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ABSTRACT—Whereas it is widely deemed impossible to overcome the optimality of 

the one-time pad (OTP) cipher in pre- and post-quantum cryptography, this work shows 

that the optimality of information theoretic security of OTP is paradoxical from the per-

spective of information conservational computing and cryptography. To prove this point, 

information theoretic security of OTP is extended to information conservational security 

of scalable one-time pad (S-OTP) where total key length can be compressed to a condensed 

tiny minimum through “black hole” keypad compression coupled with “big bang” data 

recovery. Thus, S-OTP makes it possible for secure transmission of long messages that 

used to be impossible with OTP. It is proven that if the security of OTP is optimal, S-OTP 

would be impossible; on the other hand, if S-OTP is not information theoretically secure, 

OTP would not be secure either. Thus, we have a proof by contradiction on the paradoxical 

nature of OTP optimality. It is further proven that a summation with percentage distribution 

is a special case of equilibrium-based bipolar quantum cellular automata. This proof 

bridges a classical world with a quantum world and makes it possible to combine the ad-

vantages of both approaches for pre- and post-quantum cryptography. It is suggested that 

the findings of this work form an analytical paradigm of quantum intelligence machinery 

toward perfect information conservational security. Some mysteries in nature and science 

are identified and discussed. In particular, the question is posted: Could modern science 

have been like a well-founded building with a floor of observable being and truth but miss-

ing its roof for equilibrium, harmony, information conservation, and logically definable 

causality?  
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1   INTRODUCTION 

Cryptography is essential for the security of digital communication. However, many 

commonly used cryptosystems could be completely broken by a quantum algorithm for 

integer factorization [1] once large quantum computers are commercially applicable. 

Post-quantum cryptography is to counter such quantum attacks and to keep digital com-

munication secure [2]. A key for success is to identify mathematical operations for 

which quantum algorithms offer little advantage in speed, and then to build crypto-

graphic systems around them.  

One-Time Pad (OTP) is often regarded the only cipher with proven information theo-

retic security (ITS) [3] for cryptography. ITS derives security from information theory [4]. 

It was introduced in 1949 by American mathematician Claude Shannon, the inventor of in-

formation theory, who used it to prove the optimality of OTP in security [3]. Since then, 

OTP has been used for the most sensitive communications. It can now be used together 

with quantum key distribution (QKD) — a well-developed application of quantum cryp-

tography.  

Since OTP is quantum proof to quantum factorization [1], it is often regarded the only 

candidate for post-quantum cryptography as well [2]. Unfortunately, the key requirement 

of equal or greater length than the original message hinders the general application of OTP. 
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As a result, OTP is so far limited to transmitting relatively short messages with high secu-

rity requirement. This limitation has been an impasse for both pre- and post-quantum cryp-

tography. A major challenge is therefore to reduce the OTP key length without weakening 

ITS where the gain of key length reduction significantly overweighs its cost.  

This work extends ITS of OTP to information conservational security (ICS) of Scalable 

One-Time Pad (S-OTP) with a quantum intelligence approach. In this approach, an S-OTP 

cipher does not attempt to falsify Shannon's theorem on OTP. Instead, it gets around the 

problem by proving the paradoxical nature of the ITS optimality of OTP through a proof 

by contradiction. Then, with “black hole” keypad compression it reduces OTP key length 

to a tiny minimum and makes the transmission of long messages systematic and practical 

without weakening ITS in its new context.  

It is further proven that a summation with percentage distribution is a special case of 

equilibrium-based bipolar quantum cellular automata. This proof bridges a classical world 

with a quantum world and makes it possible to combine the advantages of both approaches 

for pre- and post-quantum cryptography.  

It is suggested that the findings of this work form an analytical paradigm of quantum 

intelligence toward perfect information conservational security. Some mysteries in nature 

and science are identified and discussed. In particular, the question is posted: Could mod-

ern science have been like a well-founded building with a floor of observable being and 

truth but missing its roof for equilibrium, harmony, information conservation, and logically 

definable causality?  

Following this introduction, the remaining work is organized in four sections: an axio-

matic formulation, a methodological formulation with illustrations, a quantum architecture, 

and some conclusions.  (Note: Some similar concepts of ICS are proposed in an un-

published technical report on a failed attempt [5]. This work is built upon the failure. The 

failed attempt is further compared in the next section.) 

2   AXIOMATIZATION 

An OTP cipher is proven information theoretically secure and unbreakable [3,4] pro-

vided that the cipher key meets the four conditions of OTP: (a) truly random; (b) never 

reused; (c) kept secret from all possible attackers; (d) of equal or greater length than the 

message. History shows that, however, when Shannon invented information theory and 

ITS [3,4], the first computer was not out yet. Since then, computing theory and technology 

have advanced beyond anyone’s imagination. Although it was proven [3] that any cipher 

with the perfect secrecy property must use keys with effectively the same requirements as 

OTP keys, these proofs did not take later computing theories and technological develop-

ment into consideration that can conceal the meaning of a message. For instance, when 

entropy became a key concept in information theory, information conservational compu-

ting/cryptography (ICC) as an analytical model for quantum intelligence (QI) [6,7] was 

not incepted yet. Furthermore, before the first computer was put on drawing board, double-

precision floating-point format for a wide dynamic range of numeric values was unimagi-

nable. The wide range makes equilibrium-based ICC practical where one bit can be com-

posed of virtually an infinite number of decimal fractions to form a basis for information 

conservation and QI.  

Thus, ICC with QI is different from big prime integer factorization with a finite space 

of solutions [1], different from ITS, and different from classical information theory. En-

tropy as a measure of disorder of a system provides a basis for classical information theory. 

Based on entropy unicity distance [3] is defined as the minimum amount of ciphertext 

required to permit a computationally unlimited adversary to recover the unique encryption 

key in a brute force attack. The ICC extension, however, attempts to incorporate holistic 

and set-theoretic keypad compression into OTP as an analytical quantum-digital compati-

ble extension to ITS with QI including: bipolar equilibrium-based rebalancing, collective 

precision, “black hole” keypad compression, “big bang” data recovery, logically definable 

causality, quantum entanglement, and quantum teleportation.  
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Axiom 1. Within computational precision limitation, any   plaintext L of a lengthy OTP 

message in binary format can be divided into a set of N integers {xi}, 1iN, such that the 

pair (X, {xi/X}) conserves the information of L, where X = ∑ xii  is referred to as a virtual 

summation, and {xi/X} a virtual percentage distribution.  

Axiom 2. While the OTP cipher conceals the semantics of text data for ITS based on 

entropy, an information conservational extension does not have to be strictly based on en-

tropy because the pair (X, {xi/X}) in Axiom 1 does not show original semantics of the 

plaintext regardless of the entropy measure of its key pad.  

Hypothesis. The pair (X, {xi/X}) can be secured without using a greater or same length 

keypad as required by the OTP cipher for ITS based on Shannon entropy, and a key can be 

reused in securing part of the percentage distribution {xi/X} under certain conditions.   

Definition 1. Information conservational transformation (ICT) is referred to as a set of 

set-theoretic mathematical functions that form a transformation T to transform the bit pat-

tern of a long message in form F1 to a pair of (F2,F3) such that there is a reverse transfor-

mation T’ that recovers F1 from the pair (F2,F3). Formally we have: T(F1): F1(F2,F3), such 

that T’ and T’(F2,F3): (F2,F3)F1. F2 is assumed an integer summation X = ∑ xii , and F3 

a percentage distribution {xi/X}. Thus, F2 is significantly shorter than F1, and F3 can be 

longer than F1 with a limited data length increase. 

Definition 2. Scalability is referred to as using ICT once or multiple times systemati-

cally to transform a long message or large data set in form F1 into (F2,F3) such that the total 

OTP cipher key length is reduced to a condensed minimum for secure transmission of the 

(F2,F3) pair. In this case, a cipher is referred to as Scalable OTP (S-OTP), and classical 

OTP is referred to as Virtually Scalable OTP or VS-OTP.  

Definition 3. S-OTP is said having information conservational security (ICS) provided 

that: (a) The total key length required is significantly shorter than the original message due 

to ICT; (b) The shorter key does not weaken the ITS of OTP in terms of OTP being VS-

OTP; (c) The gain significantly overweighs the cost. 

Definition 4. “Black Hole” Keypad Compression (BHKC) is referred to as total keypad 

length reduction for long messages that compresses the keypad to a condensed tiny mini-

mum through a sequence of hierarchical ICTs; “Big Bang” Data Recovery (BBDR) is re-

ferred to as the reverse process of BHKC.  

It could be argued that S-OTP is just OTP plus data compression, and there is nothing 

new. The reality is:  

 Energy/Information conservation or preservation as a paramount law in modern science 

and ICC as a long sought goal in physics and information theory has been unreachable;  

 The keypad length requirement of OTP for ITS has been a longstanding impasse;  

 ICS does not reduce total data length; it only reduces the keypad length through no loss 

compression with a limited data traffic increase as a tradeoff;  

 ICS could, if proved, contradict the ITS optimality of OTP for the first time ever; 

 ICS could be proven a holistic extension to ITS with a higher level of abstraction; 

 ICS could be extendable to an analytical paradigm of quantum-digital compatible com-

puting and cryptography machinery. 

The inception of ICS accounts for the new development in computing technology. Dou-

ble precision floating-point format of IEEE binary128 is used as a technological basis in 

this work that was not available when information theory was initially developed based on 

Shannon entropy [4].  

Basic Cost-Gain Analysis. Let each 1K-bit data divided into ten 96-bit sections plus 

one 64-bit section, total 1K=960+64=1024=210 bits. L=32K bits would be divided into 320 

of 96-bit sections plus 32 of 64-bit sections, a set of 352 integers {xi}, 1i352. The sum-

mation of all integers is smaller than 96+9=105 bits because 352 < 29. Based on IEEE 

binary128 standard with 112 significant bits precision and 16-bits exponent, we would have 

one integer summation X = ∑ xii  with no more than 105 bits (<112) and a set of 352 per-

centages {xi/X} in double precision floating-point format, each has 128-bits. While an OTP 

key requires the minimum length of 32K bits that is the message length. Without compu-

tational precision problem, an S-OTP key could potentially be compressed to the length of 
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the 105-bit summation, a 32K/128 = 215/27 = 256-fold key length reduction. Assuming 

more room is given to the S-OTP key for partial concealment of the percentage distribution, 

we could have:  

(1) For a 1K-bit key, the saving would be 32K/1K=32-fold; 

(2) For a 2K-bit key, the saving would be 32K/2K=16-fold; 

(3) For a 4K-bit key, the saving would be 32K/4K=8-fold; 

(4) For an 8K-bit key, the saving would be 32K/8K=4-fold. 

The summation and the percentage distribution total data length approximates to 128 + 

352  128 bits  44K bits for the 32K bit message. The cost is roughly a (44-32)/32 = 12/32 

=3/8 = 37.5% increase in data length and network traffic. The gain could include (i) to 

make the transmission of long messages possible; (ii) to reduce the cost of quantum key 

distribution by 32K/2K = 16 folds. Evidently, the gain significantly overweighs the cost.  

It should be remarked that the failed approach reported in [5] also attempted to secure 

the pair of a summation and a percentage distribution. While both are aimed at information 

conservation, the former attempted to compress the whole plaintext to a condensed tiny 

minimum and was proven impossible due to the limitation of computational precision. The 

latter is focused on compressing the keypad only to a condensed tiny minimum and incurs 

a limited increase of total data length as a data traffic trade off. 

Theorem 1 (Security Theorem). ICS of S-OTP does not weaken the ITS of OTP as 

VS-OTP provided that (a) summation X = ∑ 𝑥𝑖𝑖  is enciphered with a same length or longer 

private S-OTP key equivalent to an OTP key, and (b) the percentage distribution {xi/X} is 

made completely misleading and uncorrectable by an attacker without any private key.  

Proof.  If the percentage distribution is completely misleading and uncorrectable by an 

attacker, without any key in a brute force attack (even with a future quantum computer or 

unlimited computational power), the plaintext concealed in the ciphertext of a summation 

is safe. On the other hand, without the key to the summation, to find a correct percentage 

through trial and error for revealing the plaintext in a ciphered (unknown) summation 

would be as difficult as finding a virtual percentage for revealing a section of the plaintext 

of an OTP message in a virtual summation per Axioms 1 and 2. This leads to the proof by 

contradiction: Under the two conditions, if an attacker could still find a percentage to 

reveal the plaintext of a data section in S-OTP ciphertext, it would be possible to do it 

similarly to reveal the plaintext of a data section of any OTP ciphertext and its virtual 

summation. If this could really happen, OTP as VS-OTP would be made irrelevant by S-

OTP because entropy and unicity distance would be bypassed. That would contradict not 

only the optimality of OTP but also the ITS of OTP. ∎ 

Theorem 2 (Optimality Theorem). If OTP is information theoretically secure, S-OTP 

must be information theoretically secure under the two conditions of Theorem 1. However, 

if S-OTP is information conservationally secure, OTP is not information theoretically op-

timal.  

Proof. S-OTP is information theoretically secure per Theorem 1 under two conditions. 

However, if S-OTP were information-theoretically secure, OTP would not be information 

theoretically optimal because its key length could be scaled down using ICS with a limited 

data overhead for a benefit that significantly overweighs its cost.   ∎ 

Theorem 3 (Security Level Theorem). ICS is a holistic top-down approach to infor-

mation security at a higher level of abstraction than ITS — a bottom-up approach strictly 

based on entropy and unicity distance. This difference makes it possible for partial reuse 

of an encryption key in S-OTP that does not have to be strictly based on entropy as ITS 

does. 

Proof. Since an S-OTP cipher is to conceal a summation and a percentage distribution 

without plaintext semantics, it is different from an OTP cipher but more general. While 

plaintext can be revealed based on semantics due to low entropy of an OTP key, summation 

and percentage distribution do not show such semantics. A percentage in trial cannot be 

confirmed without its key or a confirmed summation plus a confirmed distribution; a sum-

mation in trial cannot be confirmed without its key or a confirmed percentage distribution 
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plus deterministic semantic analysis. Thus, ICS of S-OTP is a fundamentally different ap-

proach that does not have to be strictly based on entropy as for ITS of OTP. After all, OTP 

is VS-OTP, and information conservation is a paramount law at a higher abstraction level 

than entropy.  ∎ 

3   METHODOLOGY 

3.1 Basic ICC Algorithm 

The rationale of S-OTP is that, given an unsigned big integer L representing large data 

item D to be transmitted, L can be divided into a set of short integers {xi} = {x1, x2, .., xi, .. 

xN} representing sections of D to be transmitted. The math summation can be obtained as 

X =  ∑𝑖𝑥𝑖, 1 iN, which is concealed in the ciphertext of key K1 in the same way as using 

an OTP key. The ciphertext of X is much shorter than L to transmit. The percentage distri-

bution {𝑥𝑖/X} can be longer than L but it can be made completely misleading with K1 di-

rectly and indirectly. While part of the distribution can be concealed together with the sum-

mation using K1, the concealed percentages can be used for encrypting the remaining part 

of the percentage distribution and make it uncorrectable. For instance, after P terms of the 

percentages are partially enciphered with K1 together with the summation, the remaining 

(N - P) percentages {𝑥𝑖/X} can be encrypted to {𝑥𝑖/X}’’ in two layers using three 128-bit 

short private keys. If we assume the data sections are random, however, the three short 

keys can be replaced by three partially concealed percentages.  

Let p1, p2, and p3 be three private keys or the minimum, maximum, and median (min-

max-median) values of the partially concealed percentages, we have Eq. 1.   

i, P<iN and (i%2) = 0, {𝐱𝐢/X}’ = {[p1 + (𝐱𝐢/𝐗)] ⁄ [𝟏 + 𝟎. 𝟓𝐍(p1 + (𝐱𝐢/𝐗))]} ;  (1a) 

i, P<iN and (i%2) = 1, {𝐱𝐢/X}’ = {[p2 + (𝐱𝐢/𝐗)] ⁄ [𝟏 + 𝟎. 𝟓𝐍(p2 + (𝐱𝐢/𝐗))]} ;  (1b) 

i, P<iN,     {𝐱𝐢/X}’’= {[p3 + (𝐱𝐢/𝐗)′] ⁄ [𝟏 + 𝟎. 𝟓𝐍(p3 + (𝐱𝐢/𝐗)′)]} .   (1c) 

Eq. 1 assumes: (a) (𝒙𝒊/𝑿) is a random decimal variable; (b) pi is a private key or a ran-

dom percentage non-linearly correlated with (𝑥𝑖/X); (c) Integers P and N are private until 

the receiver count the number of concealed percentages by K1. With the four conditions 

there is no common factor involved even though pi and N are reused.    

Preprocessing. This work assumes that the data sections of the plaintext to be enci-

phered is random without zero sections. The assumption is reasonable because it is unusual 

to have zero sections. If such sections do exist they can be categorically compressed. 

Theorem 4 (Possibility Theorem). With random data sections, a partial percentage 

distribution can be made completely misleading with Eq. 1 and uncorrectable by an at-

tacker without any private key. 

Proof. The task of Eq. 1 is to make partial percentage distribution misleading and un-

correctable by an attacker without any key where the percentages do not have to remain 

rational. The theorem follows from six conditions. First, Eq. 1 has no common factor due 

to the non-linear correlation of pi with  (𝑥𝑖/X) in multiple layers. Second, with private key 

obtained from quantum key distribution (QKD) K1 is really random. Third, with complete 

concealment of the summation and partial percentage distribution, the remaining part of 

the percentage distribution does not sum to 1.0 and no longer correlated. Fourth, applying 

Eq. 1 multiple rounds with the min-max-median values conceals the remaining percentage 

distribution completely. Fifth, data preprocessing guarantees that no zero data section. 

Sixth, different pieces of the ciphertext are interlocked with information conservation, 

where a trial key pi cannot be confirmed until the encrypted percentage is confirmed; a 

trial percentage distribution cannot be confirmed without being tested against a confirmed 

summation; a trial summation cannot be confirmed without its key or a percentage distri-

bution plus deterministic semantic analysis which is generally non-deterministic. Thus, the 

only option is exhaustive search.  ∎ 

The total S-OTP key K1 for enciphering the summation plus P terms of the percentages 

could be the length of (128 + 128P) = 128(1+P) bits. Assuming the data text of 32K bits 

we have the comparison between S-OTP and OTP: (i) Let P = 7, the key length 128(1+P) 
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approximates to 1K bits with 32-fold key reduction. (ii) Let P = 15, the length is about 2K 

bits with 16-fold key reduction. (iii) Let P = 31, the length is about 4K bits with 8-fold key 

reduction. (iv) Let P = 63, the length is about 8K bits with 4-fold key reduction. (v) Let P 

= 127, the length is about 16K bits with 2-fold key reduction. 

S-OTP-Method1 

Assume IEEE binary128 is used within the limit of computational precision, and sender 

Alice and receiver Bob share private key K1 distributed through QKD. i, xi>0. 

Part I. Encryption  

Step 1. Let {𝑥𝑖} represent preprocessed data sections; 

Step 2. Let math summation X =  ∑𝑖𝑥𝑖,  for all i (not XOR); 

Step 3. Calculate percentage distribution {𝑥𝑖/X}; 

Step 4. Encrypt X and P terms of {𝑥𝑖/X} with key K1 to X’=[K1(X concatenates P terms 

of 𝑥𝑖/X)] where  is XOR (not math summation); apply Eq. 1 to encrypt the remaining 

terms of {𝑥𝑖/X} to {𝑥𝑖/X}’’; 

Step 5. Alice Transmits E = (X’, {𝑥𝑖/X}’’) to Bob as a pair. 

Part II. Decryption  

Step 1. Use K1 and Eq. 1 to decipher or decrypt E to the pair (X, {𝑥𝑖/X}); 

Step 2. Use {𝑥𝑖/X} to decrypt the summation X to {𝑥𝑖}; 

Step 3. Recover the message from {xi} with concatenation. 

Example. Assuming the plaintext data D to be transmitted is represented by the big 

integer L = 1048549998213983988 divided into the three sections 1048549, 998213, and 

983988. Assume sender Alice and receiver Bob share key K1 distributed through QKD. 

Part I – Encryption (some steps are omitted) 
 Let  x1 =1048549,  x2 = 998213, x3  = 983988;  X =  x1 + x2 + x3= 3030750; 

 Calculate percentage distribution {xi/X} = {34.5970%, 32.9362%, 32.4668%}; 

 Encrypt and transmit; 

Part II – Decryption (some steps are omitted): 
 Use K1 and Eq. 1 to decrypt the message; 

 U=(3030750, {34.5970%, 32.9362%, 32.4668%}); 
 Recover x1 = 1048549,  x2 = 998213, and x3 = 983988; 

 L = concatenate(x1, x2, x3) = 1048549998213983988; 

 Recover D from L. 

Theorem 5. S-OTP-Method1 is information conservationally secure provided that The-

orem 4 holds.  

Proof.  The conditions of ICS are met: (a) The key length required is significantly 

shorter than the message due to ICT. (b) The shorter key does not weaken the ITS of OTP 

as VS-OTP because the summation is enciphered with an S-OTP key equivalent to an OTP 

key, percentage distribution is partially concealed, and remaining percentages are made 

completely misleading and uncorrectable without any key per Theorem 4. (c) The gain of 

many-fold key reduction significantly overweighs the cost—a limited data traffic increase 

of 37.5% countered by a 4- to 32-fold reduction of key length and key distribution cost to 

make it possible for safe transmission of long messages. ∎ 

It is undoubtedly a huge step to advance from OTP to S-OTP and from ITS to ICS. 

While ITS of OTP takes a bottom-up approach to cryptography, ICS of S-OTP takes a top-

down approach. One is probabilistic and another holistic. One is observational and another 

information conservational. One is statistical and another logical. Notably, the plaintext in 

S-OTP is holistically transformed into isolated but interlocked and meaningless pieces 

whose complete correlation cannot be revealed until the plaintexts of all pieces are re-

vealed. It is understandable that this leads to serious doubts/confusions that deserve further 

clarification. 

Clarification 1. It can be argued that, since S-OTP exposes the approximate number 

of data sections, it cannot be compared with OTP where the plaintext is enciphered with a 

same length or longer keypad based on entropy. This is not a valid argument because a 

same length or longer keypad also exposes the exact or the approximate data length. 

Clarification 2. It can be argued that the S-OTP idea is quite similar to the already 

well-researched key stretching technology [8]. This is an interesting observation where an 
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enhanced or stretched key should be of sufficient size such as 128 bits to make it infeasible 

to break by brute force attacks. Notably, 128-bit decimal and 2K-bit or longer keys are 

used in S-OTP as well. This seems a similarity. However, the fundamental difference is 

that key stretching does not have ICS involved. With ICS of S-OTP, key K1 without reuse 

conceals a summation and part of the percentage distribution in the same way as an OTP 

key does with ITS, and the min-max-median values of partially concealed percentages are 

used as reusable keys to encrypt the remaining percentages, where the encryption keys and 

the encrypted are both in double precision floating-point format. Since the summation and 

percentage distribution are resulted from ICT, no semantics of bare plaintext is involved. 

Virtually, no password stretching involved in S-OTP. While a guessed password can be 

readily tested, an S-OTP key for a percentage cannot be confirmed until the encrypted 

percentage distribution is confirmed. A percentage distribution cannot be confirmed with-

out being tested against a confirmed summation. A guessed summation cannot be con-

firmed without its key or a confirmed percentage distribution. Thus, the isolated pieces are 

interlocked that have to be revealed holistically either using a key or through an exhaustive 

search.  

Assuming a 2K-bit key K1 and 128-bit fixed-point format keys for percentages, the 

search space for K1, p1, p2, p3 , and N could be estimated as SP = 22048 2128  2128 2128  

2N. Given N = 352, SP = 22814. It seems a deterministic search space. Unfortunately, fixed-

point format is not sufficient for double precision floating-point computing. Moreover, 

without the keys, S-OTP requires semantic analysis that is generally non-deterministic in 

nature. Thus, S-OTP is fundamentally different from key stretching that must have a deter-

ministic space such as 2128.  

Clarification 3. Yet another major argument is that using an S-OTP key to encrypt a 

long message to reach ITS level requires the min-entropy of the S-OTP key the same as 

OTP key, and the length of S-OTP key must be equal or larger than the length of the OTP 

key. Thus, it is impossible for the ICS of S-OTP not to weaken the ITS of OTP for long 

messages, and Definition 3 has to be wrong. 

A counter argument to the critique seems difficult but readily lies in the context of OTP 

being VS-OTP. Based on Axioms 1-2 and Definitions 1-4, OTP is virtually scalable where 

any plaintext message can have a virtual summation with a virtual percentage distribution. 

This leads to the paradoxical nature of the ITS optimality of OTP (see Theorems 1-4) be-

cause, for the first time, a computationally unlimited adversary can try to search for a vir-

tual percentage and virtual summation with a trial and error process regardless of the en-

tropy measure of the OTP cipher key. Thus, if an attacker can be forced to bypass an S-

OTP key to guess a percentage and a summation, the attacker can also bypass an OTP key 

to guess a virtual percentage and a virtual summation in a brute force attack. As a result, 

the entropy-based optimality becomes logically paradoxical. 

Subsequently, we can conclude that S-OTP does not weaken the ITS of OTP as long as 

the two security conditions of Theorem 1 are met no matter whether ITS in its new context 

is stronger, weaker, or same as before (a topic left for future study). Our focus then should 

be on the two security conditions with (a) holistic information conservation, (b) semantic 

information hiding, (c) summation isolation from percentage distribution, (d) partitioning 

and concealing the percentage distribution, and (e) key pad compression with collective 

precision. While Shannon entropy is used as a basis, other entropy measures are left for 

future research effort for possible enhancement.     

3.2 ICC with Collective Precision 

S-OTP-Method1 with percentage distribution has its limitation due to computational 

precision and data traffic overhead. When the math summation gets huge—a usual case, 

the precision of a single percentage is problematic. The 37.5% data traffic increase is also 

a significant factor. These problems can be better solved with the massive parallel collec-

tive precision property of ICC [6,7]. In ICC, a big total can be divided into many subtotals 

or integers representing data sections. If each subtotal is further divided into bipolar import 

and export, each can be normalized by its corresponding column subtotal. An information 
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conservational matrix can then be derived through column-major normalization for parallel 

and collective precision without using a grand total.  

Without dealing with the grand total, a section subtotal can be increased to reduce the 

number of sections as well as percentages and data traffic overhead. For instance, section 

size can be increased from 96 bits (12 bytes) to a maximum 112 bits (14 bytes) for IEEE 

binary128 standard. 1K-bits would result in 10 sections. L=32K bits would be divided into 

320 sections instead of 352 sections. The summation would be less than 128 bits.  The 

summation and the percentage distribution total data length approximates to 128 + 320  

128 bits  40K vs. 44K as for Method1. The cost would be roughly (40-32)/32= 12/32 = 

25% traffic increase vs. 37.5%.  

ICC with collective precision is made achievable with bipolar fuzzy sets defined in the 

quantum lattices or Cartesian products including B1 = {-1,0}×{0,+1}, BF = [-1,0]×[0,+1], 

and B = [-1,0]×[0,+1], respectively, as shown by Fig. 1.  

 
Figure 1. Hasse diagrams of YinYang bipolar quantum-fuzzy lattices B1, BF, B (adapted from [9,10,11]) 

Bipolar fuzzy sets forms an equilibrium-based mathematical abstraction—a set theo-

retic or information theoretic generalization of classical sets and fuzzy sets. Within the 

generalization, truth-based computing can be used freely as long as equilibrium conditions 

are not violated. Bipolar fuzzy sets are quantum sets that provide a basis for logically de-

finable causality and quantum intelligence [12]. 

 In this subsection, we show an ICC example with collective precision. A key concept 

is an information conservational bipolar matrix M. With a percentage distribution built into 

matrix M, an energy or information total or summation can be decrypted through equilib-

rium-based rebalancing to result in all the subtotals in parallel. This makes it possible to 

develop digital or quantum machinery with massive parallelism and collective precision 

that is not achievable with a linearly normalized percentage distribution.  

 M consists of bipolar elements. A bipolar element is an energy/information import-

export or negative-possible variable x = (a, b) defined as the length of the bipolar interval 

from a to b. The energy/information of x is defined as |x|  as in Eq. 2. For instance, ||(-
2.5, 3.5)|=3.5-2.5=2.5+3.5=6. 

 |x| = |(a, b)| = b – a = |a| + |b|.            (2) 

A 3-partner US-China-EU trade example is used to illustrate the basic idea of ICC with 

collective precision. First, the 3-parners’ bipolar import-export data for 2014 are shown in 

Fig. 2a as a cognitive map (CM) in million Euros. The total energy/information in the trade 

scenario is characterized by the total import-export  

||(-3030750, +0)| = |(-0, +3030750)| = 3030750.  

Using collective bipolar interaction in ICC, accurate calculation can be carried out with 

the bipolar quantum cellular automaton (BQCA) E(t+1) = M  E(t) based on a column-

major normalized bipolar matrix M that does not need sequential calculation of a percent-

age distribution. (Note: The illustrations in this paper are in fixed-point format for reada-

bility. In real computing, they are in floating-point format.)  

In this ICC example E(1) is the transpose of the initial bipolar column vector with cer-

tain total energy/information. A cognitive map (CM) C is referred to as a bipolar or unipo-

lar conceptual graph or an import/export network. M is obtained with column-major nor-

malization of an I/O-consistent and interactive CM in which all elements are directly or 

indirectly interrelated. We have 
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C(t) = [
(0, 0) (−420,079, +111,308) (−311,035, +206,127)

(−111,308, +420,079) (0, 0) (−164,777, +302,049)
(−206,127, +311,035) (−302,049, +164,777) (0, 0)

]; 

M = normalize(CT(t)) = [
(0.000 0.000) (−0.112 0.421) (−0.209 0.316)

(−0.401 0.106) (0.000 0.000) (−0.307 0.167)
(−0.297 0.197) (−0.165 0.303) (0.000 0.000)

]. 

Equilibrium-based rebalancing is illustrated in Fig. 2b and curved in Fig. 2c. Fig. 2d 

verifies such rebalancing with sequential computing. Fig. 2e shows 200% is rebalanced to 

a perfect percentage distribution built in M. Thus, matrix M can be deemed a quantum 

encryption of a percentage distribution. Here both of a quantum world and a classical world 

are logically unified in to an analytical paradigm. 

Equilibrium-based rebalancing can balance a total or a set of subtotals to a perfect equi-

librium state with percentage distribution coded in M in an iterative and massively parallel 

process. Although a perfect equilibrium-state may be neither practical nor desirable in eco-

nomics, equilibrium-based rebalancing provides a new approach to pre- and post-quantum 

cryptography. It finds a mathematical abstraction for collective precision and bridges two 

different worlds. 

S-OTP-Method2 

Assume IEEE binary128 is used with the precision of 112 significant bits, and assume 

sender Alice and receiver Bob share private key K1 distributed through QKD.  

Part I. Encryption  

Step 1. Data Transformation. Given binary data D to be transmitted, let the unsigned 

integer number set {xi} = {x1, x2, .., xi, .., xn} represent preprocessed data sections of D 

and let math summation X =  ∑𝑖𝑥𝑖, 1 iN,. 

Step 2. Bipolar Cognitive Mapping. Construct an I/O-consistent bipolar cognitive map C 

based on {xi} such that {xi} is decomposed into an unbalanced relational data set {eij} 

= {(eij
-,eij

+)} where each bipolar link weight eij = (eij
-,eij

+) and |di|  ∑ ||𝑒𝑖𝑗  𝑗  (en-

ergy/information of row i) with ratio |eij
-|/|eij

+| > l, a threshold for non-zero bipolar 

elements. Thus, the set {eij} forms a bipolar cognitive map C with total information 

X=∑𝑖|𝑥𝑖|. (Note: C is not unique – an area of further research where bipolar linguistic 

fuzzy sets can be used for the optimization.) 

Step 3. Bipolar Energy/Information Normalization. Normalize transpose CT to an infor-

mation conservational matrix M (a bipolar quantum-fuzzy logic gate (BQFLG) or a 

bipolar quantum-fuzzy cognitive map (BQFCM)) following Eq. 4 such that the BQCA 

E(t+1)=M × E(t) is asymptotic to an equilibrium state [6,7].  

Step 4. Data Encryption. Use K1 to encipher X and part of M to X’, and apply Eq. 1 to 

change the remaining terms of M to a misleading M’’; 

Step 5. Transmit the pair E = (X’,M’’). 

Part II. Decryption 
Step 1. Use K1 and Eq. 1 to recover the pair (X,M);  

Step 2. Use M to decipher and depolarize X to recover {xi}; 

Step 3. Recover D from {xi} with concatenation. 

Illustration. Applying S-OTP-Method2 we have the decryption example in Fig. 2. The 

total information of the last row of Fig. 2b approximate to exactly the same result as that 

of S-OTP-Mehrod1: 

d1=||(-731114, +317435)=1048549;  

d2=||(-276085, +722128)=998213; 

d3=||(-508176, +475812)=983988  

D=Concatenate(d1, d2, d3)=1048549998213983988. 

Theorem 6. S-OTP-Method2 is information conservationally secure provided that the 

summation is enciphered with a same length or longer S-OTP key and matrix M is made 

completely misleading and uncorrectable by an attacker without any key.  
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Proof.  It follows the proof for S-OTP-Method1. (Notes: (a) This theorem closes a loop-

hole in Theorem 8 of Ref. [6]. (b) The value of S-OTP-Method2 lies in its collective preci-

sion, not in key length compression and data traffic.) ∎ 

 

      
(a) 

 
(b) 

 
(c)  

 
(d) 

    
(e) 

Figure 2. (a) Bipolar CM of 2014 US-China-EU trade (in Million Euros); (b) Rebalancing of total im-

port/export to an equilibrium state; (c) Curves of the rebalancing; (d) Digital computing; (e) Quantum-

fuzzy rebalancing of 200% 
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3.3 The Quantum Intelligence Nature of ICC 

The bipolar approach is based on a formal logic named bipolar dynamic logic and an 

algebra named bipolar quantum linear algebra, which are proven equilibrium-based bipolar 

dynamic generalizations of Boolean logic and linear algebra respectively. This develop-

ment leads to an analytical quantum intelligence paradigm of ICC [6,7]. 

Given an nn square bipolar interactive matrix M and an n1 column bipolar vector 

E(t) such that E(t+1)=M × E(t), if the absolute energy/information subtotal |εcol|M∗j(t) of 

each column j of M equals 1.0 or,∀j, |εcol|M∗j(t)1.0, M is referred to as an information 

conservational bipolar quantum logic gate (BQLG) matrix or a bipolar quantum-fuzzy cog-

nitive map (BQFCM) [6].  With the BQLG matrix M we have the bipolar quantum cellular 

automata (BQCA): 

|ε|E(t+1) = |ε|(M × E(t)) ≡ |ε|E(t).              (3) 

Eq. 3 makes BQCA a general-purpose quantum cellular automata theory – an equilib-

rium-based unification of matter and antimatter atoms. Computationally, a BQCA can be 

regulated to achieve information conservation, regeneration, degeneration, and/or oscilla-

tion. It provides a basis for equilibrium-based quantum intelligence (QI) (Fig. 3) [6,7].  

QI leads to the theory of ICC and S-OTP-Method2 with collective precision. In ICC, 

an I/O-consistent CM can always be designed and normalized to a BQLG matrix M for a 

BQCA to be asymptotic to a bipolar equilibrium state even though some link weights are 

weaker and need more iterations (t) to be balanced. This property provides a basis for pre- 

and post-quantum cryptography.  

The transpose CT(t) is used to obtain its column-major normalized BQLG matrix M for 

ICC. The normalization follows Eq. 4. In Eq. 4, the denominator |εcol|(CT
∗j) denotes the 

absolute energy/information subtotal of column j in CT. The notation |εcol|(M∗j) denotes the 

normalized absolute energy/information subtotal of column j of matrix M. 

M(i,j) =  (CT(i,j))/|εcol|(CT
∗j).             (4) 

 
(a)                 (b)                 (c) 

Figure 3. A BQCA unification of matter and antimatter atoms (Adapted from [13 ]): (a) Matter; (b) 

Antimatter; (c) Unification 

3.4 The Digital Nature of S-OTP-Method2 

Notably, S-OTP-Method2 is based on bipolar equilibrium-based rebalancing. Bipolar-

ity is a quantum feature that form the bipolar reality of negative-positive particles. The 

bipolar property, however, can be depolarized for digital cryptography. Thus, a unipolar 

CM can be revealed from a bipolar one with depolarization.  

Since a bipolar representation is a generalization of unipolar representation and sub-

sumes unipolar cases, all the elements of a polarized map can simply have zero negative 

energy/information which leads to the simplified CM as in Fig. 4 coded as a unipolar ma-

trix C(t)—a positive relation that does not distinguish import-export bipolarity. 

Depolarization leads to a unipolar cipher that is basically the same as S-OTP-Method2 

except using a positive CM and a positive matrix M. Fig. 4 shows such a decryption exam-

ple where in the last row we have the same result as for the bipolar case. 

d1 = ||(-0, +1048549) = 1048549;       

d2 = ||(-0, +998213) = 998213; 

d3 = ||(-0, +983988) = 983988;  

D = Concatenate(d1, d2, d3) = 1048549998213983988. 
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(a) 

                                        
(b) 

 
(c) 

Figure 4. Information-conservational unipolar rebalancing: (a) depolarized CM; (b) Positive distribu-

tion; (c) Positive curve (scaled) 

3.5 Two Puzzles Explained 

(A) How can matrix C(t) in symmetry (C(t)(i,j)= C(t)(j,i)) be used in cryptography? The 

answer is that, although matrix C(t) is symmetrical, a column-major normalized M can be 

non-linear and asymmetrical because the normalization is by dividing its column subtotal 

of CT(t) (data section subtotal), but not by the global total (corresponding to the overall 

summation). For instance, 

C(t) = [
0 531587 517162

531587 0 466826
517162 466826 0

];      M = 
0
1
2

[
0.000 0.532 0.526
0.507 0.000 0.474
0.493 0.468 0.000

];  

where C is symmetrical but M is not. The non-linear asymmetrical property of M can be 

characterized with a set of linear equations. Let the three subtotals (or data sections) be x, 

y, and z, respectively, for the 33 matrix M we have m10x – m01y = 0; m20x – m02z = 0; 

and m21y – m12z = 0; and mij  mji. The set of equations have infinite number of solutions 

because all column coefficients of M correlate non-linearly with each other due to non-

linear normalization based on different local column subtotals. This is fundamentally dif-

ferent from percentage distribution where all percentages are normalized with a global total 

and linearly correlated.  

(B) If a unipolar positive matrix is sufficient, why do we need a bipolar equilibrium-

based matrix in cryptography? There are four top answers to this question:  

(i) The universe consists of negative-positive particles. Without bipolarity, there would 

be no bipolar information conservation, quantum intelligence, and bipolar quantum com-

puting [6,7]. Thus, bipolarity leads to an analytical ICC paradigm compatible to digital 

computing (further discussed later).  
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(ii) Bipolarity is set-theoretically different from bilinearity or bijection, one defines a 

2-to-2 mapping of equilibrium-based non-linear bipolar dynamic entanglement with logi-

cally definable causality and information conservation, another defines a 1-to-1 mapping 

without entanglement and definable causality. Of course, the negative sign can be elimi-

nated with depolarization, but the bipolar semantics remains intact. Fig. 5 shows the ne-

cessity of quantum bipolarity.  

 
Figure 5. Necessity for quantum bipolarity 

 (iii) On the sender side, a bipolar matrix doubles the number of elements in a unipolar 

matrix, doubles the parallelism, avoids large denominators, and doubles collective preci-

sion with equilibrium-based rebalancing. On the receiver side, a bipolar matrix avoids de-

crypting a large total because, given a big integer E in 100%, we have the equivalence law 

of energy/information distribution/conservation:  

||E = || [(-0, +100%)] = ||[(-50%, +50%)]  

= ||[(-25%, +25%)) (-25%, +25%)] = ||[…].         (5) 

3.6 Minimal BQCA 

Theorem 7 (Minimal BQCA Theorem). Mehtod1 is the minimal case of Method2. 

Namely, summation and percentage distribution is a one-step bipolar quantum cellular au-

tomaton with all zero values for the negative poles equal.   

Proof. Mehtod2 entails an N𝑁 square matrix multiplied by a column vector in an 

information conservational BQCA. When N𝑁 is reduced to N1, the matrix becomes a 

column vector of percentage distributions {𝑤𝑖} = {𝑥𝑖/X} summing up to 1.0, the single 

number must be the summation X of N sections, such that the column vector multiplied by 

a single element matrix results in a column vector energy/information distribution {𝑥𝑖}.  

The Matrix multiplication can be deemed the minimal BQCA which requires a final equilib-

rium state be reached in a single step with high precision such as (

𝑤0
𝑤1

𝑤𝑖+1
𝑤𝑛

) [𝑋] =  (

𝑥0
𝑥1

𝑥𝑖+1
𝑥𝑛

).  ∎ 

The above theorem provides a unifying bridge between two mathematical abstractions, 

on for a bipolar quantum world and another for a classical unipolar world. Since Method1 

is suitable for reducing network traffic and Method2 for computational precision, the two 

should be combined together in an optimization.  

3.7 Optimization 

Method1 uses percentage distribution, and Method2 uses information conservational 

encryption. In Method1 each data section depends on a single percentage resulted from 

linear normalization by a grand total. When the data length is long, Method1 will have a 

precision problem. In Method2, each data section depends on all columns of matrix M 

resulted from column-major normalization by much smaller subtotals where percentage 

distribution is not directly calculated using a grant total as denominator. If each column 

has an average of n > 2 non-zero numbers, the precision requirement is n-times smaller. 

The larger the number n the more parallelism in high precision decryption. When n equals 

N, Method2 reaches maximum parallelism with N-fold precision enforcement for a positive 

matrix M and 2N-fold for a bipolar matrix M. This observation leads to the inception of 

information conservational collective precision.  

Observation 1: Asymptoticity. If M is information conservational, a BQCA E(t+1) = 

M   E(t) is asymptotic to an equilibrium state as determined by M per references [6,7].  
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Observation 2: Information Conservation. If an original message D is converted to 

an energy/information total E through a BQCA transformation, the information conserva-

tional matrix M of the BQCA can serve as a key to decode the total information to the 

original message D on the receiver side per ref. [6]. However, to transmit matrix M will 

cost much more than to transmit a percentage distribution. Thus, Method1 is more efficient 

than Method2 for network traffic but only Method2 can enable collective precision and 

efficient decryption. 

Theorem 8. If M is information conservational, a BQCA E(t+1) = M   E(t) can be used 

to derive the percentage distribution embedded in M. 

Proof. Given ||E(t) = 100 (percent), the theorem  follows from the asymptoticity in ref. 

[6] directly (see example in Fig. 2e ). ∎ 

Theorem 9. A percentage distribution of N divisions can be converted to an NN (uni-

polar or bipolar) information conservational matrix M for collective precision with en-

hanced parallelism such that M is information conservational and BQCA E(t+1) = M   E(t) 

is asymptotic to an equilibrium state. 

Proof.  Notice that M is normalized and information conservational but not unique. 

The theorem follows from  (

𝑤0
𝑤1

𝑤𝑖+1
𝑤𝑛

) [𝐸] =  (

𝑤0𝐸
𝑤1𝐸

𝑤(𝑖+1)𝐸

𝑤𝑛𝐸

)  because (

𝑤0
𝑤1

𝑤𝑖+1
𝑤𝑛

) is strictly proportional 

to  (

𝑤0𝐸
𝑤1𝐸

𝑤𝑖+1𝐸
𝑤𝑛𝐸

). That is, M can be derived from either of the two column vectors.  ∎ 

Based on the above findings we can conclude that, on the sender side, matrix M can be 

used for determining the percentage distribution with collective precision that can achieve 

N to 2N fold reduction of precision requirement due to column-major normalization (Re. 

Eq. 4). On the receiver side, M can be used to decrypt a big total to subtotals (or data 

sections) with collective precision in a reverse way (Fig. 2b and Fig. 4b). Thus, Method1 

and Method2 can be used in a combination. Method2 focuses on collective precision with 

ICC; Method1 focuses on secure and efficient data transmission, this lead to the block 

diagram design in Fig. 6 that combines the advantages of Method1 and Method2 while 

eliminating their drawbacks. 

 
Figure 6. Method1 and Method2 combined 

The combination of two methods together leads to an optimized algorithm named S-

OTP-Method1+2 based on IEEE binary128 standard with 112 significant bits precision. 

S-OTP-Method1+2  

For 32K-bit binary data (more or less) divided into 320 (more or fewer) sections {xi}, 

assume sender Alice and receiver Bob share private key K1 distributed through QKD. An 

integer P is private until the sender found the number of concealed percentages. Assume 

no zero-value data section. 

Part I –Sender Side 
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Step 1. Let integer set {xi} represent preprocessed data sections; 

Step 2. Let math summation X =  ∑𝑖𝑥𝑖 for all i 

Step 3. Use the collective precision advantage of Method2 to calculate percentage distri-

bution {𝑥𝑖/X} (See Fig. 2e); 

Step 4. Use Method1 and K1 to encrypt X and P terms of {𝑥𝑖/X} to X’ and use Eq. 1 to 

encrypt the remaining (N - P) terms of the percentage distribution to {𝑥𝑖/X}’’; 

Step 5. Alice Transmits the pair E=(X’, {𝑥𝑖/X}’’) to Bob use Method1. 

Part II. Receiver Side   

Step 1. Use K1 and Eq. 1 to decipher E to recover the pair (X, {𝑥𝑖/X}); 

Step 2. Use {𝑥𝑖/X} to derive an information conservational matrix M so that Method2 can 

be used to decrypt the summation X to {𝑥𝑖}; 

Step 3. Recover the message from {xi} with concatenation. 

Example. Assuming the plaintext data D to be transmitted is represented by the big 

integer L = 1048549998213983988 divided into the three sections 1048549, 998213, and 

983988. Assume sender Alice and receiver Bob share K1 distributed through QKD. 

Part I – Encryption (some steps are omitted) 
 Let  x1 =1048549,  x2 = 998213, x3  = 983988;   

 X =  x1 + x2 + x3= 3030750; 

 Use Method2 to calculate percentage distribution (see Fig. 2(e)) and {xi/X}  = {34.5970%, 32.9362%, 
32.4668%}; 

 Use Method1 to encrypt (X, {xi/X}) to (X, {xi/X})’ and transmit; 

Part II – Decryption (some steps are omitted): 
 Use K1 and Eq. 1  to decrypt the message; 
 U=(3030750, {34.5970%, 32.9362%, 32.4668%}); 

 Derive an information conservational BQCA based on U using Method2; 

 Use the BQCA and Method2 to decrypt U (see Method2 and Fig. 2(b)); 
 x1 = 1048549,  x2 = 998213, and x3 = 983988; 

 L = concatenate(x1, x2, x3) = 1048549998213983988; 
 Recover D from L. 

It should be noted that the above example illustrates the basic concept but may be too 

small to be fully illustrative to the collective precision property of Method2.  With a large 

number of sections, collective precision would be crucial. In that case, Method1 would face 

a precision problem due to a huge summation denominator. Method2, however, does not 

have to deal with the big summation. Thus, collective precision could spark an analytical 

paradigm of ICC supercomputing machinery with quantum intelligence. 

Theorem 10. S-OTP-Method1+2 is information conservationally secure provided that 

S-OTP-Method1 is secure.  

Proof.  Since Method2 is only used for collective precision but not for communication, 

the theorem follows the proof for S-OTP-Method1 directly.  ∎ 

3.8 Hierarchical Extension 

S-OTP-Method1+2 can be extended to a hierarchical algorithm with BHKC/BBDR. 

With BHKC, a hierarchical process of ICTs can scale down or reduce an OTP keypad 

length for a long message to a condensed tiny minimum. Taking QKD cost saving into 

consideration the benefit of BHKC/BBDR significantly overweighs the cost. 

S-OTP-Hierarchical  

Assume IEEE binary128 is used with the precision of 112 significant bits, and assume 

the sender and receiver share two private key K1. Assume preprocessed data sections.  

Part I –Sender Side BHKC 

Step 1. Level L = 0; OTP key length required equals to data length, that is not practical for 

long messages of multiple mega or gaga bits; let block index b = 0; let total number 

of blocks B = (total number of bits)/32K; 

Step 2. Level L = L+1, for each 32K-bit (longer or shorter) data block, apply S-OTP-

Method1+2 to reduce the key length to 2K, 4K, or 8K compressed data bits, respec-

tively, as designated, to conceal a 128-bit summation and P terms of percentages. 

Total key length is reduced after this step by 32-, 16-, or 8-folds, respectively, as 
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designated. The unconcealed percentages are made completely misleading and un-

correctable by an attacker without any key. The compressed data for each 32K are 

left for further compression without enciphering; 

Step 3. If total key length for compressed data is greater than 2K, 4K, or 8K bits as desig-

nated, go to Step 2; 

Step 4. Encipher the compressed data with K1 and encrypt the remaining percentages with 

Eq. 1. 

Step 5.Transmit the ciphertext and all the misleading percentages for each 32K-bit data 

block at each level to the receiver.    

Part II – Receiver Side BBDR 

Step 1. Use S-OTP-Method1+2 to decipher with K1; 

Step 2. L = L – 1; if L > 0, go to Step (1); 

Step 3. Recover the original message or data set D by concatenating the data sections. 

Figures 7a and 7b show the sketches of BHKC and BBDR, respectively. 

 

 
(a) 

 
(b) 

Figure 7. Sketches: (a) BHKC; (b) BBDR 

 

BHKC Example 1. Given a 64G-bit long message (or shorter), assuming 32-fold key 

reduction for each round of ICT,  
 L = 0, total key length = 64G bits, impractical and not applicable;  

 L = 1, total key length = 64G/32 = 2G, impractical and not applicable;  

 L = 2, total key length = 2G/32 = 211M/25 = 26M = 64M, impractical and not applicable; 
 L = 3, total key length = 64M/32 = 2M, impractical and not applicable; 

 L = 4, total key length = 2M/32 = 211K/25 = 26K = 64K, impractical and not applicable; 

 L = 5, total key length = 64K/32 = 2K, practical key applied. 

BHKC Example 2. For the same problem as in Example 1 but assuming 16-fold key 

reduction for each round of ICT instead of 32-fold, we have 
 L = 0, total key length = 64G bits, impractical and not applicable; 

 L = 1, total key length = 64G/16 = 4G, impractical and not applicable; 
 L = 2, total key length = 4G/16 = 212M/24 = 28M = 256M, impractical and not applicable; 

 L = 3, total key length = 256M/16 = 16M, impractical and not applicable; 

 L = 4, total key length = 16M/16 = 1M = 210K, impractical and not applicable; 
 L = 5, total key length = 210K /16 = 64K, impractical and not applicable; 

 L = 6, total key length = 64K/16 = 4K, practical and applied. 

Theorem 11. S-OTP-Hierarchical is information conservationally secure provided that 

S-OTP-Method1+2 is secure. 

Proof.  Since the percentages of different sections are not correlated in anyway, the 

theorem follows Theorems 10 and 11 directly. ∎ 

With S-OTP-Hierarchical, sender-receiver collusion on collective precision could be 

important. On the sender side, collective precision can be used for testing results efficiently 

and precisely to guarantee that the receiver side will get the correct message. On the re-

ceiver side, it can be used to decrypt the total to many subtotals precisely and efficiently in 

massive parallelism. The two sides can be colluded through public protocols based on the 

ranges of data length and number of sections. 
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4. QUANTUM EXTENSION  

Collective precision adds a number of new features to S-OTP. Yet its biggest potential 

could be its equilibrium-based quantum extension of collective precision. 

Collective precision further suggests that Method2 is suitable for developing bipolar 

quantum-digital compatible machinery as an equilibrium-based analytical paradigm of 

ICC. While the illogical aspect of bra-ket quantum mechanics prevents quantum computing 

from becoming an analytical paradigm, ICC makes the quantum dream logically possible 

and quantum-digital compatible with a quantum intelligence approach. 

From a security perspective, quantum-digital compatible ICC machinery can be an ul-

timate solution to achieve perfect security. Although ITS of OTP is widely believed the 

only unbreakable crypto system even if the adversary has unlimited computing power, the 

optimality paradox as proven in Theorems 1-3 cast doubt on this claim from the perspective 

of ICS. Even though researchers are trying hard to find a solution for post-quantum cryp-

tography, a perfect digital computing solution may not exist. If quantum-proof cryptog-

raphy is not realizable through digital communication, the only option left for post-quan-

tum cryptography could be information conservational quantum teleportation. Bipolar 

quantum entanglement provides such an equilibrium-based logical or analytical basis [6,7] 

different from bra-ket quantum computing. 

The nature of S-OTP-Mehtod2 makes it suitable for developing quantum machinery 

with equilibrium-based bipolar quantum rebalancing and perfect information conservation 

(Fig. 8). Encryption would be unnecessary for quantum communication as any attack to a 

quantum channel would jeopardize perfect information conservation and stop the commu-

nication.  Such a quantum machine is drafted in Figs. 8(a,b,c). Fig. 8(a) shows the draft of 

a bipolar quantum-digital compatible ICC crypto machine. Fig. 8(b) shows a draft of bi-

polar quantum teleportation. Fig. 8(c) shows a bipolar qubit register. 

 
(a) 

 
(b) 

 
(c) 

Figure 8. ICC—An Analytical Paradigm of Quantum Mechanics:  

(a) Bipolar quantum-digital compatible machinery; (b) Bipolar quantum teleportation (BQT); (c) Bipolar 

qubit register [11,14] 

While the bipolar quantum dream may still seem to be “far-fetched” in terms of quan-

tum-digital compatibility for ICC, a newly reported discovery of a class of subatomic par-

ticles (fermions) [15] injected new life into this line of research. The new discovery is a 

family of particles that are their own antiparticles. This family of particles strengthen the 
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ontological basis of equilibrium-based bipolar quantum rebalancing and may make quan-

tum computing more practical and powerful.  

The draft architecture of the dream machinery forms a paradigm of quantum intelli-

gence machinery. The significance of this paradigm is further supported by the realization 

of quantum teleportation between long distances [16,17] that gives hope for practical ap-

plication of ICC with perfect quantum information conservation and security. 

5   CONCLUSIONS 

Based on information conservational quantum intelligence [6,7,12,18,19,20], infor-

mation theoretic security has been extended to information conservational security that has 

led OTP to S-OTP. “Black hole” keypad compression coupled with “big bang” data recov-

ery has been introduced for S-OTP with gains significantly overweigh costs. It is proven 

that if the security of OTP is optimal, S-OTP would be impossible; on the other hand, if S-

OTP is not information theoretically secure, OTP would not be secure either. Thus, we 

have a proof by contradiction on the paradoxical nature of OTP optimality. The proof has 

further led to an analytical paradigm of quantum intelligence machinery toward perfect 

information conservational security. It has been shown that 

 S-OTP makes it possible for transmitting long messages or large data sets with a con-

densed tiny key length for ICS that does not weaken ITS in its new context.  

 Math summation with percentage distribution without using big primes makes S-OTP 

quantum proof to quantum factorization [1] for both pre- and post-quantum cryptog-

raphy. 

 ICC with collective precision can be massively parallel, accurate, efficient, and suitable 

for developing supercomputers with digital technology. 

 ICC is quantum-digital compatible and suitable for developing teleportation machinery 

with perfect information conservation and quantum security. 

 It has been shown that a summation with percentage distribution is a minimal case of an 

equilibrium-based bipolar quantum cellular automaton. This finding has made it possi-

ble to combine the advantages of both approaches for pre-and post-quantum cryptog-

raphy, one for efficient and minimum data communication and another for effective and 

acurate computation with collective precision. On the other hand, the finding as a uni-

fying point has bridged a classical world to a quantum world in terms of mathematical 

abstraction.  

While bra-ket notation [21] has been adopted as a standard for quantum mechanics and 

quantum computing, the standard limits quantum computing within Hilbert space – a com-

plex spacetime geometry that stopped short of providing logically definable causality [22]. 

With formal logically definable causality [6,7,11,12,18], the quantum intelligence ap-

proach provides an equilibrium-based analytical arm for research in quantum mechanics 

and quantum computing such as quantum information science (e.g. [23]), quantum life 

(e.g. [24] ), and quantum cryptography (e.g. [25]).  

Whereas OTP has been prevented from being widely used by its key length require-

ment, S-OTP has got around the problem through ICC without weakening ITS in its new 

context. Thus, S-OTP qualifies itself as a unique extension from information theoretic se-

curity to information conservational security. While this work has been focused on the 

analytical aspects, the equivalency or non-equivalency between ICS and ITS with different 

entropy measures (ex. [26]) may deserve further investigation. 

Floor-Roof Mysteries. According to the floor-roof theory of science [12,20], ITS of 

OTP has been developed based on information theory rooted in probability and statistics—

a floor or foundation of modern science focused on observability and entropy without log-

ically definable causality and bipolar information conservation. ICS of S-OTP, on the other 

hand, has been a set-theoretic development rooted in bipolar quantum intelligence—a roof 

of modern science focused on equilibrium-based rebalancing and information conservation 

with logically definable causality [6,7]. Thus, this work has opened some major challenges 



19 

 

 © 2019 Wen-Ran Zhang. All rights reserved by author.   

to computing, cryptography, and science in general. Among them are the following floor-

roof mysteries:  

 Is ICS an information theoretic extension to ITS or just a new technological develop-

ment? 

 Is ICS a falsification of ITS in terms of optimality? 

 Is S-OTP just OTP plus data compression and there is nothing new?  

 Shannon concluded on the impossibility for perfect secrecy beyond OTP with key length 

greater than or equal to the message to be enciphered [3]. Although this paper did not 

attempt to falsify the theorem directly, however, if S-OTP is secure, could Shannon's 

theorem be wrong? On the other hand, if ICS of S-OTP is not secure, could ITS of OTP 

be secure? 

 Could modern science, such as modern physics and information theory [3,4], have been 

like a well-founded building with a floor of observable being and truth but missing its 

roof for equilibrium, harmony, information conservation, and logically definable cau-

sality [6,7,12,18,19,20]?  

Floor-Roof Assertions. Despite the mysteries, we have the following floor-roof 

assertions: 

 Can the floor perform some functions not performed by the roof? The answer is definitely 

YES. 

 Can the roof perform some functions not performed by the floor? The answer is definitely 

YES. 

 Can information conservational security solve some unsolved problems by information 

theoretic security? The answer should be LOGICALY YES. 

 Does modern science need information conservation and logically definable causality as 

its roof? The answer should be LOGICALY YES. 
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