p where p is prime
and q = p2, and Gaussian parameter r (to be specified below) and output
Γ = {λ, n,m, q, p, r}.

Keygen(Γ): On input of public parameters Γ , generate a key pair as follows.

29

1. Choose a random matrix A←↩ U(Zn×mq).
2. Sample Gaussian vectors z0, z1 ←↩ DZm,r and compute

u0 = −A · z0 ∈ Znq , u1 = −A · z1 ∈ Znq .

Define the matrix B as

B =

A> 0m×n 0m
u>0 01×n p
0m×n A> 0m
01×n u>1 p

 ∈ Z(2m+2)×(2n+1)
q (9)

and for parameters γ = m0.5+Ω(1) and d = r ·
√

2m+ 2, define the
language LNY = {LNY

zk ,LNY
sound}, where

LNY
zk =

{
(c0,0, c0,1, c1,0, c1,1) ∈ Z2m+2

q

∣∣ ∃ (s, e) ∈ Z2n+1
q × Z2m+2 :

‖e‖ ≤ d ∧ [c>0,0 | c0,1 | c>1,0 | c1,1]> = B · s + e mod q
}
,

LNY
sound =

{
(c0,0, c0,1, c1,0, c1,1) ∈ Z2m+2

q

∣∣ ∃ (s, e) ∈ Z2n+1
q × Z2m+2 :

‖e‖ ≤ γ · d ∧ [c>0,0 | c0,1 | c>1,0 | c1,1]> = B · s + e mod q
}
. (10)

3. Generate a common reference string crs :=
(
crs′, pkLPKE, k,AHF,OTS

)
for

the simulation-sound proof system Πuss of Section 4.1 with its simulation
trapdoor τzk := skLPKE for the language LNY.

Output (PK,SK), where PK :=
(
A,u0,u1, crs

)
and SK := z0 ∈ Zm. The

vector z1 is not used to decrypt and can be discarded.

Encrypt(PK,µ) : To encrypt µ ∈ Zp, conduct the following steps.
1. Choose s0, s1 ←↩ U(Znq), e0, e1 ←↩ DZm,r, χ0, χ1 ←↩ DZ,r and compute

two ciphertexts (c0,0, c0,1) ∈ Zmq × Zq, (c1,0, c1,1) ∈ Zmq × Zq, where

c0,0 = A> · s0 + e0

c0,1 = u>0 · s0 + χ0 + p · µ
c1,0 = A> · s1 + e1

c1,1 = u>1 · s1 + χ1 + p · µ.

2. Using witnesses s = [s>0 | s>1 | µ]> ∈ Z2n+1
q and e = [e>0 | e>1 | χ0 | χ1]>

(note that ‖e‖ ≤ r ·
√

2m+ 2 with overwhelming probability), generate a
simulation-sound NIZK proof that (c0,0, c0,1) and (c1,0, c1,1) encrypt the
same µ ∈ Zp. Namely, generate a proof π that

y :=

c0,0
c0,1
c1,0
c1,1

 = B · s + e ∈ Z2m+2
q (11)

30

corresponds to an element (c0,0, c0,1, c1,0, c1,1) of the language LNY de-
fined by (10). This proof π =

(
VK, (a, z), sig

)
is obtained by comput-

ing c = Hash(k, (c0,0, c0,1, c1,0, c1,1),a,VK) and a one-time signature
sig ← S(SK, ((c0,0, c0,1, c1,0, c1,1),a, z)).

Output the ciphertext C =
(
c0,0, c0,1, c1,0, c1,1,π

)
.

Decrypt(SK,C) : Given C =
(
c0,0, c0,, c1,0, c1,1,π

)
and SK = z0 ∈ Zm, return

⊥ if π does not properly verify. Otherwise, compute µ′ = c0,1 +z>0 ·c0,0 mod q
and output µ ∈ Zp which minimizes |µ′ − p · µ mod q|.

In the ciphertext, we note that it is sufficient to prove the statement (11) for a
witness µ ∈ Zq (i.e., we do not have to prove that µ ∈ Zp) since any µ ∈ Zq can
be written µ = µ1 · p+ µ0 with µ0, µ1 ∈ Zp. Hence, if the statement is true for
some µ ∈ Zq, it is also true for some µ0 ∈ Zp.

In the security proof, we use a trapdoor TA ∈ Zm×m for the lattice Λ⊥(A)
as a membership testing trapdoor for LNY. We observe that TA can be used
to compute a trapdoor TB ∈ Z(2m+2)×(2m+2) for Λ⊥(B). Indeed, TA ∈ Zm×m
can be used to sample short e0, e1 ∈ Zm such that A · e0 = −u0 mod q and
A · e1 = u1 mod q, which yield a vector [e>0 | 1 | e>1 | −1]> of Λ⊥(B). Then, we
can sample m independent vectors {ei,0}mi=1 for which A · ei,0 = 0 mod q, which
yield 2m vectors of the form [e>i,0 | 0 | 0m | 0] and [0m | 0 | e>i,0 | 0]. We then
obtain a (2m + 2)-th vector as [0m | 0 | p · e>1 | −p]>. By gathering all these
vectors, we obtain a full-rank set of short vectors in Λ⊥(B). We can then apply
[84, Lemma 7.1] to turn it into a short basis TB of Λ⊥(B). In turn, a trapdoor
TB for Λ⊥(B) can be used to test whether y ∈ Z2m+2

q belongs to LNY because,
whenever it does, TB allows computing both s ∈ Z2n+1

q and e ∈ Z2m+2. We also
note that a full-rank set of short vectors is sufficient to invert the LWE function,
even without being a basis of Λ⊥(B).

The proof of the following theorem is based on standard techniques and the
details are given in Appendix D.

Theorem 5.2. The scheme provides KDM-CCA2 security for affine functions
assuming that: (i) The LWE assumption holds; (ii) The proof system Πuss provides
unbounded simulation-soundness.

Setting the parameters. We now specify a choice of parameters that is
compatible with the constructions in Section 3 and Section 4.

Given security parameter λ, we set n = Ω(λ) and r = Ω(
√
m). Since r >

ηε(Λ⊥(A)) w.h.p. by [55, Lemma 5.3], this allows sampling vectors of Λ⊥(A)
of norm ≤ r

√
m using a trapdoor (which is necessary for the security proof).

The security of the KDM-CPA secure scheme from [66] requires prime p to be
p = Ω(r2√n logn). In the security proof, we need to invert the LWE function for
the matrix B using the full-rank set of 2m+ 2 vectors (or a basis TB) obtained
above. To this end, we have to ensure that the infinity norm of TB · e ∈ Z2m+2

is much smaller than modulus q = p2, so that we can compute TB · e over Z
via TB · y mod q. To bound the entries of TB, we first note that, by using the

31

(fresh) trapdoor TA ∈ Zm×m for the lattice Λ⊥(A) and a Gaussian parameter
s = Ω(

√
m) in the preimage samplings, we can ensure that entries of vectors

e0, e1, {ei,0}mi=1 are smaller than
√
mr with overwhelming probability. Thus,

entries of TB (even when we apply [84, Lemma 7.1] that incurs a loss of at most√
m in norms) are bounded by pmr. As a result, the entries of TB · e are smaller

than pm2.5r2 with overwhelming probability. We thus require that q � pm2.5r2,
i.e., p� m2.5r2. Furthermore, to make the scheme compatible with the trapdoor
Σ-protocol of Section 4.2, modulus q must be set sufficiently larger than the
parameter γ · d, where γ = m0.5+Ω(1) and d = r ·

√
2m+ 2. To meet all these

conditions, we can choose parameters m, p, q such that m = 2ndlog qe + O(λ),
p = Ω(r2m4) and q = p2.

The proof system Πuss of Section 4.1 then requires to encrypt the binary
decomposition of the first message a = {mi}ξi=1 of the prover in the trapdoor
Σ-protocol, via the lossy PKE scheme of Section 3. Since the bit-size of a is
ξ · (2m + 1)dlog qe, where ξ = ω(1), we can set parameters (n′0, n′,m′, q′) and
σ, α of the lossy PKE scheme as follows:

n′0 = ξ · (2m+ 1)dlog qe, n′ = n′0 +Ω(λ), m′ = 2n′dlog q′e+O(λ)
σ = O(m4uL), q′ = Ω(m′6σuL), α · q = Ω(

√
n′),

where u = O(log2 λ) and L = poly(λ).

References

1. M. Abe. Securing “encryption + proof of knowledge” in the random oracle model.
In CT-RSA, 2002.

2. T. Acar, M. Belenkiy, M. Bellare, and D. Cash. Cryptographic agility and its
relation to circular encryption. In Eurocrypt, 2010.

3. S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard
model. In Eurocrypt, 2010.

4. J. Alperin-Sheriff and C. Peikert. Circular and KDM security for identity-based
encryption. In PKC, 2012.

5. B. Applebaum. Key-dependent message security: Generic amplification and com-
pleteness theorems. In Eurocrypt, 2011.

6. B. Applebaum. Key-dependent message security: Generic amplification and com-
pleteness theorems. J. of Cryptology, 27(3), 2013.

7. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In Crypto, 2009.

8. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs.
Multiparty computation with low communication, computation and interaction via
threshold FHE. In Eurocrypt, pages 483–501, 2012.

9. G. Asharov, A. Jain, and D. Wichs. Multiparty computation with low communica-
tion, computation and interaction via threshold FHE. Cryptology ePrint Archive:
Report 2011/613, 2012.

10. M. Backes, M. Dürmuth, and D. Unruh. OAEP is secure under key-dependent
messages. In Asiacrypt, 2008.

11. B. Barak, I. Haitner, D. Hofheinz, and Y. Ishai. Bounded key-dependent message
security. In Eurocrypt, 2010.

32

12. M. Bellare, V.-T. Hoang, and P. Rogaway. Foundations of garbled circuits. In
ACM-CCS, 2012.

13. M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for
encryption and commitment secure under selective opening. In Eurocrypt, 2009.

14. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. In ACM-CCS, 1993.

15. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Eurocrypt, 1994.
16. M. Bellare and S. Yilek. Encryption schemes secure under selective opening attack.

Cryptology ePrint Archive: Report 2009/101, 2009.
17. S. Biagioni, D. Masny, and D. Venturi. Naor-Yung paradigm with shared randomness

and applications. In SCN, 2016.
18. N. Bitansky, D. Dachman-Soled, S. Garg, A. Jain, T. Tauman Kalai, A. Lopez-Alt,

and D. Wichs. Why “Fiat-Shamir for proofs” lacks a proof. In TCC, 2013.
19. J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence

of key-dependent messages. In SAC, 2002.
20. D. Boneh and X. Boyen. Secure identity based encryption without random oracles.

In Crypto, 2004.
21. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing.

SIAM J. Comput., 32(3):586–615, 2003.
22. D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption

from Decision Diffie-Hellman. In Crypto, 2008.
23. E. Boyle, G. Segev, and D. Wichs. Fully leakage-resilient signatures. In Eurocrypt,

2011.
24. Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption

under subgroup indistinguishability (or: Quadratic residuosity strikes back). In
Crypto, 2010.

25. Z. Brakerski, S. Goldwasser, and Y. Tauman Kalai. Black-box circular-secure
encryption beyond affine functions. In TCC, 2011.

26. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In Eurocrypt, 2001.

27. J. Camensich, N. Chandran, and V. Shoup. A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In
Eurocrypt, 2009.

28. R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. Rothblum, and R. Roth-
blum. Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive: Report
2018/1004.

29. R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. Rothblum, R. Rothblum, and
D. Wichs. Fiat-Shamir: From practice to theory. In STOC, 2019.

30. R. Canetti, Y. Chen, and L. Reyzin. On the correlation intractability of obfuscated
pseudorandom functions. In TCC 2016-A, 2016.

31. R. Canetti, Y. Chen, L. Reyzin, and R. Rothblum. Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In Eurocrypt, 2018.

32. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisted.
J. of the ACM, 51(4), 2004.

33. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. In Eurocrypt, 2004.

34. R. Canetti, A. Lombardi, and D. Wichs. Fiat-Shamir: From Practice to Theory, Part
II (NIZK and Correlation Intractability from Circular-Secure FHE). Cryptology
ePrint Archive: Report 2018/1248.

35. D. Cash, M. Green, and S. Hohenberger. New definitions and separations for
circular security. In PKC, 2012.

33

36. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a
lattice basis. In Eurocrypt, 2010.

37. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a
lattice basis. Journal of Cryptology, 25(4):601-639, 2010.

38. A. Choudhuri, P. Hubacek, K. C., K. Pietrzak, A. Rosen, and G. Rothblum. Finding
a Nash equilibrium is no easier than breaking Fiat-Shamir. In STOC, 2019.

39. R. Cramer. Modular design of secure, yet practical cryptographic protocols. PhD
thesis, University of Amsterdam, 1996.

40. R. Cramer, I. Damgård, and B. Schoenmaeker. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Crypto, 1994.

41. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In Eurocrypt, 2002.

42. I. Damgård. Efficient concurrent zero-knowledge in the auxiliary string model. In
Eurocrypt 2000, 2000.

43. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust
non-interactive zero-knowledge. In Crypto, 2001.

44. Y. Dodis, S. Goldwasser, Y. Kalai, C. Peikert, and V. Vaikuntanathan. Public-key
encryption schemes with auxiliary inputs. In TCC, 2010.

45. N. Döttling. Low noise LPN: KDM secure public key encryption and sample
amplification. In PKC, 2015.

46. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero-knowledge
under general assumptions. SIAM J. of Computing, 29(1), 1999.

47. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Crypto, 1986.

48. P.-A. Fouque and D. Pointcheval. Threshold Cryptosystems Secure against Chosen-
Ciphertext Attacks. In Asiacrypt, 2001.

49. E. Freire, D. Hofheinz, K. Paterson, and C. Striecks. Programmable hash functions
in the multilinear setting. In Crypto, 2013.

50. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. J. of Cryptology, 26(1), 2013.

51. D. Galindo, J. Herranz, and J. Villar. Identity-based encryption with master
key-dependent message security and leakage-resilience. In ESORICS, 2012.

52. J. Garay, P. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols
using signatures. In Eurocrypt, 2003.

53. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
2013.

54. R. Gennaro. Multi-trapdoor commitments and their applications to non-malleable
protocols. In Crypto, 2004.

55. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In STOC, 2008.

56. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Crypto,
2013.

57. E.-J. Goh and S. Jarecki. A signature scheme as secure as the Diffie-Hellman
problem. In Eurocrypt, 2003.

58. S. Goldwasser and S. Micali. Probabilistic encryption. J. of Computer and System
Sciences, 28, 1984.

59. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 1989.

34

60. S. Goldwasser and Y. Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. In FOCS, 2003.

61. S. D. Gordon, J. Katz, and V. Vaikuntanathan. A group signature scheme from
lattice assumptions. In Asiacrypt, 2010.

62. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In Eurocrypt, 2008.

63. I. Haitner and T. Holenstein. On the (im)possibility of key dependent encryption.
In TCC, 2009.

64. S. Halevi, S. Myers, and C. Rackoff. On seed-incompressible functions. In TCC,
2008.

65. S. Han, S. Liu, and L. Lyu. Efficient KDM-CCA secure public-key encryption for
polynomial functions. In Asiacrypt, 2016.

66. J. He, B. Li, X. Lu, D. Jia, and W. Jing. KDM and selective opening secure IBE
based on the LWE problem. In APKC@AsiaCCS 2017, 2017.

67. D. Hofheinz. Circular chosen-ciphertext security with compact ciphertexts. In
Eurocrypt, 2013.

68. D. Hofheinz, T. Jager, and A. Rupp. Public-key encryption with simulation-based
selective-opening security and compact ciphertexts. In TCC-B, 2016.

69. D. Hofheinz and D. Unruh. Towards key-dependent message security in the standard
model. In Eurocrypt, 2008.

70. J. Holmgren and A. Lombardi. Cryptographic hashing from strong one-way functions
(or: One-way product functions and their applications). In FOCS, 2018.

71. T. Jager. Verifiable random functions from weaker assumptions. In TCC, 2015.
72. C. Jutla and A. Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In

Asiacrypt, 2013.
73. J. Katz and N. Wang. Efficiency improvements for signatures schemes with tight

security reductions. In ACM-CCS, 2003.
74. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC, 2006.
75. F. Kitagawa, T. Matsuda, G. Hanaoka, and K. Tanaka. Efficient key dependent

message security amplification against chosen ciphertext attacks. In ICISC, 2014.
76. F. Kitagawa, T. Matsuda, G. Hanaoka, and K. Tanaka. On the key dependent

message security of the Fujisaki-Okamoto constructions. In PKC, 2016.
77. F. Kitagawa and K. Tanaka. A framework for achieving KDM-CCA secure public-

key encryption. In Asiacrypt, 2018.
78. B. Libert, T. Peters, M. Joye, and M. Yung. Non-malleability from malleability:

Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In Eurocrypt, 2014.

79. Y. Lindell. A simpler construction of CCA2-secure public-key encryption under
general assumptions. J. of Cryptology, 19(3), 2006.

80. X. Lu, B. Li, and D. Jia. KDM-CCA security from RKA secure authenticated
encryption. In Eurocrypt, 2015.

81. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. J. of the ACM, 1992.

82. P. MacKenzie and K. Yang. On simulation-sound trapdoor commitments. In
Eurocrypt, 2004.

83. T. Malkin, I. Teranishi, and M. Yung. Efficient circuit-size independent public key
encryption with KDM security. In Eurocrypt, 2012.

84. D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic
perspective, volume 671. Kluwer, 2002.

85. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In Eurocrypt, 2012.

35

86. D. Micciancio and S. Vadhan. Statistical zero-knowledge proofs with efficient
provers: Lattice problems and more. In Crypto, 2003.

87. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In STOC, 1990.

88. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Eurocrypt, 1999.

89. C. Peikert and S. Shiehian. Non-interactive zero knowledge for NP from (plain)
Learning With Errors. In Crypto, 2019.

90. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and
composable oblivious transfer. In Crypto, 2008.

91. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Jo. of Cryptology, 13(3), 2000.

92. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.

93. A. Sahai. Non-malleable non-interactive zero knowledgeand adaptive chosen-
ciphertext security. In FOCS, 1999.

94. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen
ciphertext attack. In Eurocrypt, 1998.

95. Y. Tauman Kalai, G. Rothblum, and R. Rothblum. From obfuscation to the security
of Fiat-Shamir for proofs. In Crypto, 2017.

96. H. Wee. KDM-security via homomorphic smooth projective hashing. In PKC, 2016.
97. S. Yamada. Asymptotically compact adaptively secure lattice IBEs and verifiable

random functions via generalized partitioning techniques. In Crypto, 2017.

A Additional Definitions

A.1 Non-Interactive Zero-Knowledge and Simulation-Sound Proofs

We recall the definitions of NIZK proofs. Since it is sufficient for our applications,
we allow the common reference string to be generated as a function of the
language L (analogously to quasi-adaptive NIZK proofs [72]). We actually give
a slightly different definition than the standard ones, defining NIZK for gap
languages. That is, a language is defined by a pair of language Lzk ⊆ Lsound, and
completeness is guaranteed for statements in Lzk while soundness is guaranteed
for statement outside Lsound. This is sufficient for our purpose.

Definition A.1. A non-interactive zero-knowledge (NIZK) argument system
Π for a language L = (Lzk,Lsound) associated to two NP relations (Rzk, Rsound)
consists of four PPT algorithms (Genpar,GenL,P,V) with the following syntax:

• Genpar(1λ) takes as input a security parameter λ and outputs public parameters
par.

• GenL(1λ,L) takes as input a security parameter λ and the description of L
which specifies a statement length N . It outputs the language-dependent part
crsL of the common reference string crs = (par, crsL).

• P(crs, x, w) is a proving algorithm taking as input the common reference
string crs, a statement x ∈ {0, 1}N and a witness w such that (x,w) ∈ Rzk.
It outputs a proof π.

36

• V(crs, x, π) is a verification algorithm taking as input a common reference
string crs, a statement x ∈ {0, 1}N , and a proof π. It outputs 1 or 0.

Moreover, Π should satisfy the following properties. For simplification we denote
below by Setup an algorithm that runs successively Genpar and GenL to generate
a common reference string.

• Completeness: For any (x,w) ∈ Rzk, we have

Pr
[
crs← Setup(1λ,L), π ← P(crs, x, w) : V(crs, x, π) = 1

]
≥ 1− negl(λ) .

• Soundness: For any x ∈ {0, 1}N \ Lsound and any PPT prover P ∗, we have

Pr
[
crs← Setup(1λ,L), π ← P ∗(crs) : V(crs, x, π) = 1

]
≤ negl(λ) .

• Zero-Knowledge: There is a PPT simulator (Sim0,Sim1) such that, for
any PPT adversary A, we have

|Pr[crs← Setup(1λ,L) : 1← AP(crs,·,·)(crs)]
− Pr[(crs, τzk)← Sim0(1λ,L) : 1← AO(crs,τzk,·,·)(crs)]| ≤ negl(λ) .

Here, P(crs, ·, ·) is an oracle that outputs ⊥ on input of (x,w) 6∈ Rzk and
outputs a valid proof π ← P(crs, x, w) otherwise; O(crs, τzk, ·, ·) is an oracle
that outputs ⊥ on input of (x,w) /∈ Rzk and outputs a simulated proof
π ← Sim1(crs, τzk, x) on input of a pair (x,w) ∈ Rzk. Note that this simulated
proof π is generated independently of the witness w provided as input.8

Definition A.1 captures a notion of multi-theorem zero-knowledge, which
allows the adversary to obtain proofs for multiple statements. Feige et al. [46]
gave a generic transformation of a multi-theorem NIZK argument system from a
single-theorem one (where the adversary can only invoke the oracle once).

We now recall the definition of simulation-soundness introduced in [93], which
informally captures the adversary’s inability to create a new proof for a false
statement x? even after having seen simulated proofs for possibly false statements
{xi}i of its choice.

In the following, in order to allow a challenger to efficiently check the win-
ning condition (ii) in the security experiment, we restrict ourselves to trapdoor
languages, where a language-specific trapdoor τL makes it possible to determine
if a given statement x? ∈ {0, 1}N belongs to the language Lzk with overwhelming
probability. This restriction has no impact on our applications where we always
have a membership testing trapdoor τL at our disposal.

Definition A.2 ([93,43]). Let a language L = (Lzk,Lsound). A NIZK argument
system for L provides unbounded simulation soundness if no PPT adversary
has noticeable advantage in this game.
8 In particular, Sim1 can be run on any statement x, even x /∈ Lsound. This is central in
the definition of unbounded simulation soundness (Definition A.2).

37

1. The challenger chooses a membership testing trapdoor τL that allows recogniz-
ing elements of Lzk. Let Sim = (Sim0,Sim1) be an efficient NIZK simulator
for L. The challenger runs (crs, τzk)← Sim0(1λ,L) and gives (crs, τL) to the
adversary A.

2. A is given oracle access to Sim1(crs, τzk, ·). At each query, A chooses a
statement x ∈ {0, 1}N and obtains π ← Sim1(crs, τzk, x).

3. A outputs (x?, π?).

Let Q be the set of all simulation queries and responses (xi, πi) made by A to
Sim1(crs, τzk, ·). The adversary A wins if the following conditions are satisfied:
(i) (x?, π?) 6∈ Q; (ii) x? 6∈ Lsound; and (iii) V(crs, x?, π?) = 1. The adversary’s
advantage Advuss

A (λ) is its probability of success taken over all coin tosses.

B Proof of Theorem 3.1

To prove the statement, we prove that the scheme enables correct decryption with
overwhelming probability in injective mode. We also prove the indistinguishability
properties using the LWE assumption on one occasion.

Decryption under injective tags. For any initialization value K ∈ K, any
tag t ∈ {0, 1}` such that (K, t) ∈ RBM, any message Msg ∈ {0, 1}n0 , and any
encryption c ∈ Znq of Msg under the pk = (A, {Ai}ui=1) and t, we have:

[−S> | In0] · c = E> · [Im | RF,t] · r + Msg · bq/2c ∈ Zn0
q

We show that ‖E>[Im | RF,t] · r‖∞ < q/4 with all but negligible probability,
so that the decryption algorithm recovers the initial message with probability
exponentially close to 1. To prove this, notice that our definition of the randomness
space RLPKE imposes the inequality ‖r‖∞ ≤ ‖r‖ ≤ σ

√
2m. Besides, we also have

‖[Im | RF,t]‖∞ ≤ 1 + ‖RF,t‖∞ ≤ 1 +m3u(L+ 1). Moreover, we have

‖E>‖∞ = max
i∈[n0]

m∑
j=1
|eij | ≤

√
m · max

i∈[n0]

√√√√ m∑
j=1

e2
ij ≤ m · αq

with overwhelming probability when E> ←↩ DZn0×m,αq. Putting it all together,
our choice of parameters implies that

‖E>‖∞ · ‖[Im | RF,t]‖∞ · ‖r‖∞ ≤ mαq · (1 +m3u(L+ 1)) · σ
√

2m < q/4 .

Indistinguishability. The key generation algorithm LKeygen and Keygen satisfy
the following properties:

(i) The LWE assumption implies that, for any K ∈ Kλ, the distributions
Dloss = {(pk, tk) | (pk, sk, tk) ← LKeygen(Γ,K)} and Dinj = {(pk, tk) |
(pk, sk, tk) ← Keygen(Γ,K)} are computationally indistinguishable. These

38

distributions only differ in the generation of the matrix A ∈ Zn×mq . The ma-
trix A produced by the Keygen algorithm is pseudorandom since, under the
LWEq,m,n−n0,α assumption, we can replace S>B̄ + E> by a uniform matrix
B ∼ U(Zn0×m

q) without the adversary noticing. When using LKeygen, the
matrix A ∈ Zn×mq is statistically uniform by the properties of the TrapGen
algorithm (specifically, Lemma 2.2).

(ii) For any distinct initialization values K,K ′ ∈ Kλ, the two distributions {pk |
(pk, sk, tk) ← LKeygen(Γ,K)} and {pk | (pk, sk, tk) ← LKeygen(Γ,K ′)}
are statistically indistinguishable since the public matrices (A, {Ai}) are
statistically uniform and independent regardless of which K is used as input
by LKeygen. Recall the matrix A produced by the LKeygen algorithm is
statistically close to U(Zn×mq) by the properties of the TrapGen. As for
the matrices Ai = A · Ri + κi · G, the Leftover Hash Lemma implies
that the statistical distance between the distributions {(A,A ·Ri) | A ←↩
U(Zn×mq),Ri ←↩ U({−1, 1}m×m)} and {(A,Ai) | A,Ai ←↩ U(Zn×mq)} is
smaller than m ·

√
qn/2m < 2−λ, where the last inequality is implied by our

choice of m = 2ndlog qe+O(λ).

Lossiness under lossy tags. It is enough to prove that the distribution of a
ciphertext obtained by encrypting under a lossy tag is statistically close to the
uniform distribution on Znq .

For any initialization valueK ∈ Kλ and tag t ∈ {0, 1}` such that (K, t) 6∈ RBM,
any pair

(
pk = (A, {Ai}ui=1), sk = (S,K), tk

)
← Keygen(Γ,K), and any message

Msg ∈ {0, 1}n0 , an encryption of Msg is generated as

c = [A | AF,t] · r +
[

0n−n0

Msg · bq/2c

]
∈ Znq . (12)

where r ←↩ DZ2m,σ and ĀF,t = [A | A ·RF,t + G] ∈ Zn×2m
q . The matrix ĀF,t

is of this form because t is a lossy tag (i.e., (K, t) /∈ RBM), which is equivalent
to FMAH(K, t) = 1. This implies that the columns of ĀF,t generate Znq . By
[85, Lemma 5.3], we know that ĀF,t has a trapdoor TF,t ∈ Z2m×2m (namely,
a short basis of the lattice Λ⊥(ĀF,t)) such that ‖T̃F,t‖ ≤ (‖RF,t‖ + 1) ·

√
5

and thus ‖T̃F,t‖ ≤
√

5 · (m3.5u · (L + 1) + 1). Again, by [55, Lemma 3.1], we
know that η2−m(Λ⊥(ĀF,t)) ≤ ‖T̃F,t‖ ·O(

√
m). By the choice of the parameter

σ = O(m4) · u(L+ 1), we can conclude that σ ≥ η2−m(Λ⊥(ĀF,t)). By applying
[55, Lemma 5.2], we conclude that ĀF,t · r is statistically close to the uniform
distribution U(Znq) when r←↩ DZ2m,σ.

Efficient opening under lossy tags. From the previous paragraph, we know
that the lattice Λ⊥q (ĀF,t) has a basis satisfying ‖T̃F,t‖ ≤

√
5 · (m3.5u(L+ 1) + 1).

By the choice of σ = O(m4) · u(L + 1), the condition σ ≥ ‖T̃F,t‖ · ω(
√

log 2m)
holds. For any cMsg1 ∈ Znq , we can thus apply Lemma 2.3 and sample a Gaussian
vector r̄ ∈ Z2m from the distribution D

Λ
cMsg1
q (ĀF,t),σ

. Our argument to prove the
lossiness under lossy tags implies that encrypting any message Msg0 ∈ {0, 1}n0

39

under a lossy tag leads to a statistically uniform ciphertext c ∼s U(Znq). In
particular, for any Msg1 ∈ {0, 1}n0 , the distribution

{
(
ĀF,t, cMsg1 = ĀF,t · r0 + [0n−n0

Msg0·bq/2c]− [0n−n0
Msg1·bq/2c], r̄

)
|

r0 ←↩ DZ2m,σ, r̄←↩ DΛ
cMsg1 (ĀF,t),σ}

is statistically close to{(
ĀF,t, cMsg1 = c− [0n−n0

Msg1·bq/2c], r̄
)
| c←↩ U(Znq), r̄←↩ DΛ

cMsg1 (ĀF,t),σ

}
,

which is itself statistically close to
{(

ĀF,t, cMsg1 = ĀF,t · r, r
)
| r←↩ DZ2m,σ

}
.

Efficient opening under lossy keys. By [37, Lemma 3.2], we know that a
basis TA,t ∈ Z2m×2m for the lattice Λ⊥q ([A|AF,t]) can be efficiently computed
given a basis TA ∈ Zm×m of the lattice Λ⊥q (A). Moreover, this basis satisfies
‖T̃A‖ = ‖T̃A,t‖. By Lemma 2.2, it follows that ‖T̃A,t‖ ≤ O(

√
n log q) = O(

√
m).

By the choice of parameters, we obtain that σ ≥ ‖T̃A,t‖ · ω(
√

log 2m). Hence,
by Lemma 2.3, we can sample r̄ ∈ Z2m from a distribution statistically close
to D

Λ
cMsg1
q (ĀF,t),σ

. The claim follows from the same arguments as in the case of
efficient openings under lossy tags. ut

C A Simple Trapdoor Σ-Protocol for LWE

In this section, we describe a very simple trapdoor Σ-protocol inspired by the
Gap Σ-protocol of Asharov et al. [9,8] for the language LB,B∗ = {Lzk,Lsound},
where

Lzk :=
{

(B,y) ∈ Zm×nq × Zmq | ∃s ∈ Zn : ‖y−B · s‖∞ ≤ B
}
,

Lsound :=
{

(B,y) ∈ Zm×nq × Zmq | ∃s ∈ Zn : ‖y−B · s‖∞ ≤ B∗
}
,

where Lzk ⊆ Lsound when B ≤ B∗.
The construction is simpler than the Micciancio-Vadhan protocol, but its

honest-verifier zero-knowledge property requires a super-polynomial modulus q.
As in the protocol of Section 4.2, the TrapGen algorithm inputs a membership-

testing trapdoor τLB,B∗ that consists of a small-norm full-rank integer matrix
TB ∈ Zm×m such that TB ·B = 0m×n mod q.

Genpar(1λ) : On input of a security parameter λ, choose integers B,B∗ such that
B/B∗ ∈ negl(λ), a modulus q, dimensions n,m, and error rate α > 0. Define
par = {λ, q, n,m, α}.

GenL(par,LB,B∗) : Given public parameters par and a description of a language
LB,B∗ which specifies real numbers B,B∗ > 0 and a matrix distribution DB,
sample a matrix B←↩ DB and define crsL = {B, B,B∗}. The global common
reference string consists of

crs =
(
{λ, q, n,m, α}, {B, B,B∗}

)
.

40

TrapGen(par, τLB,B∗) : On input of public parameters par and a trapdoor τLB,B∗
for the language LB,B∗ , which consists of a matrix τLB,B∗ = TB produced
as (B,TB)← TrapSampB(1λ, 1n, 1m, q), it outputs crsL = {B, γ, B}, which
defines crs =

(
{λ, q, n,m, α}, {B, B,B∗}

)
, as well as the trapdoor τΣ = TB.

P
(
crs,y, (s, e)

)
↔ V(crs,y) : Given crs, a statement y = B · s + e ∈ Zmq and P

(who has the witness e ∈ Zm such that ‖e‖∞ ≤ B) and V interact in the
following way.

1. P chooses s′ ←↩ U(Znq) and e′ ←↩ U([−(B
∗

2 − B), (B
∗

2 − B)]m) and
computes a = B · s′ + e′ ∈ Zmq , which is sent to V .

2. V sends a random challenge Chall ∈ {0, 1} to P .
3. P computes z = s′ + Chall · s ∈ Znq and sends it to V .
4. Upon receiving z ∈ Znq , V checks if

a + Chall · y−B · z ∈
[
−B

∗

2 ,
B∗

2

]m
.

If this condition does not both hold, V halts and returns ⊥.

BadChallenge
(
par, τΣ , crs,y,a

)
: Given τΣ = TB, parse the first prover message

as a ∈ Zmq . It uses the trapdoor TB to determine if there exist vectors
s′ ∈ Znq and e′ ∈ [−B∗/2, B∗/2]m such that a = B · s′ + e′ mod q. If so,
it sets Chall = 0. Otherwise, it sets Chall = 1 if there exist s′ ∈ Znq and
e′ ∈ [−B∗/2, B∗/2]m such that a + y = B · s′ + e′ mod q. In any other case,
it sets Chall =⊥.

Lemma C.1. The above construction is a trapdoor Σ-protocol for LB,B? .

Proof. We first prove the HVZK property exactly as in [9, Theorem F.1]. Given
a statement y ∈ Lzk and a challenge Chall∗ ∼ U({0, 1}), the simulator first
samples vectors z∗ ←↩ U(Znq), e∗ ←↩ U([−(B

∗

2 −B), (B
∗

2 −B)]m) and computes
a∗ = B · z∗ + e∗ − Chall∗ · y. Note that (a∗,Chall∗, z∗) is an accepting transcript.
We now show that it is statistically indistinguishable from a real transcript.

If y ∈ Lzk, there exists (s, e) ∈ Znq × [−B,B]m such that y = B · s + e, so
that the simulated a∗ can be written a∗ = B · s′ + e′ with s′ = z∗ − s ∈ Znq and
e′ = e∗ − Chall∗ · e ∈ Zm. We assume that Chall∗ = 1 since the two distributions
are exactly identical otherwise. In this case, we have e′ ∈ [−B∗/2, B∗/2]m.
Since B

B∗/2−B ∈ negl(λ), it follows that the two distributions are statistically
indistinguishable by [9, Lemma 2.1].

Soundness can be shown as in [9, Theorem F.1], by subtracting the verification
equations for a given a ∈ Zmq and two distinct Chall0,Chall1 ∈ {0, 1}.

We are left with showing that BadChallenge provides the correct result. For a
given message a ∈ Zmq sent by the prover, let us assume that there exist s′ ∈ Znq
and e′ ∈ [−B∗/2, B∗/2]m such that a = B · s′ + e′ mod q (which BadChallenge
can detect using the trapdoor TB). In this case, z = s′ is a valid response
for Chall = 0. Moreover, no valid response can exist for Chall = 1 as it would

41

contradict the assumption that y 6∈ Lsound by the soundness property. Now,
let us assume that there exist s′ ∈ Znq and e′ ∈ [−B∗/2, B∗/2]m such that
a + y = B · s′ + e′ mod q. In this case, we know that the corresponding z = s′ is
a valid response to Chall = 1. By applying the same argument as before, we know
that no valid response can exist for Chall = 0 as it would contradict y 6∈ Lsound.
Hence, we find that BadChallenge always outputs the correct Chall ∈ {0, 1} that
admits a valid response. ut

D Proof of Theorem 5.2

Proof. The proof uses of a sequence of games starting with a game where the
challenger’s hidden bit is d = 0 and ending with a game where d = 1. For each i,
Si is the event that A wins in Gamei.

Game1: This game is the real KDM-CCA experiment where the challenger’s
bit is d = 0. In details, the challenger generates a sequence of N public
keys {PKi}Ni=1, where PKi :=

(
Ai,ui,0,ui,1, crsi

)
for each i ∈ [N]. It gives

{PKi}Ni=1 to the adversary A and keeps the private keys {SKi = zi,0}Ni=1
to itself. At each decryption query, B faithfully runs the real decryption
algorithm using the private keys {SKi = zi,0}Ni=1. At each encryption query,
the adversary A chooses an index j ∈ [N] and an affine function fV,w specified
by a matrix V = [v1| . . . |vN] ∈ Zm×Np and a scalar w ∈ Zp. The challenger
replies by generating a challenge ciphertext C? =

(
c?0,0, c?0,1, c?1,0, c?1,1,π?

)
which is an encryption under PKj of the function

fV,w(Z) =
N∑
i=1
〈vi, zi,0〉+ w ,

where Z = [z1,0 | . . . | zN,0] ∈ Zm×N . Decryption queries are disallowed for
ciphertexts C? returned by the encryption oracle. Eventually, A halts and
outputs a bit d′ ∈ {0, 1}. We denote by S1 the event that d′ = 0.

Game2: We change the decryption oracle. Instead of using the private keys
{SKi = zi,0}Ni=1 at each valid decryption query (j,C), where j ∈ [N] and
C =

(
c0,0, c0,1, c1,0, c1,1,π

)
, B recalls the short vectors {zi,1}Ni=1 for which

ui,1 = −A · zi,1 and decrypts (c1,0, c1,1) by computing c1,1 + z>j,1c1,0 mod q.
Clearly, A’s view is not affected by this change unless it is able to invoke
the decryption oracle on a valid-looking ciphertext although (c0,0, c0,1) and
(c1,0, c1,1) are not both valid encryptions of some message µ ∈ Zp for the
public key PKj . Note that this can only happen for a ciphertext such that(
c>0,0 | c0,1 | c>1,0 | c1,1)> is outside the language LNY defined by PKj . If
we call E2 the event that such a decryption query occurs, we have the
inequality |Pr[S1] − Pr[S2]| ≤ Pr[E2]. Moreover, event E2 would imply
an algorithm B that breaks the soundness of the proof system when a
membership testing trapdoor τL is available. Concretely, Lemma D.1 shows
that Pr[E2] ≤ N ·Advsound

B (λ).

42

Game3: This game is like Game2 except that, at each encryption query (j, fV,w),
the returned ciphertext C? =

(
c?0,0, c?0,1, c?1,0, c?1,1,π?

)
is obtained by comput-

ing π? as a simulated proof using the simulation trapdoor associated with
the language LNY defined by PKj . The statistical zero-knowledge property
of the proof system guarantees that A’s view is not affected by this change.
We have |Pr[S3]− Pr[S2]| ≤ 2−Ω(λ).

Game4: We modify the treatment of encryption queries (j, fV,w). When B com-
putes a challenge ciphertext C? =

(
c?0,0, c?0,1, c?1,0, c?1,1,π?

)
, it computes a

hybrid ciphertext where (c?0,0, c?0,1) is an encryption of 0 ∈ Zp and c?1,0, c?1,1
is an encryption of fV,w(Z). It is easy to prove that any PPT adversary
A that can distinguish between Game3 and Game4 would imply an adver-
sary against the KDM-CPA security of the scheme in [66], which would
contradict the LWE assumption. The result of [66, Theorem 2] implies that
|Pr[S4]− Pr[S3]| ≤ N ·Q ·Advlwe(λ), where Q is the number of encryption
queries made by the adversary A.

Game5: We modify again the decryption oracle. This time, instead of using the
backdoor keys {zi,1}Ni=1 to recover the plaintext µ from (c1,0, c1,1) at each
valid decryption query (j,C), where j ∈ [N] and C =

(
c0,0, c0,1, c1,0, c1,1,π

)
,

the challenger B reverts to using the actual secret keys {SKi = zi,0}Ni=1
to compute µ′ = c0,1 + z>j,0 · c0,0 mod q from (c0,0, c0,1). It is easy to see
that the adversary’s view remains as in Game4 until it manages to query
the decryption oracle on a valid-looking ciphertext C for PKj although
(c0,0, c0,1) and (c1,0, c1,1) are not both valid encryptions of a given message
µ. If we denote by E5 the latter event, Lemma D.2 shows that it contradicts
the unbounded simulation-soundness of the underlying proof system.

Game6: We bring yet another modification to the generation of challenge ci-
phertexts C? =

(
c?0,0, c?0,1, c?1,0, c?1,1,π?

)
. Namely, in all encryption queries

(j, fV,w), instead of generating (c?0,0, c?0,1) and (c?1,0, c?1,1) as encryptions of
0 and fV,w(Z), respectively, (c?0,0, c?0,1), and (c?1,0, c?1,1) are now obtained by
encrypting 0 ∈ Zp twice. Any noticeable change in A’s output distribution
would imply an IND-CPA adversary in the multi-user setting against the
scheme of [66]. Since KDM-CPA security implies IND-CPA security, the
result of [66, Theorem 2] thus implies |Pr[S6]−Pr[S5]| ≤ N ·Q ·Advlwe(λ).

Game7: We bring one last change to the generation of the challenge ciphertexts
C? =

(
c?0,0, c?0,1, c?1,0, c?1,1,π?

)
. Instead of computing π? using the simulation

trapdoor of Π, we compute it using the witnesses (s1, s2, e0, e1, χ0, χ1). This
change does not significantly affect A’s view since the obtained proofs are
statistically close to those of Game6. We have |Pr[S7]− Pr[S6]| ≤ 2−Ω(λ).

We observe that Game7 corresponds to the actual KDM-CCA experiment
where the challenger’s bit is d = 1. If we combine the above, we obtain that
|Pr[S1]−Pr[S7]| ≤ negl(λ) assuming that the LWE assumption holds and that Π
provides unbounded simulation-soundness. ut

43

Lemma D.1. Assuming that an adversary A can distinguish between Game1
and Game2, there exists an algorithm B with comparable running time that breaks
the soundness of the proof system Πuss with advantage Advsound(λ) ≥ Pr[E2]/N .

Proof. Algorithm B is given a common reference string crs and the description of
a language consisting of a matrix A ∈ Zn×mq together with vectors u0,u1 ∈ Znq
as well as a membership testing trapdoor τL consisting of a trapdoor TA ∈
Zm×m for Λ⊥(A). Using TA ∈ Zm×m, B can generate short Gaussian vectors
z0, z1 ∈ Zm with standard deviation r such that u0 = −A · z0 and u1 =
−A · z1. It chooses i? ←↩ U([N]) as a guess that event E2 occurs for the first
time in a decryption query involving the secret key SKi? . Next, B faithfully
generates {PKi}i∈[N]\{i?} and {SKi}i∈[N]\{i?}. In the process of generating
{PKi}i∈[N]\{i?}, it also generates the matrices Ai ∼ U(Zn×mq) together with a
trapdoor TAi

for Λ⊥(Ai) for each i ∈ [N]\{i?}. Then, B defines the i?-th public
key as PKi? :=

(
A,u0,u1, crs

)
and runs the adversary on input of {PKi}i∈[N].

Since B knows {SKi}i∈[N], it can properly answer all queries exactly as in
the real game. In addition, it can detect any occurrence of event E2 since it
knows trapdoors TAi

for all matrices {Ai}Ni=1. Recall that an occurrence of
event E2 consists of a valid ciphertext C =

(
c0,0, c0,1, c1,0, c1,1,π

)
for which(

c>0,0 | c0,1 | c>1,0 | c1,1)> is outside LNY. At the first such occurrence, B aborts
if the involved public key is not PKi? . Otherwise, it halts and outputs the
statement

(
c>0,0 | c0,1 | c>1,0 | c1,1)> and the proof π extracted from C. Clearly, if

B successfully guesses the index i? of the public key involved in the first occurrence
of E2, it manages to break the soundness of Πuss. Since i? ←↩ U([N]) is chosen
independently of A’s view, we have Pr[E2] ≤ N ·Advsound

B (λ), as claimed. ut

Lemma D.2. Game5 is computationally indistinguishable from Game4. Assum-
ing that A can distinguish between these games, there exists a PPT algorithm
B that breaks the unbounded simulation-soundness of the proof system Πuss with
advantage Advuss(λ) ≥ Pr[E5]/N .

Proof. Let us assume that there exists an adversary A that can distinguish
between the two games. We use A to build an adversary B against the unbounded
simulation-soundness of the proof system. Algorithm B is given a common
reference string crs and the description of a language LNY specified by a matrix
A ∈ Zn×mq and vectors u0,u1 ∈ Znq . It also receives a membership testing
trapdoor τL consisting of a trapdoor TA ∈ Zm×m for the lattice Λ⊥(A). Using
TA ∈ Zm×m, B can generate short Gaussian vectors z0, z1 ∈ Zm with standard
deviation r such that u0 = −A · z0 and u1 = −A · z1. It also draws i? ←↩ U([N])
as a guess that E5 will occur for the first time in a decryption query involving
the secret key SKi? . It also sets zi?,0 := z0 and zi?,1 := z1. Next, B generates the
remaining key pairs {(PKi, SKi)}i∈[N]\{i?} as in the real encryption scheme. As
part of this process, B needs to generate public matrices Ai ∼ U(Zn×mq) together
with their corresponding trapdoors TAi

for Λ⊥(Ai) for each i ∈ [N] \ {i?}. It
also defines PKi? := (A,u0,u1, crs) and feeds A with the input {PKi}i∈[N]. In

44

the following, we denote by LNY,(i)
sound the language associated with the i-th public

key PKj (so that LNY,(i?)
sound is B’s challenge language LNY

sound).
To answer an encryption query (j, fV,w), B uses PKj to compute the left

ciphertext (c0,0, c0,1) as an encryption of 0 ∈ Zp and the right ciphertext (c1,0, c1,1)
as an encryption of fV,w(Z). It then invokes its challenger and asks for a simulated
proof π ← Sim1(crs, τzk, (c0,0, c0,1, c1,0, c1,1)). Using the latter, it returns the
ciphertext ((c0,0, c0,1, c1,0, c1,1),π) to the adversary. To answer a decryption
query (j,C = (c0,0, c0,1, c1,0, c1,1,π)) for which (c0,0, c0,1, c1,0, c1,1) ∈ LNY,(j)

sound
(note that B can perform this check using the trapdoor τL for the language
LNY,(j)

sound C was never the result of an encryption query under PKj , the reduction
computes µ′ = c0,0 + z>j · c0,0 as in Game5 and returns µ such that |µ′ − p · µ| is
minimized.

At the first decryption query (i,C = (c0,0, c0,1, c1,0, c1,1,π)) involving a
ciphertext such that (c0,0, c0,1, c1,0, c1,1) 6∈ LNY,(i)

sound , B halts (recall that B can
always detect an occurrence of E5 using the trapdoor τL for LNY,(i)

sound). If i 6= i?,
B aborts and reports failure. Otherwise, it relays (x = (c0,0, c0,1, c1,0, c1,1),π)
to its unbounded simulation-soundness challenger. Since i? ∈ [N] was sampled
independently of A’s view, the same arguments as in the proof of Lemma D.1
show that Advuss

B (λ) ≥ 1
N · Pr[E5]. ut

45

