
I Want to Forget: Fine-Grained Encryption with Full
Forward Secrecy in the Distributed Setting

David Derler1,‡, Sebastian Ramacher2,‖, Daniel Slamanig2, and Christoph Striecks2

1 DFINITY
david@dfinity.org

2 AIT Austrian Institute of Technology, Vienna
{sebastian.ramacher|daniel.slamanig|christoph.striecks}@ait.ac.at

Abstract. Managing sensitive data in highly-distributed environments is gaining
a lot of attention recently. Often, once data is presented to such environments, this
data is persistent there. Being able to “forget” in such environments constitutes a very
desired feature due to data security and privacy issues. In particular, applying the
European General Data Protection Regulation (GDPR), the “Right to be Forgotten”
essentially became a data owner right.

In this work, we seek for cryptographic solutions that offer the possibility to willfully
lose access to data in distributed environments (which can be seen equivalent to
removing that data). We argue that simple encryption mechanisms do not suffice
to cover all desired requirements and provide a solution that offers several strong
security and privacy features. In particular, our solution achieves forward secrecy for
all participants in the system (i.e., even when user keys leak), ensures strong privacy
against public observers of the system (i.e., key anonymity against tracking), and
enables fine-grained access control. Having those features in parallel was unknown
from the cryptographic literature.

We base our solution on a novel cryptographic primitive we dub Identity-Based
Puncturable Encryption (IBPE) which significantly enhances previous ideas on Punc-
turable Encryption (PE) due to Green and Miers (IEEE S&P 2015) and Günther et
al. (EUROCRYPT 2017). We argue that black-box constructions from Hierarchical
Identity-Based Encryption (HIBE) do not seem to work, albeit we do know how to
construct PE from HIBE. We further introduce an important feature being crucial
in the setting of always-accessible and public data, namely that of key-anonymity
for IBPE such that an IBPE ciphertext reveals nothing about the encryption key.
We demonstrate the feasibility of our IBPE construction with a practical prototype
implementation. Finally, we show that IBPE is a very versatile tool by using it to
generically instantiate forward-secret IBE and forward-secret digital signatures, latter
also being of importance in a distributed setting.

Keywords: puncturable encryption � forward secrecy � distributed setting

1 Introduction

Distributed3 technologies allow to remove the need for (trusted) central authorities with the
benefits of entirely removing single points of failure and undesired concentration of trust.

‡ Work partly done while the author was with Graz University of Technology.
‖ Work done while the author was with Graz University of Technology.
3 We refer to the term distributed as defined by Baran [Bar62], i.e., there is a hierarchy from

centralized to decentralized to distributed. Hence, distributed implies the other two.

mailto:david@dfinity.org
mailto:sebastian.ramacher@ait.ac.at
mailto:daniel.slamanig@ait.ac.at
mailto:christoph.striecks@ait.ac.at

Consequently, emerging technologies such as distributed storage gained a lot of attention
in recent time. In such systems, data is typically accessed or held in a distributed way, e.g,
dispersed over or replicated on multiple nodes which bears several threats to data security
and privacy.

This distributed nature improves availability of data with several further benefits. How-
ever, for reliable erasure of data from such a system, one can quickly conclude that this
becomes a non-trivial task. One might think of a node that goes offline immediately after
receiving data and only goes online again after a certain erasure operation took place. Here,
it is hard to enforce or guarantee the erasure (or, deletion) of data from such systems as
data may reside on multiple different locations. Moreover, to allow data owners to control
access to their data, data-access control mechanisms have to be deployed in such settings;
which by itself is a non-trivial issue and often only realized in software products (that are
prone to implementation errors).

Looking at new regulations such as the European General Data Protection Regulation
(GDPR)4, deletion of data becomes a data-owner right from a legal point of view: GDPR’s
“Right to be Forgotten” (Recitals 65, 66 and Article 17) essentially states that data con-
trollers (e.g., organizations) have to erase personal data under certain conditions if the data
owners request erasure of their data. Under the GDPR, organizations most probably would
not store personal data in an uncontrolled (e.g., distributed) environment. However, more
and more recent technologies (e.g., distributed application and decentralized storage) such
as Filecoin5, Sia [VC14] or Storj [WBB+16] are using such distributed technologies. More-
over, although there are academic and open-source distributed storage frameworks that put
a focus on security (e.g., [BCQ+13, LHS15]), most prominent frameworks such as Ceph,
Minio, or Swift6 as well as the increasingly popular storage layer InterPlanetary File System
(IPFS) [Ben18] do not.

Motivation. We believe that being able to “forget” data in highly distributed environments
is crucial to data security. Furthermore, without appropriate access-control mechanisms, dis-
tributed data can even be publicly accessible and permanently analyzable which additionally
threatens users’ privacy. This is different to more ephemeral settings like the Internet where
data is much more versatile and one has to invest significantly more effort to capture Internet
traffic. Naturally, encryption mechanisms with build-in privacy features provide a suitable
mitigation where only the data owner (relying on encryption keys) is able to access her own
data. We see the following core features are essential to be considered in a our (distributed)
setting:

Practical data-security mechanism. Protecting data in such settings is an essential goal and
should be achieved in a practical way. Encryption techniques provide suitable mechanisms
and we will consider different known solutions below before we introduce ours that signif-
icantly enhance the state of the art.

Practical key management. As encryption techniques shall be used, key management should
be as simple and powerful as possible. Ideally, every participant holds a single compact key
that does not need to change frequently, and, in particular, can be used for an unbounded
number of encryptions. In addition, users should not be required to keep a (large) local
state.

4 https://gdpr.eu
5 https://filecoin.io/
6 https://ceph.com/, https://www.minio.io/, https://wiki.openstack.org/wiki/Swift

2

https://gdpr.eu
https://filecoin.io/
https://ceph.com/
https://www.minio.io/
https://wiki.openstack.org/wiki/Swift

Full forward secrecy. Large-scale data breaches (of sensitive passwords protecting the unau-
thorized use of cryptographic keys) happen quite frequently.7 In the past, this strongly
motivated the use of mitigation methods such as full forward secrecy, which essentially
ensures that leakage of a secret key at some point in time only affects encryptions from
that time onwards while encryptions created prior to the key leakage are considered not
in danger.8

Fine-grained access control. Secure access-control management is essential in almost every
distributed system. Hence, we seek at providing reliable and strong access control to data
and stress that key-leakage mitigations shall apply to all legitimate users that have access
to data. Furthermore, we want that users fine-granularly can delegate access to other users
(without giving up the forward-secrecy feature for the delegatee).

Encryption-key privacy. In many encryption mechanisms seeing a ciphertext reveals the
public-key under which an encryption was generated. Those (public-key) meta-data can
lead to severe privacy problems when data is stored in a distributed fashion and available
for analysis to many different parties for a potentially very long time. Consequently, en-
cryptions should hide information about the respective (public) keys. This feature is known
as key privacy or anonymity [BBDP01] and we consider it to be an important property in
distributed technologies.

We believe that all those requirements above are very important in the distributed setting
and we will subsequently argue why prior encryption solutions do not suffice to realize all
features in parallel.

The problem. A natural first step for data owners in the distributed regime is the use of
cryptographic mechanisms and in particular encryption, e.g., secret-key encryption (SKE),
to protect the data from being readable by arbitrary nodes or more generally unauthorized
entities. This protects against eavesdroppers and introduces data-access control since only
the legitimate data owner can access the plain data. Erasure of the data is then reduced to
erasing the (secret) key associated to the encrypted data on the data-owner side regardless of
where the encrypted data is distributed to. Now, if persistent encrypted data is not declared
as “personal data” (which seems to be a reasonable assumption), then data owners have a
sound way of “erasing” their data even in the light of GDPR. Interestingly, key-management
for the data owner, i.e., sharing keys with other entities such that they can access the data,
is easily realizable as well. It can simply be done by providing the corresponding encryption
key for that encrypted data to that entity. Note, however, that this requires additional
mechanisms such as public-key encryption (PKE) to efficiently distribute the keys.9

Fine-grained key-management allows the data owner to only have a short secret seed
(e.g., a master key) from which many secret keys can be derived. Those derived keys can be
used to access encrypted data (one key per ciphertext). Particularly, the data owner can now
fine-granularly equip delegatees with unique derived keys such that only they can retrieve the
intended data. Since derived keys are unique, high security guarantees against eavesdroppers
can be claimed. Unfortunately, fine-grained key-management solely is not enough. Once the

7 See for instance https://en.wikipedia.org/wiki/List_of_data_breaches.
8 Such mitigation strategies are heavily used in interactive settings such as large-scale messaging

services, e.g., WhatsApp or Signal, and were made mandatory in version 1.3 of the Transport
Layer Security (TLS) protocol [Res18] for all public-key based key exchange mechanisms.

9 This is inherent in many encryption scenarios as it is in our and, ideally, has only to be done
once.

3

https://en.wikipedia.org/wiki/List_of_data_breaches

secret seed is leaked, all guarantees for the entire system are lost. Key-leakage prevention
mechanisms allow to mitigate such scenario in the sense that keys can be updated to a newer
period while old-period keys can be deleted. Furthermore, ciphertexts are also associated
to periods which implies that once a (secret) key leaks, old-period ciphertexts are not in
danger. However, updating keys requires interaction with all of the data holders.

We seek for a non-interactive solution that allows fine-grained key-management and key-
leakage prevention mechanisms at the data owner side, the latter as well at the delegatee’s
side. Albeit fine-grained key-management can be very efficiently implemented with SKE
techniques, the main concern is key leakage which becomes a much larger threat when deal-
ing with persistent data. (One can think of several-years-old encrypted sensitive data which
is still accessible today and within the next several years.) Even the recently established
technique of Puncturable Pseudo-Random Functions (PPRFs) [SW14], a symmetric primi-
tive, does not guarantee forward secrecy equipped with fined-grained key-management. The
latter ported to the PKE setting yields forward-secure PKE [CHK03], however, with in-
troducing such forward-secret PKE techniques, one still only obtains the same guarantees
as with PPRFs. A next step to mitigate the issues would be to rely on the more general
(fully) Puncturable Encryption paradigm [GM15, GHJL17a, DKL+18a] in that it allows
more fine-grained key-management in comparison with forward-secure PKE, but still can-
not guarantee non-interactive forward-secrecy and fine-grained key-management at the same
time. We refer to Table 1 for an overview.

Mechanism Fine-grained encryptions System-wide full forward secrecy

SKE Ë é

PPRF é Ë

FuPE Ë é

Ours (IBPE) Ë Ë

Table 1. Overview of encryption techniques. SKE, PPRF, and FuPE are acronyms for secret-key
encryption, puncturable pseudo-random functions, and fully puncturable encryption, respectively.

We are not aware of any approach in the cryptographic literature that solves this issue. It
seems that we are stuck with either having ease of key-management or having mitigation
against key-leakage in such settings to convincingly ensure erasure of data.

Our contribution. We propose a strongly secure and versatile encryption solution for
multi-user systems that mitigates secret-key leakage in form of non-interactive full forward
secrecy for each user, guarantees key anonymity such that ciphertexts do not reveal the
respective public key, and minimizes effort of key management, and supporting fine-grained
access control for an unbounded number of users. As the foundation, we propose a novel
cryptographic primitive dubbed Identity-Based Puncturable Encryption (IBPE) which ex-
tends recent works on Puncturable Encryption (PE). PE is a cryptographic paradigm that
brought full forward secrecy to important practical applications such as asynchronous mes-
saging and 0-RTT key exchange where the latter is an important building block for TLS,

4

but not sufficient to achieve our goals. We carefully adapt the PE techniques envisioned by
Green and Miers [GM15] and Günther, Hale, Jager, and Lauer [GHJL17a] to equip PE with
identity and key-anonymity capabilities. Our overall goal is related to what can be achieved
by the recent work by Derler et al. [DKL+18a]. However, their concept of so-called Fully
PE (FuPE) does not achieve forward-secrecy for all system participants (in their language,
positively punctured keys can no longer be negatively punctured) nor key-anonymity of
ciphertexts and also seems much more complicated to handle. In distributed settings, espe-
cially the missing two features become highly relevant. Unfortunately – and this is in contrast
to Derler et al. who can instantiate their FuPE scheme from any Hierarchical Identity-Based
Encryption (HIBE) scheme – we are not able to derive our construction generically from any
known cryptographic primitive. It seem that the desired features we are striving for need
significantly more technical care in constructing. We summarize our contributions below.

Identity-Based Puncturable Encryption. We introduce Identity-Based Puncturable Encryp-
tion (IBPE). Loosely speaking, IBPE allows to puncture secret keys on tags (like within
PE), i.e., a key punctured on a tag can no longer decrypt ciphertexts under this tag, but
in addition a secret key can be customized to a given identity once (and then further punc-
tured). Keys customized to an identity can only decrypt ciphertexts to this identity and
whose tags are distinct from the ones the key was punctured on. We want to stress that al-
though the primitive is called identity-based, we do not view it in the sense of (Hierarchical)
Identity-Based Encryption, i.e., that there is a central authority generating keys within a
system, but in the sense of public-key encryption where every user generates its own IBPE
key-pair. Hence there is no trust in a central authority. Besides introducing the concept
of IBPE, we rigorously model its security requirements in the vein of indistinguishability
under chosen-plaintext (IBPE-IND-CPA) and chosen-ciphertext attacks (IBPE-IND-CCA).
Further, we introduce key anonymity for IBPE (captured in our IND-KEY-ANON notion)
which guarantees that ciphertexts do not leak anything about the public key which was used
upon encryption. Looking ahead, this will be the essential starting point for key anonymity
in our proposed practical solution. We note that key anonymity becomes a privacy issues
when many instances of a cryptographic scheme are used.10 We want to stress that our IBPE
scheme also achieves full forward secrecy for secret keys customized to identities and, hence,
for all secret keys in a system which clearly distinguishes our work to trivial extensions of
encryption techniques to our setting. We then proceed to give an instantiation of a key-
anonymous IBPE scheme which takes as a starting point the Hierarchical Identity-Based
Encryption (HIBE) scheme due to Boneh-Boyen-Goh (BBG) [BBG05], but requires some
major modifications and tweaks to provide all the features required by an IBPE scheme as
well as new proof of security. A main benefit of the BBG HIBE is that the size of the ci-
phertexts is constant. Finally, we give a practical proof-of-concept instantiation of our IBPE
scheme with measurements.

Cryptographic applications. We demonstrate that IBPE is a versatile cryptographic tool by
showing that it can be used to generically instantiate other cryptographic primitives and
immediately yields (new) constructions thereof, potentially under weaker assumptions and
more efficient as previously known ones. In particular, we show how to generically construct
forward-secure identity-based encryption (IBE) [YFDL04], thereby – to the best of our
knowledge – obtaining the first fs-IBE scheme with compact ciphertexts, as well as forward-

10 In the cryptographic literature, mostly single-instance schemes are considered for security anal-
ysis.

5

secure signatures [BM99, Kra00, IR01, AABN02]. Especially, the latter primitive turned
out to be an interesting primitive in the context of distributed ledgers [DGKR18, GW19,
DN19]. For instance, they are useful to obtain strong security guarantees for the consensus
mechanism within proof-of-stake blockchain protocols as done in [DGKR18].

Application to fine-grained key-management. Integrating PE with identities and key-ano-
nymity allows us to guarantee forward secrecy, key-anonymity, and flexibility of fined-grained
access control at the same time, but without increasing the efforts of key management. This
is particularly important in settings where multiple users are present. We believe that those
techniques are particularly useful in application scenarios such as distributed ledgers that
are thought to store, manage, and share encrypted data without a centralized authority
in a fine-grained way, and additionally observers are able to analyze persistent and huge
amounts of data. Common symmetric encryption techniques fall short since it is unclear
how to combine forward-secrecy for all system users with the concept of identities in the
symmetric setting. We discuss how to deploy our solution in real-world environments in
Section 5.

1.1 Motivating Example: Receipts and Taxes

We want to sketch a concrete application scenario where our approach is well suited. In
particular, we envision efficient handling of processes related to electronic receipts and tax
offices via a distributed ledger. We note that this topic is in broad discussion11,12 and first
solutions in China are already in place.13

Tax offices often need to inspect the tax-related data of companies. For this purpose, they
need to get access to all the relevant data of a certain period of time, e.g., one year. After
the inspection, the tax offices need to delete the respective data according to EU privacy
law, i.e., the GDPR. This data, for example, includes all receipts which were issued by a
particular company for a particular time frame. Those receipts, once issued, must no longer
be changed and should also have a time stamp to ensure consistent ordering. Furthermore,
companies are legally obliged to keep their receipts for a certain amount of time, and, only
after this period has passed, they can delete them. Using our approach, companies could
encrypt all their receipts under their own public key and store them in the distributed
ledger. This way, it is ensured that it is no longer possible to change the content as well as
the order of the stored receipts. In case of an inspection, the tax office can use a customized
key received from the data owner. This can be done in a way such that the tax office can
only read the data required for the inspection but noting else. Once the inspection has been
completed, the tax office can simply puncture its customized key (i.e., to forget the ability
to decrypt the data from a certain time frame) with respect to, e.g., a certain time frame,
and it will no longer be able to decrypt the respective ciphertexts. Still our approach allows
the tax office to update the customized key in a way that it can decrypt data for future time
frames in a non-interactive way and this can be done repeatedly, i.e., every year. Similarly,
also companies can give up the decryption abilities for all the data they are no longer legally
obliged to keep, which in turn greatly helps to reduce the risk associated to key leakage.

11 https://www.pwc.co.uk/issues/futuretax/how-blockchain-technology-could-improve-tax-
system.html

12 https://www.ey.com/en gl/trust/how-blockchain-could-transform-the-world-of-indirect-tax
13 https://www.asiacryptotoday.com/official-announcement-blockchain-tax-receipts-have-arrived-

in-china/

6

https://www.pwc.co.uk/issues/futuretax/how-blockchain-technology-could-improve-tax-system.html
https://www.pwc.co.uk/issues/futuretax/how-blockchain-technology-could-improve-tax-system.html
https://www.ey.com/en_gl/trust/how-blockchain-could-transform-the-world-of-indirect-tax
https://www.asiacryptotoday.com/official-announcement-blockchain-tax-receipts-have-arrived-in-china/
https://www.asiacryptotoday.com/official-announcement-blockchain-tax-receipts-have-arrived-in-china/

1.2 Related Work

In recent years, various advanced encryption primitives that are interesting in context of
storing encrypted data (in a distributed setting) have been proposed.

The probably most well-known cryptographic primitive for fine-grained access to en-
crypted data is attribute-based encryption (ABE) [SW05, GPSW06, BSW07]. In ABE there
is a central authority that issues secret keys that can be used to fine-granularly decrypt
ciphertexts depending on attributes and policies. The major drawbacks of this flexible en-
cryption primitive are the requirement for a trusted third party for setup and key distribution
and the missing forward secrecy feature.

Updatable encryption (UE) [BLMR13, EPRS17, LT18] is a form of encryption that allows
one to periodically rotate the encryption key and move already existing ciphertexts from the
old to the new key. This mechanism could be used to switch to a unknown random key (which
one then forgets) and update ciphertexts to this key. A related approach to implement the
right to be forgotten was proposed by Pagnin et al. [PBP18], who suggest to keep the secret
key identical but to update the ciphertexts to random plaintexts to essentially “destroy” the
ciphertexts.

We note that in specific distributed settings such as distributed ledgers, which typically
have immutability as an inherent property, such ideas combined with work due to Ateniese et
al. in [AMVA17] and follow up work by Derler et al. [DSSS19] may be used. They propose to
integrate rewriting capabilities into blockchains on a block and transaction level respectively,
by replacing hash functions to chain blocks or aggregate transactions in a blockchain with
variants of chameleon hash functions [KR00]. An alternative non-cryptographic mechanism
based on the consensus layer has recently been proposed by Deuber et al. [DMT19]. But
the problem in our context with all these mechanisms is that although ciphertexts can
be updated, the original ciphertexts may still remain available in the distributed system.
Consequently, once the data is distributed one looses control over the “old” ciphertexts and
thus such primitives are not useful to us.

Proxy re-encryption (PRE) [BBS98, AFGH05] is an encryption primitive that allows a
semi-trusted entity (the proxy) to convert between ciphertext under different keys when
provided with a so called re-encryption key. Although forward-secrecy has recently been
studied in context of PRE [DKL+18b], the requirement for a always online semi-trusted
third party makes this primitive unattractive within our setting. We note that although this
can be countered by using threshold PRE [Nuñ18], one is still faced with the same issues as
within UE discussed above.

Access control encryption (ACE) [DHO16, FGKO17, BMM17] is a cryptographic primi-
tive that allows to control the information flow between several parties according to a given
policy specifying which parties are, or are not, allowed to communicate. Similarly to PRE, it
involves a central party (the sanitizer) that controls all the communication between parties
and thus makes it not suitable for our distributed scenario.

Finally, we want to briefly talk about existing approaches to “forgetting” data stored
in distributed systems. Vanish [GKLL09] is a system for creating data that automatically
“self-destruct” after a period of time. Therefore data is symmetrically encrypted with ran-
dom keys, the keys are secret shared and shares of the key are stored in a large, public
distributed hash table (DHT). The basic idea is that DHTs delete data older than a certain
age and after this happens to the key shares, the key is permanently lost, and the encrypted
data is permanently unreadable. Unfortunately, it has been shown that Sybil attacks allow
to efficiently recover keys for more than 99% of Vanish messages [WHH+10]. Besides the

7

existing attacks, self-destructing data in such a system is not fine-grained with respect to
when exactly deleting which data. While there is follow up work [TLLP12] that gets rid
of the problem within Vanish and provides more fine-grained policy based deletion, such
systems require a set of key managers (holding the encryption keys) which is deployed as a
centralized trusted service. While this seems reasonable for enterprise cloud solutions, this
is in contrast with the trust assumptions in distributed systems such as distributed ledgers.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let κ ∈ N be the security parameter. For
a finite set S, we denote by s ← S the process of sampling s uniformly from S. For an
algorithm A, let y ← A(κ, x) be the process of running A on input (κ, x) with access to
uniformly random coins and assigning the result to y. (We may omit to mention the κ-input
explicitly and assume that all algorithms take κas input.) To make the random coins r
explicit, we write A(κ, x; r). We say an algorithm A is probabilistic polynomial time (PPT)
if the running time of A is polynomial in κ. A function f is negligible if its absolute value is
smaller than the inverse of any polynomial (i.e., if ∀c∃k0∀κ ≥ k0 : |f(κ)| < 1/κc). We may
write q = q(k) if we mean that the value q depends polynomially on κ. Further, we write
v|i := v1 . . . vi, for i ∈ N, and we denote v|0 = ε as the empty set, respectively.

Pairings. Let G1, G2, GT be cyclic groups of order p. A pairing e : G1 × G2 → GT is
a map that is bilinear (i.e., for all g1, g

′
2 ∈ G1 and g2, g

′
2 ∈ G2, we have e(g1 · g′1, g2) =

e(g1, g2) · e(g′1, g2) and e(g1, g2 · g′2) = e(g1, g2) · e(g1, g′2), non-degenerate (i.e., for gen-
erators g1 ∈ G1, g2 ∈ G2, we have that e(g1, g2) ∈ GT is a generator), and efficiently
computable. Let BGen be a PPT algorithm that, on input a security parameter κ, outputs
BG = (p,G1, G2, GT , e, g1, g2) ← BGen(κ) for generators g1 and g2 of G1 and G2, respec-
tively, and Θ(κ)-bit prime p.

BDH and q-wBDHI assumptions. We recall the BDH [BF01] and q-wBDHI [BBG05]
assumptions ported to Type-III groups [CM11]. We define the advantage of an adversary A
as

AdvBDH
BGen,A(κ) :=

∣∣∣∣∣∣Pr

 r, s, t, u← Zp, b← {0, 1},
b∗ ← A(BG, gr1, g

s
1, g

s
2,

gt1, g
t
2, e(g1, g2)b·rst+(1−b)u)

: b∗ = b

− 1/2

∣∣∣∣∣∣ .
and

Advq-wBDHI
BGen,A (κ) :=

∣∣∣∣∣∣Pr

α, r ← Zp, b← {0, 1},
b← A(BG, gα1 , g

α2

1 , . . . , gα
q

1 ,

gα2 , g
r
1, g

r
2, e(g1, g

r
2)α

(q+1)b+(1−b)u)

: b∗ = b

− 1/2

∣∣∣∣∣∣ .
We say the BDH and q-SDH assumptions hold if AdvBDH

BGen,A and Advq-wBDHI
BGen,A are negligible

functions in the security parameter κ for all PPT adversaries A, respectively.

3 Identity-Based Puncturable Encryption

Puncturable encryption (PE) has been introduced by Green and Miers in [GM15] and
subsequently used and refined in several works [CHN+16, CRRV17, GHJL17a, DJSS18,

8

DKL+18a]. We recall, that a PE scheme is a public-key encryption scheme where each ci-
phertext can be encrypted with respect to one or more tags. PE features an additional
puncturing algorithm that takes a secret key and a tag t as input and produces an updated
secret key. This updated secret key is able to decrypt all ciphertexts except those tagged
with t and (updated) secret keys can be iteratively punctured on distinct tags. In a certain
sense, PE can be viewed as forward-secure public-key encryption [CHK03] with a much more
fined-grained method for restricting decryption capabilities. Despite being slightly different
in their concrete formulation (e.g., some schemes allow single tags, others multiple tags),
existing PE schemes all provide the same basic idea in their functionality, i.e., that they
allow to puncture secret keys in a way that they can no longer decrypt certain ciphertexts.
A notable difference is in the formulation of Fully PE (FuPE) from Derler et al. [DKL+18b],
where secret keys can be punctured with respect to so called negative tags (resembling the
functionality of PE) and in addition to so called positive tags. If a secret key is punctured
with respect to a positive tag, then it can only decrypt ciphertexts that are tagged with re-
spect to the corresponding positive tag. Although this approach adds more flexibility, it still
lacks an important feature, namely, once keys are positively punctured, they can no longer
be negatively punctured. Mapped to the application that we have in mind, this means that
derived FuPE keys (and, e.g., given to some delegatee) will loose the forward-secrecy prop-
erty, a feature that we want to enable for all entities within our approach. This, in particular,
allows forward secrecy for keys at a delegatee’s end. To the best of our knowledge, no similar
approach is known from the cryptographic literature.

To mitigate this problem and to make more powerful concepts of PE more comprehensi-
ble, we introduce in this section the new notion of Identity-Based PE (IBPE) which signifi-
cantly enhances previous work on PE in the sense of the features discussed above. Moreover,
we extend the IBPE definition by an anonymity notion in the vein of key anonymity for
public-key encryption [BBDP01], which, informally spoken, means that a ciphertext hides
the public key under which it was produced. Let us now define IBPE as well as the security
notions. We stress that we explicitly model a Setup algorithm to generate public parameters
pp, e.g., the description of a bilinear group. This is meaningful if many parties generate their
public keys with respect to the same group parameters.

Definition 1 (IBPE). An Identity-Based Puncturable Encryption (IBPE) scheme IBPE
with message space M, tag space T , and identity space ID, consists of the PPT algorithms
(Setup,Gen,Ext,Enc,Punc,Dec):

Setup(κ, `) : System setup, on input a security parameter κ ∈ N and maximum number of
tags ` ∈ N, outputs public parameters pp. (We assume that pp implicitly determines M,
T , and ID.14)

Gen(pp) : Key generation, on input public parameters pp, outputs public and secret keys
(pk, skεε). We assume that skεε contains pk and that pp is implicit in pk.

Punc(skidT , t) : Key puncturing, on input a secret key skidT with T ⊂ T , id ∈ ID, and a tag
t ∈ T , outputs a key skidT∪{t}.

Ext(skεT , id) : Key extraction, on input a secret key skT associated to tag set T ⊂ T and id
id, outputs a key skidT .

Enc(pk,M, t, id) : Encryption, on input a public key pk, a message M ∈M, a tag t ∈ T , and
an id id ∈ ID, outputs a ciphertext Cid

t . (We note that t and id are publicly retrievable
from the ciphertext Cid

t and the public parameters pp.)

14 We consider the empty identity ε to be part of the identity space ID, i.e. ε ∈ ID.

9

Dec(skid
′

T , Cid
t) : On input a secret key skid

′

T and a ciphertext Cid
t , outputs M ∈M∪ {⊥}.

Correctness. We require that for all κ, ` ∈ N, all pp ← Setup(κ, `), all (pk, skεε) ←
Gen(pp), all T ⊂ T , all t ∈ T , all id ∈ ID, all arbitrarily interleaved runs of skidT∪{t} ←
Punc(skidT , t) and skidT ← Ext(skεT , id), all M ∈ M, all Cid

t ← Enc(pk,M, t, id), we have that
Dec(skidT , C

id
t) = M if and only if t /∈ T . We want to stress that we allow the Ext algorithm to

be called on an empty tag set T = ∅ and that this definition also allows the Punc-algorithm
to be called on keys skidT extracted for identity id .

IBPE-IND-CPA and IBPE-IND-CCA security notions. We define security notions
in the vein of indistinguishability under chosen plaintext (IND-CPA) and ciphertext attacks
(IND-CCA) for IBPE, dubbed IBPE-IND-CPA and IBPE-IND-CCA. In the IBPE-IND-CPA
security experiment, public parameter pp as well as public and secret keys (pk, skεε) are hon-
estly generated. During the experiments, A may adaptively query a Cor(skεε, ·, ·)-oracle, while
for the IBPE-IND-CCA notion, A may adaptively query a Dec′(skεε, ·)-oracle additionally.
The Cor- and Dec′-oracles are defined as follows:

Cor(skεε, T, id), on input secret key skεε, tag set T ⊂ T , and identity id ∈ ID, outputs
skidT ← Ext(skεT`

, id), for iteratively punctured secret key skεTi
← Punc(skεTi−1

, ti−1), for all

pairwise-different tags (t0, . . . , t`−1) ∈ (T)` with ` := |T | and i ∈ [`] in arbitrary order.
(Note that the oracle allows the empty identity id = ε and the empty tag set T = ε as
input.)

Dec′(skεε, C
id
t), on input secret key skεε and ciphertext Cid

t , computes skidε ← Ext(skεε, id) and
outputs M ← Dec(skidε , C

id
t). (Note that the oracle allows the ciphertext input associated

to the empty identity id = ε and the empty tag t = ε.)

The public key pk is given to A. A outputs messages (M0,M1), a target tag t∗, and a
target identity id∗. The target challenge ciphertext C∗ ← Enc(pk,Mb, t

∗, id∗), for uniform
b← {0, 1}, is given to A. Eventually, A outputs a guess b∗, and succeeds, i.e., the experiment
outputs 1, if for any valid A, the equation b = b∗ holds. More concretely, if any PPT
A succeeds the previous experiments only with probability at most negligibly larger than

1/2, then we say an IBPE scheme IBPE is IBPE-IND-CPA and IBPE-IND-CCA secure,
respectively. We say that A is valid if and only if A has not queried the Cor-oracle to
obtain keys such that the challenge ciphertext can be trivially decrypted and A outputs

only equal-length messages; for the IBPE-IND-CCA case, we additionally require that A
did not query Dec-oracle with the challenge ciphertext. In Experiment 1, we formally state

the IBPE-IND-CPA and IBPE-IND-CCA experiments.

Definition 2. We define the advantage of an adversary A in the IBPE-IND-T experiment
Expibpe-ind-TIBPE,A (κ, `) as

Advibpe-ind-T
IBPE,A (κ, `) :=

∣∣∣∣Pr
[
Expibpe-ind-TIBPE,A (κ, `) = 1

]
− 1

2

∣∣∣∣ .
An IBPE scheme IBPE is IBPE-IND-T-secure for T ∈ {CPA, CCA}, if Advibpe-ind-T

IBPE,A (κ, `) is
a negligible function in κ for all valid PPT adversaries A.

IBPE-ANON-KEY anonymity notion. We present an anonymity notion denoted as
IBPE-ANON-KEY which is concerned with key anonymity (also called key privacy). More

10

Experiment Expibpe-ind-TIBPE,A (κ, `)

pp← Setup(κ, `), (pk, skεε)← Gen(pp)

(M0,M1, t
∗, id∗, st)← ACor(skεε,·,·) ,Dec

′(skεε, ·) (pk)
b← {0, 1}
C∗ ← Enc(pk,Mb, t

∗, id∗)

b∗ ← ACor(skεε,·,·) ,Dec
′(skεε, ·) (st, pk, C∗)

if A is valid and b = b∗ return 1, else return 0

Experiment 1: IBPE-IND-T-security experiment for an IBPE scheme IBPE: T ∈
{CPA, CCA}.

precisely, it is inspired from the notion for public-key encryption due to Bellare et al. [BBDP01]
where an adversary is allowed to choose a target tag and an identity, and is then presented
with two public keys. It must, however, not be confused with anonymity in context of
identity-based encryption where one wants to hide the identity [ABC+05], but is rather
related to definitions for IBE where one wants to hide under which (master) public key a
ciphertext has been created (cf. [PS08]). Such a notion has never been considered before in
context of puncturable encryption15 and in particular, we require that the adversary when
given a ciphertext cannot tell which public key has been used to compute the ciphertext. In
the IBPE-ANON-KEY security experiment, public parameter pp as well as public and secret
keys ((pk0, sk

ε
0,ε), (pk1, sk

ε
1,ε)) are honestly generated. The public keys (pk0, pk1) are given to

A. A outputs a message M , a target tag t∗, and a target identity id∗. The target challenge
ciphertext C∗ ← Enc(pkb,M, t∗, id∗), for uniform b ← {0, 1}, is given to A. Eventually, A
outputs a guess b∗, and succeeds, i.e., the experiment outputs 1, if for any A, the equation
b = b∗ holds. More concretely, if any PPT A succeeds the previous experiments only with
probability at most negligibly larger than 1/2, then we say an IBPE scheme IBPE provides
IBPE-ANON-KEY anonymity. In Experiment 2, we formally state the IBPE-ANON-KEY
experiment. Note that for this experiment we need to assume that there is a Setup algorithm
which computes common parameters pp (if required by the underlying scheme), e.g., a de-
scription of a bilinear group which is very common in practice, and the public keys are set
up with respect to these parameters as otherwise this notion might not be not meaningful,
i.e,. there might be trivial distinguisher.

Definition 3. We define the advantage of an adversary A in the IBPE-ANON-KEY exper-
iment Expibpe-anon-keyIBPE,A (κ) as

Advibpe-anon-key
IBPE,A (κ, `) :=

∣∣∣∣Pr
[
Expibpe-anon-keyIBPE,A (κ, `) = 1

]
− 1

2

∣∣∣∣ .
An IBPE scheme IBPE provides IBPE-ANON-KEY anonymity, if Advibpe-anon-key

IBPE,A (κ, `) is a
negligible function in κ for all PPT adversaries A.

15 In a concurrent and independent work Kerber et al. [KKKZ18] introduce such a notion for
forward-secure public key encryption, a notion related to puncturable encryption.

11

Experiment Expibpe-anon-keyIBPE,A (κ, `)

pp← Setup(κ, `)
(pk0, sk

ε
0,ε)← Gen(pp), (pk1, sk

ε
1,ε)← Gen(pp)

(M, t∗, id∗, st)← A(pk0, pk1)
b← {0, 1}
C∗ ← Enc(pkb,M, t∗, id∗)
b∗ ← A(st, C∗)
if b = b∗ return 1, else return 0

Experiment 2: IBPE-ANON-KEY experiment for an IBPE scheme IBPE.

4 Constructing Identity-Based Puncturable Encryption

Subsequently, we present a construction of an IBPE scheme based on pairings. Unfortu-
nately, we cannot directly instantiate our IBPE scheme directly from Hierarchical Identity-
Based Encryption (HIBE) [GS02, BBG05] as done in prior work on Puncturable Encryption
(PE) [GHJL17b] and Fully PE (FuPE) [DKL+18b]. The reason is that we want to allow
puncturings even after secret keys were extracted for a specific identity such that those keys
can be further restricted. FuPE generalizes PE in the sense that one can extract a secret key
for a tag (identity), but further puncturings are not possible. IBPE allows for puncturings
even after a secret key for some identity has been extracted. This allows for more fine-grained
encryption use-cases with forward secrecy and cryptographic applications we have in mind.

Despite that we do not know how to construct IBPE from HIBE in a black-box way,
our general construction paradigm borrows ideas from the Boneh-Boyen-Goh (BBG) HIBE
construction [BBG05] with a setup algorithm to generate shared public parameters. We
significantly change the functionality of the BBG construction and proof our construction
under the same assumption used to prove the BBG HIBE. We choose to instantiate our
approach using asymmetric Type-III bilinear groups as they represent the state-of-the-art
regarding efficiency and similarity of the security levels of the base and target groups.

We construct our IBPE scheme IBPE in a two-way approach which is mainly to ease
the understanding. First, we give a simplified version of IBPE we dub IBPE0 and prove its
IPBE-IND-CPA security and IPBE-KEY-ANON anonymity in Subsec. 4.1. This is showcase
the main novelties and differences to the BBG approach. In Subsec. 4.2, we lift the simplified
construction IBPE0 to the full version IBPE and argue about IPBE-IND-CCA security while
key anonymity is trivially carried over to the full version.

4.1 Simplified Version of our IBPE Scheme

We start with a simplified version of our IBPE scheme IBPE0 which is presented in Scheme 1.
To ease understanding, the scheme only supports a tag space T = [`] and we associate each
tag to a unique group element in the public parameters. This is a fairly inefficient scheme;
however, with the benefits of showcasing the main ideas more clearly. Via the compiler of
Canetti-Halevi-Katz [CHK03]—as discussed in the next subsection—we straightforwardly
are able to extend this to a more efficient version with an exponentially large tag space of
O(2`) with O(`) group elements in the public parameters while achieving the same security
guarantees. The public-parameter size can even be reduced to constant-size by applying
a hash function which is modeled as a random oracle (RO). Such conversion can also be

12

found in prior work for achieving non-trivial forward secrecy in the standard and RO model,
e.g., [CHK03, GHJL17a, DKL+18b, GW19, DN19].

Subsequently, we show that the simple scheme IBPE0 satisfies both the IBPE-IND-CCA
and IBPE-ANON-KEY security notions. Correctness is easy to verify and straightforward.
We start with IBPE-IND-CPA in Theorem 1 and use the FO transform [FO99] to extend
this to IBPE-IND-CCA security in the next subsection.

Setup(κ, `) : Generate a bilinear group BG := (p, e,G1, G2, GT , g1, g2) ← BGen(κ), set T := [`],
g, h, h0, h1, . . . , h` ← G1, and return pp := (BG, H, g, h, h0, h1, . . . , h`), for hash function H :
ID 7→ Zp where H(ε) := 0.

Gen(pp) : Choose α, r ← Zp and return (pk, skεε)← (gα2 , (h
α · hr0, gr2 , hr1, . . . , hr` , gr)).

Punc(skidT , t) : If id = ε: parse skidT =: (a0, a1, h
′
1, . . . , h

′
`′ , g

′) and set T ′ ← T ∪ {t}. Sample r ← Zp
and return a0 · h′t ·

|T ′|∏
i=0

hi

r

, a1 · gr2 , (h′i · hri)i∈[`′],i 6=t, g′ · gr
 .

If id 6= ε: parse skidT =: (a0, a1, h
′
1, . . . , h

′
`′) and set T ′ ← T ∪ {t}. Sample r ← Zp and returna0 · h′t ·

|T ′|∏
i=0

hi

r

· gH(id)·r, a1 · gr2 , (h′i · hri)i∈[`′],i 6=t

 .

Ext(skεT , id) : Parse skεT =: (a0, a1, h
′
t1 , . . . , h

′
t`′
, g′). Sample r ← Zp and return (a0 · g′H(id) ·

(
∏|T |
i=0 hi)

r · gH(id)·r, a1 · gr2 , (h′ti · h
r
ti)i∈[`′],ti 6=t).

Enc(pk,M, t, id) : Sample s← Zp, and return

(C1, C2, C3) :=

e(h, pk)s ·M, gs2,

 ∏̀
i=0,i 6=t

hi

s

· gH(id)·s

 .

Dec(skid
′

T , Cid
t) : Run skid

′
T ← Punc(skid

′
T , t′) for all t′ ∈ T \ {t}. If id ′ = ε, run skid

′
T ← Ext(skεT , id).

Parse skid
′

T as (a0, a1, . . .). Return M ′ := C1 · e(C3, a1) · e(a0, C2)−1.

Scheme 1: Simplified version of the IBPE-IND-CPA secure IBPE scheme IBPE0 (which can
be extended to IBPE-IND-CCA security for 2`-size tags with constant-size parameters pp
in the RO model).

Theorem 1. If the q-wBDHI assumption holds, then IBPE0 defined in Scheme 1 is IBPE-
IND-CPA-secure in the RO model. Concretely, for any PPT adversary A with at most
qC = qC(κ) corruption queries, there is a distinguisher D on q-wBDHI with q = `+ 1, such
that

Advibpe-ind-cpa
IBPE0,A

(κ, `) ≤ qH · ` ·Advq-wBDHI
BGen,D (κ),

for group generator BGen defined as above and number of RO-queries qH = qH(κ).

Proof. We show the IBPE-IND-CPA security of IBPE0 for any valid PPT adversary A in
two games where:

13

Game 0. Game 0 is the IBPE-IND-CPA experiment as defined above.

Game 1. Game 1 is defined as Game 0 apart from the fact that the challenge ciphertext is
independent of the challenge bit.

In Game 1, A has no advantage (i.e., success probability of Pr[S0] = 1/2) in the sense of
IBPE-IBE-IND-CPA. We denote the event of the adversary winning Game i as Si.

Description of the reduction. The proof follows the argumentation of the proof for the
Boneh-Boyen-Goh (BBG) HIBE scheme under the q-wBDHI assumption [BBG05] trans-
formed to the Type-III pairing setting. Essentially, due to the fact that the IBPE0-construction
is slightly different compared to their HIBE construction, we have to carefully prove our con-
struction again. Nevertheless, many similarities can be found and, hence, we will focus on
the differences in more detail (while of course recap the similarities). The main difference
is that we have a special element, namely an identity-associated group element, that needs
some extra care. However, as it turns out, this element can be handled as all the tag-basis
group elements and is retrieved from the assumption as well. We are able to setup the pub-
lic parameter with the correct distribution as well answer the Cor-queries. We follow the
proof line of BBG in the following sense: BBG show that it is sufficient to proof a weaker
security variant where the adversary has to commit to the target identity (i.e., target tag t∗

and identity id∗ in our case) before seeing the public parameters. This is often referred to
as selective security and can be easily lifted to adaptive security (which we actually model
within the IBPE-IND-CPA experiment where public parameters are retrieved first by the
adversary) by relying on the random-oracle (RO) model. (We refer to BBG [BBG05] and
later works [GW19, DN19] that all use similar techniques to prove adaptive security of their
[signature] schemes.) For our purpose, it suffices to use the hash function H as the identity
function for fixed-length identities in Zp. We want to show that each PPT adversary A with
at most qC = qC(κ) corruption queries on the IBPE-IND-CPA security of IBPE0 yields a
PPT distinguisher D for the q-wBDHI assumption, for q = `+ 1.

The distinguisher D is given as input

(BG, gα1 , g
α2

1 , . . . , gα
`+1

1 , gα2 , g
r
1, g

r
2, T),

with g1, g2 given by the bilinear group parameters BG and T equals either e(g1, g
r
2)α

`+2

or is
a uniform element in GT . The adversary outputs the target tag t∗ and target identity id∗.
The public parameters pp are sampled as in the BBG proof, i.e., for yi := gα

i

1 and γ ← Zp,
sets h := y`+1 · gγ1 and hi := gγi1 /y`−i+1 as well as g := g

γ`+1

1 /y1, for all γi ← Zp, i ∈ [`+ 1].
The public parameters

pp := (BG, g, h, h0, h1, . . . , h`)

and the pk := gα2 ∈ G2 are sent to A. Hence, all parameters and the public key are distributed
correctly. Note that D does not know the secret key skεε corresponding to pk; implicitly the

secret key is set to skεε = (hα · hr0, gr2, hr1, . . . , h`, gr) = (g
α(α`+1+γ)
1 · hr0, . . .) for some r ← Zp

and h0 := gδ1 ·
∏`
i=1,i6=t∗ g

α`−i+1·i
1 · gα`+1·id∗

1 , for some δ ← Zp. (Hence, we embed the term

id∗ and all tags except for t∗ in the h0 group element, which is essentially used to cancel
out when trying to compute key material for the target identity id∗ and target tag t∗ such
that a decryption for a target ciphertext with id∗ and t∗ would work. See that this slightly
different to the BBG proof due to the fact that we allow decryption if and only if the secret
key was not punctured on t∗.)

14

Corruption-oracle queries (up to qC) in the reduction are answered as follows which is
the same as in the BBG proof for “identity vector” ((ti)i∈[n],∃i:ti=t∗ , id). As long as t∗ is
part of the vector, we can even allow id = id∗. If t∗ is not part of the vector and id = id∗ is

queried, there exist at least one element which involves gα
`+2

2 that cannot be computed by
D. For all other queries, such term cancels out due to the partitioning argument (the same
way as in the BBG proof).

Eventually, A outputs two equal-length messages M0,M1, D samples b ← {0, 1}, and
sends the challenge ciphertext

C∗ :=

(
Mb · T · e(gα1 , gr2), gr2, g

r·δ+
∑`+1

i=1,i 6=t∗ i·γi·id
∗

1

)
to A.

Analysis of the reduction. The public parameters pp and the public key pk as well as
all secret keys (that are returned after querying the Cor-oracle) are distributed correctly.

If T = e(g1, g
r
2)α

`+2

, the ciphertext C∗ is a valid encryption of Mb; otherwise, i.e., if T is
uniformly random in GT , then C∗ is independent of b. The distinghuisher further has to
guess the tag (from a polynomially large tag space) which induced a multiplicative factor of
|T | = `.

If relying on the RO model (to achieve adaptive security), a multiplicative factor of qH
(which is the number of RO queries) is introduced; see also the discussions in [BBG05,

GW19, DN19]. Consequently, we have that |Pr[S0] − Pr[S1]| ≤ qH · ` ·Advq-wBDHI
BGen,D (κ). By

taking Advibpe-ind-cpa
IBPE0,A

(κ, `) = |Pr[S1]− 1
2 |, we obtain that

Advibpe-ind-cpa
IBPE0,A

(κ, `) ≤ qH · ` ·Advq-wBDHI
BGen,D (κ),

with q = `+ 1, which concludes the proof.

Theorem 2. If the BDH assumption holds, then IBPE0 defined in Scheme 1 is IBPE-
ANON-KEY-secure. Concretely, for any PPT adversary A, there is a distinguisher D on
BDH such that

Advibpe-anon-key
IBPE0,A

(κ, `) ≤ AdvBDH
BGen,B(κ),

for group generator BGen defined as above.

Proof. We prove the theorem using a sequence of games. We denote the event of the adver-
sary winning Game i as Si.

Game 0. The original IBPE-KEY-ANON game.

Game 1. As in Game 0, but in the Setup instead of sampling the elements g, h, h0, h1, . . . , h`
uniformly at random from G1, we choose γ0, . . . , γ`+1 ← Zp and set hi ← gγi1 for 0 ≤ i ≤ `
and g ← g

γ`+1

1 . Note that the parameters are distributed exactly as in the original game and
thus Pr[S1] = Pr[S0].

Game 2. As in the original game, but in the computation of the challenge ciphertext
(C1, C2, C3), we sample R← GT and compute the component C1 as C1 ← R ·M . Observe
that in Game 2 the challenge ciphertext information-theoretically hides the used public key
pkb and so we have Pr[S2] = 1

2 .

15

Claim 1. We claim that |Pr[S2]− Pr[S1]| ≤ AdvBDH
BGen,B(κ). We prove this claim below.

Description of the reduction. We construct a BDH adversary B. It runs the adversary
on the security parameter κ. It obtains an instance (BG, gr1, g

s
1, g

s
2, g

t
1, g

t
2, e(g1, g2)z) of the

BDH problem, and uses the random self-reducibility of the DDH to obtain a second instance
of the problem with shared values gt1 and gt2. Therefore, set the first instance to

(gr01 , g
s0
1 , g

s0
2 , g

t0
1 , g

t0
2 , e(g1, g2)z0)← (gr1, g

s
1, g

s
2, g

t
1, g

t
2, e(g1, g2)z).

Then, choose u, v, w ← Zp and set the second instance to

(gr11 ,g
s1
1 , g

s1
2 , g

t1
1 , g

t1
2 , e(g1, g2)z1)← (gr1 · gu1 , (gs1)w · gv1 , (gs2)w · gv2 ,

gt1, g
t
2, (e(g1, g2)z)w · e(gr1, gt2)v · e(gs1, gt2)uw · e(g1, gt2)uv).

Note that we now have two independent instances (sharing the same value t). Sample b ←
{0, 1} and run the Setup, but set h← gt1. Then B runs the adversary on pk0 and pk1. After
receiving the challenge message M , the challenge tag t∗, and the challenge id∗, B sets the
challenge ciphertext as

C∗ ←
(
e(g1, g2)zb ·M, gsb2 , (g

sb
1)

∑`
i=0,i 6=t∗ γi+γ`+1H(id∗)

)
,

starts the adversary on the challenge ciphertext and receives and outputs a bit b∗.

Analysis of the reduction. We observe that independent of the validity of the BDH
instance the public keys are distributed as required. In case the BDH instance and the
ciphertext has the form (e(g1, g2)zb · M, gsb2 , (

∏`
i=1,i6=t∗ hi · gH(id∗))sb) and since zb ∈ Zp

is uniformly random, e(g1, g2)zb is a uniformly random element in GT (we are simulating
Game 2). If the BDH instance is valid, then the ciphertext has the form (e(g1, g2)rbsbtb ·
M, gsb2 , (

∏`
i=1,i6=t∗ hi ·gH(id∗))sb) and is distributed as a original ciphertext (we are simulating

Game 1). Consequently, we have that |Pr[S1]− Pr[S2]| ≤ AdvBDH
BGen,B(κ).

By taking Advibpe-anon-key
IBPE0,A

(κ, `) = |Pr[S0]− 1
2 | and that Pr[S0] = Pr[S1], we obtain that

Advibpe-anon-key
IBPE0,A

(κ, `) ≤ AdvBDH
BGen,B(κ), which concludes the proof.

4.2 Full Version of our IBPE Scheme

We lift our simplified version of our IBPE scheme IBPE0 to a full version IBPE by applying the
compiler due to Canetti, Halevi, and Katz (CHK) [CHK03]. Albeit this is a well-established
method in the forward-secrecy domain, e.g., [BBG05, GHJL17a], we sketch the construction
here for completeness. Consider the tags of our IBPE scheme associated to leafs of a binary
tree. In particular, level i in the tree corresponds to the i-th bit of the tag. For each level, we
associate two special group elements in the public parameters, one associated to the bit 1
and one for bit 0. Furthermore, we have one specific group element in the public parameter
which corresponds to the identities in the IBPE scheme. All in all, this yields O(`) group
elements where 2` is the maximum number of tags and ` the bit-length of the tags. Secret
keys now contain O((log `)2) group elements such that each (inner) node at level i is now
associated to a substring t|j , j < ` of the tags and the potential to puncture subsequent tags
t′ that t|j is prefix of t′. Puncturing and key extraction are only changed in the way, that
they treat all parts of the secret key associated to a specific node in the tree. (Note here

16

that each node in the binary tree has a unique basis representation which we also exploit
in the security proof of IBPE0.) Encryption is straight-forward as well as decryption (while
the secret is used that is associated to the smallest tag such that decryption is possible). We
want to stress that the authors of [GHJL17a] in the full version [GHJL17b, Sec. 2.3] have
a concise illustration how the tags are associated to the tree while explaining the details in
the context of HIBEs and forward secrecy. The security arguments do not change and can
be analogously shown compared to the simplified version. Again, this is due to the fact that
each node can be represented by a unique basis. Hence, we derive at an IBPE-IND-CPA
and IBPE-ANON-KEY secure IBPE scheme IBPE via the CHK compiler.

CCA Security. We now discuss how to obtain IBPE-IND-CCA security for our full version
construction IBPE by applying the well-known Fujisaki-Okamoto transform [FO99]. Basi-
cally, the encryption algorithm will encrypt as its message (m, r) with m the original mes-
sage and r a sufficiently large randomly sampled bitstring (this requires to injectively encode
(m, r) into the message space of the IBPE scheme). The IBPE-encryption is derandomized
and uses as random coins H(r) where H is a hash function modeled as a random oracle to
obtain the ciphertext C. The decryption algorithm applies the original decryption algorithm
from the IBPE-IND-CPA-secure IBPE scheme to receive (m′, r′). Then, it re-encrypts (m′, r′)
using random coins H(r,m′) to obtain the ciphertext C ′. If it holds that C = C ′, it outputs
m′ and otherwise it outputs ⊥.

5 Application to Fine-Grained Key-Management

For the sake of illustration (see Figure 1), we come back to the example from the introduc-
tion (Section 1.1), and therefore let us assume that we have an individual, say Alice, who
maintains her data in a distributed environment (e.g., a distributed ledger) and has an IBPE
public-secret key pair. For illustration purposes, we assume that the application started in
year 2018 and we currently are in the year 2019. We stress that the described scenario is still
a simplification and intended mainly to transport the idea. Consequently, Alice starts with
a key-pair (pk, skεε). Recall that Alice can create updated versions of her secret key which
are no longer useful to decrypt ciphertexts associated to tags T 16 , and furthermore can be
customized to identities id such that only specific ciphertexts can be decrypted.

To realize access to encrypted data, Alice now computes a derived secret key for the
tax office and, therefore, Alice hands over this secret key which has been customized with
respect to identity id = taxes to the tax office once. Thus, this key can at most be used
to decrypt ciphertexts associated to id = taxes, but no other ciphertext (regardless of the
tags). Consequently, using the secret key sktaxesε , the tax office can decrypt all ciphertext
computed with respect to id = taxes.

On the other hand, recall that a secret key which has been punctured with respect to tag t
is no longer useful to decrypt ciphertexts associated to t but can decrypt all other ciphertexts.
In our example, Alice and the tax office puncture their secret key in the year 2019 (after
everything is handled) with respect to tag t = 2018 and, consequently, both parties can no
longer decrypt ciphertext from the year 2018 anymore. Note that this puncturing is possible
for the tax office this since secret keys for id (held on the delegatee’s side) can be further

16 We note that well-known hybrid-encryption approach [CS03] can be obviously used in a straight-
forward way to achieve file encryption, which we do not discuss here.

17

Fig. 1. Showcase: Alice makes her tax records available to the tax office.†
†Icons by Adrien Coquet and Antonius, from thenounproject.com.

punctured. Consequently, when it is required to give up the ability of being able to decrypt
some specific ciphertext, i.e., all ciphertexts associated to the year 2018, the tax office is able
to loose access to the data; while Alice may or may not puncture her secret key depending
on the application.

We note that the identity and even the tags could be derived by evaluating a Pseudo-
Random Function (PRF), e.g, an HMAC instantiated with SHA-3, with su as secret PRF key
and some identifier string for the data (e.g., “taxes”) only known to the data controller. This
way the resulting identity id looks random to any passive observer of the environment and,
looking ahead, allows the data controller to delegate decryption rights to other participants
without touching ciphertexts stored in the distributed environment (which can be of benefit
when potentially large environments are used, e.g., distributed ledgers).

Note that this easily scales to multiple instances. In such case, our system has the benefit
of public-key anonymity such that no ciphertext leaks the associated public key of the data
controller.

On the design of the tag space. While the use of the identities is clear, we have two
ways of interpreting the tags. For the most generic view, we can consider the tag space
exponentially large (for example we could simply use the hash of arbitrary large strings
as tags) and use a single tag for every message to encrypt to obtain a very fine-grained
control over puncturing, i.e., the keys can be punctured on every ciphertext. Alternatively,
we can also consider tags from a polynomially bounded space and view them as an ordered
sequence (e.g., as time periods as done in the previous section). In this approach one can, for
instance, reuse a tag over many encryptions and thus group ciphertexts (e.g., within one time
period). Secret keys can then be punctured in a single operation for all the ciphertexts of the
respective group. While latter approach may require to rely on loosely synchronized clocks
for the users, we believe this to be very reasonable assumption especially in the context of
distributed applications.

18

https://thenounproject.com

6 Applications to Cryptographic Primitives

In this section, we demonstrate that IBPE represents an interesting cryptographic building
block which allows to generically instantiating forward-secure identity-based encryption and
forward-secure signatures.

6.1 Forward-Secure Identity-Based Encryption

An identity-based encryption (IBE) scheme [BF01] is a public-key encryption scheme in
which any string (i.e., identity) can serve as a public key and anyone can encrypt a message
for a party with some identity id only using the system wide master public key and the string
id . Forward-security clearly is an interesting feature also in context of IBE. Interestingly,
although there are some works on forward-secure IBE [CRF+11, SPB13, LL17], they all
consider a very weak model in which the master secret key stays constant and thus the
private key generator (PKG) is able to generate user keys for arbitrary time periods and
thus essentially and inherently invalidating an important aspect of forward-security. We are
only aware of a dedicated construction of a forward secure hierarchical IBE (HIBE) by Yao
et al. [YFDL04], which also yields a forward-secure IBE as a special case. This works also
considers forward-secrecy for the master secret key. As we will show in this section, IBPE
generically yields forward-secure IBE and thus offering new instantiations thereof. And in
particular, to the best of our knowledge this leads to the first fs-IBE scheme with compact
ciphertexts.

Definition 4 (fs-IBE). A forward-secure identity-based encryption (fs-IBE) scheme with
message spaceM and identity space ID consists of the PPT algorithms (Setup,Gen,Ext,Update,
Enc,Dec):

Setup(1κ, `) : On input security parameter κ and maximum number of time periods ` and
outputs public parameters pp.

Gen(pp, id , N) : On input public parameters parameter pp (which is in implicit input to all
algorithms) and the total number of time periods, outputs a master keypair (pk, skεε).

Ext(skεj , id , i) : On input a master secret key skεj and identity id and a time period i with

i ≥ j output a secret key skidi .
Update(skidi , id , i) : On input a (master) secret key skidi , identity id and time period i output

a secret key skidi+1.
Enc(pk,M, id , i) : On input a master public key pk, message M ∈ M identity id ∈ ID and

time period i, outputs a ciphertext Cid
i for identity id and time period i.

Dec(skid
′

i , Cid
i , i) : On input a secret key skid

′

i and a ciphertext Cid
i , outputs M ∈M∪ {⊥}.

We require that for all κ, ` ∈ N, all N ∈ N, all pp← Setup(κ, `), all (pk, skεε)← Gen(pp, N),
all I ⊂ [N], all i, j ∈ I, i ≥ j, all id ∈ ID, all skidi ← Ext(skεj , id , i), all skidi+1 ←
Update(skidi , id , i), all M ∈M, all Cid

i ← Enc(pk,M, id , i), we have that Dec(skidi , C
id
i) = M .

Now, we define the security which we require for an fs-IBE scheme in Experiment 3. We call
an adversary A valid if for the challenge messages M0,M1 ∈ M and |M0| = |M1|, it does
not query Ext with id∗ for time period i∗ or with id = ε for any time period j ≤ i∗, nor
does it query C∗ to the Dec′ oracle in case of CCA security. Note that the decryption oracle
Dec′ determines id and i from the given ciphertext Cid , then runs skidi ← Ext(skεε, id , i) and
returns Dec(skidi , C

id
i).

19

Experiment Expfs-ibe-ind-Tfs-IBE,A (κ, `)

pp← Setup(κ, `), (pk, skεε)← Gen(pp)

(M0,M1, i
∗, id∗, st)← AExt(skεε,·,·) ,Dec

′(skεε, ·) (pk)
b← {0, 1}
C∗ ← Enc(pk,Mb, i

∗, id∗)

b∗ ← AExt(skεε,·,·) ,Dec
′(skεε, ·) (st, pk, C∗)

if A is valid and b = b∗ return 1, else return 0

Experiment 3: fs-IBE-IND-T-security experiment for an IBPE scheme fs-IBE: T ∈
{CPA, CCA}.

fs-IBE Construction Having an IBPE scheme allows to construct an fs-IBE scheme by
mapping time intervals to tags. The only syntactical difference is that the Punc-algorithm
of IBPE is mapped to the Update-algorithm of fs-IBE. In particular, when we are at a time
interval i in the fs-IBE scheme, this corresponds to secret keys that are punctured with
respect to tag set T = {1, . . . , i − 1} in the IBPE scheme and moving from time interval i
to interval i + 1 corresponds to puncturing the secret key at tag i, i.e., T := T ∪ {i}. It is
straightforward to show the following and thus we omit the proof.

Corollary 1. If the IBPE scheme provides IBPE-IND-T-security, then the resulting fs-IBE
scheme provides fs-IBE-IND-T-security.

6.2 Forward-Secure Signatures

Forward-secure signatures [BM99, Kra00, IR01, AABN02] are a fascinating cryptographic
primitive that has recently found interest in the context of distributed ledgers [DGKR18,
GW19, DN19].

Having an IBPE scheme and, in particular, a fs-IBE scheme, we can generically construct
a forward-secure signature scheme. The idea is simply to adopt the Naor-transform [BF01],
which converts any IND-CPA secure IBE scheme into an EUF-CMA secure signature scheme.
We first briefly recall this transform: We consider an IBE scheme and the master secret key
sk acts as the signing key. Let id = m, the message to be signed, then skm extracted with
sk for identity m acts as the signature for m. The signature verification is done by checking
if skm functions properly as a correct IBE decryption key for identity m by encrypting a
random plaintext and checking if the ciphertext decrypts to the original plaintext.

The basic idea of this transform applied to the forward-secure setting is as follows. We
start with the master secret key skεε as initial signing key and to develop the signing key over
time, we update the secret key to the next time period, i.e., to update the signing key from
interval i to interval i+ 1 we run skεi+1 ← Update(skεi , id , i). Now, within every time interval
i one uses the current signing key with the above Naor-transform. It is straightforward to
show the following:

Corollary 2. If the fs-IBE scheme provides fs-IBE-IND-CPA-security, then the signature
scheme obtained via the Naor-transform provides EUF-CMA-security.

Using our instantiation of an IBPE from Section 4.1 in the above compiler, this yields
forward-secure signatures with the same efficiency as in recent work [DN19, GW19].

20

7 Implementation and Evaluation

In this section, we report on a practical implementation of our IBPE scheme as presented
in Section 4. This implementation of the IBPE-IND-CCA- and IBPE-ANON-KEY-secure
IBPE directly yields an efficient implementation of the outlined confidentiality solution with
very strong security guarantees. But more importantly, the evaluations results below show
that the essential goals discussed in Section 5 can be achieved efficiently with our proposal.

Regarding a concrete choice of bilinear groups, we choose the popular BN curve fam-
ily [BN05] and in particular the BN254 curve. Respecting recent assessments by Menezes et
al. [MSS16] as well as Barbulescu and Duquesne [BD18], this choice yields a security level
of around 100 bit.

7.1 Evaluation Results

The IBPE scheme is implemented in Python 3.7 based on the current development version
of the Charm17 framework [AGM+13] using the BN254 curve with the PBC pairing library
version 0.5.10.18 The measurements were performed on a laptop with an Intel Core i5-
4300U @ 1.9 GHz with 8 GB 1600Hz DDR3 running Ubuntu 19.04. In Table 2, we present
the average runtimes over 100 runs each. We measured three different sizes of the tag space
(e.g., time intervals), i.e., 248, 264, and 280 for a random message, respectively. When using
point compression, the base-group elements (G1) are of size at most 255 bits, the elements of
the group G2 are of size at most 510 bits, and the target-group elements have 3048 bits. Since
we are in the random oracle model, the base group elements stored in the public parameters
of our IBPE schemes can be derived using the random oracle. Thus the size of the public
parameters are independent of the chosen tag space. Each public key pk consists of one
G2 element (resp. 64 bytes), and each master secret key skεε has 50, 66, or 82 base-group
element and one G2 element (1664, 2176, or 2688 bytes, respectively). Each punctured key
or extracted key skidT , respectively, has one G2 element (128 bytes) and at most 49, 65, or
81 base group elements (1504, 2016, or 2528 bytes, respectively) per node, leading to keys
of at most 78,336, 137,216, or 212,480 bytes respectively. The ciphertext C consists of one
element in each group, which yields 96 bytes in total for the ciphertext size.

From Table 2, one can see that the algorithms Setup, Gen, Enc, Dec, and Ext are very
efficient for each tag space, i.e. always close to 100 ms. The benchmarks of the Dec algorithm
assumes that no additional key extraction, i.e., an additional call to Ext which we benchmark
separately, is necessary. Thus, the runtime of the decryption is independent of the size of the
parameter space and the observed variation can be attributed to noise. The Punc algorithm
need several seconds for all levels.19 However, in our case we argue that puncturing is an
offline operation, which, for example, only needs to happen upon puncturing a group of ci-
phertexts, and thus our performance results are perfectly acceptable. Indeed, the algorithms
Enc, Dec, and Ext are used much more frequently in our setting.

17 https://github.com/JHUISI/charm, commit 3eb33d69
18 https://crypto.stanford.edu/pbc/
19 It is a central open issue in the context of puncturable-encryption techniques to make these

algorithms more efficient, which already has received a considerable amount of attention re-
cently [GM15, GHJL17a, DJSS18].

21

https://github.com/JHUISI/charm
https://crypto.stanford.edu/pbc/

IBPE algorithm 248 264 280

Setup and Gen 68 89 108

Enc 98 120 137

Dec 57 59 57

Ext 63 84 103

Punc 3,027 5,402 8,243

Table 2. Performance evaluation: runtimes in integers and in [ms] for respective numbers of tags,
e.g., intervals, 248, 264, and 280

8 Conclusions

We seek for a non-interactive solution that allow fine-grained key-management and key-
leakage prevention mechanisms at the data owner as well as the delegatee side in a persistent-
data setting. We show that simple encryption techniques do not suffice to meet all desired re-
quirements. On the foundation, we propose Identity-Based Puncturable Encryption (IBPE)
as a novel cryptographic primitive to underpin the important security features of system-wide
full forward secrecy and fine-grained key-management with key-anonymity in the distributed
settings. Thereby, we equip the well-known puncturable-encryption paradigm to guarantee
identity-based and key-anonymity capabilities which results in our proposed solution with
fine-grained key-management and full forward secrecy for all system participants. In partic-
ular, the latter was not achieved before from the cryptographic literature. We show how to
construct IBPE from pairings and present concrete implementation results in the Type-III
setting. Our current definition of the key-anonymity notion (IBPE-KEY-ANON anonymity)
is in the CPA sense (i.e., without adversarially chosen ciphertexts). Even though we currently
do not see concrete attack vectors imposed by not defining and achieving key-anonymity in
the CCA setting, we believe that constructing schemes that provide key-private in a CCA
sense poses an interesting open question for future work. Another interesting open question
are instantiations under other assumptions and in particular lattice-based schemes.

Acknowledgements

This work was supported by the EUs Horizon 2020 ECSEL Joint Undertaking project SE-
CREDAS under grant agreement n◦783119 and by the Austrian Science Fund (FWF) and
netidee SCIENCE project PROFET (grant agreement P31621-N38).

References

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From identifi-
cation to signatures via the fiat-shamir transform: Minimizing assumptions for security
and forward-security. In EUROCRYPT 2002, 2002. 1, 6.2

22

[ABC+05] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja
Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable
encryption revisited: Consistency properties, relation to anonymous ibe, and extensions.
In CRYPTO 2005, 2005. 3

[AFGH05] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy
re-encryption schemes with applications to secure distributed storage. In NDSS, 2005.
1.2

[AGM+13] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano, Michael
Rushanan, Matthew Green, and Aviel D. Rubin. Charm: a framework for rapidly
prototyping cryptosystems. J. Cryptographic Engineering, 3(2):111–128, 2013. 7.1

[AMVA17] Giuseppe Ateniese, Bernardo Magri, Daniele Venturi, and Ewerton R. Andrade.
Redactable blockchain - or - rewriting history in bitcoin and friends. In EuroS&P,
2017. 1.2

[Bar62] Paul Baran. On distributed communication networks. 1962. 3

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy
in public-key encryption. In ASIACRYPT 2001, 2001. 1, 3, 3

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In EUROCRYPT 2005, 2005. 1, 2, 4, 4.1, 4.2

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy
cryptography. In EUROCRYPT 1998, 1998. 1.2

[BCQ+13] Alysson Neves Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo
Sousa. Depsky: Dependable and secure storage in a cloud-of-clouds. TOS, 9(4):12:1–
12:33, 2013. 1

[BD18] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for pairings.
J. Cryptology, 2018. 7

[Ben18] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System.
Whitepaper, https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/

ipfs-p2p-file-system.pdf, 2018. 1

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
In CRYPTO 2001, 2001. 2, 6.1, 6.2

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic prfs and their applications. In CRYPTO 2013, 2013. 1.2

[BM99] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In
CRYPTO, 1999. 1, 6.2

[BMM17] Christian Badertscher, Christian Matt, and Ueli Maurer. Strengthening access control
encryption. In ASIACRYPT 2017, 2017. 1.2

[BN05] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime
order. In Selected Areas in Cryptography 2005, 2005. 7

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In IEEE S&P, 2007. 1.2

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. In EUROCRYPT 2003, 2003. 1, 3, 4.1, 4.2

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In STOC 2016, 2016. 3

[CM11] Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols employing asymmet-
ric pairings - the role of Ψ revisited. Discrete Applied Mathematics, 159(13):1311–1322,
2011. 2

[CRF+11] Dario Catalano, Mario Di Raimondo, Dario Fiore, Rosario Gennaro, and Orazio Puglisi.
Fully non-interactive onion routing with forward-secrecy. In Applied Cryptography and
Network Security - 9th International Conference, ACNS 2011, Nerja, Spain, June 7-10,
2011. Proceedings, pages 255–273, 2011. 6.1

23

https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf

[CRRV17] Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and Vinod Vaikuntanathan.
Chosen-ciphertext secure fully homomorphic encryption. In Public Key Cryptography
2017, 2017. 3

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput.,
33(1):167–226, 2003. 16

[DGKR18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In EUROCRYPT
2018, 2018. 1, 6.2

[DHO16] Ivan Damg̊ard, Helene Haagh, and Claudio Orlandi. Access control encryption: Enforc-
ing information flow with cryptography. In TCC B 2016, 2016. 1.2

[DJSS18] David Derler, Tibor Jager, Daniel Slamanig, and Christoph Striecks. Bloom filter en-
cryption and applications to efficient forward-secret 0-rtt key exchange. In EURO-
CRYPT 2018, 2018. 3, 19

[DKL+18a] David Derler, Stephan Krenn, Thomas Lorünser, Sebastian Ramacher, Daniel Sla-
manig, and Christoph Striecks. Revisiting proxy re-encryption: Forward secrecy, im-
proved security, and applications. IACR Cryptology ePrint Archive, 2018. 1, 1, 3

[DKL+18b] David Derler, Stephan Krenn, Thomas Lorünser, Sebastian Ramacher, Daniel Sla-
manig, and Christoph Striecks. Revisiting proxy re-encryption: Forward secrecy, im-
proved security, and applications. In Public Key Cryptography 2018, 2018. 1.2, 3, 4,
4.1

[DMT19] Dominic Deuber, Bernardo Magri, and Sri Aravinda Krishnan Thyagarajan. Redactable
blockchain in the permissionless setting. CoRR, abs/1901.03206, 2019. 1.2

[DN19] Manu Drijvers and Gregory Neven. Forward-secure multi-signatures. IACR Cryptology
ePrint Archive, 2019. 1, 4.1, 4.1, 6.2, 6.2

[DSSS19] David Derler, Kai Samelin, Daniel Slamanig, and Christoph Striecks. Fine-grained and
controlled rewriting in blockchains: Chameleon-hashing gone attribute-based. In NDSS,
2019. 1.2

[EPRS17] Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart, and Samuel Scott. Key
rotation for authenticated encryption. In CRYPTO 2017, 2017. 1.2

[FGKO17] Georg Fuchsbauer, Romain Gay, Lucas Kowalczyk, and Claudio Orlandi. Access control
encryption for equality, comparison, and more. In Public Key Cryptography 2017, 2017.
1.2

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. In CRYPTO 1999, 1999. 4.1, 4.2

[GHJL17a] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-rtt key exchange with
full forward secrecy. In EUROCRYPT 2017, 2017. 1, 1, 3, 4.1, 4.2, 19

[GHJL17b] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-rtt key exchange with
full forward secrecy. Cryptology ePrint Archive, Report 2017/223, 2017. 4, 4.2

[GKLL09] Roxana Geambasu, Tadayoshi Kohno, Amit A. Levy, and Henry M. Levy. Vanish:
Increasing data privacy with self-destructing data. In USENIX Security Symposium,
2009. 1.2

[GM15] Matthew D. Green and Ian Miers. Forward secure asynchronous messaging from punc-
turable encryption. In IEEE S&P, 2015. 1, 1, 3, 19

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In ACM CCS, 2006. 1.2

[GS02] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In ASIACRYPT
2002, 2002. 4

[GW19] Sergey Gorbunov and Hoeteck Wee. Digital signatures for consensus. Cryptology ePrint
Archive, Report 2019/269, 2019. 1, 4.1, 4.1, 6.2, 6.2

[IR01] Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and
verifying. In CRYPTO 2001, 2001. 1, 6.2

24

[KKKZ18] Thomas Kerber, Markulf Kohlweiss, Aggelos Kiayias, and Vassilis Zikas. Ouroboros
crypsinous: Privacy-preserving proof-of-stake. IACR Cryptology ePrint Archive, 2018.
15

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Proceedings of the Network
and Distributed System Security Symposium, NDSS 2000, San Diego, California, USA,
2000. 1.2

[Kra00] Hugo Krawczyk. Simple forward-secure signatures from any signature scheme. In ACM
CCS. ACM, 2000. 1, 6.2

[LHS15] Thomas Lorünser, Andreas Happe, and Daniel Slamanig. ARCHISTAR: towards secure
and robust cloud based data sharing. In CloudCom, 2015. 1

[LL17] Yang Lu and Jiguo Li. Forward-secure identity-based encryption with direct chosen-
ciphertext security in the standard model. Adv. in Math. of Comm., 11(1):161–177,
2017. 6.1

[LT18] Anja Lehmann and Björn Tackmann. Updatable encryption with post-compromise
security. In EUROCRYPT 2018, 2018. 1.2

[MSS16] Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with assessing the
impact of NFS advances on the security of pairing-based cryptography. In Mycrypt
2016, 2016. 7

[Nuñ18] David Nuñez. UMBRAL: A threshold proxy re-encryption scheme. NuCypher White
Paper, 2018. https://github.com/nucypher/umbral-doc/blob/master/umbral-doc.

pdf. 1.2
[PBP18] Elena Pagnin, Carlo Brunetta, and Pablo Picazo-Sanchez. HIKE: Walking the privacy

trail. In CANS 2018, 2018. 1.2
[PS08] Kenneth G. Paterson and Sriramkrishnan Srinivasan. Security and anonymity of

identity-based encryption with multiple trusted authorities. In Pairing 2008, 2008.
3

[Res18] Eric Rescorla. The transport layer security (TLS) protocol version 1.3. RFC, 8446:1–
160, 2018. 8

[SPB13] Kunwar Singh, C. Pandurangan, and A. K. Banerjee. Lattice based forward-secure
identity based encryption scheme with shorter ciphertext. J. Internet Serv. Inf. Secur.,
3(1/2):5–19, 2013. 6.1

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT
2005, 2005. 1.2

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC 2014, pages 475–484, 2014. 1

[TLLP12] Yang Tang, Patrick P. C. Lee, John C. S. Lui, and Radia J. Perlman. Secure overlay
cloud storage with access control and assured deletion. IEEE Trans. Dependable Sec.
Comput., 9(6):903–916, 2012. 1.2

[VC14] David Vorick and Luke Champine. Sia: Simple decentralized storage. White paper,
2014. https://sia.tech/sia.pdf. 1

[WBB+16] Shawn Wilkinson, Tome Boshevski, Josh Brandoff, James Prestwich, Gordon Hall,
Patrick Gerbes, Philip Hutchins, and Chris Pollard. Storj – a peer-to-peer cloud storage
network. White paper, 2016. https://storj.io/storj.pdf. 1

[WHH+10] Scott Wolchok, Owen S. Hofmann, Nadia Heninger, Edward W. Felten, J. Alex Halder-
man, Christopher J. Rossbach, Brent Waters, and Emmett Witchel. Defeating vanish
with low-cost sybil attacks against large dhts. In NDSS, 2010. 1.2

[YFDL04] Danfeng Yao, Nelly Fazio, Yevgeniy Dodis, and Anna Lysyanskaya. Id-based encryption
for complex hierarchies with applications to forward security and broadcast encryption.
In ACM CCS, 2004. 1, 6.1

25

https://github.com/nucypher/umbral-doc/blob/master/umbral-doc.pdf
https://github.com/nucypher/umbral-doc/blob/master/umbral-doc.pdf
https://sia.tech/sia.pdf
https://storj.io/storj.pdf

	I Want to Forget: Fine-Grained Encryption with Full Forward Secrecy in the Distributed Setting

