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Abstract. Privacy protection techniques have been thoroughly studied
in the current blockchain research field with the famous representatives
such as Monero and Zerocash, which have realized fully anonymous and
confidential transactions. However, lack of audit can lead to abuse of pri-
vacy, and can help bad guys to conduct illegal activities, such as money
laundering, transfer of illegal assets, illegal transactions, etc. Therefore,
it is crucial to study the privacy-preserving cryptocurrency with ful-
l auditability. In this paper, under the framework similar to Monero,
we propose FAPC, a fully auditable privacy-preserving cryptocurren-
cy with security against malicious auditors. FAPC mainly consists of
three schemes: a traceable and linkable ring signature scheme (TLRS),
a traceable range proof (TRP), and a tracing scheme for long-term ad-
dress (TSLA). In FAPC, the identities of UTXOs, transaction amounts
and the corresponding long-term addresses can be traced by the audi-
tor with maintaining anonymous and confidential to others. The con-
structions of TLRS and TRP are simple and modular, which only use
standard ring signature as component, without any additional one-time
signatures or zero-knowledge proofs. The TSLA is constructed by usage
of standard ring signature and ElGamal encryption to realize traceabili-
ty of long-term addresses in transactions. Moreover, all the schemes are
secure against malicious auditors to realize a closer approach towards
decentralization. We also give the security proofs and implementations
of our schemes, as well as the performance results.

Keywords: Auditable blockchain · Privacy protection · Decentraliza-
tion · Traceable and linkable ring signature · Traceable range proof ·
Tracing scheme for long-term address · Malicious auditor.

1 Introduction

Blockchain technology was first proposed by Nakamoto[25] in 2008. It is an ap-
plication system that combines multiple underlying techniques including P2P
networks, distributed data storage, network consensus protocols and crypto-
graphic algorithms. It has features of open, transparentness, non-tamperability,
traceability, and has various applications such as cryptocurrency (including Bit-
coin[25], Ethereum [9], Monero[32, 26], Zerocash[29], etc.), anti-counterfeiting,



credit deposit and medical health, etc. In June 2019, Facebook announced “Li-
bra”[14], an international blockchain-based cryptocurrency to support efficient
cross-border transactions with openness and equality.

In blockchain theory, privacy-preserving techniques has been developed in
this decade to provide a potential replacement of traditional blockchain-based
cryptocurrencies such as Bitcoin[25] and Ethereum[9], to support various privacy-
preserving scenarios such as salary, donation, bidding, taxation, etc. A series
of works have been proposed during these years such as Confidential Trans-
action[23], Dash[13], Mimblewimble[19], Monero[32, 26] and Zerocash[29], etc.
Among all the privacy-preserving cryptocurrencies, Monero has realized fully
anonymous and confidential transactions, which can protect the privacy of iden-
tities for both initiators and recipients in transactions, as well as the transaction
amount. In contrast, Zerocash is deeply related with the zero-knowledge succinct
non-interactive argument of knowledge (zk-SNARKs), which provides the preim-
age proof of hash commitment, and therefore achieves fully privacy of identity
and amount. Nevertheless, zk-SNARKs technique uses common reference string
(CRS) with GB size and it is based on non-falsifiable assumptions, that weakens
its potential competitiveness compared to other candidates.

However, existing privacy-preserving cryptocurrencies have no regulatory
functions so as to cause potential risks of illegal activities such as money laun-
dering, transfer of illegal assets, illegal transactions, frauds, etc. Bad guys can
easily escape from audit to conduct illegal activities without any punishments.
Meanwhile, in the application of privacy-preserving cryptocurrency, auditors and
policy-making institutions need to have a comprehensive understanding of the
economic operation and development, they need to recover the addresses and
amounts in transactions. Therefore, it is crucial to develop privacy-preserving
cryptocurrency with regulatory functions to support both privacy protection and
auditability for money flows, users’ addresses and amounts in all transactions.
Moreover, the auditable privacy-preserving blockchain system needs to keep se-
cure when the auditor is corrupted or malicious, which means the auditor can
only trace the money flows, addresses and amounts in transactions, but cannot
double spend, corrupt users, slander honest users or escape from audit.

1.1 Our Contributions

In this paper, we propose FAPC: the first (to the best of our knowledge) con-
struction of Fully Auditable Privacy-preserving Cryptocurrency against ma-
licious auditors to achieve both privacy protection and auditability for money
flows, users’ addresses and transaction amounts. Under the framework similar to
Monero, FAPC mainly consists three schemes: a Traceable and Linkable Ring
Signature (TLRS), a Traceable Range Proof (TRP) and a Tracing Scheme for
Long-term Address (TSLA).

In the construction of FAPC, under UTXO model (same as Monero), linkable
ring signature is replaced by TLRS, range proof is replaced by TRP and the key
generation algorithm of every UTXO for the recipient is replaced by TSLA. The
construction of FAPC is modular, we use ring signature as the key component in
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TLRS, TRP and TSLA, we can choose the most suited ring signature schemes
(most efficient or most compact) for different applications and requirements.

In FAPC, there exists an auditor in the system with possession of the audit
trapdoor to trace the identities of UTXOs (money flows) in ring signatures,
the addresses of initiators and recipients, and the amounts in all transactions.
Moreover, in FAPC, the works for verification and audit are independent, which
means that the auditor is not responsible for the verification of transactions. The
system can run safely and correctly when the auditors are not involved, anyone
(including the malicious auditor) cannot generate a valid transaction to make
the auditor fail to trace. The design idea of FAPC is a closer approach to meet
the characteristic of “decentralization”. The power of auditor in FAPC is strictly
restricted, who can only trace the private information in the transactions, while
cannot conduct any illegal activities to break the security.

Traceable and Linkable Ring Signature The traceable and linkable ring
signature scheme is directly from the linkable ring signature scheme with an
additional security requirement called traceability, to ensure the identity of signer
can be traced by the auditor, while the linkability remains the same that two ring
signatures can be linked if they are signed by the same signer. We give a simple
and modular construction of TLRS which only uses ring signature as component,
without any additional one-time signatures or zero-knowledge proofs. Actually,
in the construction of TLRS, ring signature can be directly switched to traceable
and linkable ring signature by a randomized combination between public key set
and tracing keys, which will be another independent point of interest. We give
a brief description of TLRS in the following:

1. The public parameters are (G, q, g, h1 = gy, h2), where g (uniformly gener-
ated by system) is a generator of an elliptic curve G with prime order q, y
is the audit trapdoor, generated by the auditor, h2 is another generator of
G with its discrete logarithm to g being unknown to anyone.

2. Every user generates his (PK, SK) by usage of public parameters, the key gen-
eration algorithm remains the same as the linkable ring signature in Monero.

3. When signing, the signer publishes a tracing key TK and a key-image I,
computes a new public keys set LRPK for ring signature, then generates the
ring signature τ by usage of his private key SK, the basis element (generator)
for ring signature is not fixed, which is different from Monero.

4. The verifier checks whether I is already in key-image set to determine whether
double signing (double spending) occurs. Then computes the ring signature
public keys set LRPK and checks the validity of the ring signature τ , then
outputs the verification result.

5. The auditor can trace the identity of signer by usage of the trapdoor y and
the tracing key TK.

In TLRS, the key-image is used in the linkability check to examine whether
double signing occurs, the tracing key is used in the audit algorithm to trace
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the identity of signer. TLRS has anonymity, unforgeability, linkability, nonslan-
derability and traceability, under the hardness assumption of discrete logarith-
m, DDH assumption and the security of ring signature. Moreover, for a mali-
cious auditor (or any adversary with possession of trapdoor), he can only break
the anonymity of TLRS, but cannot generate illegal TLRS signatures (double
spend), cannot slander other users (make other valid TLRS signatures illegal)
or break the traceability (escape from audit). This is a closer approach to meet
the characteristic of “decentralization”.

Traceable Range Proof Traceable range proof is a special variant of range
proof, in which there is an auditor who can use the trapdoor to trace the trans-
action amount. The zero-knowledge property of traceable range proof only holds
for adversary without possession of trapdoor. We give the first (to the best of our
knowledge) construction of traceable range proof by usage of Borromean range
proof[26] and Pedersen commitment[27]:

In the construction of TRP, we use Pedersen commitment c = gxha
2 to hide

the transaction amount a, the auditor generates his trapdoor y and computes
h1 = gy, the public parameters are (G, q, g, h1 = gy, h2), h2 is another generator
of G with its discrete logarithm to g is unknown to anyone, similar to TLRS. For
a’s binary expansion a = a0+2a1+ · · ·+2n−1an−1, for every bit i = 0, · · · , n−1,
prover computes a tracing key TKi and a tag Ii, prover also generates a ring Li

PK

with two elements and generates the Borromean multi-ring signature for n rings.
The verifier only need to check the validity of Borromean ring signature and the
correctness of the binary expansion. The auditor can trace ai = 0 or 1 for every
i = 0, · · · , n − 1 to recover the total amount a = a0 + 2a1 + · · · + 2n−1an−1 by
usage of the trapdoor y and {TKi}i=0,··· ,n−1.

In our construction of TRP, the auditor cannot compute x form c = gxha
2 ,

which partially protects the privacy of users, and it is a balance between audit
and privacy protection. TRP has completeness, soundness, zero-knowledge and
traceability against malicious auditors (except for the zero-knowledge property),
under the hardness assumption of discrete logarithm, DDH assumption and the
security of Borromean ring signature.

Tracing Scheme for Long-term Address In FAPC, every user’s address
consists of a view public key A = gxv and a spending public key B = gxs ,
same as Monero in Cryptonote[32]. We construct TSLA to achieve the address
anonymity and traceability in FAPC transactions. The public parameters are
(G, q, g, h1 = gy, h2), similar to TLRS. When paying, the initiator chooses an-
other l − 1 users’ addresses, together with the real recipient’s address, to gen-
erate an address list LAdd = {Add1, · · · ,Addl}, then he encrypts the secret in-
formation, computes the public key PKout of the new UTXO, then generates a
position-preserving double-ring signature to prove the validity of PKout, where
position-preserving means that the position of secret key in each ring is same.
The recipient can find his transaction and recover the secret key SKout of the
new UTXO by usage of his address secret key ASK. The auditor can trace the
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recipient’s address by decryption with the trapdoor. For a malicious auditor
with possession of the trapdoor, he cannot make a valid transaction to escape
from audit, while the address of recipient remains anonymous to others. Since
the auditor can trace the recipient addresses in all transactions, then he can
also recover the corresponding initiator addresses immediately with the help of
money flow traceability by TLRS.

1.2 Related Works

Ring Signatures Ring signature is a special type of signature scheme, in which
signer can sign on behalf of a group chosen by himself, while maintaining anony-
mous within the group. In ring signatures, signer selects a list of public keys
LPK={PK1, · · · , PKm} as the ring elements, and uses his secret key SKκ to
sign, where κ ∈ {1, · · · ,m}. Verifier cannot determine the signer’s identity. Ring
signature was first proposed by Rivest, Shamir and Tauman[28] in 2001, they
constructed ring signature schemes based on RSA trapdoor permutation and
Robin trapdoor function, in the random oracle model. In 2002, Abe et al.[1]
proposed AOS ring signature, which simultaneously supported discrete logarith-
m (via Sigma protocol) and RSA trapdoor functions (via hash and sign), also
in the random oracle model. In 2006, Bender et al.[5] introduced the first ring
signature scheme in the standard model, by making use of pairing technique. In
2015, Maxwell et al.[24] gave Borromean signature scheme, which is a multi-ring
signature based on AOS with signature size reduced from mn + n to mn + 1,
where m denotes the ring size and n denotes the number of rings. It’s worth
emphasizing that the signature sizes in these schemes are linear to the number
of ring elements.

In 2004, building from RSA accumulator, Dodis et al.[12] proposed a ring
signature scheme with constant signature size in the random oracle model. In
2007, Chandran et al.[10] gave a standard model ring signature scheme with
O(
√
m) signature size, using pairing technique and CRS. In 2015, under the dis-

crete logarithm assumption, Groth et al.[18] introduced a ring signature scheme
with O(logm) signature size, in the random oracle model.

Linkable Ring Signatures Linkable ring signature is a variant of ring signa-
ture, in which the identity of the signer in a ring signature remains anonymous,
but two ring signatures can be linked if they are signed by the same signer.
Linkable ring signatures are suitable in many different practical applications
such as privacy-preserving cryptocurrency (Monero), e-Voting, cloud data stor-
age security, etc. In Monero, linkability is used to check whether double spending
happens. The first linkable ring signature scheme is proposed by Liu et al.[22]
in 2004, under discrete logarithm assumption, in the random oracle model. Lat-
er, Tsang et al.[31] and Au et al.[2] proposed accumulator-based linkable ring
signatures with constant signature size. In 2013, Yuen et al.[35] gave a standard
model linkable ring signature scheme with O(

√
n) signature size, from pairing

technique. In 2014, Liu et al.[21] gave a linkable ring signature with unconditional
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anonymity, he also gave the formalized security model of linkable ring signature,
which we will follow in this paper. In 2015, Back et al.[3] proposed an efficient
linkable ring signature scheme LSAG, which shortens the signature size of [22].
In 2016, based on work of Fujisaki et al.[16], Noether et al.[26] gave a linkable
multi-ring signature scheme MLSAG, which supports transactions with multiple
inputs, and was used by Monero. In 2017, Sun et al.[30] proposed Ring-CT 2.0,
which is an accumulator-based linkable ring signature with asymptotic smaller
signature size than Ring CT, but is less competitive when n is small. In 2019,
Yuen et al.[36] proposed Ring-CT 3.0, a modified Bulletproof-based 1-out-of-n
proof protocol with logarithmic size, which has the functionality of (linkable)
ring signature. In 2019, Goodell et al.[17] proposed CLSAG, which improved the
efficiency of MLSAG.

Range Proofs Range proof is a special zero-knowledge proof to prove a commit-
ted hidden amount a lies within a certain range [0, 2n− 1] without revealing the
amount. The Pedersen-commitment-based range proofs are used in Monero sys-
tem. In 2016, Neother et al.[26] gave the Borromean range proof, building from
the Borromean ring signature[24], with linear proof size to the binary length of
range. In 2018, Bünz et al.[7] introduced Bulletproofs, an efficient non-interactive
zero-knowledge proof protocol with short proofs and without a trusted setup,
the proof size is only logarithmic to the witness size and it is used in projects
such as Monero and DERO[11]. There are also privacy-preserving blockchain
systems such as Qiusqius[15], Zether[6] with different commitments and range
proofs. Moreover, range proof can also be built from zero-knowledge for arith-
metic circuits, including [33, 34, 4, 8].

Traceable Privacy-preserving Cryptocurrencies In 2019, Li et al.[20] gives
a construction of traceable Monero to achieve anonymity and traceability of
signers’ identities and users’ addresses, by usage of paring-based accumulator,
signature of knowledge, zk-SNARKs and verifiable encryption from Ring-CT
2.0. Their construction provides the same functionality as TLRS and TSLA,
but relies on a trusted setup and CRS, which is inefficient for computation and
storage.

In this paper, we give the constructions of FAPC, including TLRS, TRP and
TSLA with unconditional traceability of signers’ identities, transaction amounts
and long-term addresses, with better efficiency and standard assumptions. Com-
pared to [20], FAPC has four main advantages:

1. The construction of FAPC is modular, the elliptic-curve-based ring signature
scheme is used as the key component in TLRS, TRP and TSLA. The choice
of ring signature is not restricted and we can choose the most suited ones in
different applications;

2. FAPC has the functionality of full auditability, which means that the auditor
can not only trace the identities of UTXOs (money flows) and long-term
addresses, but also trace the transaction amounts, which are untraceable in
[20];
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3. The security of FAPC (including TLRS, TRP and TSLA) relies on standard
assumptions (paring-free) and the security of ring signatures, without any
trusted setup or CRS;

4. FAPC is very efficient in transaction generation, verification and audit, the
computation time for a whole transaction (1 input UTXO, 2 output UTXO)
is less than 40ms. While in [20], it is required over 1s for a whole transaction
(1 input UTXO, 2 output UTXO).

1.3 Paper Organization

In section 2 we give some preliminaries; in section 3 we give the construction of
FAPC, and introduce the security requirements; in section 4 we give the con-
struction and security proof of the traceable and linkable ring signature (TLRS);
in section 5 we give the constructions and security proof of traceable range proof
(TRP); in section 6 we introduce the tracing scheme for long-term address (T-
SLA) and the security proofs; in section 7 we introduce the implementation and
performance of FAPC; in section 8 we give the conclusion.

2 Preliminaries

2.1 Notations

In this paper, we use multiplicative cyclic group G to represent elliptic group
with prime order |G| = q, g is the generator of G, group multiplication is g1 ·g2 =
g1g2 and exponentiation is ga. Z∗

q = Zq \ {0} is the set of nonzero elements in
Zq. We use H(·) to represent hash function, use Hp(·) to represent Hash-to-
Point, and negl(·) to represent negligible functions. For verifiers, 1 is for accept
and 0 is for reject. For adversaries, PPT means probabilistic polynomial time.
The DDH assumption means any PPT adversary cannot distinguish (ga, ha)
from (ga, hr), where r is uniformly sampled from Z∗

q . The hardness of discrete
logarithm problem means that any PPT adversary cannot compute x from gx.
Oracle RO refers to the random oracle. The security parameter of this paper is
λ = ⌈log q⌉, where q = |G|.

2.2 Ring Signatures

Ring signature scheme usually consists of four algorithms: Setup, KeyGen, Rsign,
and Verify.

− Par ← Setup(λ) is a probabilistic polynomial time (PPT) algorithm which,
on input a security parameter λ, outputs the set of security parameters Par
which includes λ.

− (PKi,SKi)← KeyGen(Par) is a PPT algorithm which, on input the security
parameters Par, outputs a public/private key pair (PKi,SKi).

− σ ← Rsign(SKκ, µ, LPK) is a ring signature algorithm which, on input user’s
secret key SKκ, a list of users’ public keys LPK = {PK1, · · · ,PKm}, where
PKκ ∈ LPK, and a message µ, outputs a ring signature σ.
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− 1/0← Verify(µ, σ, LPK) is a verification algorithm which, on input a message
µ, a list of users’ public keys LPK and a ring signature σ, outputs 1 or 0.

The security definition of ring signature contains unforgeability and anonymi-
ty. Before giving their definitions, we consider the following oracles which togeth-
er model the ability of the adversaries in breaking the security of the schemes,
in fact, the adversaries are allowed to query the four oracles below:

− c ← RO(a). Random oracle, on input a, random oracle returns a random
value.

− PKi ← JO(⊥). Joining oracle, on request, adds a new user to the system.
It returns the public key PKi of the new user.

− SKi ← CO(PKi). Corruption oracle, on input a public key PKi that is a
query output of JO, returns the corresponding private key SKi.

− σ ← SO(PKκ, µ, LPK). Signing oracle, on input a list of users’ public keys
LPK, the public key of the signer PKκ, and a message µ, returns a valid ring
signature σ.

Definition 1 (Unforgeability) Unforgeability for ring signature schemes is
defined in the following game between the simulator S and the adversary A,
simulator S runs Setup to provide public parameters for A, A is given access to
oracles RO, JO, CO and SO. A wins the game if he successfully forges a ring
signature (σ∗, L∗

PK, µ
∗) satisfying the following:

1. Verify(σ∗, L∗
PK, µ

∗) = 1.
2. Every PKi ∈ L∗

PK is returned by A to JO.
3. No PKi ∈ L∗

PK is queried by A to CO.
4. (µ∗, L∗

PK) is not queried by A to SO.

We give the advantage of A in forging attack as follows:

AdvforgeA = Pr[A wins].

A ring signature scheme is unforgeable if for any PPT adversary A, AdvforgeA =
negl(λ).

Definition 2 (Anonymity) Anonymity for ring signature schemes is defined
in the following game between the simulator S and the adversary A, simulator
S runs Setup to provide public parameters for A, A is given access to oracles
RO, JO and CO. A gives a set of public keys LPK = {PK1, · · · ,PKm}, S
randomly picks κ ∈ {1, · · · ,m}, computes σ = Rsign(SKκ, µ, LPK) and sends σ
to A, where SKκ is the corresponding private key of PKκ, then A outputs a guess
κ∗ ∈ {1, · · · ,m}. A wins the game if he successfully guesses κ∗ = κ.

We give the advantage of A in anonymity attack as follows:

AdvanonA = |Pr[κ∗ = κ]− 1/m|.

A ring signature scheme is anonymous if for any PPT adversary A, AdvanonA =
negl(λ).
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In the construction of TLRS, we use ring signature (unforgeable and anony-
mous in the random oracle model, simulatable by programming the random
oracle) as component, we may select AOS scheme[1] (linear size) or Ring-CT
3.0[36] (logarithmic size) in our construction. The choice of ring signature com-
ponent is not restricted, we can choose the most suited ones (most efficient or
most compact ones) for different ring sizes in different applications, the detailed
descriptions of AOS and AOS’ are in the Appendix A.

2.3 Linkable Ring Signatures

Compared to ring signature, linkable ring signature has the function of linkabil-
ity, that is, when two ring signatures are signed by the same signer, they are
linked by the algorithm Link. We give the definition of Link below:

− linked/unlinked ← Link((σ, µ, LPK), (σ
′, µ′, L′

PK)): verifier checks the two
ring signatures are linked or not, output the result.

The security definition of linkable ring signature contains unforgeability, anonymi-
ty, linkability and nonslanderability. The unforgeability is the same as Definition
1, and the anonymity is slightly different from Definition 2 with additional re-
quirements that all public keys in LPK are returned by A to JO and all public
keys in LPK are not queried by A to CO (if the adversary corrupts some of
the public keys, then he can break the anonymity of the scheme by compute
the corresponding key-images in advance). In the rest of this paper, we use this
modified definition of anonymity in sTLRS and its security proof.

We give the definition of linkability and nonslanderability as follows:

Definition 3 (Linkability) Linkability for linkable ring signature schemes is
defined in the following game between the simulator S and the adversary A,
simulator S runs Setup to provide public parameters for A, A is given access to
oracles RO, JO, CO and SO. A wins the game if he successfully forges k ring
signatures (σi, L

i
PK, µi), i = 1, · · · , k, satisfying the following:

1. All σis are not returned by A to SO.
2. All Li

PK are returned by A to JO.
3. Verify(σi, L

i
PK, µi) = 1, i = 1, · · · , k.

4. A queried CO less than k times.
5. Link((σi, L

i
PK, µi), (σj , L

j
PK, µj)) = unlinked for i, j ∈ {1, · · · , k} and i ̸= j.

We give the advantage of A in link attack as follows:

AdvlinkA = Pr[A wins].

A linkable ring signature scheme is linkable if for any PPT adversary A, AdvlinkA =
negl(λ).

The nonslanderability of a linkable ring signature scheme is that A cannot
slander other honest users by generating a signature linked with signatures from
honest users. In the following we give the definition:
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Definition 4 (Nonslanderability) Nonslanderability for linkable ring signa-
ture schemes is defined in the following game between the simulator S and the
adversary A, simulator S runs Setup to provide public parameters for A, A is
given access to oracles RO, JO, CO and SO. A gives a list of public keys LPK,
a message µ and a public key PKκ ∈ LPK to S, S returns the corresponding sig-
nature σ ← Rsign(SKκ, LPK, µ) to A. A wins the game if he successfully outputs
a ring signature (σ∗, L∗

PK, µ
∗), satisfying the following:

1. Verify(σ∗, L∗
PK, µ

∗) = 1.
2. PKκ is not queried by A to CO.
3. PKκ is not queried by A as input to SO.
4. Link((σ, LPK, µ), (σ

∗, L∗
PK, µ

∗)) = linked.

We give the advantage of A in slandering attack as follows:

AdvslanderA = Pr[A wins].

A linkable ring signature scheme is nonslanderable if for any PPT adversary A,
AdvslanderA = negl(λ).

According to [21], linkability and nonslanderability imply unforgeability:

Lemma 5 ([21]) If a linkable ring signature scheme is linkable and nonslan-
derable, then it is unforgeable.

2.4 Traceable and Linkable Ring Signatures

Similar to the security definitions of linkable ring signature, a PPT adversary
A is given access to oracles RO, JO, CO and SO, the security of TLRS con-
tains unforgeability, anonymity, linkability, nonslanderability and traceability.
Considering the existence of auditor, who can trace the identities of signer-
s, so the anonymity only holds for adversary who not possesses the trapdoor.
Moreover, the unforgeability, linkability, nonslanderability remain the same as in
linkable ring signature. For a malicious auditor (or any adversary who corrupts
the auditor), he cannot forge signatures of other users or break the linkability
and nonslanderability of TLRS, which means that the malicious auditor cannot
spend money of other users, double spend or slander other honest users.

TLRS has an additional security requirement called traceability, which en-
ables auditor with ability to trace signers’ identities, for any PPT adversary A
with possession of trapdoor, he cannot escape from audit. We give the formal
definition of traceability in the following:

Definition 6 (Traceability) Traceability for traceable and linkable ring signa-
ture schemes (TLRS) is defined in the following game between the simulator S
and the adversary A, simulator S runs Setup to provide the public parameters
for A, A is given access to oracles RO, JO, CO. A generates a list of public
keys LPK = {PK1, · · · , PKm}, A wins the game if he successfully generates a
valid TLRS signature (σ, LPK , µ) using PKκ ∈ LPK , satisfying the following:
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1. Verify(σ, LPK , µ) = 1.
2. PKi ̸= PKj for 1 ≤ i < j ≤ m.
3. Trace(σ, y) ̸= κ or Trace(σ, y) =⊥.
We give the advantage of A in tracing attack as follows:

AdvtraceA = Pr[A wins].

TLRS scheme is traceable if for any PPT adversary A, AdvtraceA = negl(λ).

2.5 Zero-knowledge proofs

Zero-knowledge proof system is a proof system (P, V ) in which a prover proves
to the verifier that he has a certain knowledge but does not reveal the knowledge
itself. The formal definition is that given language L and relation R, for ∀x ∈ L,
there exists a witness w such that (x,w) ∈ R, to prove x ∈ L without disclosing
w. The transcript between prover and verifier is ⟨P (x,w), V (x)⟩, the proof is
correct (or wrong) if ⟨P (x,w), V (x)⟩ = 1(or 0). The security notions of zero-
proof system contains completeness, soundness and zero-knowledge:

Definition 7 (Completeness) (P, V ) has completeness for any non-uniform
polynomial time adversary A,

Pr[(x,w)← A(1λ) : (x,w) /∈ R or ⟨P (x,w), V (x)⟩ = 1]

= 1− negl(λ).

When the probability equals 1, then (P, V ) has perfect completeness.

Definition 8 (Soundness) (P, V ) has soundness for any non-uniform poly-
nomial time adversary A and x /∈ L,

Pr[(x, s)← A(1λ) : ⟨P (x,w), V (x)⟩ = 1] = negl(λ).

In Σ protocols with Fiat-Shamir transformation in the random oracle model,
we use the notion of special soundness, that is, for a 3-round interactive
proof protocol, if a non-uniform polynomial time adversary A can generate 2
valid proofs (x, c, e1, s1), (x, c, e2, s2), then there exists an extraction algorithm
Ext which can extract a witness (x,w) ∈ R, where c represents the commitment,
eis are challenges and sis are responses.

Definition 9 (Zero-knowledge) (P, V ) has perfect (or computational) zero-
knowledge, for any non-uniform polynomial time (or PPT) adversary A,

Pr[(x,w)← A(1λ); tr ← ⟨P (x,w), V (x, ρ)⟩ :

(x,w) ∈ R and A(tr) = 1]

= (or ≈c)Pr[(x,w)← A(1λ); tr ← S(x, ρ) :

(x,w) ∈ R and A(tr) = 1].

In Fiat-Shamir-based protocol, the randomness of ρ is from the output of hash
function, it is said to be public coin and the protocol is honest-verifier zero-
knowledge.
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Pedersen Commitment Pedersen commitment[27] was proposed in 1991, for
an elliptic curve (G, q = |G|, g, h), where g is a generator of G, h is a random
element with discrete logarithm unknown to anyone.

Definition 10 (Pedersen commitment) The Pedersen commitment for a is
c = gxha, where x ∈ Z∗

q is a blinding element. Under the hardness of discrete
logarithm, Pedersen commitment has the following properties:

− (Hiding) Any (computational unbounded) adversary A cannot distinguish
c = gxha from c′ = gx

′
ha′

.
− (Binding) Any PPT adversary A cannot generate another secret a′ binding

with c = gxha = gx
′
ha′

.
− (Homomorphic) Given c1 = gxha, c2 = gyhb, then c1 · c2 = gx+yha+b is a

new commitment for a+ b.

2.6 Range proofs

Range proof is a special type of zero-knowledge proof with security requirements
including completeness, soundness and zero-knowledge. In Monero system, range
proofs are used to hide the transaction amount and prove the validity of it
(lies in a certain range). Borromean range proof is used in Monero with perfect
completeness, special soundness and honest verifier zero-knowledge. We give the
introduction of Borromean range proof in the Appendix A.

2.7 Traceable Range proofs

In a traceable range proof, considering the auditor who can trace the amounts of
transactions, zero-knowledge only holds for adversary not possesses the trapdoor,
while the completeness and soundness remains the same as in range proof for any
PPT adversary A. For traceable range proof, we need another security concept
called traceability. Since traceable range proof enables auditor with ability to
trace the hidden amounts of transactions, for any PPT adversary A (including
the malicious auditor), it is necessary that he cannot escape from audit (making
valid transaction with amount untraceable). We give the formal definition of
traceability in the following:

Definition 11 (Traceability of TRP) Traceability for traceable range proof
is defined in the following game between the simulator S and the adversary A,
simulator S runs Setup to provide public parameters for A, A is given access
to oracle RO. A generates a commitment c for a hidden value a and the range
proof π(c), A wins the game if:

1. Verify(c, π(c)) = 1.
2. Trace(π(c), trapdoors) ̸= a.

We give the advantage of A in traceability attack as follows:

AdvtraceA = Pr[A wins].

A traceable range proof is traceable if for any PPT adversary A, AdvtraceA =
negl(λ).
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2.8 Linkable Multi-ring Signature in Monero

In Monero system, every UTXO has its public-private key pair (PK = gs, SK = s)
and the corresponding value commitment c = gxha (or c = hxga in Bulletproofs),
where c is Pedersen commitment[27], a is the hidden value and x is the blind-
ing element. In a transaction, the initiator Alice chooses m− 1 hiding UTXOs:
{(PKi, ci = gxihai)}i=1,··· ,m−1, along with her input UTXO (PKA = gs, cA =
gxAhaA), to generate a set of public keys LPK = {PKA,PK1, · · · ,PKm−1} (ran-
domized order), Alice also generates the output UTXO (PKB , cB = gxBhaB ) (the
generation algorithm of PKB is in the Appendix), where the input value equals
the output value aA = aB . Then Alice computes another ring of commitments
(same order as in LPK):

Lv = {cAc−1
B , c1c

−1
B , · · · , cm−1c

−1
B }

= {gxA−xB , gx1−xBha1−aB , · · · , gxm−1−xBham−1−aB}.

Alice uses linkable 2-ring signature to sign the transaction by LPK and Lv, with
the same position of signing key in each ring, we call it the position-preserving
linkable multi-ring signature. In this paper, we use TLRS to construct an efficient
and compact multi-ring signature in the application of FAPC.

3 Description of FAPC

In this section we give the description of FAPC, the first fully auditable privacy-
preserving cryptocurrency against malicious auditors. FAPC achieves both priva-
cy protection and auditability for money flows, users’ addresses and transaction
amounts. We give the construction in 3.1 and discuss the security requirements
in 3.2.

3.1 Construction

The building blocks of FAPC consists of a traceable and linkable ring signature
scheme (TLRS), a traceable range proof (TRP) and a tracing scheme for long-
term address (TSLA), under the framework of Monero in the UTXO model.

Algorithm 1: FAPC

Par← FAPC.Setup(λ):

1. System chooses an elliptic curve G with prime order q and a generator g ∈ G,
the auditor generates y ∈ Zq as the trapdoor, computes h1 = gy, system
computes h2 = Hp(g, h1) (use Hash-to-Point), and outputs (G, q, g, h1, h2) as
the public parameters.
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(Add,ASK)← FAPC.AddGen(Par):

1. According to the public parameters Par = (G, q, g, h1, h2), user Alice runs
(Add,ASK)← TSLA.Gen(Par) to get the long-term address of her account and
the secret key, where Add = (A,B) = (gxv , gxs) and ASK = (xv, xs);

2. Alice outputs Add, and retains ASK.

(UTXO,SKU , sig)← FAPC.Mine(a,Add,ASK):

1. When a miner successfully gets the mining reward with amount a, he samples
x← Z∗

q and computes c = gxha
2 ;

2. The miner uniformly generates PKU , SKU for his UTXO;
3. The miner runs πTRP(c)← TRP.Prove(c) to get the traceable range proof of c;
4. The miner computes B · c/ha

2 = gx+xs , then sign with x + xs to get sig ←
Signx+xs

(PKU , a, c, πTRP(c));
5. The miner outputs (UTXO = (PKU , c, πTRP(c)), sig) and retains SKU .

(LPK, LAdd,UTXOout, σ1, σ2, σ3)← FAPC.Spend(ain, SKin,UTXOin,Addout):

1. When Alice wants to pay Bob with her UTXOin = (PKin, cin, πTRP(cin)), she
chooses another l−1 addresses, together with Bob’s address Addout, to generate
a set of addresses LAdd, then Alice runs σ1 ← TSLA.Spend(Addout), where
σ1 = (PKout, ct, R,R1, R2, θ);

2. Alice samples xout ← Z∗
q , computes the output commitment cout = gxouthaout ,

runs πTRP(cout) ← TRP.Prove(cout) to get the traceable range proof of cout,
she also generates a ciphertext σ3 ← EncAdd(aout, xout);

3. Alice chooses another m − 1 UTXOs, together with her UTXOin, to generate
a list of UTXO public key LPK = {PK1, · · · ,PKm}, where PKin ∈ LPK;

4. Alice extracts the commitments {ci}i∈[1,m] from {UTXOi}i∈[1,m], where
cin ∈ {ci}i∈[1,m], generates Lv = {c1/cout, · · · , cm/cout}, then runs σ2 ←
TLRS.Sign(LPK, Lv,UTXOout, σ1, σ3, SKin) to get the traceable and linkable
ring signature to hide the input UTXOin;

5. Alice outputs (LPK, LAdd,UTXOout, σ1, σ2, σ3) as the transaction output.

1/linked/0← FAPC.Verify(LPK, LAdd,UTXOout, σ1, σ2):

1. Verifier runs TRLS.Link(σ2) to check whether double spending happens, if yes
then he outputs linked and aborts, otherwise he continues to the next step;

2. Verifier runs TRLS.Verify(σ2) to check the validity of TLRS ring signature;
3. Verifier runs TSLA.Verify(σ1) to check the validity and correctness of PKout;
4. Verifier runs TRP.Verify(πTRP(cout), cout) to check the validity of amount;
5. If all passed then outputs 1, otherwise outputs 0.

(SKout, a
∗
out, x

∗
out)/ ⊥← FAPC.Receive(LAdd,UTXOout, σ1, σ3, y,ASK):

1. The receiver Bob checks whether his address Add appears in LAdd, if yes he runs
SKU ← TSLA.Receive(LAdd, σ1,ASK) to get the secret key SKU of UTXOout, if
failed then outputs / ⊥ and aborts;

2. Bob gets the amount and blinding element by decryption (a∗
out, x

∗
out) ←

DecASK(σ3);

3. Bob checks whether gx
∗
outh

a∗
out

2
?
= cout, if yes he receives UTXOout to his wallet,

otherwise aborts.
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(κ∗,Add∗out, a
∗
out)/ ⊥← FAPC.Audit(LPK, LAdd,UTXOout, σ1, σ2, y):

1. The auditor runs κ∗/ ⊥← TRLS.Trace(σ2, y) to recover the identity of input
UTXOin in LPK;

2. The auditor runs Add∗/ ⊥← TSLA.Trace(σ1, y) to recover the long-term ad-
dress of Bob;

3. The auditor runs a∗/ ⊥← TRP.Trace(πTRP(cout), y) to recover the output
amount of transaction;

4. If ⊥ appears in any step, then the auditor aborts, otherwise he outputs
(κ∗,Add∗out, a

∗
out).

Note that the transaction described in Algorithm 1 has one input UTXO and
one output UTXO (with ain = aout), the solution for multi-input(output) trans-
action of FAPC is same as Monero, please refer to [26] for detailed description.
Moreover, in FAPC, ring signature plays the key role in TLRS, TRP and TSLA,
the choice of ring signature is not restricted, we can choose the most suited
elliptic-curve-based ring signature (such as AOS, AOS’[1], Ring-CT 3.0[36]) to
achieve better efficiency or compactness.

3.2 Security Requirements

The security requirements of FAPC contains anonymity, confidentiality, double-
spending resistance and malicious auditor resistance. We introduce these require-
ments respectively:

1. Anonymity of FAPC consists of the anonymity of address and anonymity
of money flow (UTXO), similar to Monero. The anonymity of address is pro-
vided by the anonymity of TSLA to protect the privacy of recipient address
in transaction. The anonymity of money flow is provided by the anonymity
of TLRS to protect the identity of input UTXO in LPK so as to hide the
money flow in the blockchain.

2. Confidentiality of FAPC is that the amount and blinding element (a, x)
are hidden to others (excluding the auditor). The confidentiality of (a, x)
is provided by the hiding property of Pedersen commitment and the zero-
knowledge property of TRP, the verifier can only check the validity of a ∈
[0, 2n − 1] while cannot learn nothing else about (a, x).

3. Double Spending Resistance of FAPC is similar to Monero that any
user cannot double spend his UTXOs in FAPC. Double spending resistance
of FAPC is provided by the linkability of TLRS, in which the verifier can
check whether double spending happens by usage of TLRS.Link.

4. Public Verifiability of FAPC is that the correctness and validity of a
transaction can be verified by the verifier, without any help from the auditor.
FAPC can operate normally without the auditor.

5. Full Auditability of FAPC means that the auditor can trace the uses’
addresses, identities of UTXOs (money flows) as well as the amounts in
all transactions. The traceability of address is provided by the traceability
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of TSLA, the traceability of money flow is provided by the traceability of
TLRS, the traceability of transaction amount is provided by the traceability
of TRP.

6. Malicious Auditor Resistance of FAPC is an enhanced security require-
ment which means that FAPC remains secure when the auditor is malicious
or corrupted. For an adversary A with possession of the audit trapdoor, he
cannot double spend, corrupt users, modify the value of UTXOs, or learn
other privacy information including the UTXO secret key SKU and the blind-
ing element x (in c = gxha). Note that the anonymity and confidentiality no
longer hold for A. It is a balance between privacy protection and auditability,
and is a closer approach towards decentralization.

In the rest of this paper we give the detailed descriptions of TLRS, TRP
and TSLA, with their security proofs against malicious auditors, to finish the
construction of FAPC. We introduce the position-preserving multi-ring signature
based on AOS and AOS’ in the Appendix A.

4 Traceable and Linkable Ring Signature

In this section, we give the construction and security proofs of traceable and
linkable ring signature scheme (TLRS). TLRS achieves unforgeability, anonymi-
ty, linkability, nonslanderability and traceability against malicious auditors. In
the application of FAPC, unforgeability works for security of users’ accounts,
anonymity works for anonymity of the input UTXO, linkability and nonslander-
ability works for prevention of double-spending (actively or passively), traceabil-
ity works for unconditional auditability of the input UTXO.

4.1 Construction

In our construction of TLRS, we use ring signature (AOS, AOS’ or Ring-CT
3.0) as the ring signature component. Actually, we assume these schemes are
anonymous and unforgeable in the random oracle model, which makes TLRS
secure against malicious auditors, under standard assumptions. We give the in-
troduction of TLRS in the following (single ring as example):

Algorithm 2: TLRS

Par← TLRS.Setup(λ):

1. System chooses an elliptic curve G with prime order q and a generator g ∈ G,
the auditor generates y ∈ Zq as the trapdoor, computes h1 = gy, system
computes h2 = Hp(g, h1) (use Hash-to-Point), and outputs (G, q, g, h1, h2) as
the public parameters.

(PK, SK)← TLRS.KeyGen(Par):

1. According to the public parameters (G, q, g, h1, h2), user Alice samples x ∈ Z∗
q

as her secret key, then computes PK = gx;
2. Alice outputs PK = gx, and retains SK = x.
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σ ← TLRS.Sign(SKκ, µ, LPK):

1. For a message µ, Alice chooses another m − 1 users, together with her own
public key, to generate a list of public keys LPK = {PK1, · · · ,PKm}, where
Alice’s PK = PKκ ∈ LPK, κ ∈ {1, · · · ,m};

2. Alice outputs TK = hxκ
1 and I = hxκ

2 , then computes e1 = H(LPK,TK, I, 1),
e2 = H(LPK,TK, I, 2);

3. Alice computes and outputs

LRPK = {PK1 · TKe1 · Ie2 , · · · ,PKm · TKe1 · Ie2}

= {gx1he1xκ
1 he2xκ

2 , · · · , gxmhe1xκ
1 he2xκ

2 };
4. Alice runs ring signature τ ← Rsign(SK, µ, LRPK,TK, I) using LRPK and SK =

xκ, outputs τ (use ghe1
1 he2

2 as the generator);
5. Alice outputs σ = (τ, µ, LPK,TK, I).

1/0← TLRS.Verify(τ, µ, LPK,TK, I):

1. Verifier computes e∗1 = H(LPK,TK, I, 1) and e∗2 = H(LPK,TK, I, 2);
2. Verifier computes L∗

RPK = {PK1 · TKe∗1 · Ie
∗
2 , · · · ,PKm · TKe∗1 · Ie

∗
2};

3. Verifier checks the validity of ring signature τ (gh
e∗1
1 h

e∗2
2 as the generator);

4. If all passed then outputs 1, otherwise outputs 0.

linked/unlinked← TLRS.Link(σ, σ′):

1. For two valid sTLRS’ signatures σ = (τ, µ, LPK,TK, I) and
σ′ = (τ ′, µ′, L′

PK,TK
′, I ′), if I = I ′ then verifier outputs linked, otherwise

outputs unlinked.

κ∗/ ⊥← TLRS.Trace(σ, y):

1. For σ = (τ, µ, LPK,TK, I), the auditor extracts PK1, · · · ,PKm from LPK, com-
putes PKy

i for i = 1, · · · ,m, outputs the smallest κ∗ ∈ {1, · · · ,m} such that
TK = PKy

κ∗ as the trace result, otherwise outputs ⊥.

Correctness

Theorem 12 (Correctness of TLRS) For an honest user Alice in TLRS,
she can complete the traceable and linkable ring signature successfully, and the
behavior of double signing (double spending) will be detected while the identi-
ty of Alice remaining anonymous. Moreover, the auditor can trace her identity
correctly.

Proof. In TLRS, for Alice’s public key PK = PKκ = gxκ , then Alice will output
TK = hxκ

1 and I = hxκ
2 with LRPK = {gx1he1xκ

1 he2xκ
2 , · · · , gxmhe1xκ

1 he2xκ
2 }. Since

RPKκ = gxκhe1xκ
1 he2xκ

2 = (ghe1
1 he2

2 )xκ , then Alice can use SK = xκ to generate
the ring signature τ using ghe1

1 he2
2 as the generator.

When double signing occurs, we know from the linkability of TLRS that Alice
must have used I = hxκ

2 for twice (proved in Theorem 14), then the verifier can
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detect that double signing occurs and outputs linked, at the same time, anyone
(except for the auditor) cannot learn any information about the identity of signer
by the anonymity of TLRS (proved in Theorem 13).

For the auditor, he can compute PKy
κ = gyxκ = hxκ

1 = TK and then outputs
TLRS.Trace(σ, y) = κ correctly. �

4.2 Security proofs

Proof of Anonymity

Theorem 13 (Anonymity of TLRS) TLRS is anonymous for any PPT ad-
versary A without possession of the trapdoor, assuming the ring signature is
simulatable by programming the random oracle in the random oracle model.

Proof. Assume A is playing the game with S in Definition 2, A generates a
message µ and a list of public keys LPK = {PK1, · · · ,PKm}, where PKi = gxi ,
and all PKis are returned by JO, and S knows all SKi = xi.

We consider the following games between S and A:

− Game 0. S samples κ ∈ {1, · · · ,m} uniformly at random, publishes TK =
hxκ
1 and I = hxκ

2 , computes e1 = H(LPK,TK, I, 1), e2 = H(LPK,TK, I, 2) and
LRPK = {gx1he1xκ

1 he2xκ
2 , · · · , gxmhe1xκ

1 he2xκ
2 }, generates the ring signature

τ = Rsign(SK,µ, LRPK,TK, I), outputs σ = (τ, µ, LPK,TK, I) to A. When A
receives σ, he gives a guess κ∗ ∈ {1, · · · ,m}.

− Game 1. S samples κ ∈ {1, · · · ,m}, r1, r2 ∈ Z∗
q uniformly at random,

publishes TK = hr1
1 and I = hr2

2 , computes e1 = H(LPK,TK, I, 1), e2 =
H(LPK,TK, I, 2) and LRPK = {gx1he1r1

1 he2r2
2 , · · · , gxmhe1r1

1 he2r2
2 }, generates

the ring signature τ = Rsign(µ,LRK ,TK, I) by programming the random
oracle, outputs σ = (τ, µ, LPK,TK, I) to A. When A receives σ, he gives a
guess κ∗ ∈ {1, · · · ,m}.

In the two games above, Game 0 is the real game between S and A in TLRS,
and Game 1 is the simulated game in the random oracle model. In game 1, κ
is uniformly sampled by S, which is statistical independent from the LPK, then
PrA[κ

∗ = κ] = 1/m.

Then we only need to prove that game 0 and game 1 are computational
indistinguishable. If fact, the differences between the two games are the gener-
ations of TK, I and LRPK. According to DDH assumption, (g, hi, g

xκ , hxκ
i ) and

(g, hi, g
xκ , hri

i ) are computational indistinguishable for i = 1, 2, then A cannot
distinguish hxκ

i (in game 0) from hri
i (in game 1). Then we know A cannot distin-

guish {gx1he1xκ
1 he2xκ

2 , · · · , gxmhe1xκ
1 he2xκ

2 } from {gx1he1r1
1 he2r2

2 , · · · , gxmhe1r1
1 he2r2

2 },
then we know game 0 and game 1 are computational indistinguishable, then we
finish the anonymity proof of TLRS. �

Proof of Linkability
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Theorem 14 (Linkability of TLRS) TLRS is linkable for any PPT adver-
sary A (including the malicious auditor), assuming the unforgeability of ring
signature component.

Proof. For a PPT adversary A with possession of the trapdoor y, when A fin-
ished the link game with S in Definition 3, we assume that A wins the link
game with nonnegligible advantage δ, that is, A returned k TLRS signatures
σi = (τi, µi, L

i
PK,TKi, Ii), i = 1, · · · , k (τis are the ring signatures), satisfying

the following requirements:

1. All σi, i = 1, · · · , k are not returned by SO.
2. All public keys from Li

PK, i = 1, · · · , k are returned by JO.
3. TLRS.Verify(σi, L

i
PK, µi) = 1 for i = 1, · · · , k.

4. A queried CO less than k times.
5. TLRS.Link((σi, L

i
PK, µi), (σj , L

j
PK, µj)) = unlinked for i ̸= j ∈ {1, · · · , k}.

We first prove a statement that, for a list of public keys LPK = {PK1, · · · ,PKm}
returned by JO with PKi = gxi , any PPT adversary A generates a valid TLRS
signature σ 8 SO if and only if he quires the CO at least once, except for
negligible probability ϵ0 = negl(λ).

− ⇒. If A gets SK = xi from CO, and then A can run the TLRS signature
scheme to generate a valid signature σ = (τ, µ, LPK,TK, I).

− ⇐. Assume A did not query the CO and SO for LPK = {PK1, · · · ,PKm} and
finished the TLRS signature over LPK = {PK1, · · · ,PKm} with nonnegligible
probability δ1. We first prove that A does not know any of the secret keys in
LPK. Actually, under the hardness of discrete logarithm, A cannot compute
xi from PKi = gxi , i = 1, · · · ,m, then the probability of A obtaining any of
xi is ϵ1 = negl(λ).
Next, according to the assumption that A generates a valid signature σ =
(τ, µ, LPK,TK, I), then he must have finished the classic signature τ (with
generator ghe1

1 he2
2 ), where e1 = H(LPK,TK, I, 1), e2 = H(LPK,TK, I, 2).

Without loss of generality, we assume TK = gs1ht1
2 and I = gs2ht2

2 output
by A (assume A knows y), then we have

LRPK = {gx1(gs1ht1
2 )e1(gs2ht2

2 )e2 , · · · , gxm(gs1ht1
2 )e1(gs2ht2

2 )e2}

= {gx1+s1e1+s2e2ht1e1+t2e2
2 , · · · , gxm+s1e1+s2e2ht1e1+t2e2

2 }.

Since the ring signature scheme achieves unforgeability, and A finished the
ring signature τ with LRPK under generator ghe1

1 he2
2 , then we get A knows

SK = z for at least one i ∈ {1, · · · ,m} s.t. gx1+s1e1+s2e2ht1e1+t2e2
2 = (ghe1

1 he2
2 )z,

except for negligible probability ϵ2 = negl(λ). We can also assume that
e1 = 0 or e2 = 0 happens with negligible probability ϵ3 = negl(λ), which

means A gets a relation for gxi−z+e1(s1−yz)+e2s2 = h
e2(z−t2)−t1e1
2 with non-

negligible probability δ1−ϵ1−ϵ2−ϵ3, if e2(z−t2)−t1e1 ̸= 0, then the relation
is nontrivial, which contradicts with the hardness of discrete logarithm prob-
lems, so we have e2(z − t2) = t1e1, if t1 ̸= 0, then e1 = e2(z − t2)t

−1
1 , which
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means e1 is pre-computed before A runs the hash function (random ora-
cle), which happens with negligible probability ϵ4 = negl(λ), then we get
t1 = z − t2 = 0. Then we have xi − z + e1(s1 − yz) + e2s2 = 0, from similar
arguments we can get s2 = 0, z = t2 = xi, s1 = yxi, then TK = hxi

1 and
I = hxi

2 with nonnegligible probability δ1 − ϵ1 − ϵ2 − ϵ3 − ϵ4, which contra-
dicts to the assumptions above. Then we get that A generates a valid TLRS
signature σ 8 SO if and only if he quires the CO at least once, except for
negligible probability.

According to the fourth requirement that the number of times of A querying CO
is ≤ k − 1, and A returned k valid TLRS signatures σi = (τi, µi, L

i
PK,TKi, Ii),

i = 1, · · · , k, then we know there are two TLRS signatures from the same query
of CO, saying SK = z from PK = gz, and A finished two unlinked valid TLRS
signatures, then there is at least one Ii = gs2ht2

2 ̸= hz
2 from the two TLRS

signatures (otherwise they will be linked). We also set TK = gs1ht1
2 , then we

have LRPK = {gx1+s1e1+s2e2ht1e1+t2e2
2 , · · · , gxm+s1e1+s2e2ht1e1+t2e2

2 }, since ∃j ∈
{1, · · · , n} s.t.A have queried CO with input PKj and signs with RPKj , satisfying
z = xj and gs2ht2

2 ̸= hz
2, then we have there exists w ∈ Z∗

q s.t. RPKj = (ghe1
1 he2

2 )w

by the unforgeability of ring signature, except for negligible probability ϵ5 =

negl(λ), then we have gz−w+e1(s1−yw)+e2s2 = h
e2(w−t2)−t1e1
2 , if e2(w−t2)−t1e1 ̸=

0, then we get a nontrivial relation between g and h2, which happens with
negligible probability ϵ6 = negl(λ) from the hardness of discrete logarithm.
Then then we have t2 = w and t1 = 0, otherwise e1 (or e2) is pre-computed
before A runs the hash function (random oracle), which happens with negligible
probability ϵ7 = negl(λ). Then we get z−w+e1(s1−yw)+e2s2 = 0, from similar
arguments we can get s2 = 0, z = w = t2 = xj , s1 = yw, except for negligible
probability ϵ8 = negl(λ). Then we know that gs2ht2

2 ̸= hz
2 with nonnegligible

probability δ − kϵ0 − ϵ5 − ϵ6 − ϵ7, this contradicts to the assumptions before,
then we finish the linkability proof of TLRS. �

Proof of Nonslanderability

Theorem 15 (Nonslanderability of TLRS) TLRS is nonslanderable for any
PPT adversary A (including the malicious auditor), assuming the unforgeability
of ring signature component.

Proof. For a PPT adversary A with possession of the trapdoor y, when A fin-
ished the slandering game with S in Definition 4, A gave a list of public keys
LPK, a message µ and a public key PKκ ∈ LPK to S, S returns the correspond-
ing signature σ ← TLRS.Sign(SKκ, LPK, µ) to A. We assume that A wins the
slandering game with nonnegligible advantage δ, that is, A successfully outputs
a ring signature σ∗ = (τ∗, µ∗, L∗

PK,TK
∗, I∗), satisfying the following:

1. TLRS.Verify(σ∗, L∗
PK, µ

∗) = 1.
2. PKκ is not queried by A to CO.
3. PKκ is not queried by A as input to SO.
4. TLRS.Link((σ,LPK, µ), (σ

∗, L∗
PK, µ

∗)) = linked.
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From the definition of Link, we know that I∗ = I = hxκ
2 , since PKκ = gxκ

was not queried by A to CO and SO, then A does not know SK = xκ except
for negligible probability ϵ0 = negl(λ) under the hardness of discrete logarith-
m problems. Then we know A successfully produced a valid ring signature τ∗

with nonnegligible advantage δ − ϵ0. According to the unforgeability of ring
signature, we know that A knows at least one signing key except for negligi-
ble probability ϵ1 = negl(λ), that is, there exists j ∈ {1, · · · ,m}, A knows x
s.t. PK∗

j · (TK
∗)e1Ie2 = (ghe1

1 he2
2 )x with nonnegligible advantage δ − ϵ0 − ϵ1,

where e1 = H(L∗
PK,TK

∗, I, 1), e2 = H(L∗
PK,TK

∗, I, 2). Without loss of gen-
erality, we assume PK∗

j = gs1ht1
2 , TK∗ = gs2ht2

2 output by A, then we have

(gs1ht1
2 )(gs2ht2

2 )e1he2xκ
2 = (ghe1

1 he2
2 )x, then gs1−x+e1(s2−xy) = h

e2(x−xκ)−t2e1−t1
2 ,

using similar arguments in Theorem 14, we can get s1 = x = xκ, s2 = xy, t1 =
t2 = 0 with nonnegligible probability, this means PKκ = gxκ was queried by A
to CO to get s1 = x = xκ, which contradicts to the assumptions before, then we
finish the nonslanderability proof of TLRS. �

According to lemma 5, we get the unforgeability of TLRS:

Corollary 16 (Unforgeability) TLRS is unforgeable for any PPT adversary
A, including the malicious auditor.

Proof of Traceability

Theorem 17 (Traceability of TLRS) TLRS is traceable for any PPT ad-
versary A (including the malicious auditor), assuming the unforgeability of ring
signature component.

Proof. For a PPT adversaryA with possession of the trapdoor y, whenA finished
the tracing game with S in Definition 6, A generates a list of public keys LPK =
{PK1, · · · ,PKm}, we assume that A wins the tracing game with nonnegligible
advantage δ, that is, A generates a TLRS signature σ = (τ, µ, LPK,TK, I) using
PKκ ∈ LPK, satisfying the following:

1. TLRS.Verify(σ, LPK, µ) = 1.
2. PKi ̸= PKj for 1 ≤ i < j ≤ m.
3. TLRS.Trace(σ, y) ̸= κ or Trace(σ, y) =⊥.

We assume PKi = gxihyi

2 , i = 1, · · · ,m returned by A without loss of gener-
ality, and assume TK = gs1ht1

2 , I = gs2ht2
2 . Then we have:

LRPK = {gx1hy1

2 · (gs1h
t1
2 )e1(gs2ht2

2 )e2 , · · · , gxmhym

2 · (gs1ht1
2 )e1(gs2ht2

2 )e2}

= {gx1+s1e1+s2e2hy1+t1e1+t2e2
2 , · · · , gxm+s1e1+s2e2hym+t1e1+t2e2

2 }.

Where e1 = H(LPK,TK, I, 1), e2 = H(LPK,TK, I, 2), moreover, we assume ei ̸= 0
for i = 1, 2, except for negligible probability ϵ0 = negl(λ). According to the con-
dition that A signed τ with PKκ, then we get A knows the corresponding SKκ =
z, except for negligible probability ϵ1 = negl(λ), under the unforgeability of ring
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signature. Then we have gxκ+s1e1+s2e2hyκ+t1e1+t2e2
2 = (ghe1

1 he2
2 )z with nonnegli-

gible probability δ−ϵ0−ϵ1. Then gxκ−z+e1(s1−yz)+s2e2 = h
e2(z−t2)−t1e1−yκ

2 , from
the similar arguments in Theorem 14, we can get z = t2 = xκ, s1 = yz, s2 = t1 =
0, otherwise A will get a non-trivial relationship between g and h2, or ei will be
pre-determined before A runs the hash function (random oracle), both of which
happen with negligible probability ϵ2 according to the hardness of discrete log-
arithm problems and unpredictable of hash functions. Then we have PKκ = gxκ

and PKy
κ = gxκy = hxκ

1 = TK, then Trace(σ, y) = κ, which contradicts with the
assumptions before, then we finish the traceability proof of TLRS. �

5 Traceable Range Proofs

In this section we give the construction and security proof of traceable range
proof (TRP), which provides the validity (∈ [0, 2n−1]), confidentiality and trace-
ability of the amounts in all FAPC transactions by modifying the Borromean
range proof with extra tracing keys and tags to achieve security against mali-
cious auditors. In the application of FAPC, soundness works for the correctness
and security of UTXO amount, zero-knowledge works for confidentiality of the
UTXO amount, traceability works for unconditional auditability of the UTXO
amount.

5.1 Construction of Traceable Range Proof

In the construction of TRP, we use Pedersen commitment and bit expansion of
amount, then add tracing keys bitwise into the proof, the sets of public keys for
Borromean ring signature is also modified, compared to Borromean range proof.
There exists an auditor who can use the trapdoor and tracing keys to recover
the hidden amount of UTXO. We give the introduction of TRP in the following:

Algorithm 3: TRP

Par← TRP.Setup(λ):

1. System chooses an elliptic curve G with prime order q and samples a generator
g ← G. The auditor generates y ∈ Z∗

q as the trapdoor, computes h1 = gy, sys-
tem computes h2 = Hp(g, h1) (use Hash-to-Point), and outputs (G, q, g, h1, h2)
as the public parameters.

πTRP(c)← TRP.Prove(Par, a):

1. According to the public parameters and amount a ∈ [0, 2n − 1], prover Alice
samples x ∈ Z∗

q uniformly, computes c = gxha
2 as the commitment;

2. Alice computes the binary expansion a = a0+ · · ·+2n−1an−1, ai = 0, 1 for i =
0, · · · , n−1, samples x0, · · · , xn−1 uniformly, computes β = x−x0−· · ·−xn−1;
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3. For every i = 0, · · · , n−1, Alice computes ci = gxih2iai
2 , c′i = gxih2iai−2i

2 , Ii =
hxi
2 ,TKi = hxi

1 , outputs {ci, c′i,TKi, Ii}i∈[0,n−1];
4. Alice computes ek = H({ci,TKi, Ii}i∈[0,n−1], k) for k = 1, 2;
5. Alice computes Li

PK = {ci · TKe1
i · I

e2
i , c′i · TKe1

i · I
e2
i } for i = 0, · · · , n− 1;

6. Alice runs the Borromean multi-ring signature with LPK = {L0
PK, · · · , Ln−1

PK },
computes σ ← Rsign(SK, µ, LPK) (use generator ghe1

1 he2
2 in each ring) for mes-

sage µ = (c, LPK);
7. Alice outputs the TRP proof πTRP(c) = (c, β, {ci, c′i,TKi, Ii}i∈[0,n−1], σ).

1/0← TRP.Verify(πTRP(c)):

1. For every i = 0, · · · , n− 1, verifier checks ci/c
′
i

?
= h2i

2 and gβ ·
∏n−1

i=0 ci
?
= c;

2. Verifier computes e∗k = H({ci,TKi, Ii}i∈[0,n−1], k) for k = 1, 2;

3. Verifier computes Li∗
PK = {ci · TKe∗1

i · I
e∗2
i , c′i · TK

e∗1
i · I

e∗2
i } for i = 0, · · · , n− 1;

4. Verifier checks the validity of Borromean multi-ring signature σ for n rings

{Li∗
PK}i=0,··· ,n−1 (use generator gh

e∗1
1 h

e∗2
2 in each ring), if all passed then outputs

1, otherwise outputs 0.

a∗ ← TRP.Trace(y, πTRP(c)):

1. For every i = 0, · · · , n− 1, the auditor computes cyi ;
2. For every i = 0, · · · , n−1, if cyi = TKi then outputs a∗

i = 0, otherwise outputs
a∗
i = 1;

3. The auditor outputs a∗ = a∗
0 + · · ·+ 2n−1a∗

n−1 as the tracing result.

Proof of Correctness

Theorem 18 (Correctness of TRP) For an honest prover Alice, she can run
TRP successfully and the auditor can trace the hidden amount correctly.

Proof. According to the binary expansion a = a0 + · · · + 2n−1an−1 of a and

ci = gxih2iai
2 , c′i = gxih2iai−2i

2 , we know there is only one element being a power
of g · he1

1 · h
e2
2 in Li

PK = {ci · TKe1
i · I

e2
i , c′i · TK

e1
i · I

e2
i } known by Alice, then

Alice can use the secret keys SK = (x0, · · · , xn−1) (SKi = xi with corresponding
PKi = (g · he1

1 · h
e2
2 )xi) to finish the Borromean multi-ring signature for LPK =

{L0
PK, · · · , L

n−1
PK }. Besides, we know that gβ ·

∏
ci = c and ci/c

′
i = h2i

2 from the

TRP.Gen algorithm. When ai = 0, we know ci = gxih2iai
2 = gxi , TKi = hxi

1 = cyi .

When ai = 1, we know TKi = hxi
1 , cyi = (gxih2i

2 )y = hxi
1 h2iy

2 , then cyi = TKi iff
y = 0, which happens with negligible probability, then the auditor can recover
a correctly, so we get the correctness of TRP. �

Proof of Soundness Completeness is easily obtained from the correctness
of TRP, here we prove the soundness of TRP, which means any PPT adversary
with possession of all trapdoors cannot generate a valid πTRP(c) for c = gxha

2 and
a /∈ [0, 2n − 1], under the hardness of discrete logarithm and the unforgeability
of Borromean multi-ring signature.
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Theorem 19 (Soundness of TRP) TRP has computational soundness for any
PPT adversary A, including the malicious auditor.

Proof. For c = gxha
2 with a /∈ [0, 2n − 1], assume A (with possession of the

trapdoor) successfully outputs a valid proof πTRP(c), then we have gβ ·
∏n−1

i=0 ci =

c and ci/c
′
i = h2i

2 . Without loss of generality, we set ci = gxihbi
2 , then c′i =

gxihbi−2i

2 , since a /∈ [0, 2n−1], we know there exists at least one l ∈ {0, · · · , n−1},
satisfying bl ̸= 0 and bl ̸= 2l, otherwise gβ ·

∏n−1
i=0 ci = gβ+

∑
xih

∑
bi

2 = gxha
2 with∑

bi ∈ [0, 2n − 1] implies a nontrivial relation h
a−

∑
bi

2 = gβ+
∑

xi−x between g
and h, which happens with negligible probability ϵ0 = negl(λ). Then we have:

Ll
PK = {cl · TKe1

l · I
e2
l , c′l · TK

e1
l · I

e2
l },

where ek = H({ci,TKi, Ii}i∈[0,n−1], k) for k = 1, 2, since A knows the trapdoor

y, we can set TKl = gs1ht1
2 , Il = gs2ht2

2 , then Ll
PK = {gxl+s1e1+s2e2hbl+t1e1+t2e2

2 ,

gxl+s1e1+s2e2hbl−2l+t1e1+t2e2
2 } = {PKl,PK

′
l} with bl ̸= 0 and bl ̸= 2l. Since the

generator for Borromean multi-ring signature is g · he1
1 · h

e2
2 = g1+ye1he2

2 , from
the unforgeability of Borromean ring signature, we know there is at least one
public key from {PKl,PK

′
l} (without loss of generality we set PKl) satisfying

gxl+s1e1+s2e2hbl+t1e1+t2e2
2 = (g1+ye1he2

2 )z, with z known to A. Then we have

gxl−z+e1(s1−yz)+s2e2 = h
e2(z−t2)−t1e1−bl
2 . From similar arguments in Theorem

14, we can get z = xl = t2, s1 = yz, s2 = 0, t1 = 0, bl = 0, otherwise A will get a
non-trivial relationship between g and h, or ei will be pre-determined before A
runs the hash function (random oracle), both of which happen with negligible
probability ϵ1. Then bl = 0, which contradicts with the assumptions before, then
we get the soundness of TRP against malicious auditors. �

Proof of Zero-knowledge

Theorem 20 (Zero-knowledge of TRP) TRP is computational zero-knowledge
for any PPT adversary A (without possession of the trapdoor).

Proof. For every i = 0, · · · , n − 1, we consider the effect that {TKi, Ii}i∈[0,n−1]

being added into the proof, and prove that (ci,TKi, Ii) is computational indis-
tinguishable from uniform distribution when ai = 0 or 1. Formally, we prove

for ci = gxih2iai
2 , c′i = gxih2iai−2i

2 with ci/c
′
i = h2i

2 being a constant, any PP-
T adversary A cannot distinguish uniform distribution U = (r, r1, r2) from

(ci,TKi, Ii) = (gxi , hxi
1 , hxi

2 ) (when ai = 0) or (ci,TKi, Ii) = (gxih2i

2 , hxi
1 , hxi

2 )
(when ai = 1), where U is sampled uniformly from G3.

Actually, we know that (gxi , hxi
1 , hxi

2 ) and (gxi , r1, r2) are computational in-
distinguishable for uniformly generated xi ∈ Z∗

q , under the extended DDH as-
sumption. For g being a generator of G, the distribution of (gxi , r1, r2) and

(r, r1, r2) are identical. Let constant u = h2i

2 , we know that the distribution of
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(r, r1, r2) and (ru, r1, r2) are identical. Again from the extended DDH assump-
tion, we know (ru, r1, r2) and (gxiu, hxi

1 , hxi
2 ) are computational indistinguish-

able. Then we have the following relations:

(gxi , hxi
1 , hxi

2 ) ≈c (r, r1, r2) = U = (ru, r1, r2) ≈c (g
xiu, hxi

1 , hxi
2 ).

Where g, h, h1, u ∈ G are constants, U ← G3, xi ← Z∗
q are sampled uniformly.

Since (gxi , hxi
1 , hxi

2 ) = (ci,TKi, Ii)ai=0 and (gxiu, hxi
1 , hxi

2 ) = (ci,TKi, Ii)ai=1,
we know they are all computational indistinguishable from U = (r, r1, r2) for any
PPT adversary A without possession of trapdoors. Since all xis are uniformly
generated independently for every i = 0, · · · , n − 1, then we finish the zero-
knowledge proof of TRP. �

Proof of Traceability

Theorem 21 (Traceability of TRP) TRP is traceable for any PPT adver-
sary A (including the malicious auditor).

Proof is given in the Appendix B.1.

6 Tracing Scheme for Long-term Addresses

In this section we introduce TSLA, a tracing scheme for long-term address with
security against malicious auditors, by usage of ring signature and ElGamal
encryption. The address generation algorithm of TSLA is similar to Monero,
while the key generation algorithm for every UTXO is modified to achieve both
anonymity and traceability. In a transaction, the initiator chooses another l −
1 users’ addresses, together with the real recipient’s address, to generate an
address list LAdd = {Add1, · · · ,Addl}, then he encrypts the secret information
and generates a double-ring signature to prove the validity of the ciphertext. The
recipient can find his transaction and recover the secret key of the new UTXO.
The auditor can trace the recipient’s address by decryption. For a malicious
auditor, he cannot make a valid transaction to escape from audit.

Construction

Algorithm 4: TSLA

Par← TSLA.Setup(λ):

1. System chooses an elliptic curve G and a generator g ∈ G, the auditor generates
y ∈ Z∗

q as the trapdoor, computes h1 = gy, system computes h2 = Hp(g, h1)
(hash to point), then outputs (G, q, g, h1, h2) as the public parameters.

(Add,ASK)← TSLA.Gen(Par):

1. According to the public parameters (G, q, g, h1, h2), a user Bob samples
xv, xs ∈ Z∗

q uniformly at random, computes Add = (A,B) = (gxv , gxs);
2. Bob outputs his address Add = (A,B), and retains ASK = (xv, xs) as his

secret keys.
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(LAdd,PKout, ct, R,R1, R2, θ)← TSLA.Spend(Add):

1. For an initiator Alice who wants to pay Bob with her money UTXOin, she
chooses another l − 1 users, together with Bob’s address Add = (A,B), to
generate an address list LAdd = {Add1, · · · ,Addl}, where Bob’s Add = Addκ ∈
LAdd, κ ∈ {1, · · · , l} and Addi = (Ai, Bi) for i = 1, · · · , l;

2. Alice samples z ∈ Z∗
q uniformly at random, computes R = Az

κ, R1 = hz
1, R2 =

hz
2, then she computes PKout = gz ·Bκ;

3. Alice computes ei = H(LAdd, R,R1, R2,PKout, i) for i = 1, 2;
4. Alice computes L1 = {PKout ·B−1

1 ·R
e1
1 ·R

e2
2 , · · · ,PKout ·B−1

l ·R
e1
1 ·R

e2
2 } and

L2 = {A1 · he1
1 · h

e2
2 , · · · , Al · he1

1 · h
e2
2 };

5. Alice runs the position preserving double-ring signature for L1 and L2, using
g1 (for L1) and g2 (for L2) as the generator for each ring separately, where g1 =
g · he1

1 · h
e2
2 and g2 = R ·Re1

1 ·R
e2
2 . Alice gets θ ← Rsign(LAdd, L1, L2, g1, g2, z);

6. Alice encrypts ct = EncBκ(z), using the spending public key Bκ of Bob;
7. Alice outputs (LAdd,PKout, ct, R,R1, R2, θ) as the output.

1/0← TSLA.Verify(LAdd,PKout, ct, R,R1, R2, θ):

1. According to the public parameters (G, q, g, h1, h2), the verifier computes e∗i =
H(LAdd, R,R1, R2, PKout, i) for i = 1, 2;

2. Verifier computes L∗
1 = {PKout · B−1

1 · Re∗1
1 · R

e∗2
2 , · · · ,PKout · B−1

l · Re∗1
1 · R

e∗2
2 }

and L∗
2 = {A1 · he∗1

1 · h
e∗2
2 , · · · , Al · h

e∗1
1 · h

e∗2
2 };

3. Verifier checks the validity of θ with L∗
1 and L∗

2, by using g∗1 = g ·he∗1
1 ·h

e∗2
2 and

g∗2 = R ·Re∗1
1 ·R

e∗2
2 as the generator for each ring separately;

4. If all passed then outputs 1, otherwise outputs 0.

SKout/ ⊥← TSLA.Receive(LAdd,PKout, ct, R,ASK):

1. Bob checks whether his address appears in LAdd, if yes, he computes B∗ =

PKout/R
x−1
v ;

2. Bob checks whether Bκ
?
= B∗, if yes, he recovers z∗ ← Decxs(ct);

3. Bob checks whether gz
∗
·Bκ

?
= PKout, if yes, he computes SKout = z∗ + xs as

the secret key of the new UTXO, otherwise he outputs ⊥.

Addκ∗/ ⊥← TSLA.Trace(LAddPKout, R1, y):

1. The auditor computes B′ = PKout/R
y−1

1 ;
2. The auditor searches the smallest κ∗ ∈ {1, · · · , l} such that Bκ∗ = B′, then

he outputs Addκ∗ as the tracing result, otherwise he outputs ⊥.

Note that the UTXO public key generation algorithm in TSLA is complete-
ly different from Monero, the TSLA provides 1/l anonymity of address, while
Monero provides 1/M anonymity to hide the recipient’s address in all users’
addresses, where M is the number of all addresses in the blockchain. So the
anonymity of Monero is stronger than FAPC. Moreover, for the recipient, the
computation time in Monero to find out the real UTXO is linear with M , while
in FAPC, the computation time for receiving is linear with l. So the efficiency
for receiving UTXO in FAPC is better than Monero.
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Correctness and Security

Theorem 22 (Correctness of TSLA) For an honest user Alice who wants
to pay Bob with her UTXOin, she can run TSLA successfully to generate PKout

as the public key of UTXOout, then Bob can recover SKout correctly, the auditor
can trace Bob’s address correctly.

The security requirements of TSLA are anonymity and traceability, where
anonymity can be easily obtained by DDH assumption and anonymity of ring
signature. Traceability can be obtained by the hardness assumption of discrete
logarithm and the unforgeability of ring signature.

Theorem 23 (Anonymity of TSLA) For any PPT adversary A without pos-
session of the trapdoor, the advantage of A to correctly guess κ ∈ {1, · · · , l} to
find out the real recipient is negligible.

Theorem 24 (Traceability of TSLA) TSLA has traceability for any PPT
adversary A (including the malicious auditor), assuming the unforgeability of
ring signature.

The security models and the proofs are given in the Appendix B.2.

7 Implementation and Performance

We implement FAPC, including the algorithms: TLRS, TRP and TSLA. We also
implement Monero as a comparison with FAPC. The implementation is finished
in Golang, with Ed25519 curve and Ristretto library. We use SHA256 as the
hash function. All experiments are conducted on a desktop with 64-bit Win 7
system and 32GB RAM. The processor is Intel(R) Core(TM) i7-6850K CPU @
3.6 GHz with 6 cores. We use multi-threading parallel acceleration to improve
the efficiency of all schemes.

In our implementation of FAPC, we use AOS’ based position-preserving
multi-ring signature (PMRS’) in TLRS and TSLA, which has better efficiency
and compactness than AOS based PMRS. The detailed descriptions of PMRS
and PMRS’ are in the Appendix A.3. Moreover, we can choose other ring signa-
ture as component, such as Ring-CT 3.0, which will bring a significant decrease
of size when the ring size is large (e.g. m, l > 100), compared to AOS or AOS’.
In TRP, we use Borromean ring signature as the component. In the implementa-
tion of Monero, we use MLSAG[26] as the linkable ring signature, use Borromean
range proof as the range proof.

We give the performance of FAPC and the comparison between FAPC and
Monero in 7.1 and give the detailed performance of sub-algorithms in 7.2.

7.1 Performance of FAPC

We compare the transaction size and efficiency between FAPC and Monero for
(1, 1) transaction and (1, 2) transaction, where (·, ·) denotes the number of input
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and output UTXO. In the implementation of FAPC, we choose m = l = 20 as
the ring size, we choose n = 32 as the length of amount. In the implementation of
Monero, we choose the same parameter m = 20, n = 32. From the performance
result we can conclude that the efficiency of FAPC is not far from Monero, and
the size of FAPC is almost twice the size of Monero.

Table 1. Performance of FAPC and Monero

Scheme (in,out) Size (Byte) Spend Verify Receive Audit

FAPC
(1,1) 11397 11.24ms 8.03ms 0.29ms 2.39ms
(1,2) 23206 21.80ms 15.20ms 0.29ms 4.77ms

Monero
(1,1) 5860 6.85ms 6.99ms 26.91ms N/A
(1,2) 10180 8.64ms 8.84ms 26.91ms N/A

7.2 Performance of Sub-algorithms

In this subsection we give the performance of the sub-algorithms of FAPC, in-
cluding TLRS, TRP and TSLA. The parameter is m = l = 20, n = 32, the
TLRS is the single ring version.

Table 2. Performance of TLRS, TRP and TSLA

Scheme Spend Sign Prove Verify Receive Trace

TLRS N/A 0.66ms N/A 0.57ms N/A 0.07ms

TRP N/A N/A 3.72ms 3.65ms N/A 2.12ms

TSLA 3.33ms N/A N/A 2.45 ms 0.21 ms 0.08ms

8 Conclusion

Lack of audit is the main obstacle to the application of traditional privacy-
preserving cryptocurrencies. In this paper, we give the first construction of
fully auditable privacy-preserving cryptocurrency against malicious auditors to
achieve full auditability and privacy protection. Our construction consists of
a traceable and linkable ring signature, a traceable range proof and a tracing
scheme for long-term address. The auditor in FAPC can trace the identities
of UTXOs (money flows), long-term addresses of users and the amounts in all
transactions. FAPC is secure for any PPT adversary with possession of the au-
dit trapdoor, which is an enhanced security requirement and a closer approach
towards decentralization. Moreover, the efficiency and compactness of FAPC are
very competitive to become a potential option of blockchain-based cryptocur-
rency in the future.
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A Remaining Preliminaries

A.1 AOS Ring Signature

We give the introduction of AOS ring signature[1] in the following:

− Par ← AOS.Setup(λ): system chooses an elliptic curve G and a generator g
as the public parameters.

− (PKκ, SKκ) ← AOS.KeyGen(Par): according to the public parameters, user
Pκ samples x ∈ Z∗

q uniformly at random, computes gx and sets (PKκ, SKκ) =
(gx, x).

− σ ← AOS.Rsign(SKκ, µ, LPK): when user Pκ generates a ring signature for
message µ, he chooses another n−1 users’ public keys, together with his own
PKκ to obtain a set of public keys LPK = {PK1, · · · ,PKn}, where PKκ ∈ LPK

and κ ∈ {1, · · · , n}, then he does as follows:
1. Pκ samples rκ ∈ Z∗

q uniformly at random, then computes
cκ+1 = H(grκ , LPK, µ);

2. For i = κ + 1, · · · , n, 1, · · · , κ − 1, Pκ samples zi ∈ Z∗
q uniformly and

computes ci+1 = H(gzi/(PKi)
ci , LPK, µ);

3. Pκ computes zκ = rκ + xcκ;
4. Output the ring signature σ = (c1; z1, · · · , zn).

− 1/0← AOS.Verify(µ, σ, LPK): for a ring signature (µ,LPK, σ), for i = 1, · · · , n
the verifier computes

c∗i+1 = H(gzi/(PKi)
c∗i , LPK, µ)

where c1 = c∗1, then checks c1
?
= c∗n+1, if all passed then outputs 1, otherwise

outputs 0.

A.2 AOS’ Ring Signature

AOS’ is introduced in the Appendix of [1] with better efficiency than AOS.

− Par← AOS’.Setup(λ): system chooses an elliptic curve G and a generator g
as the public parameters.

− (PKκ, SKκ) ← AOS’.KeyGen(Par): according to the public parameters, user
Pκ samples x ∈ Z∗

q uniformly at random, computes gx and sets (PKκ, SKκ) =
(gx, x).

− σ ← AOS’.Rsign(SKκ, µ, LPK): when user Pκ generates a ring signature for
message µ, he chooses another n−1 users’ public keys, together with his own
PKκ to obtain a set of public keys LPK = {PK1, · · · ,PKn}, where PKκ ∈ LPK

and κ ∈ {1, · · · , n}, then he does as follows:
1. For i = 1, · · · , κ − 1, κ + 1, · · · , n, Pκ samples α, ci ∈ Z∗

q uniformly at
random, then computes R = gα

∏
i ̸=κ PK

ci
i and c = H(R,LPK, µ);

2. Pκ computes cκ = c−
∑

i ̸=κ ci;
3. Pκ computes z = α− xcκ;
4. Output the ring signature σ = (z; c1, · · · , cn).
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− 1/0 ← AOS’.Verify(µ, σ, LPK): for a ring signature (µ,LPK, σ), the verifier
computes R∗ = gz

∏n
i=1 PK

ci
i , then checks∑n

i=1 ci
?
= H(R∗, LPK, µ), if all passed then outputs 1, otherwise outputs 0.

Both AOS and AOS’ ring signature schemes are unforgeable and anonymous
in the random oracle model.

A.3 Position-preserving Multi-ring Signature

AOS and AOS’ ring signature scheme can be generalized to be position-preserving
multi-ring signatures (PMRS), we give the construction of AOS-based PMRS
and AOS’-based PMRS in the following:

AOS-based PMRS

− Par ← PMRS.Setup(λ): system chooses an elliptic curve G and a generator
g as the public parameters.

− (PKκ,SKκ) ← PMRS.KeyGen(Par): according to the public parameters, us-
er Pκ samples x1, · · · , xn ∈ Z∗

q uniformly at random, computes PKi,κ =
gxi and sets (PKκ,SKκ) = ((gx1 , · · · , gxn), (x1, · · · , xn)), where PKκ =
(PKi,κ)i∈[1,n] and SKκ = (SKi,κ)i∈[1,n].

− σ ← PMRS.Rsign(SKκ, µ, {Li
PK}i∈[1,n]): when user Pκ generates a multi-ring

signature for message µ, he chooses anotherm−1 users’ public keys, together
with his own PKκ to obtain n rings of public keys Li

PK = {PKi,1, · · · ,PKi,m}
for i = 1, · · · , n, where PKi,κ ∈ Li

PK and κ ∈ {1, · · · , n}, then he does as
follows:

1. Pκ samples ri,κ ∈ Z∗
q uniformly at random for i = 1, · · · , n, then com-

putes cκ+1 = H(gr1,κ , · · · , grn,κ , LPK, µ);

2. For j = κ + 1, · · · ,m, 1, · · · , κ − 1, Pκ samples zi,j ∈ Z∗
q uniformly for

i = 1, · · · , n and computes

ci+1 = H(gz1,j/(PK1,j)
cj , · · · , gzn,j/(PKn,j)

cj , LPK, µ);

3. Pκ computes zi,κ = ri,κ + xicκ for i = 1, · · · , n;
4. Output the ring signature σ = (c1; z1, · · · , zm), where zj = (zi,j)i∈[1,n].

− 1/0 ← PMRS.Verify(µ, σ, LPK): for a ring signature (µ,LPK, σ), for i =
1, · · · ,m the verifier computes

c∗j+1 = H(gz1,j/(PK1,j)
c∗j , · · · , gzn,j/(PKn,j)

c∗j , LPK, µ)

where c1 = c∗1, then checks c1
?
= c∗m+1, if all passed then outputs 1, otherwise

outputs 0.
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AOS’-based PMRS

− Par ← PMRS’.Setup(λ): system chooses an elliptic curve G and a generator
g as the public parameters.

− (PKκ,SKκ)← PMRS’.KeyGen(Par): according to the public parameters, us-
er Pκ samples x1, · · · , xn ∈ Z∗

q uniformly at random, computes PKi,κ =
gxi and sets (PKκ,SKκ) = ((gx1 , · · · , gxn), (x1, · · · , xn)), where PKκ =
(PKi,κ)i∈[1,n] and SKκ = (SKi,κ)i∈[1,n].

− σ ← PMRS’.Rsign(SKκ, µ, LPK): when user Pκ generates a multi-ring signa-
ture for message µ, he chooses another m − 1 users’ public keys, together
with his own PKκ to obtain n rings of public keys Li

PK = {PKi,1, · · · ,PKi,m}
for i = 1, · · · , n, where PKi,κ ∈ Li

PK and κ ∈ {1, · · · ,m}, then he does as
follows:
1. For j = 1, · · · , κ − 1, κ + 1, · · · ,m, Pκ samples cj ∈ Z∗

q uniformly at
random, then for i = 1, · · · , n, Pκ samples αi ∈ Z∗

q uniformly at random,

then he computes Ri = gαi
∏

j ̸=κ PK
cj
i,j for i = 1, · · · , n, then computes

c = H(R1, · · · , Rn, LPK, µ);
2. Pκ computes cκ = c−

∑
j ̸=κ cj ;

3. Pκ computes zi = αi − xicκ for i = 1, · · · , n;
4. Output the ring signature σ = (z1, · · · , zn; c1, · · · , cm).

− 1/0 ← PMRS’.Verify(µ, σ, LPK): for a ring signature (µ,LPK, σ), the verifier

computesR∗
i = gzi

∏m
j=1 PK

cj
i,j , then checks

∑m
j=1 cj

?
= H(R∗

1, · · · , R∗
n, LPK, µ),

if all passed then outputs 1, otherwise outputs 0.

A.4 Borromean Range Proof

Borromean range proof is used in Monero to provide the validity proof of trans-
action amount (a ∈ [0, 2n − 1]) by making use of Borromean ring signature and
Pedersen commitment:

− BRP.Setup: System chooses public parameters (G, q, g, h).
− BRP.Prove:

1. According to the public parameters, amount a ∈ [0, 2n− 1], prover com-
putes the commitment c = gxha;

2. Prover computes the binary expansion a = a0+ · · ·+2n−1an−1, ai = 0, 1
for i = 0, · · · , n− 1;

3. Prover samples samples x0, · · · , xn−1 uniformly, computes β = x− x0 −
· · · − xn−1;

4. For every i = 0, · · · , n−1, prover computes ci = gxih2iai , c′i = gxih2iai−2i ,
prover outputs Li

PK = (ci, c
′
i);

5. Prover generates n sets of PKs by L = {L0
PK, · · · , L

n−1
PK };

6. Prover runs Borromean ring signature σ ← Rsign(L, SK, c), where SK =
(x0, · · · , xn−1), outputs πBP(c) = (L, σ, c, β).

− Verify: For i = 0, · · · , n− 1, verifier checks as follows:

1. Checks gβ ·
∏

ci
?
= c and ci/c

′
i

?
= h2i ;

2. Checks the validity of Borromean ring signature σ, if all passed then
outputs 1, otherwise outputs 0.
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A.5 Key generation algorithm for UTXO in Monero

In the Monero system, user’s (Bob’s) long-term address Add = (A,B) consists
a view key A = ga and a spending key B = gb, where ASK = (a, b) is the
corresponding secret key of the address. When Alice pay Bob with her money,
Alice generates r ← Z∗

q , computes and outputs (R = gr,PKout = gH(Ar) · B),
where PKout is the new UTXO’s public key. When receiving money, Bob checks

PKout
?
= gH(Ra) · B, if passed then computes SKout = H(Ra) + b and receives

the new UTXO to his wallet. The correctness is obtained from Ra = gar = Ar,
which is the Diffie-Hellman key exchange.

B Remaining Proofs

B.1 Traceability Proof of TRP

Proof (Traceability of TRP). For any PPT adversary A without possession of
the trapdoors, when A finished the tracing game with S in Definition 11, A
generates a commitment c for a hidden amount a and range proof πTRP(c) =
(c, β, {ci, c′i,TKi, Ii}i∈[0,n−1], σ), We assume that A wins the tracing game with
nonnegligible advantage δ, that is, πTRP(c) satisfying the following:

TRP.Verify(πTRP(c)) = 1 and TRP.Trace(πTRP(c), y) ̸= a.

According to the soundness of TRP, we know c = gxha with a ∈ [0, 2n − 1] and

ci = gxih2iai with ai = 0, 1 for every i = 0, · · · , n − 1, satisfying
∑

2iai = a
and β +

∑
xi = x, except for negligible probability ϵ0 = negl(λ), we can set

TKi = gs1ht1 and Ii = gs2ht2 , then we get ek = H({ci,TKi, Ii}i∈[0,n−1], k) for
k = 1, 2 and Li

PK = {ci ·TKe1
i · I

e2
i , c′i ·TK

e1
i · I

e2
i } = {PKi,PK

′
i}. Without loss of

generality we assume PKi is the corresponding signing key, then

ci · TKe1
i · I

e2
i = gxi+s1e1+s2e2h2iai+t1e1+t2e2 = (g1+ye1he2)z = PKi

with z being known to A except for negligible probability ϵ1 = negl(λ), under
the unforgeability of Borromean multi-ring signature. Similar to Theorem 19,
we can get xi = z = t2, s1 = yz, s2 = 0, t1 = 0, ai = 0 with nonnegligible
probability, then cyi = gxiy = TKi implies a∗i = ai for i = 0, · · · , n − 1, then
TRP.Trace(πTRP(c), y) = a, which contradicts with the assumptions before, then
we get the traceability of TRP. �

B.2 Proofs of TSLA

Correctness

Proof (Correctness of TSLA).
For Bob’s address Add = (A,B) = (gxv , gxs). Assume Alice has finished the

TSLA and outputs (PKout, R,R1, R2) as the output, and we know that PKout =
gz · B,R = Az, R1 = hz

1, R2 = hz
2. Then Bob can find his Add in LAdd and
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computes B = PKout/R
x−1
v to find out if he is the receiver, then Bob can get

SKout = z + xs, where z is obtained by decryption from ct.

For the auditor, he can compute B = PKout/R
y−1

1 to trace the address of
Bob successfully. �

Security Model Assuming there is an adversary who is given access to oracle
RO, JO and CO, in which the JO (join new address) and CO (get the address
secret key) are similar to TLRS, we give the definition of anonymity of TSLA in
the following:

Definition 25 (Anonymity of TSLA) Anonymity of TSLA is defined in the
following game between the simulator S and the adversary A, simulator S runs
Setup to provide public parameters for A, A is given access to oracles RO, JO
and CO. A gives a set of addresses LAdd = {Add1, · · · ,Addl} in which all the
addresses in LAdd are returned by A to JO, and none of them are queried by
A to CO, S randomly picks κ ∈ {1, · · · , l}, computes (PKout, R,R1, R2, θ) ←
TSLA.Spend(Addκ) and sends (PKout, R,R1, R2, θ) to A, then A outputs a guess
κ∗ ∈ {1, · · · , l}. A wins the game if he successfully guesses κ∗ = κ.

We give the advantage of A in anonymity attack as follows:

AdvanonA = |Pr[κ∗ = κ]− 1/l|.

TSLA is anonymous if for any PPT adversary A, AdvanonA = negl(λ).

We also give the definition of traceability of TSLA in the following:

Definition 26 (Traceability of TSLA) Traceability of TSLA is defined in
the following game between the simulator S and the adversary A, simulator S
runs Setup to provide the public parameters for A, A is given access to oracles
RO, JO, CO. A generates a set of addresses LAdd = {Add1, · · · ,Addl}, A wins
the game if he successfully generates a valid TSLA output

(LAdd,PKout, R,R1, R2, θ)← TSLA.Spend(Addκ)

using Addκ ∈ LAdd, satisfying the following:

1. TSLA.Verify(LAdd,PKout, R,R1, R2, θ) = 1.

2. Addi ̸= Addj for 1 ≤ i < j ≤ l.

3. TSLA.Trace(LAdd,PKout, R1, y) ̸= κ or TSLA.Trace(LAdd,PKout, R1, y) =⊥.

We give the advantage of A in tracing attack as follows:

AdvtraceA = Pr[A wins].

TSLA scheme is traceable if for any PPT adversary A, AdvtraceA = negl(λ).
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Anonymity

Proof (Anonymity of TSLA). For Addi = (Ai, Bi) = (gai , gbi), i = 1, · · · , l,
we know from (LAdd,PKout, R,R1, R2, θ)← TSLA.Spend(Addκ) that there exists
z ∈ Z∗

q , satisfying R = Az
κ, R1 = hz

1, R2 = hz
2, PKout = gz ·Bκ and

θ ← Rsign(LAdd, L1, L2, g1, g2, z).

From the anonymity of ring signature, we know the advantage of A to correctly
guess κ is negligible. Then we only need to prove (PKout, R,R1, R2) and r =
(r1, r2, r3, r4) ∈ G4 are computational indistinguishable, where r is sampled
from uniform distribution U .

Since (PKout, R,R1, R2) = (gz · Bκ, A
z
κ, h

z
1, h

z
2), from the extended DDH as-

sumption we know that (gz, Az
κ, h

z
1, h

z
2) and r are computational indistinguish-

able, then we know (gz · Bκ, A
z
κ, h

z
1, h

z
2) and (r1 · Bκ, r2, r3, r4) are also compu-

tational indistinguishable. Note that the distribution of (r1 · Bκ, r2, r3, r4) and
(r1, r2, r3, r4) are identical, then we know that (PKout, R,R1, R2) and (r1, r2, r3, r4)
are computational indistinguishable. We know the probability of A to correctly
guess κ is 1/l when the input is (r1, r2, r3, r4, θ) (θ can be obtained by program-
ming the random oracle), then we finish the anonymity proof of TSLA. �

Traceability

Proof (Traceability of TSLA). For a PPT adversary A with possession of the
trapdoor y, when A finished the tracing game with S in Definition 26, A gener-
ates a set of addresses LAdd = {Add1, · · · ,Addl}, we assume that A wins the trac-
ing game with nonnegligible probability δ, that is, A generates a TSLA output
(LAdd,PKout, R,R1, R2, θ) ← TSLA.Spend(Addκ) using Addκ ∈ LAdd, satisfying
the following:

1. TSLA.Verify(LAdd,PKout, R,R1, R2, θ) = 1.
2. Addi ̸= Addj for 1 ≤ i < j ≤ l.
3. TSLA.Trace(LAdd,PKout, R1, y) ̸= κ or TSLA.Trace(LAdd,PKout, R1, y) =⊥.

Without loss of generality, we assume PKout = gs1ht1
2 , R = gs2ht2

2 , R1 =
gs3ht3

2 , R2 = gs4ht4
2 and Addi = (Ai, Bi) = (gai , gbi), then we get

L1 = {PKout ·B−1
1 ·Re1

1 ·R
e2
2 , · · · ,PKout ·B−1

l ·Re1
1 ·R

e2
2 }

= {gs1−b1+s3e1+s4e2ht1+t3e1+t4e2
2 , · · · , gs1−bl+s3e1+s4e2ht1+t3e1+t4e2

2 }.

And L2 = {A1 · he1
1 · h

e2
2 , · · · , Al · he1

1 · h
e2
2 } = {ga1+ye1he2

2 , · · · , gal+ye1he2
2 },

where ei = H(LAdd, R,R1, R2,PKout, i) for i = 1, 2. We also know that the
generator for L1 is g1 = g · he1

1 · h
e2
2 and for L2 is g2 = R ·Re1

1 ·R
e2
2 .

Under the unforgeability of the position-preserving double-ring signature,
we know there exists z1, z2 ∈ Z∗

q known by A, and κ ∈ {1, · · · , l} such that

gs1−bκ+s3e1+s4e2ht1+t3e1+t4e2
2 = gz11 and Aκ · he1

1 · h
e2
2 = gz22 . Using similar ar-

guments as Theorem 14, we can get z1 = z−1
2 = z, s1 = z + bκ, s2 = aκz, s3 =
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yz, s4 = t1 = t2 = t3 = 0, t4 = z with nonnegligible probability, then PKout =

gzBκ and R1 = gyz = hz
1, then we have Bκ = PKout/R

y−1

1 , which mean-
s TSLA.Trace(LAdd,PKout, R1, y) = κ, which contradicts with the assumptions
before, then we get the traceability of TSLA. �
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