
Noname manuscript No.
(will be inserted by the editor)

Detecting Faults in Inner Product Masking Scheme
IPM-FD: IPM with Fault Detection (Extended version∗)

Wei Cheng1 · Claude Carlet2 · Kouassi Goli1 ·
Jean-Luc Danger1,3 · Sylvain Guilley3,1,4

Received: date / Accepted: date

Abstract Side-channel analysis and fault injection at-

tacks are two typical threats to cryptographic imple-

mentations, especially in modern embedded devices.

Thus there is an insistent demand for dual side-channel

and fault injection protections. As we know, masking is

a kind of provable countermeasure against side-channel

attacks. Recently, inner product masking (IPM) was

proposed as a promising higher-order masking scheme

against side-channel analysis, but not for fault injec-

tion attacks. In this paper, we devise a new masking

scheme named IPM-FD. It is built on IPM, which en-

ables fault detection. This novel masking scheme has

three properties: the security orders in the word-level

probing model, bit-level probing model, and the num-

ber of detected faults. IPM-FD is proven secure both

in the word-level and in the bit-level probing models,

and allows for end-to-end fault detection against fault

injection attacks.

� Wei Cheng,
wei.cheng@telecom-paris.fr
Claude Carlet,
claude.carlet@univ-paris8.fr
Kouassi Goli,
kouassi.goli@polytechnique.edu
Jean-Luc Danger,
jean-luc.danger@telecom-paris.fr
Sylvain Guilley,
sylvain.guilley@secure-ic.com

1 LTCI, Télécom Paris, Institut Polytechnique de Paris,
Palaiseau, France
2 LAGA, Department of Mathematics University of Paris 8,
Paris, France
3 Secure-IC S.A.S. Cesson-Sévigné, France
4 Département d'informatique de l'ENS (DIENS), ENS, CNRS,
PSL University, Paris, France
∗ This work is an extension of [8] (PROOFS 2019).

Furthermore, we illustrate its security order by in-

terpreting IPM-FD as a coding problem then linking it

to one de�ning parameters of linear code, and show its

implementation cost by applying IPM-FD to AES-128.

Keywords Side-Channel analysis · Fault-Injection
attacks · Inner product masking · Fault detection

1 Introduction

With the advent of Internet of Things (IoT), more and

more cryptographic libraries are implemented in soft-

ware. Now, IoT objects are, most of the time, not made

of secure hardware. Therefore, it is important for the

software to protect itself in a sound manner. In this ar-

ticle, we assume that the implementation is free from

con�guration and coding bugs. Still, in this case, attack-

ers can leverage two techniques to extract information:

side-channel and fault injection analyses. Indeed, it is

known that a single faulty encryption in AES can fully

disclose 128 bits of the secret key [1]. It can be noted

that some combined side-channel and fault analyses ex-

ist against protected implementations [7, 11].

On one hand, protections against Side-channel anal-

ysis aims at reducing the signal-to-noise ratio (see def-

inition in [24, � 4.3.2]) an attacker can get. One option

is to balance the leakage, a technique which is used

to linearize the control �ow. For instance, cache-timing

attacks can be alleviated by removing conditional op-

codes whose condition is sensitive and sensitive pointer

dereferencing. Besides, we assume Meltdown and Zom-

bieLoad attack categories are irrelevant as the code

we are interested in is at the baremetal level. Still,

there is the possibility of sensitive value leakage, which

is properly addressed by randomization (masking [24,

2 W. Cheng, C. Carlet, K. Goli, J.-L. Danger, S. Guilley

Chap. 9]). Indeed, sensitive values leak through a non-

injective and noisy channel, thence single trace attacks

are unpractical.

On the other hand, protections against fault in-

jection attacks boil down to detection of errors, us-

ing either spatial, temporal, or information redundancy.

Other techniques rely on invariant checking, such as

idempotence of encryption composed by decryption.

In this paper, we present a joint countermeasure to

both attacks, which is more e�cient than two counter-

measures piled one on top of each other.

State-of-the-art. In scienti�c literature, early counter-

measures against both side-channel and fault injection

attacks have been designed in hardware. Several gate-

level logic styles have been introduced, in particular

dual-rail with precharge logic, aiming at balancing the

leakage. Namely, redundant encodings, where each bit

a is represented as a pair of bits (af , at), such that

af = ¬at = a during computation evaluation phase.

Owing to this redundancy, the total number of bits set

to 1 is unchanged (if in addition, the evaluation phase

is interleaved with a precharge phase, the Hamming dis-

tance between two states is also constant, irrespective

of the sensitive data manipulated). Besides, the redun-

dant encoding af = ¬at = a allows for computation

checks, as in evaluation phase, af = at (two con�gu-

rations, namely (0, 0) and (1, 1)) are forbidden. Start-

ing from Wave Dynamic Di�erential Logic (WDDL [24,

Chap. 7]), other improvements have been successively

introduced (MDLP, iMDPL [21], ParTI [33], etc.) Also,

some exotic styles have been proposed (asynchronous

logic [27], adiabatic logic [26], etc.). All this corpus re-

quires hardware support.

In this paper, we target software-level countermea-

sures. We build upon the higher-order side-channel

countermeasure known as IPM [2] to enrich it to de-

tect faults injected during the computation.

Contributions. We devise an end-to-end fault-detection

scheme which operates from within a provable high-

order multivariate masking scheme. In practice, we en-

hance IPM scheme to enable end-to-end side-channel

and fault injection detection, while keeping security

proofs in the probing security model. Furthermore, we

quantify the impact of both side-channel and fault de-

tection on a complete AES-128 to show the advantages

of our new scheme.

This work is an extension of the previous epony-

mous conference paper [8]. We highlight below the new

extensions incorporated in this paper:

� The generalization of IPM and IPM-FD to (O)DSM

is presented to emphasize the connections and dif-

ferences between two schemes. This generalization

allows us to optimize the former by using construc-

tions of the latter in a coding-theoretic approach.

For instance, some optimal codes in (O)DSM would

also be applicable in IPM and IPM-FD.

� We clarify the fault models by showing the essen-

tial di�erent assumptions under these models, which

determine the fault detection capability of IPM-FD

and (O)DSM. We insist that our IPM-FD only con-

siders the last two fault models since we focus on

the end-to-end protections.

� By comparing the IPM-FD and BM-FD (Boolean

masking with fault detection), we demonstrate the

advantages of the former over the latter. Speci�cally,

IPM-FD needs less shares to achieve the same secu-

rity order at word-level. Furthermore, the bit-level

security order of IPM-FD can be much higher than

BM-FD given the same number of shares.

� We insist that the systematic construction of opti-

mal codes for IPM-FD and DSM at both word-level

and bit-level is still an open problem. In this pa-

per, we only provide the metrics and some results

with small number of shares by an exhaustive study.

Note that another exhaustive study for optimal lin-

ear codes for IPM is also available in a related spe-

cialized paper [10].

Outline. The rest of this paper is organized as follows.

Sec. 2 introduces two typical schemes as the state-of-

the-art of countermeasures. Our novel protection is pre-

sented in Sec. 3, with security analysis and optimal code

selection in Sec. 4. The practical performance evalua-

tion is presented in Sec. 5. Finally, Sec. 6 concludes the

paper and opens some perspectives.

2 State-of-the-art on side-channel & fault

protection

Side-channel protections considered in this work come

in two �avors:

� Inner Product Masking (IPM) [2] is a word-oriented

(e.g., byte-oriented) masking scheme, equipped with

universal operations (namely, addition and multipli-

cation). It is optimized to resist attacks at both the

word-level and bit-level probing model [30], which

is suitable for computing cryptographic algorithms

that are subject to high-order side-channel analysis.

� Direct Sum Masking (DSM) [5] is a masking scheme

which allows for concurrent side-channel and fault

injection protection. It expresses the masking as the

two encodings of the secret in a code C, and masks

in a code D, respectively. This allows us to recover

Detecting Faults in Inner Product Masking Scheme 3

the information by decoding from C and to check

the masks by decoding from D.

These two protections are presented, one after the

other, in this section.

2.1 Inner Product Masking

2.1.1 Notations

Computations are carried out in characteristic two �-

nite �elds: F2 for bits and K for larger �elds. In practice

K can be F2l for some l, e.g., l = 8 for AES, and l = 4

for PRESENT. The elements from K are termed words,

and they are also referred to as bytes when l = 8 and

to nibbles when l = 4. We denote + the addition in

characteristic two �eld K, which is bitwise XOR. Re-

call that the subtraction is the same operation as the

addition in K. Elements of F2 are denoted as {0, 1}, and
elements of F2l (as words) are represented as polyno-

mials. In this paper, we use F24
∼= F2[α]/〈α4 + α + 1〉,

and F28
∼= F2[α]/〈α8 +α4 +α3 +α+1〉 (that of AES).

We recall that linear codes are spacevectors, char-

acterized by their base �eld K, their length n and their

dimension k. In addition, linear codes have parameters

traditionally denoted as [n, k, d], where d is the mini-

mum distance. The dual of a linear code D is the lin-

ear code D⊥ whose codewords are orthogonal to all

codewords of D. The dual distance d⊥ of a linear code

D happens to be equal to the minimum distance of

D⊥ [23].

Let n be the number of shares in IPM, and the co-

e�cient vector in IPM is ~L = (L1, L2, . . . , Ln) where

L1 = 1 for performance reason [2, � 1.2].

De�nition 1 (IPM data representation) A word

of secret information X ∈ K is represented in IPM as a

tuple of n �eld elements:

~Z = (X +

n∑
i=2

LiMi,M2, . . . ,Mn) = XG+ ~MH (1)

where ~M = (M2,M3, . . . ,Mn) is the mask materials,

G and H are generating matrices of linear codes C and

D, respectively, as showed below.

G =
(

1 | 0 0 . . . 0
)
∈ K1×n, (2)

H =


L2 | 1 0 . . . 0

L3 | 0 1 . . . 0
... | 0 0

. . . 0

Ln | 0 0 . . . 1

 ∈ K(n−1)×n. (3)

The secret information X can be demasked by in-

ner product between two vectors as: X = 〈~L, ~Z〉 =

∑n
i=1 LiZi. Finally, we introduce some handy subset

notations. Let ~Z = (Z1, . . . , Zn) = (Zi)i∈{1,...,n} be a

vector. We have:

~ZI = (Zi)i∈I for I ⊆ {1, . . . , n}.
For instance, Z{i}∪{k+1,...,n}, for 1 ≤ i ≤ k ≤ n, repre-

sents the (n− k + 1) vector (Zi, Zk+1, Zk+2, . . . , Zn).

2.1.2 Security order regarding side-channel analysis

The security of IPM is stated in the probing model [17]:

the security order is the maximum number of shares

which are independent to masked information. We clar-

ify word-level and bit-level security orders as follows:

� Word-level (l-bit) security order dw: since

many devices perform computation on word-level

data, byte-level operations are very common es-

pecially on embedded devices. In this paper, we

also present instances for 4-bit (nibble) variables

for adopting IPM to protect implementation of

lightweight cipher like PRESENT, Simon and

Speck, etc.

� Bit-level security order db: in practice, each bit

of sensitive variable can be investigated indepen-

dently or/and several bits can be evaluated jointly.

We consider here the number of bits that can be

probed by attackers in one time, which is consis-

tent with the bit-level probing model proposed by

Poussier et al. [30].

The main advantage of IPM is the higher bit-level

security order than Boolean masking, which is called

�Security Order Ampli�cation� in [36]. It has been

proven in [30] that side-channel resistance is directly

connected to the dual distance d⊥D of the code D gen-

erated by H. Precisely, the security order t of IPM is

equal to t = d⊥D − 1 [30].

The dual distance of linear code D is equal to the

minimum distance of the dual code D⊥ [23]. It is easy

to see that the latter has dimension 1 and is generated

by a 1× n matrix:

H⊥ =
(
1 L2 L3 . . . Ln

)
. (4)

In order to investigate the bit-level security, the de�ni-

tion of expansion is introduced as follows.

De�nition 2 (Code Expansion) By using sub-�eld

representation, the elements inK = F2l are decomposed

into F2, we have:

Sub�eldRepresentation:

(1, L2, . . . , Ln)2l −→ (Il,L2, . . . ,Ln)2,
(5)

where Il is the l × l identity matrix in F2 and Li (2 ≤
i ≤ n) are l × l matrices.

4 W. Cheng, C. Carlet, K. Goli, J.-L. Danger, S. Guilley

To derive the matrices, we can use that F2l is a

�eld extension of F2, and given an irreducible polyno-

mial P over F2 and denoting each element a ∈ F2l as∑l−1
i=0 aiα

i [mod P (α)], replace a by (a0, . . . , al−1).

Under the computer algebra system Magma [35], P is

DefiningPolynomial(F2l) and D
′ is the representation

of D in sub�eld (SubfieldRepresentationCode(D)).

If D has parameters [n, k, d]2l , then D′ has parame-

ters [nl, kl, d′]2, where d
′ ≥ d. IPM opportunistically

exploits the fact that this inequality can be strict, and

attempts to maximize the di�erence d′ − d.
At word level, we notice that the dual distance of

D is equal to n as long as ∀i, Li 6= 0. As a result, the

word-level security order of IPM is dw = n− 1 which is

in consistence with [2]. In addition, security order db at

the bit-level of IPM is equal to the dual distance of the

code expanded by D from F2l to F2. A typical example

of IPM codes matricesG = (1, 0) andH = (L2 = α8, 1)

in F28 is given in Fig. 1. The security order at word

(byte) level is dw = n− 1 = 1 and at bit level is db = 3

because the dual code of D = span(H) is generated by

(1, L2), which, after projection in F2, has parameters

[16, 8, 4]2.

1
n
−
1

1
10
100
1000
10000
100000
1000000
10000000

0000000
000000
00000
0000
000
00
0

0
00
000
000
0000
00000
000000
0000000

0000000
000000
00000
0000
000
00
0
0

0
0

0
0

l
b
its

H

n words

⇐⇒

H =

G =

H =

G = 0

SubfieldRepresentation (in F2)

0
0
00
00
00
0000

0000
000
000

00
0
0
0

0
0

0

1
10
100
1000
10000
100000
1000000
10000000

0000000
000000
00000
0000
000
00
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1 1

1

1

1
1 1

1
1

1
1

1
1

1
1
1
1
1

11

G

1

α8

nl bits

Matrix in F2l

Fig. 1 Dimensions of (typical) IPM encodings, for n = 2, on
l = 8 bits at byte-level. (Matrices G and H are examples.)

Moreover, addition and multiplication are proven to

be t = (n − 1)-order secure at word-level in [3] using

t-SNI property [4], thus the word-level security order

is maintained by composition. Still, when a variable

is reused, caution must be taken where a refresh al-

gorithm is always adopted to avoid dependence. The

refresh operation allows us to decorrelate two copies

of a variable that need to be used at two places (to

avoid side-channel �aws as put forward in [14]). How-

ever, IPM cannot detect faults since no redundancy is

inserted to the coding.

2.2 Direct Sum Masking

Direct sum masking has been originally introduced as

Orthogonal Direct Sum Masking (ODSM [5]). The se-

cret ~X is represented as a bitvector in Fl
2. It is en-

coded using generating matrix G (of size l × nl in F2)

as a word in Fnl
2 . Some random masks ~M , drawn uni-

formly in F(n−1)l
2 are encoded with matrix H (of size

(n− 1)l × nl). After masking the secret with the mask

materials, one gets the protected information:

~Z = ~XG+ ~MH. (6)

The features of the DSM are the following:

� Elements are bits;

� Computation on masked variable ~Z occurs matri-

cially;

� Side-channel protection is ensured at order d⊥D − 1;

� Fault detection allows detecting dC − 1 bit�ips.

Orthogonal Direct Sum Masking (ODSM) is a partic-

ular case of DSM for which GHT = 0k×(n−k), or said

di�erently, C and D are mutually dual codes. An il-

lustration of DSM and ODSM is provided in Fig. 2. In

this �gure, without loss of generality, the matrices G

and H are written in systemic form. The conditions for

C = span(G) and D = span(H) to be complementary

are recalled in the following

Lemma 1 ([28, Proposition 1]) Let 0 ≤ k ≤ n, and

G =
(
Ik P

)
∈ Fk×n

2 and H =
(
L In−k

)
∈ F(n−k)×n

2 .

Then, the following three statements are equivalent:

1.

(
G

H

)
∈ Fn×n

2 is invertible;

2. Ik +PLT ∈ Fk×k
2 is invertible;

3. In−k + LPT ∈ F(n−k)×(n−k)
2 is invertible.

A detailed comparison between DSM and IPM is pro-

posed in Tab. 1.

On the contrary to IPM, the matrices G and H do

not have speci�c form (recall IPM matrices are format-

ted as Eqn. 2 and Eqn. 3). However, there is no gen-

eral inverse operation of �Sub�eldRepresentation� (re-

call Def. 2) for DSM. Therefore, IPM is a special case

of DSM, but some DSM encodings (Eqn. 6) cannot be

represented as IPM.

ODSM uses orthogonal codes such that recovering
~M is straightforward knowing ~Z: it consists in an or-

thogonal projection from spacevector Fnl
2 onto D. Ac-

tually, the complete commutative diagram involved in

Detecting Faults in Inner Product Masking Scheme 5

Table 1 Comparison between (O)DSM and IPM (-FD) schemes.

Features (O)DSM [5] IPM [2] Comments

Objects Bits Words
IPM can always be seen as a DSM scheme by sub�eld
representation. Reverse compatibility only if bitvectors

matrix multiplication can be promoted in F2l

Operations Matrix product
Adapted Ishai-Sahai
-Wagner (ISW) [17]

ISW has been studied extensively

Side-channel protection
d⊥D − 1 is the

protection order
Same, albeit with two

notions: word and bit levels
For real-world (power/electromagnetic) attacks,

bit-level security is relevant [15]

Fault injection protection
dC − 1 bit�ips
are detected

IPM-FD: Repetition code
(This paper)

IPM-FD could be empowered by using a better or
even optimal code instead of repetition code

k
n
−
k

1
10
100
1000
10000
100000
1000000
10000000

0000000
000000
00000
0000
000
00
0

1
10
011
110
1100
01111
011110
1101011

0111100
111100
00110
0110
110
01
1
1

0
0

0
0

0
0
11
11
11
0010

0010
111
111

00
0
1
1

0
0

0

1
0

1
1

1
0

1
1

0
0

1
0

0
0

1
0 1

0

1

0
0 1

1
1

1
1

1
1

1
1
1
0
1

1

1
10
100
1000
10000
100000
1000000
10000000

0000000
000000
00000
0000
000
00
0

n bits DSM

H

⇐⇒
G

L In−k

PIk

H =L In−k

LTIk

⇐
⇒

⇐
⇒

O
D
S
M

G =

(D
S
M

w
it
h
P

=
L
T
)

Fig. 2 Dimensions of (typical) DSM and ODSM encodings (on
F2), for k = 8 bit and n = 16 bit. (Matrices G and H are
examples.)

DSM is depicted in Fig. 3. The operations are explicited

below:

� Information vector ~X is encoded as ~XG (using lin-

ear application EC), while decoding of ~XG into ~X

is ensured by the decoding application DC ;

� Similarly, masking random variables ~M are encoded

as ~MH (using linear application ED). Decoding of
~MH into ~M is ensured by the decoding application

DD;

� Creating an encoded word ~Z consists of adding one

codeword ~XG from C to one codeword ~MH from

D. In reverse, projections of ~Z ∈ Fnl
2 to C (resp.

D) are obtained by linear projection operation ΠC

(resp. ΠD).

When C and D are orthogonal, then GHT = 0, the all-

zero l× (n− 1)l matrix. As a result, we have ΠC(~Z) =
~ZGT(GGT)−1G and ΠD(~Z) = ~ZHT(HHT)−1H as

in [5].

This allows for the veri�cation that an attacker who

injects a fault has not corrupted (useless in terms of

ΠD

~Z = ~XG+ ~MH
DC

EC
~X ~XG

+

ΠC

~M
ED

DD

~MH

Fig. 3 Commutative diagram of DSM masking scheme with en-
coding and decoding.

exploitation) the masks ~M . In practice, the attack (ad-

dition of a nonzero bitvector ε ∈ Fnl
2 \{0}) is undetected

if and only if ε ∈ C. Indeed, otherwise ε has a nonzero

component in spacevector D, and the fault injection is

detected. The fault detection capability can be quanti-

�ed in two models:

1. Assumption 1: the di�culty of the attack is larger

if the number of �ipped bits is larger. Thus, un-

detected faults ε ∈ C\{0} must have Hamming

weights ≥ dC , where dC is the minimum distance

of code C.

2. Assumption 2: the attacker can corrupt Z regard-

less of the value of ε, but cannot control the value

of ε. Said di�erently, ε is a random variable uni-

formly distributed in Fnl
2 \{0}. This fault is unde-

tected provided ε ∈ C\{0}. As C has dimension l,

the cardinality of C\{0} is 2l − 1. Therefore, the

probability that the fault is not detected equals
2l−1
2nl−1 ≈ 2−l(n−1). This number is independent from

the code C, but depends on code D.

Thus, the probability of undetected faults gets lower

as l and n increases. However, this approach has three

drawbacks:

� First of all, the masks used in ODSM remain un-

changed during each call of cipher, which allows

fault detection. But the �static� masks may pose

a vulnerability since masks should be refreshed to

avoid unintended dependencies between sensitive

variables.

� Secondly, it allows only to check errors on states ~Z,

but not during non-linear computations (which are

6 W. Cheng, C. Carlet, K. Goli, J.-L. Danger, S. Guilley

tabulated, i.e., operations on ~Z consist in lookup ta-

ble accesses). From a hardware point of view, this

means that ODSM allows us to detect faults in

sequential logic (e.g., register banks, RAM, etc.),

but not in combinational logic (e.g., logic gates or

ROM).

� Thirdly, during veri�cation, that is the projection

of ~Z + ε in spacevector D, the state ~Z is manipu-

lated, hence additional leakage is produced, which

must be taken into account in the security evalua-

tion of ODSM representation (Eqn. 6). This is the

reason we suggest detecting faults at the very end

(end-to-end fault detection), like after encryption or

decryption.

The �rst two points are structural weaknesses, and

will be �xed in Alg. 1, starting from Section 3. For the

third one, some codes suitable for DSM are constructed

by Carlet et al. in [6] by duplicating the masks ~M , while

this solution does not allow an end-to-end scheme.

3 Novel end-to-end fault detection scheme

3.1 Rationale

The core idea in our new scheme is to duplicate (two

or more times) the secret X, rather than duplicating

masks ~M as in [6], so that it can be checked at the end

(when it is no longer sensitive�e.g., a ciphertext is a

non-sensitive variable, so as the plaintext).

Our new scheme is a IPM-like masking scheme,

called IPM-FD. Since IPM is a promising high-order

masking scheme, we extend it with fault detection

capability so that it can resist both side-channel

analysis and fault injection attacks simultaneously.

Speci�cally, we represent the information as a vector

(X1, X2, . . . , Xk) ∈ Kk where K = F2l .

We propose the new encoding as follows. Let us de-

note:

De�nition 3 (IPM-FD data representation) Let

Xi ∈ K be the k copies of secret information, then the

encoding is represented as a tuple of n elements in K:
~Z = (X1, X2, . . . , Xk︸ ︷︷ ︸

secrets ~X

) G+ (Mk+1, . . . ,Mn︸ ︷︷ ︸
masks ~M

) H

= (Z1, Z2, . . . , Zn),

(7)

where

G = (Ik|| 0) ∈ Kk×n,

H = (L || In−k) ∈ K(n−k)×n,

here Ik is the k × k identity matrix in K, and L is a

matrix of size (n − k) × k, that is L has coe�cients

(Li,j)k<i≤n,1≤j≤k.

This de�nition 3 is a generalization of Def. 1. In prac-

tice, we will call Eqn. 7 with redundancy to detect

faults in the information X, i.e., (X1, X2, . . . , Xk) =

(X,X, . . . ,X) as:

~Z = (X,X, . . . ,X)G+ (Mk+1, . . . ,Mn)H. (8)

For the sake of convenience, the IPM-FD encoding

used in this paper is depicted in Fig. 4. It illustrates a

protection using n = 3 shares of l = 8 bits, with the

following security features:

� dw = 1 (1st-order secure at byte-level), because dual

distance of H in F28 is 2;

� db = 3 (3rd-order secure at bit-level), since the dual

distance of the optimal H over F2 is 4 � the sub-

�eld representation (by Def. 2) of the dual code H⊥

spawn by
(
1 L2 L3

)
has parameters [24, 8, 4]2 where

we take L2 = α8 and L3 = α17 as optimal parame-

ters (from an exhaustive search over all possible can-

didates of L2 and L3 over F28) in this case (shown

in Fig. 4).

l
b
its

H =

1
10
100
1000
10000
100000
1000000
10000000

0000000
000000
00000
0000
000
00
0

0
00
000
000
0000
00000
000000
0000000

0000000
000000
00000
0000
000
00
0
0

0
0

0
0

0
00
000
000
0000
00000
000000
0000000

0000000
000000
00000
0000
000
00
0
0

0
0

0
0

1
10
100
000
0000
00000
000000
0000000

0000000
000000
00000
0000
000
00
0
1

1
1

1
1

0
00
000
000
0000
00000
000000
0000000

0000000
000000
00000
0000
000
00
0
0

0
0

0
0

1
10
100
1000
10000
100000
1000000
10000000

0000000
000000
00000
0000
000
00
0

0
00
000
000
0000
00000
000000
0000000

0000000
000000
00000
0000
000
00
0
0

0
0

0
0

Matrix in F2l

nl bits

⇐⇒

n words

Hn
−
k

k

G =

H =

G

0
0
0
00
00
00
000
000

000
00
00
000

0
0
0

0
0
0
00
00
00
0000

0000
000
000

00
0
0
0

0
0

0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1 1

1

1

1
1 1

1
1

1
1

1
1

1
1
1
1
1

1

1 1 1 1
11111

1
1
1
1 1
1

1 1
1

1 1 1 1
1

1 1
1 1

1 1
1

1
1 1

1
1

SubfieldRepresentation (in F2)

1 0 0

010

α17α8 1

G =

Fig. 4 Dimensions (typical) of IPM-FD encodings, for n = 3,
k = 2 and l = 8 bits. (Matrices G and H are examples.)

Computation can be carried out on such ~Z, and

when it is over (e.g., the complete AES is �nished), the

implementation can check whether the k copies of the

information are the same. This allows us to detect up

to (k−1) errors (there is an error if the k copies are not

equal to each other). It is worth noting that this model

is stronger than the one in ODSM where only errors

ε with Hamming weight wH(ε) > dC are detected in

ODSM.

Repeating X k times may increase the signal cap-

tured by the attacker by a factor k, however it is ir-

relevant to security order. Indeed, there is more signal,

Detecting Faults in Inner Product Masking Scheme 7

but it is correlated, therefore it has no impact on the

amount of information. Notice that, as a future exten-

sion, one might consider an encoding of information X

which is more e�cient in terms of rate than the sim-

ple k-times repetition code X 7→ (X, . . . ,X). However,

such representation in Eqn. 8 allows for an end-to-end

security protection against fault injection attacks, as

illustrated in Alg. 1.

For fault detection, either the algorithm 1 is started

from scratch, or other actions, such as event logging

for subsequent analysis (aiming at taking proactive ac-

tions to plug this leak), are triggered o�. It is obvious

that detecting fault in each intermediate phase can be

carried out at any place in Alg. 1, especially during

step 5. However, such precaution is super�uous, as an

overall check is done at the end, that is at line 8. In

addition, intermediate checks would disclose when the

fault occurs (e.g., at which round), which delivers pre-

cious feedback to the attacker regarding the accuracy

and the reproducibility of the setups.

Algorithm 1: End-to-end protection of a cryp-

tographic algorithm (here AES-128) against

fault injection attacks using IPM-FD scheme

input : Plaintext X ∈ F16
28 , key K ∈ F16

28 , and number
of detected faults df = k − 1, number of shares
n = dw +1, bit-level security order db = d⊥D −1

output: Ciphertext, or ⊥ if a fault has been detected

1 The matrices G and H (corresponding to code C and D,
respectively) are determined with respect to the
requirements on side-channel and fault protection
dw, db and df

2
~M ←R F16×(n−k)

28

3
~Z ← (X, . . . ,X)G+ ~MH // Recall Eqn. 8

4 . . .
5 Arithmetic operations for the (secure) computation,

using Lagrange interpolation polynomial. This includes
additions (Alg. 2) and multiplications (Alg. 4)

6 . . .

7 (X1, . . . , Xk)← ΠC(~Z) // Recall ΠC(~Z) in Fig. 3

8 if X1 = . . . = Xk then
9 return X1

10 else
11 return ⊥

Therefore, the design of IPM-FD scheme for a spe-

ci�c cryptographic algorithm can be simpli�ed to se-

lect good parameters G and H, which corresponding

to choose good codes for IPM-FD. We �rst show how

to perform basic operations in the next subsection.

3.2 Computing with representation of IPM-FD

First of all, we present one instance of IPM-FD with k =

2 to clarify its encoding. We denote ~X = (X1, X2) ∈ K2,

and ~M = (M3, . . . ,Mn) ∈ Kn−2. Thus, we have Eqn. 7

such that,

G =

(
1 0 | 0 0 . . . 0

0 1 | 0 0 . . . 0

)
,

H =


L3,1 L3,2 | 1 0 . . . 0

L4,1 L4,2 | 0 1 . . . 0
...

... | 0 0
. . . 0

Ln,1 Ln,2 | 0 0 . . . 1

 ,

or said di�erently, we have ~Z = (Z1, . . . , Zn) ∈ Kn

which is equal to:

Z1 = X1 + L3,1M3 + L4,1M4 + . . .+ Ln,1Mn

Z2 = X2 + L3,2M3 + L4,2M4 + . . .+ Ln,2Mn

Zi = Mi for 3 ≤ i ≤ n

Here, we can see that (Z1, Z3, . . . , Zn) ∈ Kn−1 and

(Z2, Z3, . . . , Zn) ∈ Kn−1 are two IPM sharings [2].

Therefore, we have k = 2 ways to demask:

〈L1, ~Z〉 = X1 = X, and 〈L2, ~Z〉 = X2 = X,

where as a convention, L1,1 = L2,2 = 1, L1,2 = L2,1 = 0

and:

L1 = (Li,1)1≤i≤n ∈ Kn, and L2 = (Li,2)1≤i≤n ∈ Kn.

It is known that universal computation can be

achieved by Lagrange interpolation, which only requires

addition and multiplication. Hereafter, we present three

basic algorithms, with the most general case (k words of

information and scalable with di�erent k) used to build

a complete masked cryptographic implementation.

3.2.1 Secure addition of IPM-FD

With Eqn. 8, we denote encoding of X and X ′ by ~Z

and ~Z ′ respectively, thus the addition is linear and can

be calculated straightforwardly as in Alg. 2.

3.2.2 Secure refresh algorithm for IPM-FD

As suggested in [31], we need to apply a refresh algo-

rithm after each squaring operation to keep indepen-

dence between masks (Alg. 4 with ~Z = ~Z ′). The al-

gorithm for the refresh of IPM-FD is given in Alg. 3.

Notice that this algorithm can be computed in-place,

meaning that the output overwrites the input.

8 W. Cheng, C. Carlet, K. Goli, J.-L. Danger, S. Guilley

Algorithm 2: Secure addition in IPM-FD

input : Two sets of scalar tuples ~X = (X1, . . . , Xk)

and ~X′ = (X′1, . . . , X
′
k) shared as:

� ~Z = (Z1, . . . , Zn) = (X1 +
∑n

i=k+1 Li,1Mi, . . . , Xk +∑n
i=k+1 Li,kMi,Mk+1, . . . ,Mn) ∈ Kn,

� ~Z′ = (Z′1, . . . , Z
′
n) = (X′1 +

∑n
i=k+1 Li,1M

′
i , . . . , X

′
k +∑n

i=k+1 Li,kM
′
i ,M

′
k+1, . . . ,M

′
n) ∈ Kn.

output: A sharing ~R = (R1, . . . , Rn) ∈ Kn such that,
for all j (1 ≤ j ≤ k),
〈~R{j}∪{k+1,...,n}, ~L{j}∪{k+1,...,n},j〉 =
Xj +X′j

1
~R = (Z1 + Z′1, . . . , Zn + Z′n)

2 return R

Algorithm 3: IPM-FD refresh algorithm
input : Let k < n. One IPM-FD sharing

~Z = (X1, . . . , Xk) G+ (Mk+1, . . . ,Mn) H, as
de�ned in Eqn. 7

output: An equivalent IPM-FD sharing
~Z′ = (X1, . . . , Xk) G+ (M ′k+1, . . . ,M

′
n) H,

where (Mk+1, . . . ,Mn) is independent from
(M ′k+1, . . . ,M

′
n).

1
~Z′ ← ~Z // When computed in-place, ~Z′ is not

needed.

2 for i ∈ {k+ 1, . . . , n} do
3 ε←R K // Fresh random variable

4 Z′i ← Z′i + ε

5 for j ∈ {1, . . . , k} do
6 Z′j ← Z′j + Li,jε

7 return ~Z′ ∈ Kn.

3.2.3 Secure multiplication of IPM-FD

Secure multiplication can be achieved by selecting only

one amongst the k �rst coordinates, while keeping the

(n − k) masks, and multiplying (n − k + 1) shares by

using the original IPM multiplication. Therefore, mul-

tiplication of IPM-FD is implemented in Alg. 4.

Multiplication is repeated k times on shares in

Kn−k+1, and the resulting ~P [j] ∈ Kn−k+1 for j ∈
{1, . . . , k} are applied from line 4 to line 6 as in Alg. 4

to homogenize masks in (k− 1) sharings with the same

masks as ~P [1].

We refer to line 4 to line 6 of Alg. 4 as the ho-

mogenization algorithm used to merge the results ~P [j]

where 1 ≤ j ≤ k. Thus we have the following lemma,

which applies to non-redundant sharings such as that

of Eqn. 1.

Lemma 2 (Homogenization of two sharings) Let
~Z = (Z1, . . . , Zn) and ~Z ′ = (Z ′1, . . . , Z

′
n) be two shar-

ings, that 〈L, ~Z〉 = X and 〈L′, ~Z ′〉 = X ′. There exists

an equivalent sharing ~Z ′′ and an algorithm to transform

Algorithm 4: Secure multiplication of IPM-

FD with k pieces of information

input : Two sets of scalar tuples ~X = (X1, . . . , Xk)

and ~X′ = (X′1, . . . , X
′
k) shared as:

� ~Z = (Z1, . . . , Zn) = (X1 +
∑n

i=k+1 Li,1Mi, . . . , Xk +∑n
i=k+1 Li,kMi,Mk+1, . . . ,Mn) ∈ Kn,

� ~Z′ = (Z′1, . . . , Z
′
n) = (X′1 +

∑n
i=k+1 Li,1M

′
i , . . . , X

′
k +∑n

i=k+1 Li,kM
′
i ,M

′
k+1, . . . ,M

′
n) ∈ Kn.

output: A sharing ~P = (P1, . . . , Pn) ∈ Kn such that,
for all j (1 ≤ j ≤ k),
〈~P{j}∪{k+1,...,n}, ~L{j}∪{k+1,...,n},j〉 = Xj ·X′j

1 for j ∈ {1, . . . , k} do
2

~P [j]← IPMult(Z{j}∪{k+1,...,n}, Z
′
{j}∪{k+1,...,n})

// IPMult is Alg. 5 of [2]

3 Let us write ~P [j] as (Pj , Nk+1,j , . . . , Nn,j), where
Pj = XjX

′
j +

∑n
i=k+1 Li,jNi,j ∈ K

4 for j ∈ {2, . . . , k} do // Masks homogenization

between ~P [1] and ~P [j]
5 for i ∈ {k+ 1, . . . , n} do
6 Pj ← Pj + Li,j(Ni,1 +Ni,j)

// (Pj , Nk+1,1, . . . , Nn,1) is a sharing of XjX
′
j

by (n− k) masks of ~P [1]

7 return ~P = (P1, . . . , Pk, Nk+1,1, . . . , Nn,1) ∈ Kn.

~Z ′ into ~Z ′′ such that ~Z and ~Z ′′ share all coordinates but

the �rst one.

Proof We apply a pivot technique to ~Z ′′. Let ε ∈ K. We

notice that the new sharing ~Z ′′ = ~Z ′+(L′2ε, ε, 0, . . . , 0),

also represents the same unmasked value as ~Z ′ does.

Indeed, 〈L′, Z ′〉 = X ′, and 〈L′, (L′2ε, ε, 0, . . . , 0)〉 =

L′2ε + L′2ε = 0. By choosing ε = ~Z ′2 + ~Z2, we get for
~Z ′′:

~Z ′′ = (Z ′1 + L′2(Z
′
2 + Z2), Z2, Z

′
3, . . . , Z

′
n).

Therefore, ~Z ′′ now has the same the second share (co-

ordinate at position 2) with ~Z. The complete homoge-

nization is thus the repetition of this process for all the

coordinates i ∈ {2, . . . , n}. Notice that this algorithm

does leak information neither on ~Z nor on ~Z ′, since it

consists only of additions of masks to a sharing from an

independent sharing. It is akin to a refresh procedure

albeit where the new masks are actually a compensation

of ~Z ′ masks by those of ~Z, whilst keeping the masking

invariant of Eqn. 1. Actually, it is a refresh algorithm

using the masks of the di�erence ~Z ⊕ ~Z ′. ut

By using Alg. 1, one can start with plaintext & key

representation as Eqn. 8 and carry addition / multipli-

cation (and refresh if needed) to implement any crypto-

graphic algorithms like AES, and end up with a cipher-

text still with the form as Eqn. 8. Hence veri�cation

Detecting Faults in Inner Product Masking Scheme 9

can be done only at the very end. Another advantage

of IPM-FD is its scalability, by choosing di�erent values

of k and n.

4 Security analysis of IPM-FD and optimal

codes selection

The security level of IPM-FD can be characterized by

three metrics, namely word-level security order dw, bit-

level security order db and number of detected faults df
(for instance, if the number of faulted words is smaller

than df + 1, then the fault will be detected). In this

section, we show the security order of IPM-FD and how

to choose optimal codes by interpreting IPM-FD as a

coding problem.

4.1 Security of fault detection

We assess the security of IPM-FD against fault injection

attacks in a coding theoretic approach. Assume a code

of parameters [n, k, d]q over Fq, there are three kinds of

attackers in the state-of-the-art:

� An attacker which can corrupt one to d−1 symbols

(elements of �eld Fq). We assume here that faulting

two symbols is somehow more di�cult than faulting

one symbol, etc. It is all the more di�cult to fault,

for the attacker, as more symbols must be corrupted

simultaneously.

� An attacker which can randomly change a codeword

to a di�erent one, which may not be a valid code-

word. We assume that the attacker has no control

over the faulted value and if the faulted value is a

valid codeword then the fault can not be detected.

� An attacker which can choose the error ε that best

suits him. In this scenario, the attacker will choose

ε which maximizes her advantage, on replacing all

codewords z by z + ε. This model assumes a much

stronger attacker, but it does not always represent

a realistic use-case as the requirements (costs) are

quite high. This model has been promoted initially

by Mark Karpovsky et al. [18�20], who also pro-

posed robust codes and algebraic manipulation de-

tection (AMD) codes.

Accordingly, the probabilities to detect a fault in those

three cases are:

� 100% for the �rst case when the number of faulted

symbols < d. But this holds only if the veri�cation

can be done on each and every codeword, which is

not the case for us (we check only at the very end).

Thus we cannot claim any security level when chain-

ing operations.

� 1 − 2k−n for the second case. This detection rate

is also valid end-to-end (i.e., with veri�cation de-

layed on the ciphertext). Indeed, there are two cases:

either the fault replaces a codeword with a valid

codeword, and this will not be detected, neither

by checking right on the targeted codeword nor

later on. Same reasoning otherwise: if the fault re-

places a codeword by a non-codeword, then the non-

codeword will keep being a non-codeword after all

the operations (and we do not consider double faults

here). Therefore, detection (in code or not) can be

carried out at any point in time after the fault has

been injected.

� 1 − |C ∩ (C + ε)|/|C| for the third case. Same rea-

soning as for the second case � this metric will stay

unaltered throughout the computation.

In our IPM-FD setup, we support the last 2 models.

Since we use the repetition code in IPM-FD, the min-

imum distance of the linear code C is dC = k. Hence,

the security in sense of fault injection attack is now

assessed with respect to number of detected faults as:

df = k − 1. (9)

It is obvious that any faults can be detected if the k

copies of results are inconsistent.

4.2 Security order of IPM-FD on SCA resistance

The addition and refresh algorithms are secure since

there is no degradation on masks, we focus on multi-

plication algorithm Alg. 4 and we have the following

Theorem 1.

Theorem 1 The multiplication of IPM-FD in Alg. 4

is d⊥D − 1 order secure.

Proof The k times of IPMult multiplications at line 2

are secure at (n−k)-th order [2]. After their application,
the k shared variables ~P [j], 1 ≤ j ≤ k, are masked by

Ni,j (k + 1 ≤ i ≤ n, 1 ≤ j ≤ k) that are (n − k) × k
uniformly distributed and i.i.d. random variables.

At step 6, indexed by i (k+1 ≤ i ≤ n), the contents
of Pj is:

Pj = XjX
′
j +

(
i∑

i′=k+1

Li′,jNi′,1

)
+

(
n∑

i′=i+1

Li′,jNi′,j

)
.

(10)

It is easy to see that any combinations of intermedi-

ate variations with mixed variables masked by Ni,j and

Ni,j′ , for j 6= j′, requires more intermediate values to

10 W. Cheng, C. Carlet, K. Goli, J.-L. Danger, S. Guilley

be probed than strategies which focus on a given Ni,j

(for a given j).

The key-dependent variables which are only in Pi,1

(since homogenization process consists in turning Ni,j

into Ni,1) are those at:

� line 2: X1X
′
1 +

∑n
i=k+1 Li,1Ni,1, and the (n − k)

masks Ni,1 (k + 1 ≤ i ≤ n);
� line 6: for i = n, Pj = XjX

′
j +

∑n
i=k+1 Li,jNi,1.

Finally, those shares are combined in an orderly manner

as ~P (line 7). Together, they have the shape:

~P = (X1, . . . , Xk)G+ ~NH,

where ~N = (Nk+1,1, . . . , Nn,1) ∈ Kn−k is a uniformly

distributed tuple of i.i.d random variables. Since d⊥D−1

columns of H are independent [22, Theorem 10], which

means if the attacker probes up to d ≤ (d⊥D − 1) vari-

ables, the secret Xj encoded as an element of Fn−k+1
2l

is perfectly masked. The security order of Alg. 4 is

(d⊥D − 1). ut

In summary, the security order at word-level dw
and bit-level db of IPM-FD corresponding to (d⊥D − 1)

at word-level and (d⊥′D − 1) bit-level (by Code Expan-

sion de�ned in Def. 2), respectively. In particular, the

maximum word-level security order dw is (n− k), since
d⊥D ≤ (n−k+1) from Singleton bound [34], with equal

if and only if d⊥D is maximized.

4.3 Choosing optimal codes for IPM-FD

Two security orders dw and db are connected to dual

distance of D at word-level and bit-level, by encoding

Eqn. 7 and Eqn. 8. Thus, we can search for minimal n

satisfying the given requirements on the three parame-

ters df , dw and db. Since the best db is very di�cult to

obtain, we �rst search for codes given df and dw, then

�nd the best one with respect to optimal db. For the

�rst step, the Alg. 5 is adopted for selecting codes with

minimal n given df and dw. In this algorithm, BKLC

is short for �Best Known Linear Code�.

The second step is to choose the best code with

maximal bit-level security order db. We propose Alg. 6

to select optimal codes with maximized db. Notice that

this algorithm 6 is conceptual, as in line 3, it is not

possible in practice to enumerate all codes. This line

is to be understood according to either some algebraic

code construction (parametric design pattern, greedy

algorithm, etc.) or code random choice (using genetic

algorithms, random generating matrices, etc.).

1 BKLC is the short of the Best Known Linear Codes in
Magma [35].

Algorithm 5: Selecting codes given df and dw.

input : l for K = F2l , df for number of detected faults
and dw for word-level side-channel security

output: the minimal n satisfying the requirements

1 n← dw // n is at least the minimum distance of

the code generated by H⊥

2 while
MinimumDistance([BKLC(GF (2l), n, df +1)] < dw) 1

do
3 n← n+ 1

4 return n

Algorithm 6: Choosing optimal codes with

maximal db.
input : l for K = F2l , df for number of detected faults,

dw for word-level side-channel security and
number of shares n

output: the maximal db and optimal code D

1 db ← dw // Security order at bit-level is

greater than word-level

2 Dopt ← null

3 forall code D = [n, df + 1, dw + 1]2l do // Conceptual

4 D2 ← Sub�eldRespresentation(D,GF (2))
5 if db < MinimumDistance(D2) then
6 db ← MinimumDistance(D2)
7 Dopt ← D

8 return db, Dopt

We present some examples for codes in F28 in Tab. 2

(for F24 in Tab. 5, resp) calculated by Magma for small k

and n. Interestingly, we compare the original IPM and

IPM-FD with n and n+ 1 shares respectively, since in

IPM-FD redundancy is needed for fault detection. For

IPM with n = 3, we have optimal parameters dw = 2

and db = 5, while for IPM-FD with n = 4, k = 2,

the optimal dw and db are dw = 2 and db = 4. Hence

there is a trade-o� for fault detection, which sacri�ces

the bit-level side-channel resistance. For instance, for

k = 2, we can detect one error.

We recall that the security order of IPM at bit-level

is given by the minimum distance of the code generated

byH⊥ = (1, L2, . . . , Ln) (projected fromK = F2l to the

binary ground �eld Fl
2). Now, adding fault detection ca-

pability, the security order of IPM-FD becomes that of

the minimum distance of the code generated by Eqn. 11.

However, the minimum distance of this code is less

than that generated by either: (1, L3,1, L4,1, . . . , Ln,1)

or (1, L3,2, L4,2, . . . , Ln,2).

H′⊥ =

(
1 0 L3,1 L4,1 . . . Ln,1

0 1 L3,2 L4,2 . . . Ln,2

)
. (11)

2 In Tab. 2, the maximal db for IPM codes with n = 4 shares
in F28 is only 10 (d⊥D = 11), not 11 as showed in [30]

Detecting Faults in Inner Product Masking Scheme 11

Table 2 Instances of codes with X ∈ K = F28 , db in IPM entries are consistent with results provided in [30].

Inputs Outputs of Alg. 5 and Alg. 6
#faults df dw n db Setting

IPM

0 0 1 0 H⊥ =
(
1
)

0 1 2 3 H⊥ =
(
1 α8

)
0 2 3 7 H⊥ =

(
1 α8 α26

)
0 3 4 102 H⊥ =

(
1 α8 α26 α17

)

IPM-FD

1 0 2 0 H⊥ =

(
1 0

0 1

)
1 1 3 3 H⊥ =

(
1 0 α8

0 1 α17

)
1 2 4 6 H⊥ =

(
1 0 α8 α20

0 1 α27 α7

)

4.4 Comparison between IPM-FD and Boolean

masking with fault detection

We recall that, in the state-of-the-art about masking

countermeasures, Boolean Masking (BM, [25, �4]) is

presented as a particularly convenient masking scheme,

since sharing and demasking only involves XOR oper-

ations. In contrast, IPM, in addition to �eld additions

(XORs), is furthermore encumbered with �eld multipli-

cation with constants (the Li ∈ K values). This makes

implementations more complex on programming (code

size) and less e�cient to implement. In practice, BM

is thus a particular case of IPM, where all coe�cients

Li = 1 ∈ K.
Still, one historical advantage of IPM over BM,

which initially justi�ed for the scheme, is that, at a

given side-channel security order at word-level, IPM is

more e�cient at bit-level (e.g., when the leakage model

is the Hamming weight or the Hamming distance).

Now, in this paper, we put forward a second ad-

vantage of IPM, in the context of fault detection (FD).

Tab. 3 compares IPM-FD with BM-FD in this respect.

It clearly appears that fault detection is not straight-

forward in BM-FD, whereas it is for IPM-FD. As an

example, when detecting one single fault (df = 1), and

targeting a second-order protection in terms of word-

level side-channel, IPM-FD manages to reach dw = 2

with only n = 4 shares, thanks to:

H⊥ =

(
1 0 α8 α20

0 1 α27 α7

)
∈ F2×4

28 .

While in Boolean masking scheme counterpart (i.e., in

BM-FD), it is not possible to reach a minimum distance

for H⊥ of value = 3 with a code length n = 4. Indeed,

in systematic form, it would look as:

H⊥ =

(
1 0 ? ?

0 1 ? ?

)
.

Now, as the minimum distance is 3, the weight of each

line must be 3. Therefore, all 2+ 2 question marks (�?�

symbol) must be nonzero, that is equal to 1 (in the case

of BM). Hence, the di�erence between the two lines is

equal to
(
1 1 0 0

)
, which has a weight = 2. Therefore a

contradiction. However, let us notice that the problem

can be solved by considering a length extended by one,

that is:

H⊥ =

(
1 0 ? ? ?

0 1 ? ? ?

)
,

where amongst the three question marks in one line,

at least two are nonzero (= 1). Knowing that the con-

straint is not only to have the number of ones ≥ 3 in

each line, but also in the sum of the two lines, we can

use:

H⊥ =

(
1 0 0 1 1

0 1 1 1 1

)
∈ F2×5

28 .

But its length is n = 5, i.e., larger by one unit compared

to IPM case, where constants can be chosen arbitrarily

in the whole F256 and not only in {0, 1} ⊂ F256.

Table 3 Comparison of dw, db between IPM-FD and BM-FD
(Boolean masking with fault detection) for X ∈ K = F28 , and
for dw ∈ {1, 2, 3}. Note that here we set df = 1 (meaning k = 2)
for a fair comparison.

dw
IPM-FD BM-FD

n db n db

0 2 0 2 0

1 3 3 3 1

2 4 6 5 2

Summarizing up, as shown in Tab. 3, the IPM-FD is

better than BM-FD in two aspects given the same df .

Firstly, IPM-FD needs less shares than BM-FD when

achieving the same word-level security order (denoted

in red bold font in Tab. 3). Secondly, the bit-level

12 W. Cheng, C. Carlet, K. Goli, J.-L. Danger, S. Guilley

security order in IPM-FD is much higher than in BM-

FD given the same dw (denoted in black bold font in

Tab. 3). It is worthy noting that the advantages of IPM-

FD over BM-FD become much larger when the number

of shares increases. However, in order to �nd the good

or even optimal codes for IPM-FD, it is necessary to

turn to DSM scheme.

5 Practical implementation and performances

We implement IPM-FD scheme on AES-128 based on

(thanks to) open-source implementation of masked AES

by Coron et al. [12,13]. All the computations are made

with additions, multiplications and lookups in some

pre-computed tables. The random number generator

comes from the Sodium library [16]. Each sensitive vari-

able (16× (10+1) subkeys from the Key Schedule rou-

tine and 16 bytes in state array), is masked into n shares

using n−k random bytes. In particular, regarding non-

linear operations, the S-box of a masked value is com-

puted online instead of the 256-sized table, where its

polynomial expression obtained via Lagrange interpo-

lation:

x ∈ F28 7→ 63+ 8fx127 + b5x191 + 01x223 + f4x239

+ 25x247 + f9x251 + 09x253 + 05x254.

After demasking a shared variable, we check that

the data has no faults injected by comparing the k

copies and raising an alarm if any fault is detected.

Our implementation works for any n ≥ k. Specially,

for n < 5 and k < 3 we choose the Best Known Lin-

ear Code (BKLC) D obtained with Magma otherwise we

randomly generate a matrix for masking.

Our implementation of IPM-FD on AES (in C) is

publicly available [9]. Furthermore, the optimal linear

codes for IPM by an exhaustive study are available [10].

5.1 Performance evaluation

We make a comparison for the same security order at

word-level, between:

� No fault detection (classic IPM, k = 1) � this is our

reference

� Single fault detection by temporal redundancy (re-

peat twice the IPM computation)

� Single fault detection embedded into IPM (so-called

IPM-FD for k = 2)

Performance-wise, Tab. 4 shows that two fault de-

tection strategies (temporal repetition and IPM-FD)

are at essentially the same cost.

But if we consider the most time-consuming opera-

tion - the �eld multiplication: the number of �eld mul-

tiplications in IPM on n shares (Alg. 5 of [2]) is 3n2−n.
While the number of multiplications in IPM-FD on n

shares is:

� k(3(n− k + 1)2 − (n− k + 1)) regarding the k IPM

multiplications on n− k + 1 shares,

� (k−1)(n−k) regarding the (k−1) homogenizations.

Hence a total complexity of k(3(n− k+ 1)2 − (n− k+
1)) + (k − 1)(n− k), that is:
� 3n2 − n for IPM-FD with k = 1,

� 6n2 − 13n+ 6 for IPM-FD with k = 2.

Now, we have that 2 × (3n2 − n) > 6n2 − 13n + 6,

which are shown in Fig. 5. Therefore it is more inter-

esting, complexity-wise, to use IPM-FD for k = 2 than

repeating a computation twice.

1 2 3 4 5 6 7 8 9 10
Number of shares n

0

100

200

300

400

500

600

Nu
m

be
r o

f f
ie

ld
 m

ul
tip

lic
at

io
ns

Two consecutive IPM: IPM-FD with k = 1
IPM-FD with k = 2

Fig. 5 Comparison of number of �eld multiplications in terms
of n, where k = 1 for IPM and k = 2 for IPM-FD, respectively.

Notice that temporal redundancy is prone to fault

injection attacks [29, 32], whereby an attacker would

reproduce exactly the same fault on the repeated exe-

cutions. Therefore, our IPM-FD is intrinsically stronger

against fault attacks, at the same cost in terms of exe-

cution speed.

6 Conclusion and perspectives

IPM shows an advantageous property - higher security

order at bit-level db than at word-level - as a promising

alternative to Boolean masking. In this paper, we pro-

pose a novel end-to-end fault detection scheme called

IPM-FD, which is a IPM-like scheme to detect faults

by redundancy on secrets rather than on masks. The

IPM-FD is also a uni�ed scheme to resist side-channel

analysis and fault injection attack simultaneously. We

https://libsodium.gitbook.io/

Detecting Faults in Inner Product Masking Scheme 13

Table 4 Performance comparison of IPM-FD with and without fault detection. Speed is the runtime in milliseconds averaged over
1000 runs on a PC with 2.8 GHz 6-core processor, and random is the number of generated random bytes when masking and refreshing.

Security order IPM (baseline)
Two consecutive

executions of IPM
IPM-FD k = 2

dw = 1
n = 2 (db = 3),
speed = 1.52,
random = 1936

n = 2 (db = 3),
speed = 3.04,
random = 3872

n = 3 (db = 3),
speed = 2.93,
random = 3856

dw = 2
n = 3 (db = 7),
speed = 2.25,
random = 5152

n = 3 (db = 7),
speed = 4.50,

random = 10304

n = 4 (db = 6),
speed = 4.31,

random = 10272

also present an example by applying IPM-FD to AES

and provide a comparison on performance with di�er-

ent settings.

As a perspective, we notice that the performances

of both IPM and IPM-FD can be improved by choos-

ing small (or sparse) values for Li,j ∈ K scalars. This

strategy is similar to that already employed by Rijndael

inventors, for instance when designing the MixColumns

operation. This raises the question of �nding codes with

sparse matrices of high dual distance.

Secondly, we show in Tab. 2, 5 and 6 for results

by an exhaustive study, which is very time-consuming

and even impossible to �nd the optimal one when the

number of shares n gets larger. Hence, a systematic

(e.g., algebraic) construction of better codes than mere

repetition codes is much more preferable and could be

leveraged. However, it is still an open problem to con-

struction optimal or suboptimal codes for IPM-FD. One

possible approach is to convert some constructions [6]

in DSM to IPM-FD which needs further study.

Besides, we notice that our fault detection paradigm

applies also to the case of Boolean masking, i.e., IPM

where all constants Li,j are equal to 1, which can also

enable enhancements of currently deployed software

code with respect to detection of perturbations.

Acknowledgments. This work has been partly �-

nanced via the project TeamPlay (https:

//teamplay-h2020.eu/), a project from Eu-

ropean Union's Horizon2020 research and in-

novation program, under grant agreement N◦

779882, and also supported by SECODE project

(https://secode.telecom-paristech.fr/) under

grant N◦ ANR-15-CHR2-0007 funded by the CHIST-

ERA programme and coordinated by ANR.

References

1. Subidh Ali, Debdeep Mukhopadhyay, and Michael Tunstall.
Di�erential fault analysis of AES: towards reaching its limits.
J. Cryptographic Engineering, 3(2):73�97, 2013.

2. Josep Balasch, Sebastian Faust, and Benedikt Gierlichs. In-
ner Product Masking Revisited. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology - EURO-
CRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques,
So�a, Bulgaria, April 26-30, 2015, Proceedings, Part I, vol-
ume 9056 of Lecture Notes in Computer Science, pages 486�
510. Springer, 2015.

3. Josep Balasch, Sebastian Faust, Benedikt Gierlichs, Clara
Paglialonga, and François-Xavier Standaert. Consolidating
Inner Product Masking. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017
- 23rd International Conference on the Theory and Applica-
tions of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part I, volume
10624 of Lecture Notes in Computer Science, pages 724�754.
Springer, 2017.

4. Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-
Alain Fouque, and Benjamin Grégoire. Compositional Ver-
i�cation of Higher-Order Masking: Application to a Verify-
ing Masking Compiler. IACR Cryptology ePrint Archive,
2015:506, 2015.

5. Julien Bringer, Claude Carlet, Hervé Chabanne, Sylvain
Guilley, and Houssem Maghrebi. Orthogonal Direct Sum
Masking - A Smartcard Friendly Computation Paradigm in
a Code, with Builtin Protection against Side-Channel and
Fault Attacks. In David Naccache and Damien Sauveron,
editors, Information Security Theory and Practice. Securing
the Internet of Things - 8th IFIP WG 11.2 International
Workshop, WISTP 2014, Heraklion, Crete, Greece, June 30
- July 2, 2014. Proceedings, volume 8501 of Lecture Notes in
Computer Science, pages 40�56. Springer, 2014.

6. Claude Carlet, Cem Güneri, Sihem Mesnager, and Ferruh
Özbudak. Construction of some codes suitable for both side
channel and fault injection attacks. In Lilya Budaghyan and
Francisco Rodríguez-Henríquez, editors, Arithmetic of Finite
Fields - 7th International Workshop, WAIFI 2018, Bergen,
Norway, June 14-16, 2018, Revised Selected Papers, volume
11321 of Lecture Notes in Computer Science, pages 95�107.
Springer, 2018.

7. Abhishek Chakraborty, Bodhisatwa Mazumdar, and Deb-
deep Mukhopadhyay. A combined power and fault anal-
ysis attack on protected grain family of stream ciphers.
IEEE Trans. on CAD of Integrated Circuits and Systems,
36(12):1968�1977, 2017.

8. Wei Cheng, Claude Carlet, Kouassi Goli, Jean-Luc Danger,
and Sylvain Guilley. Detecting Faults in Inner Product Mask-
ing Scheme � IPM-FD: IPM with Fault Detection, August
24 2019. 8th International Workshop on Security Proofs for
Embedded Systems (PROOFS). Atlanta, GA, USA.

9. Wei Cheng, Claude Carlet, Kouassi Goli, Jean-Luc Danger,
and Sylvain Guilley. Detecting Faults in Inner Product Mask-

https://teamplay-h2020.eu/
https://teamplay-h2020.eu/
https://secode.telecom-paristech.fr/

14 W. Cheng, C. Carlet, K. Goli, J.-L. Danger, S. Guilley

ing Scheme � IPM-FD: IPM with Fault Detection, August
2019. https://github.com/Qomo-CHENG/IPM-FD.

10. Wei Cheng, Sylvain Guilley, Jean-Luc Danger, Claude Car-
let, and Sihem Mesnager. Optimal Linear Codes for IPM,
January 2020. https://github.com/Qomo-CHENG/OC-IPM.

11. Christophe Clavier, Benoît Feix, Georges Gagnerot, and
Mylène Roussellet. Passive and Active Combined Attacks
on AES. In FDTC, pages 10�18. IEEE Computer So-
ciety, 21 August 2010. Santa Barbara, CA, USA. DOI:
10.1109/FDTC.2010.17.

12. Jean-Sébastien Coron. HTable countermeasure against side-
channel attacks � reference implementation for the mask-
ing scheme presented in [13]. https://github.com/coron/

htable.
13. Jean-Sébastien Coron. Higher Order Masking of Look-Up

Tables. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT, volume 8441 of Lecture Notes in Computer
Science, pages 441�458. Springer, 2014.

14. Jean-Sébastien Coron, Emmanuel Prou�, and Matthieu Ri-
vain. Side Channel Cryptanalysis of a Higher Order Masking
Scheme. In Pascal Paillier and Ingrid Verbauwhede, editors,
CHES, volume 4727 of LNCS, pages 28�44. Springer, 2007.

15. Jean-Luc Danger, Sylvain Guilley, Annelie Heuser, Axel
Legay, and Ming Tang. Physical Security Versus Masking
Schemes. In Çetin Kaya Koç, editor, Cyber-Physical Systems
Security., pages 269�284. Springer, 2018.

16. Frank Denis. The Sodium cryptography library, Jul 2019.
17. Yuval Ishai, Amit Sahai, and David Wagner. Private Cir-

cuits: Securing Hardware against Probing Attacks. In
CRYPTO, volume 2729 of Lecture Notes in Computer Sci-
ence, pages 463�481. Springer, August 17�21 2003. Santa
Barbara, California, USA.

18. Mark G. Karpovsky, Konrad J. Kulikowski, and Zhen Wang.
Robust error detection in communication and computation
channels. In in Proceedings of Int. Workshop on Spectral
Techniques, 2007.

19. Mark G. Karpovsky and Prawat Nagvajara. Optimal codes
for minimax criterion on error detection. IEEE Trans. Inf.
Theory, 35(6):1299�1305, 1989.

20. Mark G. Karpovsky and Alexander Taubin. New class of
nonlinear systematic error detecting codes. IEEE Trans. Inf.
Theory, 50(8):1818�1820, 2004.

21. Mario Kirschbaum and Thomas Popp. Evaluation of a DPA-
Resistant Prototype Chip. In ACSAC, pages 43�50. IEEE
Computer Society, 7-11 December 2009. Honolulu, Hawaii.

22. F. Jessie MacWilliams and Neil J. A. Sloane. The Theory of
Error-Correcting Codes. Elsevier, Amsterdam, North Hol-
land, 1977. ISBN: 978-0-444-85193-2.

23. Florence Jessie MacWilliams and N. J. A. Neil James Alexan-
der Sloane. The theory of error correcting codes. North-
Holland mathematical library. North-Holland Pub. Co. New
York, Amsterdam, New York, 1977. Includes index.

24. Stefan Mangard, Elisabeth Oswald, and Thomas Popp.
Power Analysis Attacks: Revealing the Secrets of Smart
Cards. Springer, December 2006. ISBN 0-387-30857-1,
http://www.dpabook.org/.

25. Thomas S. Messerges. Securing the AES �nalists against
power analysis attacks. In Bruce Schneier, editor, Fast Soft-
ware Encryption, 7th International Workshop, FSE 2000,
New York, NY, USA, April 10-12, 2000, Proceedings, vol-
ume 1978 of Lecture Notes in Computer Science, pages 150�
164. Springer, 2000.

26. Cancio Monteiro, Yasuhiro Takahashi, and Toshikazu Sekine.
Low power secure AES S-box using adiabatic logic circuit. In
2013 IEEE Faible Tension Faible Consommation, pages 1�4,
June 2013.

27. Simon Moore, Ross Anderson, Robert Mullins, George Tay-
lor, and Jacques J.A. Fournier. Balanced Self-Checking
Asynchronous Logic for Smart Card Applications. Journal of
Microprocessors and Microsystems, 27(9):421�430, October
2003.

28. Xuan Thuy Ngo, Shivam Bhasin, Jean-Luc Danger, Sylvain
Guilley, and Zakaria Najm. Linear complementary dual code
improvement to strengthen encoded circuit against hardware
Trojan horses. In IEEE International Symposium on Hard-
ware Oriented Security and Trust, HOST 2015, Washington,
DC, USA, 5-7 May, 2015, pages 82�87. IEEE, 2015.

29. Sikhar Patranabis, Abhishek Chakraborty, Phuong Ha
Nguyen, and Debdeep Mukhopadhyay. A biased fault attack
on the time redundancy countermeasure for AES. In Ste-
fan Mangard and Axel Y. Poschmann, editors, Constructive
Side-Channel Analysis and Secure Design - 6th International
Workshop, COSADE 2015, Berlin, Germany, April 13-14,
2015. Revised Selected Papers, volume 9064 of Lecture Notes
in Computer Science, pages 189�203. Springer, 2015.

30. Romain Poussier, Qian Guo, François-Xavier Standaert,
Claude Carlet, and Sylvain Guilley. Connecting and Improv-
ing Direct Sum Masking and Inner Product Masking. In
Thomas Eisenbarth and Yannick Teglia, editors, Smart Card
Research and Advanced Applications - 16th International
Conference, CARDIS 2017, Lugano, Switzerland, November
13-15, 2017, Revised Selected Papers, volume 10728 of Lec-
ture Notes in Computer Science, pages 123�141. Springer,
2017.

31. Matthieu Rivain and Emmanuel Prou�. Provably Secure
Higher-Order Masking of AES. In Stefan Mangard and
François-Xavier Standaert, editors, CHES, volume 6225 of
LNCS, pages 413�427. Springer, 2010.

32. Sayandeep Saha, Dirmanto Jap, Jakub Breier, Shivam
Bhasin, Debdeep Mukhopadhyay, and Pallab Dasgupta.
Breaking redundancy-based countermeasures with random
faults and power side channel. In 2018 Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC 2018, Am-
sterdam, The Netherlands, September 13, 2018, pages 15�22.
IEEE Computer Society, 2018.

33. Tobias Schneider, Amir Moradi, and Tim Güneysu. Parti -
towards combined hardware countermeasures against side-
channel and fault-injection attacks. In Matthew Rob-
shaw and Jonathan Katz, editors, Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part II, volume 9815 of Lecture Notes in Com-
puter Science, pages 302�332. Springer, 2016.

34. Richard C. Singleton. Maximum distance q -nary codes.
IEEE Trans. Information Theory, 10(2):116�118, 1964.

35. University of Sydney (Australia). Magma Computational
Algebra System. http://magma.maths.usyd.edu.au/magma/,
Accessed on 2014-08-22.

36. Weijia Wang, François-Xavier Standaert, Yu Yu, Sihang Pu,
Junrong Liu, Zheng Guo, and Dawu Gu. Inner Product
Masking for Bitslice Ciphers and Security Order Ampli�ca-
tion for Linear Leakages. In Kerstin Lemke-Rust and Michael
Tunstall, editors, Smart Card Research and Advanced Ap-
plications - 15th International Conference, CARDIS 2016,
Cannes, France, November 7-9, 2016, Revised Selected Pa-
pers, volume 10146 of Lecture Notes in Computer Science,
pages 174�191. Springer, 2016.

https://github.com/Qomo-CHENG/IPM-FD
https://github.com/Qomo-CHENG/OC-IPM
https://github.com/coron/htable
https://github.com/coron/htable
http://www.springer.com/
http://www.dpabook.org/
http://magma.maths.usyd.edu.au/magma/

Detecting Faults in Inner Product Masking Scheme 15

A Optimal codes for IPM-FD with k = 2

By using Magma [35], we present some instances for IPM-FD with
k = 2, in particular K = F24 in Tab. 5 and K = F2 in Tab. 6,
respectively. Interestingly, we notice that for K = F2 the best
minimum distance of H⊥ is equal to BKLC(GF(2), n, 2), where
n is the same as in the Tab. 6.

Table 5 Examples with K = F24 , db and dw are side-channel security orders at bit-level and word-level, respectively.

Inputs Outputs of Alg. 5 and Alg. 6
#faults df dw n db Setting

IPM

0 0 1 0 H⊥ =
(
1
)

0 1 2 2 H⊥ =
(
1 α5

)
0 2 3 5 H⊥ =

(
1 α5 α10

)
0 3 4 7 H⊥ =

(
1 α5 α9 α13

)
0 4 5 9 H⊥ =

(
1 α5 α9 α12 α1

)
0 5 6 11 BKLC(GF (2), 4 ∗ 6, 4) ' [24, 4, 12]

IPM-FD

1 0 2 0 H⊥ =

(
1 0

0 1

)
1 1 3 2 H⊥ =

(
1 0 α5

0 1 α10

)
1 2 4 4 H⊥ =

(
1 0 α5 α11

0 1 α11 α4

)

Table 6 Examples with K = F2, dw and db are security orders at word-level and bit-level, respectively. In this case, the same codes
can also be used in BM-FD while BM-FD is de�ned over K = F2l .

Inputs Outputs of Alg. 5 and Alg. 6
#faults df dw n db Setting

IPM

0 0 1 0 H⊥ =
(
1
)

0 1 2 1 H⊥ =
(
1 1
)

0 2 3 2 H⊥ =
(
1 1 1

)
0 3 4 3 H⊥ =

(
1 1 1 1

)
0 4 5 4 H⊥ =

(
1 1 1 1 1

)
0 5 6 5 H⊥ =

(
1 1 1 1 1 1

)
0 6 7 6 H⊥ =

(
1 1 1 1 1 1 1

)
0 7 8 7 H⊥ =

(
1 1 1 1 1 1 1 1

)
0 8 9 8 H⊥ =

(
1 1 1 1 1 1 1 1 1

)
0 9 10 9 H⊥ =

(
1 1 1 1 1 1 1 1 1 1

)

IPM-FD
(BM-FD)

1 0 2 0 H⊥ =

(
1 0
0 1

)
1 1 3 1 H⊥ =

(
1 0 1
0 1 1

)
1 2 5 2 H⊥ =

(
1 0 1 1 0
0 1 1 1 1

)
1 3 6 3 H⊥ =

(
1 0 1 1 0 1
0 1 1 1 1 0

)
1 4 8 4 H⊥ =

(
1 0 1 1 0 1 0 1
0 1 1 1 1 0 1 0

)
1 5 9 5 H⊥ =

(
1 0 1 1 0 1 0 1 1
0 1 1 1 1 0 1 0 1

)

	Introduction
	State-of-the-art on side-channel & fault protection
	Novel end-to-end fault detection scheme
	Security analysis of IPM-FD and optimal codes selection
	Practical implementation and performances
	Conclusion and perspectives
	Optimal codes for IPM-FD with k=2

