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Abstract. Privacy protection has been extensively studied in the cur-
rent blockchain research field. As representations, Monero and Zerocash
have realized completely anonymous and amount-hiding transactions.
However, nonregulation can lead to abuse of privacy, which brings about
serious risks of breaking laws and committing crimes. Therefore, it is
crucial to study the privacy-preserving blockchain systems with regula-
tory functions. In this paper, we discuss the regulatory model (regula-
tor behavior, user behavior) on the privacy-preserving blockchains from
application scenarios and finally select unconditional regulation, static
regulation, and self-participation of users as the core principles, which
is currently the closest approach to the “decentralization” of regulat-
able privacy-preserving blockchains. On the basis of the established reg-
ulatory model, we first propose a traceable and linkable ring signature
scheme (TLRS) by use of classic ring signatures, one-time signatures and
zero-knowledge proofs, which realizes the unforgeability, anonymity, link-
ability, nonslanderability and traceability of users’ identities. Moreover,
we first propose traceable Borromean range proof (TBoRP) and trace-
able Bulletproofs range proof (TBuRP) by use of Fiat-Shamir transform
and DH assumptions, which realize the completeness, soundness, zero-
knowledge and traceability of the transaction amounts. We also apply
the newly designed schemes and other zero-knowledge proof protocols to
achieve richer regulatory functions.

Keywords: Regulatable blockchains · Privacy preserving · Decentral-
ization · Traceable and linkable ring signatures · Traceable range proofs
· Zero-knowledge proofs.

1 Introduction

Blockchain technology was first proposed by Nakamoto[21] in 2008. It is an ap-
plication system that combines multiple underlying techniques including P2P
networks, distributed data storage, network consensus protocols and crypto-
graphic algorithms. It has features of open, transparentness, non-tamperability,
traceability, and has various applications such as digital currency (including
Bitcoin[21], Ethereum [9], Monero[28], Zerocash[25], etc.), credit deposit, anti-
counterfeiting and medical health, etc. Blockchain technology has been widely
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concerned by government, financial departments, scientific academia, and has
potential to lead the next industrial technology revolution. In June 2019, Face-
book announced “Libra”[13]- an international blockchain-based digital currency,
together with Visa, Mastercard, ebay, PayPal, etc. This indicates that the world
is gradually entering a new era of digital currency based on blockchain technol-
ogy.

Traditional blockchain-based digital currency represented by Bitcoin and
Ethereum, realized decentralized transaction and public accounting. However,
the data (transaction account and amount) on the chain is stored in plaintex-
t and can be accessed by any user, making traditional blockchains restricted
in various scenarios (such as salary, donation, bidding, taxation, etc.) as they
provides no privacy protection. For the sake of privacy protection, scientific
academia have proposed solutions such as Confidential Transaction[19], Mim-
blewimble[16], Monero[28] and Zerocash[25], etc. Among them, Monero succes-
sively followed the direction of Cryptonote[28], Ring-CT[22], Bulletproofs[8], in
fact, Monero uses linkable ring signature scheme to hide identity of initiator,
uses Diffie-Hellman key exchange scheme to hide identity of receiver and us-
es range proof (Borromean, Bulletproofs) to hide the amount of transaction.
By contrast, Zerocash is deeply related with the zero-knowledge succinct non-
interactive argument of knowledge (zk-SNARKs), which provides preimage proof
of hash commitment, and therefor achieves fully privacy of identity and amoun-
t. Nevertheless, zk-SNARKs technique uses common reference string (CRS) of
Gigabyte size and it is based on non-falsifiable assumption, that weakens its po-
tential competitiveness against other cryptocurrencies. Recent projects, such as
DERO[11] and ZETHER[7], all used Monero-type techniques (ring signatures,
range proofs, Bulletproofs) to achieve privacy, in this paper, we also focus on
modification and optimization for Monero system.

It should be noted that strong privacy-preserving blockchains have no regula-
tory functions, this feature brings about potential risks of illegal purposes such as
illegal transactions, asset transfers, money laundering, fraud, etc. Violators can
go unpunished with impunity, which seriously restricts the application prospects
of current privacy-preserving blockchain systems, and it cannot be recognized
by national regulatory agencies. At the same time, in the application scenario
of privacy-preserving digital currency, regulators and policy-making institutions
need to have a comprehensive understanding of the economic operation and de-
velopment, and also need the regulatory function of the privacy currency system.
Therefore, for the sake of legitimate, healthy and sustainable development, the
privacy-preserving blockchain system must add the regulatory functions in the
application scenario.

A possible solution for regulatable privacy-preserving blockchain is consor-
tium blockchain system with trusted center, where CA can distribute or certify
keys for users to achieve anonymous and regulatable transactions, by making
use of cryptographic protocol such as group signature, zero-knowledge proof,
etc. But in the scenario of group signature, malicious center may have the abil-
ity to forge signatures of users, or to authorize malicious users into the group,
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which is harmful to the entire system, so it is not a decentralized solution to
achieve both anonymity and regulatability. To summarize, it is necessary to s-
tudy blockchain systems that meet the characteristics of decentralization, have
regulatory functions, protect users’ privacy, and support future digital currency
applications.

1.1 Related Works

In this section, we introduce the cryptographic concepts used by Monero, and
some other works deeply related with Monero.

Ring Signatures Ring signature is a special type of signature scheme, in which
signer can sign on behalf of a group chosen by himself, while retaining anonymous
within the group. In ring signature, signer selects a list of public key LPK =
{PK1, · · · , PKn} as the ring elements, and uses his secret key SKπ to sign,
verifier cannot determine signer’s identity. Ring signature was first proposed
by Rivest, Shamir and Tauman[24] in 2001, they constructed ring signature
schemes based on RSA trapdoor permutation and Robin trapdoor function, in
the random oracle model. In 2002, Abe et al.[1] proposed AOS ring signature,
which simultaneously supported discrete logarithm (via Sigma protocol) and
RSA trapdoor functions (via hash and sign), also in the random oracle model. In
2006, Bender et al.[6] introduced the first ring signature scheme in the standard
model, by making use of pairing technique. In 2015, Maxwell et al.[20] gave
Borromean signature scheme, which is a multi-ring signature based on AOS,
reduce the signature size from N + n to N + 1. It’s worth emphasizing that
the sizes of ring signatures in these schemes are linear with the number of ring
elements.

In 2004, building from RSA accumulator, Dodis et al.[12] proposed a ring
signature scheme with constant signature size in the random oracle model. In
2007, Chandran et al.[10] gave a standard model ring signature scheme with
O(
√
n) signature size, from pairing technique and require CRS. In 2015, under

the discrete logarithm assumption, Groth et al.[15] introduced a ring signature
scheme with O(log n) signature size, in the random oracle model. In reality, the
schemes mentioned above have shorter signature sizes than Borromean scheme
asymptotically when n is sufficient large, but when n is small (n ≤ 64), these
schemes are less efficient as Borromean, and are not used in Monero system.

Linkable Ring Signatures Linkable ring signature is a variant of ring signa-
ture, in which the identity of the signer in a ring signature remains anonymous,
but two ring signatures can be linked if they are signed by the same signer.
Linkable ring signatures are suitable in many different practical applications
such as privacy-preserving digital currency (Monero), e-Voting, cloud data stor-
age security, etc. In Monero, linkability is used to check whether double spending
happens. The first linkable ring signature scheme is proposed by Liu et al.[18]
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in 2004, under discrete logarithm assumption, in the random oracle model. Lat-
er, Tsang et al.[27] and Au et al.[2] proposed accumulator-based linkable ring
signatures with constant signature size. In 2013, Yuen et al.[29] gave a standard
model linkable ring signature scheme with O(

√
n) signature size, from pairing

technique. In 2014, Liu et al.[17] gave a linkable ring signature with unconditional
anonymity, he also gave the formalized security model of linkable ring signature,
which we will follow in this paper. In 2015, Back et al.[5] proposed a efficient
linkable ring signature scheme LSAG, which shorten the signature size of [18].
In 2016, based on work of Fujisaki et al.[14], Noether et al.[22] gave a linkable
multi-ring signature scheme MLSAG, which support transactions with multiple
inputs, and was used by Monero. In 2017, Sun et al.[26] proposed Ring-CT 2.0,
which is an accumulator-based linkable ring signature with constant signature
size, but is less competitive when n is small.

Besides, there are other attempts such as identity-based linkable ring signa-
ture[4], certificate-based linkable ring signature[3], these schemes both achieve
shorter signature sizes, but do not follow the principle of “decentralization”, and
will be omitted for brevity.

Traceable Ring Signatures Traceable ring signature is another variant of
linkable ring signature, the identity of the signer in a ring signature remains
anonymous to everyone, but when a signer signs two ring signatures with one
secret key (illegal ring signatures), the signatures will be linked and the signer’s
identity will be opened. The first traceable ring signature is proposed by Fujisaki
et al.[14] in 2007, based on discrete logarithm assumption, their scheme provide
conditional traceability. To the best of our knowledge, there are no linkable ring
signatures that provide unconditional traceability.

Range Proofs Range proof is a zero-knowledge proof to prove a committed hid-
den value lies within a certain range without revealing the value. The Pedersen-
commitment-based range proofs are used in Monero system. In 2015, Neother et
al.[22] gave the Borromean range proof, building from the Borromean ring signa-
ture[20], with proof size linear with the binary length of range. In 2018, Bünz et
al.[8] introduced Bulletproofs, an efficient non-interactive zero-knowledge proof
protocol with short proofs and without a trusted setup, the proof size is only
logarithmic in the witness size and it is used in projects such as Monero, DERO,
ZETHER. To the best of our knowledge, there are no traceable range proofs that
provide regulatory function.

1.2 Our Contributions

In this paper, we first discuss and classify the regulatory models on the privacy-
preserving blockchains to determine the regulatory model used in our construc-
tions. Then we give the design method of the privacy-preserving blockchain sys-
tem under the framework of the Monero. Specifically, we give the construction
and security proof of the traceable and linkable ring signature (TLRS), give the
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construction and security proof of the traceable range proof, including trace-
able Borromean range proof (TBoRP) and traceable Bulletproofs range proof
(TBuRP).

Regulatory Model Regulations on the privacy-preserving blockchain can be
classified according to various classification methods. We will introduce them
separately.

− In regard to regulation mode, it can be divided into conditional regulation
and unconditional regulation: conditional regulation means that the regu-
lator can only trace the identity of a malicious user (illegal ring signature,
double spending) and cannot trace the identity of a normal user. Uncondi-
tional regulation means that the regulator can trace the identity of any ring
signature user, as well as the transaction amount.

− In regard to participation mode of regulator, it can be divided into dynamic
regulation and static regulation: dynamic regulation means that for every
transaction in the chain, regulator is required to confirm the legality of the
transaction, the computing power and bandwidth requirement of the regula-
tor is high. Static regulation means that the regulator is not responsible for
the legality verification of the transaction, and is not responsible for the work
of accounting, packing blocks, etc. It only performs calculations when regu-
lation is required, and the computing power and bandwidth requirements of
the regulator are not high.

− In regard to participation mode of user, it can be divided into self-participation
and passive participation: self-participation means that the users choose to
join the chain and generate the public and private keys and addresses in-
dependently, other users (including the regulator) cannot obtain the users’
private keys and cannot forge the users’ signatures. Passive participation
means that the users’ public and private keys are distributed or certificated
by the center, and users must trust the center unconditionally.

According to the design requirements of decentralization and strong regula-
tion, we choose unconditional regulation, static regulation, and self-participation
of users as the main principles of the regulatable privacy-preserving blockchains.

Traceable and Linkable Ring Signatures In this paper, we slightly modify
the definition of traceable ring signature by introducing the concept of regulator
who can trace users’ identities for all transactions (including legal and illegal
ring signatures). It’s worth emphasizing that the new definition of traceable ring
signature is deeply related with group signature as they share the property of
unconditional traceability, but there are also differences between them:

− In group signatures, users’ keys are distributed or certificated by a trusted
center (group manager), which is a centralized setting. In our modified def-
inition of traceable ring signature, users’ keys are generated by themselves,
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no one in the blockchain can forge their signature, slander users or dou-
ble spending, even for malicious regulator, which is the closest approach to
decentralization.

− In group signatures, management of group members (join or delete) is done
by group manager, users cannot join the group independently, which also
brings heavy computing load for group manager. In our modified definition
of traceable ring signature, users can participate independently, without reg-
ulator’s permission, which is also a decentralized setting.

Moreover, we obtain the traceable and linkable ring signature by combining
our traceable ring signature with linkable ring signature, where the traceability
follows the discussion above, and the linkability remains the same that two ring
signatures can be linked if they are signed by the same signer. Informally, we give
the first construction of traceable and linkable ring signature scheme (TLRS) by
using classic ring signature, one-time signature and zero-knowledge proofs as
components. We give a brief introduction of TLRS as follows:

1. The public parameter is (G, q, g1, g2, h = gy2 ), where g1, g2 are generators of
elliptic curve, which are uniformly generated by system, y is the regulation
trapdoor, generated by regulator.

2. User generates his (PK,SK) by use of public parameter, and add a tracing
key TK together with the proof of TK’s validity.

3. When signing, the user publishes a one-time public key OPK, uses ring
private key RSK for ring signature σ1, and uses one-time private key OSK
for one-time signature σ2.

4. The verifier first verifies the validity of TK’s validity proof, then checks
whether OPK appears in previous signatures to determine whether illegal
signature (double spending) occurs. Then verifies the validity of classic ring
signature σ1 and one-time signature σ2. If all pass, output 1 (accepted);
otherwise, output 0 (rejected).

5. The regulator can trace the identity of signer by calculation with OPK and
TK.

In the construction of TLRS, although public parameter with trapdoor is
used for regulation, it has no influences to users’ private keys. Under the discrete
logarithm assumption, nobody else can steal the secret keys, nor forge TLRS
signatures of users. Moreover, for malicious regulator (or malicious user who
steals the trapdoor y), he can only break the anonymity of TLRS, but cannot
generate illegal TLRS signatures (double spending), cannot slander other users
(make other legal TLRS signatures illegal) nor break traceability (escaping from
regulation), which is the closest approach to the “decentralization” requirement,
while achieving higher security level.

Traceable Borromean Range Proofs Traceable range proof is a special vari-
ant of range proof, in which there is a regulator can trace the amount with trap-
doors. The zero-knowledge property of traceable range proof only holds for users
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without possession of trapdoors. We give the construction of traceable range
proofs for the first time, including traceable Borromean range proofs (TBoRP)
and traceable Bulletproofs range proofs (TBuRP), we give a brief introduction
of TBoRP below, and introduce TBuRP in the next subsection:

In Borromean range proofs used in Monero, the pedersen commitment of
transaction amount a is c = gxha, for a’s binary expansion a = a0 + 2a1 + · · ·+
2n−1an−1, the prover generates a ring of two elements for every bit (from 0 to
n − 1) and finally generate a ring signature for n rings, using Borromean ring
signatures. We modify the Borromean range proofs by adding public parameter
(g, h = gy) with trapdoor y generated by regulator, then for every bit ai, i =
0, · · · , n − 1, the prover adds a tracing key TKi with the proofs of all TKi’s
validity, whose validity can be checked by arbitrary verifier. The verifier also
checks the validity of Borromean ring signatures and the correctness of binary
expansion. The regulator traces ai = 0 or 1 for every i = 0, · · · , n−1 by making
use of trapdoor and TKi, then compute the amount a = a0+2a1+· · ·+2n−1an−1.

In our construction of TBoRP, regulator cannot compute x form c = gxha,
which partially protects privacy of users, and it is a balance between regulation
and privacy protection.

Traceable Bulletproofs Range Proofs We modify the Bulletproofs to achieve
regulatory function by adding trapdoors into the public parameters. Informally,
assume n (bit length of range) is even (n = 32 in Monero), for different genera-
tors g = (g0, · · · , gn−1) generated independently by system, the regulator gen-
erates y0, · · · , yn/2−1 as trapdoors, then computes h2i = gyi2i , h2i+1 = gyi2i+1 for
i = 0, · · · , n/2− 1, the regulator outputs g = (g0, · · · , gn−1),h = (h0, · · · , hn−1)
as public parameters.

For a’s commitment c = hxga and binary expansion a = a0 + 2a1 + · · · +
2n−1an−1, the prover computes TK0, · · · , TKn−1 together with the proofs of all
TKi’s validity, then generates the rest part of Bulletproofs. The verifier checks
the validity of Bulletproofs as well as the validity of proofs of all TKi, when
all pass, output accepted, otherwise output rejected. The regulator can trace the
amount a by calculating with trapdoors and TKi.

In our construction of TBuRP, the soundness holds for malicious regulator,
and the number of trapdoors and tracing keys can be modified for different
requirement of size and time, which gives potential replacement for regulatable
Bulletproofs-based blockchains.

More Applications The regulatable privacy-preserving blockchain system con-
structed in this paper can be applied in more application scenarios:

Multiple Regulator For the case of multiple regulators in the blockchain, such as
several different kinds of digital currencies, each of which is regulated by each
bank, how to calculate the total amount, how to transfer the money from bank A
to bank B, this is a simple multiple regulator scenario. Our regulatable privacy-
preserving blockchain system supports: each regulator uses his own trapdoor to
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generate public parameters, users can use zero-knowledge proofs such as switch
proof to give the proof of privacy commitments migration among different reg-
ulators, and proof of the calculations (+,−,×,÷) of privacy data belonging to
different regulators.

Auxiliary Computing The scheme of this paper supports the auxiliary computing
function. The user’s private data is stored in the chain (the regulator is A),
the auxiliary computing party holds another private data (the regulator is B),
by using zero-knowledge proofs, the auxiliary computing party can complete
the addition, subtraction, multiplication and division calculations between the
two private data, without the participation of other users, and the auxiliary
computing party does not know the result of the calculations (which the regulator
A knows). This auxiliary computing can be applied to the actual scenarios of
international trades, calculation of interests, calculation of taxes, etc.

1.3 Paper Organization

The classification and discussion of the regulatory model has been completed in
1.2; in section 2 we give some preliminaries; in section 3 we give the construction
and security proof of the traceable and linkable signature (TLRS); in section 4 we
give the construction and safety proofs of the traceable Borromean range proof
(TBoRP) and the traceable Bulletproofs range proof (TBuRP); The applications
of the scheme in more scenarios are given in section 5; in section 6 we give the
summary and future works.

2 Preliminaries

2.1 Notations

In this paper, in order to be consistent with Bulletproofs, we use multiplicative
cyclic group G to represent elliptic group with group order |G| = q, g is the
generator of G, group multiplication is g1 · g2 and exponentiation is ga. We use
H(·) to represent hash function and negl to represent negligible functions.

2.2 Ring Signatures

Classic Ring Signatures Classic ring signature scheme usually consists of four
algorithms: Setup, KeyGen, Sign, and Verify:

− Par ← Setup(λ) is a probabilistic polynomial time (PPT) algorithm which,
on input a security parameter λ, outputs the set of security parameters par
which includes λ.

− (PKi, SKi) ← KeyGen(Par) is PPT algorithm which, on input security pa-
rameters par, outputs a private/public key pair (PKi, SKi).

− σ ← Sign(SKπ, µ, LPK) is a ring signature algorithm which, on input user’s
secret key SKπ, a list of users’ public keys LPK = {PK1, · · · , PKn}, where
PKπ ∈ LPK , and message µ, output a ring signature σ.
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− 1/0 ← Verify(µ, σ, LPK) is a verify algorithm which, on input message µ, a
list of users’ public keys LPK and ring signature σ, output 1 for accept or 0
for reject.

The security definition of ring signature contains unforgeability and anonymi-
ty. Before giving their definitions, we consider the following oracles which togeth-
er model the ability of the adversaries in breaking the security of the schemes,
in fact, the adversaries are allowed to query the four oracles below:

− c ← RO(a). Random oracle, on input a, random oracle returns a random
value.

− PKi ← JO(⊥). Joining oracle, on request, adds a new user to the system.
It returns the public key PKi of the new user.

− SKi ← CO(PKi). Corruption oracle, on input a public key PKi that is a
query output of JO, returns the corresponding private key SKi.

− σ ← SO(PKπ, µ, LPK). Signing oracle, on input a list of users’ public keys
LPK , the public key of the signer PKπ, and a message µ, returns a valid
ring signature σ.

Definition 1 (Unforgeability) Unforgeability for ring signature schemes is
defined in the following game between the simulator S and the adversary A,
simulator S runs Setup to provide public parameters for A, A is given access to
oracles RO, JO, CO and SO. A wins the game if he successfully forges a ring
signature (σ∗, L∗PK , µ

∗) satisfying the following:

1. Verify(σ∗, L∗PK , µ
∗) = 1.

2. Every PKi ∈ L∗PK is returned by A to JO.
3. No PKi ∈ L∗PK is queried by A to CO.
4. (µ∗, L∗PK) is not queried by A to SO.

We give the advantage of A in forge attack as follows:

AdvforgeA = Pr[A wins].

A ring signature scheme is unforgeable if for any PPT adversary A, AdvforgeA =
negl.

Definition 2 (Anonymity) Anonymity for ring signature schemes is defined
in the following game between the simulator S and the adversary A, simulator
S runs Setup to provide public parameters for A, A is given access to oracles
RO, JO and CO. A gives a set of public keys LPK = {PK1, · · · , PKn}, S
randomly picks π ∈ {1, · · · , n} and computes σ = Sign(SKπ, µ, LPK), where
SKπ is a corresponding private key of PKπ and send σ to A, then A output a
guess π∗ ∈ {1, · · · , n}. A wins the game if he successfully guesses π∗ = π.

We give the advantage of A in anonymity attack as follows:

AdvanonA = |Pr[π∗ = π]− 1/n|.

A ring signature scheme is anonymous if for any PPT adversary A, AdvanonA =
negl.
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We give the introduction of AOS ring signature[1] as an example:

− Par ← Setup(λ): system chooses elliptic curve G and a generator g as the
public parameter.

− (PKπ, SKπ) ← KeyGen(Par): according to the public parameter, user Pπ
chooses x ∈ Z∗q uniformly at random, compute gx and sets (PKπ, SKπ) =
(gx, x).

− σ ← Rsign(SKπ, µ, LPK): when user Pπ generate a ring signature for message
µ, he chooses other n− 1 users’ public keys, together with his own PKπ to
obtain a set of public keys LPK = {PK1, · · · , PKn}, where PKπ ∈ LPK ,
then he does as follows:
1. Pπ chooses rπ ∈ Z∗q uniformly at random, then computes
cπ+1 = H(grπ , LPK , µ);

2. For i = π+1, · · · , n, 1, · · · , π−1, Pπ chooses zi ∈ Z∗q uniformly at random
and compute ci+1 = H(gzi/(PKi)

ci , LPK , µ);
3. Pπ computes zπ = rπ + xcπ;
4. Output the ring signature σ = (c1; z1, · · · , zn).

− 1/0 ← Verify(µ, σ, LPK): for a ring signature (µ,LPK , σ), the verifier com-

putes and checks ci+1
?
= H(gzi/(PKi)

ci , LPK , µ) for i = 1, · · · , n, if all pass
then outputs 1, otherwise outputs 0.

The AOS ring signature scheme is unforgeable and anonymous in the random
oracle model. In 2015, Maxwell et al.[20] gave the Borromean signature scheme,
which is a multi-ring signature based on AOS, reduce the signature size from
N + n to N + 1, where N = mn with ring number n and m elements in each
ring. We omit the detailed description of Borromean ring signature for brevity.

Linkable Ring Signatures Based on classic ring signatures, linkable ring sig-
nature has the function of linkability, that is, when two ring signatures are signed
by the same signer, they are linked by the algorithm Link. We give the definition
of Link below:

− linked/unlinked ← Link((σ, µ, LPK), (σ′, µ′, LPK′)): verifier checks the two
ring signatures are linked or not, output the result.

The security definition of linkable ring signature contains unforgeability,
anonymity, linkability and nonslanderability. The unforgeability is the same as
Definition 1, and the anonymity is slightly different from Definition 2 with ad-
ditional requirements that all public keys in LPK are returned by A to JO and
all public keys in LPK are not queried by A to CO. In the rest of this paper, we
use this modified definition of anonymity in TLRS and its security proof.

We give the definition of linkability and nonslanderability as follows:

Definition 3 (Linkability) Linkability for linkable ring signature schemes is
defined in the following game between the simulator S and the adversary A,
simulator S runs Setup to provide public parameters for A, A is given access to
oracles RO, JO, CO and SO. A wins the game if he successfully forges k ring
signatures (σi, L

i
PK , µi), i = 1, · · · , k, satisfying the following:
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1. All σis are not returned by A to SO.
2. All LiPK are returned by A to JO.
3. Verify(σi, L

i
PK , µi) = 1, i = 1, · · · , k.

4. A queried CO less than k times.
5. Link((σi, L

i
PK , µi), (σj , L

j
PK , µj)) = unlinked for i, j ∈ {1, · · · , k} and i 6= j.

We give the advantage of A in linkability attack as follows:

AdvlinkA = Pr[A wins].

A linkable ring signature scheme is linkable if for any PPT adversary A, AdvlinkA =
negl.

The nonslanderability of a linkable ring signature scheme is that A cannot
slander other honest users by generating a signature linked with signatures of
honest users. In the following we give the definition:

Definition 4 (Nonslanderability) Nonslanderability for linkable ring signa-
ture schemes is defined in the following game between the simulator S and the
adversary A, simulator S runs Setup to provide public parameters for A, A is
given access to oracles RO, JO, CO and SO. A gives a list of public keys LPK ,
a message µ and a public key PKπ ∈ LPK to S, S returns the corresponding sig-
nature σ ← Sign(SKπ, LPK , µ) to A. A wins the game if he successfully outputs
a ring signature (σ∗, L∗PK , µ

∗), satisfying the following:

1. Verify(σ∗, L∗PK , µ
∗) = 1.

2. PKπ is not queried by A to CO.
3. PKπ is not queried by A as input to SO.
4. Link((σ, LPK , µ), (σ∗, L∗PK , µ

∗)) = linked.

We give the advantage of A in slandering attack as follows:

AdvslanderA = Pr[A wins].

A linkable ring signature scheme is nonslanderable if for any PPT adversary A,
AdvslanderA = negl.

According to [17], linkability and nonslanderability imply unforgeability:

Lemma 5 ([17]) If a linkable ring signature scheme is linkable and nonslan-
derable, then it is unforgeable.

2.3 Zero-knowledge proofs

Zero-knowledge proof system is a proof system (P, V ) in which a prover proves
to the verifier that he has a certain knowledge but does not reveal the knowledge
itself. The formal definition is that given language L and relation R, for ∀x ∈ L,
there exists a witness w such that (x,w) ∈ R, to prove x ∈ L without disclosing
w. The transcript between prover and verifier is 〈P (x,w), V (x)〉, the proof is
correct (or wrong) if 〈P (x,w), V (x)〉 = 1(or 0). The security notions of zero-
proof system contains completeness, soundness, zero-knowledge:
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Definition 6 (Completeness) (P, V ) has completeness for any non-uniform
polynomial time adversary A,

Pr[(x,w)← A(1λ) : (x,w) /∈ R or 〈P (x,w), V (x)〉 = 1] = 1− negl.

When the probability equals 1, then (P, V ) has perfect completeness.

Definition 7 (Soundness) (P, V ) has soundness for any non-uniform poly-
nomial time adversary A and x /∈ L,

Pr[(x, s)← A(1λ) : 〈P (x,w), V (x)〉 = 1] = negl.

In Σ protocols with Fiat-Shamir transformation in the random oracle model, we
use the notion of special soundness, that is, for a 3-round interactive proof pro-
tocol, if a non-uniform polynomial time adversary A can generate 2 valid proofs
(x, c, e1, s1), (x, c, e2, s2), then there exists a extraction algorithm Ext which can
extract a witness (x,w) ∈ R, where c represents the commitment, eis are chal-
lenges and sis are responses.

Definition 8 (Zero-knowledge) (P, V ) has perfect (or computational) zero-
knowledge, for any non-uniform polynomial time (or PPT) adversary A,

Pr[(x,w)← A(1λ); tr ← 〈P (x,w), V (x, ρ)〉 : (x,w) ∈ R and A(tr) = 1] = (or ≈c)

Pr[(x,w)← A(1λ); tr ← S(x, ρ) : (x,w) ∈ R and A(tr) = 1].

In Fiat-Shamir-based protocol, the randomness of ρ is from the output of hash
function, it is said to be public coin and the protocol is honest-verifier zero-
knowledge.

Pedersen Commitment Pedersen commitment[23] was proposed in 1991, for
elliptic curve (G, q = |G|, g, h), where g is a generator of G, h is a random element
with discrete logarithm unknown to anyone.

Definition 9 (Pedersen commitment) The pedersen commitment for a is
c = gxha, where x ∈ Z∗q is a blinding element. Under the hardness of discrete
logarithm, Pedersen commitment has the following properties:

− (Hiding) Any (computational unbounded) adversary A cannot distinguish
c = gxha from c′ = gx

′
ha
′
.

− (Binding) Any PPT adversary A cannot generate another secret a′ binding
with c = gxha = gx

′
ha
′
.

− (Homomorphic) Given c1 = gxha, c2 = gyhb, then c1 · c2 = gx+yha+b is a
new commitment for a+ b.

We use pedersen commitment to construct commitment proof and switch
proof.
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Commitment Proof For pedersen commitment c = gxha, we can prove the
knowledge of x, a without revealing them by commitment proof:

1. Prover generates r1, r2 ∈ Z∗q uniformly at random, computes e = H(gr1hr2).
2. Prover computes z1 = r1 + ex, z2 = r2 + ea, output proof π(c) = (e, z1, z2).

3. Verifier checks e
?
= H(gz1hz2/ce).

Commitment proof is an extension of Schnorr signature with perfect com-
pleteness, special soundness and honest verifier zero-knowledge.

Switch Proof For two pedersen commitments c1 = gxha1 and c2 = gyha2 , we
can prove the equality of hidden value (a = a) by switch proof (h1 switch to h2):

1. Prover generates r1, r2, r ∈ Z∗q uniformly at random, computes
e = H(gr1hr1, g

r2hr2).
2. Prover computes z1 = r1 + ex, z2 = r2 + ey, z3 = r + ea, output proof
π(c1, c2) = (e, z1, z2, z3).

3. Verifier checks e
?
= H(gz1hz31 /c

e
1, g

z2hz32 /c
e
2).

Specially, when x = y, then prover samples r1 = r2, then z1 = z2, which shorten
the proof size. The switch proof also has perfect completeness, special soundness
and honest verifier zero-knowledge.

2.4 Range proofs

Borromean Range Proof Borromean range proof is used in Monero to provide
the validity proof of transaction amount (a ∈ [0, 2n − 1]) by making use of
Borromean ring signature and pedersen commitment:

− Setup: System chooses public parameters (G, q, g, h).
− Gen:

1. According to the public parameters, amount a ∈ [0, 2n− 1], prover com-
putes the commitment c = gxha;

2. Prover computes the binary expansion a = a0 + · · ·+2n−1an−1, ai = 0, 1
for i = 0, · · · , n− 1;

3. Prover samples x0, · · · , xn−1 uniformly, satisfying x0 + · · ·+ xn−1 = x;

4. For every i = 0, · · · , n−1, prover computes ci = gxih2
iai , c′i = gxih2

iai−2i ,
prover outputs LiPK = (ci, c

′
i).

− Prove:
1. Prover generates n sets of PKs by L = {L0

PK , · · · , L
n−1
PK };

2. Prover runs Borromean ring signature, outputs σ = Sign(L, SK, c), where
SK = (x0, · · · , xn−1).

− Verify: For i = 0, · · · , n− 1, verifier checks as follows:

1. Check
∏
ci

?
= c;

2. Check ci/c
′
i

?
= h2

i

;
3. Check the validity of Borromean ring signature σ, if all pass, then outputs

1, otherwise 0.
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Bulletproofs Range Proof Bulletproofs, proposed by Bünz et al.[8] in 2018,
is an efficient zero-knowledge with O(log n) proof size, and is widely used in
inner-product argument, range proof and proof for arithmetic circuits. The Bul-
letproofs range proof also uses pedersen commitment:

− Setup: System chooses public parameters (G, q, g, h,g,h), where
g = (g0, · · · , gn−1),h = (h0, · · · , hn−1) ∈ Gn.

− Gen:
1. According to the public parameters, amount a ∈ [0, 2n− 1], prover com-

putes the commitment c = hxga;
2. Prover computes the binary expansion a = a0+ · · ·+2n−1an−1, ai = 0, 1,

sets aL = (a0, · · · , an−1);
3. Prover computes aR = aL − 1n = (a0 − 1, · · · , an−1 − 1);
4. Prover samples α ∈ Zq uniformly at random, computes

A = hαgaLhaR = hαga11 · · · g
an−1

n−1 h
a1−1
1 · · ·han−1−1

n−1 ;

5. Prover samples sL, sR ∈ Znq , ρ ∈ Zq uniformly at random, computes
S = hρgsLhsR .

− Prove:
1. Prover sends c, A, S to verifier;
2. Verifier samples y, z ∈ Zq uniformly at random, and sends them to

prover;
3. Prover computes T1, T2 and sends them to verifier;
4. Verifier samples x ∈ Zq uniformly at random, and sends it to prover;
5. Prover computes τx, µ, t, l, r and sends them to verifier.

The computation of T1, T2, τx, µ, t, l, r as well as the verification algorithm is
omitted for brevity, please refer to [8] for detailed description.

3 Traceable and Linkable Ring Signatures

In this section, we give the construction and security proof of traceable and link-
able ring signature scheme (TLRS), the TLRS achieves unforgeability, anonymi-
ty, linkability, nonslanderability and traceability. In the scenario of blockchain,
unforgeability works for security of uses’ accounts, anonymity works for anonymi-
ty of uses’ identities, linkability and nonslanderability works for prevention of
double-spending (actively or passively), traceability works for unconditional reg-
ulation of identity.

3.1 Construction

In our construction of TLRS, we use classic ring signature (for single ring, AOS as
example) or multi-ring signature (Borromean as example) as the ring signature
component of TLRS, use ECDSA or Schnorr signature as the one-time signature
component of TLRS. Actually, these schemes are anonymous and unforgeable,
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which will be used in the security proof. Moveover, Trace algorithm is added into
TLRS to realize the regulation of identity, which makes TLRS more suitable in
the regulatable privacy-preserving blockchains.

We give the introduction of TLRS in the following (single ring as example):

− Par ← Setup(λ): system chooses elliptic curve G and generators g1, g2 ∈ G
independently, the regulator generates y ∈ Z∗q as the trapdoor, computes
h = gy2 with h’s order as large as possible, system outputs (G, q, g1, g2, h)
as the public parameters, in which the regulator dose not know the relation
between g1 and h.

− (PK,SK)← KeyGen(Par):

1. According to the public parameters (G, q, g1, g2, h), user Alice samples
x, a ∈ Z∗q , computes RPK = gx1h

a, TK = ga2 , OPK = ha;

2. Alice gives the validity proof π(RPK,TK), that is, she gives the switch
proof that RPK = gx1h

a and RPK · TK = gx1 (g2h)a share the same
exponents (x = x, a = a) with respect to (g1, h) and (g1, g2h);

3. Alice outputs PK = (RPK,TK, π(RPK,TK)), and retains SK =
(RSK = x,OSK = a).

− σ ← Sign(SKπ, µ, LPK):

1. For a message µ, Alice chooses another n−1 users, together with her own
public key, to generate a list of public keys LPK = {PK1, · · · , PKn},
where Alice’s PK = PKπ ∈ LPK ;

2. Alice outputs OPK = haπ , computes

LRPK = {RPK1 ·OPK−1, · · · , RPKn ·OPK−1}

= {gx1
1 ha1−aπ , · · · , gxn1 han−aπ};

3. Alice runs ring signature σ1 ← Rsign(RSK,µ, LRPK , OPK) using LRPK
and RSK = xπ, outputs σ1;

4. Alice runs one-time signature σ2 ← Osign(OSK, σ1, OPK) usingOPK =
haπ and OSK = aπ;

5. Alice outputs σ = (σ1, σ2, µ, LPK , OPK).

− 1/0← Verify(σ1, σ2, µ, LPK , OPK):

1. Verifier checks the validity of π(RPKi, TKi) for every 1, · · · , n;

2. Verifier checks LRPK
?
= {RPK1 ·OPK−1, · · · , RPKn ·OPK−1};

3. Verifier checks the validity of ring signature σ1 and signature σ2;

4. If all pass then outputs 1, otherwise outputs 0.

− linked/unlinked← Link(σ, σ′): For two TLRS signatures
σ = (σ1, σ2, µ, LPK , OPK) and σ′ = (σ′1, σ

′
2, µ
′, L′PK , OPK

′), if OPK =
OPK ′ then verifier outputs linked, otherwise outputs unlinked.

− π∗ ← Trace(σ, y): For σ = (σ1, σ2, µ, LPK , OPK), the regulator extracts
TK1, · · · , TKn from LPK , computes TKy

i for i = 1, · · · , n, outputs the
smallest π∗ such that OPK = TKy

π∗ as the trace result, otherwise outputs
⊥.
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In the scenario of privacy-preserving blockchains, using UTXO model, the
TK = ga2 can be regarded as the UTXO public key generated in the last trans-
action, and user will publish the UTXO public key TK, RPK, π(RPK,TK)
after receiving the money. The validity of π(RPK,TK) can be checked by des-
ignated nodes, which not happens during the transaction and can reduce the cost
of transaction verification. OPK can be regarded as the Key-image of UTXO,
and Link is used for detection of double-spending. Trace is used for regulation of
identity by regulator, which brings the regulatory function to the blockchains.

Correctness

Theorem 10 (Correctness of TLRS) For an honest user Alice in TLRS,
she can complete the ring signature and one-time signature, and regulator can
trace her identity.

Proof. In TLRS, for Alice’s public key PK = PKπ = (gx1h
a, ga2 , π(gx1h

a, ga2 )),
then Alice will output OPK = ha with LRPK = {gx1

1 ha1−aπ , · · · , gxn1 han−aπ}.
Since gxπ1 haπ−aπ = gxπ1 , then Alice can use RSK = x to generate ring signature.
For OPK = ha, then Alice can use OSK = a to generate one-time signature
(take h as basis element).

For regulator, he can compute TKy = gay2 = ha = OPK and then outputs
Trace(σ, y) = π. �

3.2 Security proofs

Security Model On the basis of security definitions for linkable ring signature,
a PPT adversary A is given access to oracles RO, JO, CO and SO, and security
of TLRS contains unforgeability, anonymity, linkability, nonslanderability and
traceability. Considering the existence of regulator, who can trace the identities
of users, so the anonymity only holds for someone not possesses the trapdoor.
Moreover, the unforgeability, linkability, nonslanderability remain the same as
linkable ring signature, even for malicious regulator (or adversary who steals the
trapdoor), he cannot forge signature of other users, break the linkability and
nonslanderability of TLRS, which means that malicious regulator cannot spend
money of other users, double spend or slander other users.

Traceability enables regulator with ability to trace users’ identities, for any
PPT adversary A with possession of trapdoor, he cannot escape from regulation.
We give the formal definition of traceability as follows:

Definition 11 (Traceability) Traceability for traceable and linkable ring sig-
nature schemes (TLRS) is defined in the following game between the simulator
S and the adversary A, simulator S runs Setup to provide public parameters for
A, A is given access to oracles RO, JO, CO. A generates a list of public keys
LPK = {PK1, · · · , PKn}, A wins the game if he successfully generates a TLRS
signature (σ, LPK , µ) using PKπ ∈ LPK , satisfying the following:

1. Verify(σ, LPK , µ) = 1.
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2. TKi 6= TKj for 1 ≤ i < j ≤ n.

3. Trace(σ, y) 6= π or Trace(σ, y) =⊥.

We give the advantage of A in traceability attack as follows:

AdvtraceA = Pr[A wins].

A linkable ring signature scheme is traceable if for any PPT adversary A,
AdvtraceA = negl.

Anonymity

Theorem 12 (Anonymity) TLRS is anonymous for any PPT adversary A
(without possession of trapdoor).

Proof. Assume A is playing the game with S in Definition 2, A he generates
a message µ and a list of public keys LPK = {PK1, · · · , PKn}, where PKi =
(RPKi = gxi1 h

ai , TKi = gai2 , π(RPKi, TKi), all PKis are returned by JO, and
S knows all SK = (xi, ai).

Consider the following games between S and A:

− Game 0. S samples π ∈ {1, · · · , n} uniformly, publishes OPK = haπ

and LRPK = {gx1
1 ha1−aπ , · · · , gxn1 han−aπ}, generates ring signature σ1 =

Rsign(RSK,µ, LRPK , OPK) and one-time signature σ2 = Osign
(OSK, σ1, OPK), outputs σ = (σ1, σ2, µ, LPK , OPK) to A. When A re-
ceives σ, he gives a guess π∗ ∈ {1, · · · , n}.

− Game 1. S uniformly samples π ∈ {1, · · · , n}, r ∈ Z∗q , publishes OPK =
hr and LRPK = {gx1

1 ha1−r, · · · , gxn1 han−r}, generates ring signature σ1 =
Rsign(µ,LRPK , OPK) by programming the random oracle, then generates
one-time signature σ2 = Osign(OSK, σ1, OPK), outputs σ = (σ1, σ2, µ, LPK ,
OPK) to A. When A receives σ, he gives a guess π∗ ∈ {1, · · · , n}.

In the two games above, Game 0 is the actual game between S and A, and
Game 1 is the simulated game in the random oracle model. In game 1, r is
uniformly sampled by S, which is statistical independent from the LPK , then
PrA[π∗ = π] = 1/n.

Then we only need to prove that game 0 and game 1 are computational
indistinguishable. If fact, the differences between the two games are genera-
tion of OPK and LRPK . According to DH assumption, (g2, h, g

aπ
2 , haπ ) and

(g2, h, g
aπ
2 , hr) are computational indistinguishable, then A cannot distinguish

haπ (in game 0) from hr (in game 1). Meanwhile, due to the hiding items
x1, · · · , xn, A cannot distinguish {gx1

1 ha1−aπ , · · · , gxn1 han−aπ} from
{gx1

1 ha1−r, · · · , gxn1 han−r}, then we know game 0 and game 1 are computational
indistinguishable, which finishes the anonymity proof of TLRS. �
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Linkability

Theorem 13 (Linkability) TLRS is linkable for any PPT adversary A, in-
cluding malicious regulator.

Proof. For a PPT adversary A with possession of the trapdoor y, but does not
know the relation between g1 and (g2, h = gy2 ), when A finished the link game
with S in Definition 3, we assume that A wins the link game with nonnegligible
advantage δ, that is,A returned k TLRS signatures σi = (σi1, σ

i
2, µi, L

i
PK , OPK

i),
i = 1, · · · , k (σi1s are ring signatures, σi2s are one-time signatures), which satisfy
the following:

1. All σi, i = 1, · · · , k are not returned by SO.
2. All public keys from LiPK , i = 1, · · · , k are returned by JO.
3. Verify(σi, L

i
PK , µi) = 1 for i = 1, · · · , k.

4. A queried CO less than k times.
5. Link((σi, L

i
PK , µi), (σj , L

j
PK , µj)) = unlinked for i 6= j ∈ {1, · · · , k}.

We first prove a statement that, for a list of users’ public keys
LPK = {PK1, · · · , PKn} returned by JO, where PKi = (gxi1 h

ai , gai2 , π(gxi1 h
ai , gai2 )),

any PPT adversary A generates a valid TLRS signature σ 8 SO if and only if
he quires the CO at least once, except for negligible probability ε0 = negl(n).

− ⇒. If A gets SK = (xi, ai) from CO, and then A can run the TLRS signature
scheme to generate a valid signature σ = (σ1, σ2, µ, LPK , OPK).

− ⇐. Assume A did not query the CO and SO for LPK = {PK1, · · · , PKn}
and finished the TLRS signature over LPK = {PK1, · · · , PKn} with non-
negligible probability δ1. We first prove that A does not know any of the
secret keys in LPK . Actually, under the hardness of discrete logarithm, A
cannot compute ai from TK = gai2 , i = 1, · · · , n, then the probability of A
obtaining any of (xi, ai) is ε1 = negl(n).
Next, according to the assumption that A generates a valid signature σ =
(σ1, σ2, µ, LPK , OPK), then he must have finished the one-time signature
σ2. Since the one-time signature scheme achieves unforgeability, then A
knows OSK = b except for negligible probability ε2 = negl(n), we get
that LRPK = {gx1

1 ha1−b, · · · , gxn1 han−b} and A finished the ring signature
σ1 with LRPK . According to the unforgeability of ring signature, we get
that A knows at least one of the correspond z satisfying g

xj
1 haj−b = gz1

for j ∈ {1, · · · , n}, except for negligible probability ε3 = negl(n), which
means A got a solution for g

xj
1 haj−b = gz1 with nonnegligible probability

δ1 − ε1 − ε2 − ε3, this contradicts with the hardness of discrete logarithm
problems. Then we get that A generates a valid TLRS signature σ 8 SO if
and only if he quires the CO at least once, except for negligible probability.

According to the fourth requirement that the number of times of A querying CO
is≤ k−1, andA returned k valid TLRS signatures σi = (σi1, σ

i
2, µi, L

i
PK , OPK

i),
i = 1, · · · , k, then we know there are two TLRS signatures from the same query
of CO, saying SK = (z, b) from PK = (gz1h

b, gb2, π(gz1h
b, gb2), and A finished two
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unlinked valid TLRS signature, then there is at least one OPK = hb
′ 6= hb from

the two TLRS signatures (otherwise they will be linked). We have LRPK =
{gx1

1 ha1−b
′
, · · · , gxn1 han−b

′}, since ∃j ∈ {1, · · · , n} s.t. (xj , aj) = (z, b), then

we have g
xj
1 haj−b

′
= gz1h

b−b′ with b 6= b′ and A cannot compute x s.t. gx1 =

gz1h
b−b′ under the hardness assumption of discrete logarithm problem, except for

negligible probability ε = negl(n), then we have that A successfully forge a ring
signature for LRPK = {gx1

1 ha1−b
′
, · · · , gxn1 han−b

′} with nonnegligible probability
δ − ε − kε0, which contradicts to the unforgeability of ring signature, then we
finish the linkability proof of TLRS. �

Nonslanderability

Theorem 14 (Nonslanderability) TLRS is nonslanderable for any PPT ad-
versary A, including malicious regulator.

Proof. For a PPT adversary A with possession of the trapdoor y, but does not
know the relation between g1 and (g2, h = gy2 ), when A finished the slandering
game with S in Definition 4, A gave a list of public keys LPK , a message µ
and a public key PKπ ∈ LPK to S, S returns the corresponding signature
σ ← Sign(SKπ, LPK , µ) to A. We assume that A wins the slandering game
with nonnegligible advantage δ, that is, A successfully outputs a ring signature
σ∗ = (σ∗1 , σ

∗
2 , µ
∗, L∗PK , OPK

∗), satisfying the following:

1. Verify(σ∗, L∗PK , µ
∗) = 1.

2. PKπ is not queried by A to CO.

3. PKπ is not queried by A as input to SO.

4. Link((σ, LPK , µ), (σ∗, L∗PK , µ
∗)) = linked.

From the definition of Link, we know that OPK∗ = OPK = haπ , since PKπ

was not queried by A to CO and SO, then A does not know OSK = aπ except
for negligible probability ε = negl(n) under the hardness of discrete logarithm
problems. Then we know A forged one-time signature σ∗2 with nonnegligible
advantage δ − ε, which contradicts to the unforgeability of one-time signature,
then we finish the nonslanderability proof of TLRS. �

According to lemma 5, we get the unforgeability of TLRS:

Corollary 15 (Unforgeability) TLRS is unforgeable for any PPT adversary
A, including malicious regulator.

Traceability

Theorem 16 (Traceability) TLRS is traceable for any PPT adversary A, in-
cluding malicious regulator.
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Proof. For a PPT adversary A with possession of the trapdoor y, but does
not know the relation between g1 and (g2, h = gy2 ), when A finished the trac-
ing game with S in Definition 11, A generates a list of public keys LPK =
{PK1, · · · , PKn}, we assume that A wins the tracing game with nonnegligible
advantage δ, that is, A generates a TLRS signature σ = (σ1, σ2, µ, LPK , OPK)
using PKπ ∈ LPK , satisfying the following:

1. Verify(σ, LPK , µ) = 1.
2. TKi 6= TKj for 1 ≤ i < j ≤ n.
3. Trace(σ, y) 6= π or Trace(σ, y) =⊥.

Since σ2 is a valid one-time signature, then OPK = hb and A knows OSK =
b except for negligible probability ε1 under the unforgeability of one-time sig-
nature, we have LRPK = {gx1

1 ha1−b, · · · , gxn1 han−b}. According to A signed σ1
with PKπ, if b 6= aπ, then the ring signing public key is gxπ1 haπ−b = gz1 , and
A knows RSK = z except for negligible probability ε2 under the unforgeabil-
ity of ring signature, then A successfully generates a relation gxπ−z1 haπ−b = 1
with nonnegligible advantage δ − ε1 − ε2, which contradicted to the hardness of
discrete logarithm problem, then we have b = aπ.

From the requirement that Trace(σ, y) 6= π, we know TKy
π 6= OPK = haπ ,

we can set TKπ = gs1g
t
2 without loss of generality, then we get the validity proof

π(RPKπ, TKπ) = π(gxπ1 haπ , gs1g
t
2), which is the switch proof between gxπ1 haπ

and gxπ1 haπ · gs1gt2 = gxπ+s1 gyaπ+t2 with respect to (g1, h) and (g1, g2h). Assume
π(RPKπ, TKπ) = (e, z1, z2), then we have

e = H(gz11 h
z2/(gxπ1 haπ )e, gz11 (g2h)z2/(gxπ+s1 gyaπ+t2 )e).

According to the Fiat-Shamir-based switch proof in section 2.3, we know that e
is computed by e← H(gr11 g

r2
2 , g

r3
1 g

r4
2 ), then we have

r1 = z1− exπ, r2 = y(z2− eaπ), r3 = z1− exπ − es, r4 = (y+ 1)z2− e(yaπ + t).

Then es = r1 − r3, e(t− aπ) = (1 + y−1)r2 − r4, if s 6= 0 then e = (r1 − r3)s−1,
which means A computes e before he runs the hash function (query the random
oracle), this happens with negligible probability, meanwhile, if t 6= aπ then e =
((1+y−1)r2−r4)/(t−aπ), also happens with negligible probability. Finally we get
s = 0, t = aπ and TKπ = gaπ2 , which means TKy

π = OPK and Trace(σ, y) = π,
this contradicts to the assumptions before, then we finish the traceability proof
of TLRS. �

4 Traceable Range Proofs

In this section we give the constructions and security proofs of two traceable
range proof schemes: traceable Borromean range proof (TBoRP) and traceable
Bulletproofs range proof (TBuRP). Similar to TLRS, provers generate their
proofs by using parameters with trapdoors generated by regulator, which helps
regulator recover the hidden amounts bitwise. Meanwhile, the validity of trace-
able range proof is publicly verified, which is suitable for the applications on
blockchains.
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4.1 Security Model

On the basis of security definitions for zero-knowledge proofs, the security of
traceable range proof contains completeness, soundness, zero-knowledge and
traceability. Considering the existence of regulator, who can trace the amounts of
transactions, zero-knowledge only holds for someone not possesses the trapdoor.
Moreover, the completeness remain the same as range proof, for any adversaryA.
Soundness of TBoRP and TBuRP are different, for TBoRP, soundness holds for
any PPT adversary A without possession of trapdoors; for TBuRP, soundness
holds for any PPT adversary A.

Traceability enables regulator with ability to trace amounts of transactions,
for any PPT adversary A without possession of trapdoors, he cannot escape
from regulation. We give the formal definition of traceability as follows:

Definition 17 (Traceability) Traceability for traceable range proof is defined
in the following game between the simulator S and the adversary A, simulator S
runs Setup to provide public parameters for A, A is given access to oracles RO.
A generates a commitment c for a hidden value a and the range proof π(c), A
wins the game if:

1. Verify(c, π(c)) = 1.
2. Trace(π(c), trapdoors) 6= a.

We give the advantage of A in traceability attack as follows:

AdvtraceA = Pr[A wins].

A traceable range proof is traceable if for any PPT adversary A without posses-
sion of trapdoors, AdvtraceA = negl.

4.2 Traceable Borromean Range proof

Construction In the construction of TBoRP, similar to Borromean range proof,
we use pedersen commitment and bit expansion of amount, then add tracing keys
bitwise into the proof, together with the validity proofs of tracing keys. The
regulator can use the trapdoor and tracing keys to recover the hidden amount
bitwise.

We give the introduction of TBoRP in the following:

− Par ← Setup(λ): system chooses elliptic curve G and generators g ∈ G, the
regulator generates y ∈ Z∗q as the trapdoor, computes h = gy with h’s order
as large as possible, system outputs (G, q, g, h) as the public parameters.

− (LPK , SK, c, {TKi, π(ci, TKi)}i=0,··· ,n−1)← Gen(Par, a):
1. According to the public parameters (G, q, g, h) and amount a ∈ [0, 2n −

1], prover Alice samples x ∈ Z∗q uniformly, computes c = gxha as the
commitment;

2. Alice computes the binary expansion a = a0 + · · ·+ 2n−1an−1, ai = 0, 1
for i = 0, · · · , n−1, samples x0, · · · , xn−1 uniformly, satisfying x0+ · · ·+
xn−1 = x;
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3. For every i = 0, · · · , n−1, Alice computes ci = gxih2
iai , c′i = gxih2

iai−2i ,
outputs LiPK = (ci, c

′
i);

4. For every i = 0, · · · , n−1, Alice computes TKi = hxi−2
iai and gives the

TKi’s validity proof π(ci, TKi) that TKi is a power of h and TKi · ci =
(gh)xi is a power of gh;

5. Alice outputs LPK = {L0
PK , · · · , L

n−1
PK }, c, {TKi, π(ci, TKi)}i=0,··· ,n−1

and retains SK = (x0, · · · , xn−1), a.
− σ ← Prove(SK, c, LPK): Alice runs the Borromean ring signature for LPK =
{(c0, c′0), · · · , (cn−1, c′n−1)}, outputs σ ← Rsign(SK, c, LPK).

− 1/0← Verify(σ, c, LPK , {TKi, π(ci, TKi)}i=0,··· ,n−1):
1. For every i = 0, · · · , n− 1, verifier checks the validity of π(ci, TKi);

2. Verifier checks
∏
ci

?
= c;

3. For every i = 0, · · · , n− 1, verifier checks ci/c
′
i

?
= h2

i

;
4. Verifier checks the validity of Borromean ring signature σ, if all pass then

outputs 1, otherwise outputs 0.
− a∗ ← Trace(σ, LPK , y, {TKi}i=0,··· ,n−1):

1. For every i = 0, · · · , n− 1, regulator computes cyi or (c′i)
y;

2. For every i = 0, · · · , n − 1, if cyi = TKi then outputs a∗i = 1, if (c′i)
y =

TKi · h2
i

then outputs a∗i = 0;
3. Regulator outputs a∗ = a∗0 + · · ·+ 2n−1a∗n−1.

Correctness

Theorem 18 (Correctness of TBoRP) For an honest user Alice in TBoRP,
she can complete the Borromean ring signature, and the regulator can trace her
amount.

Proof. According to the binary expansion a = a0 + · · ·+2n−1an−1 of a, we know

there is only one element in LiPK = (ci = gxih2
iai , c′i = gxih2

iai−2i), which is a
power of g known by Alice, then Alice can use the secret keys for i = 0, · · · , n−1
to finish the Borromean ring signature for LPK = {L0

PK , · · · , L
n−1
PK }. Besides,

we know that
∏
ci = c and ci/c

′
i = h2

i

from the generation algorithms. When

ai = 0, we know ci = gxih2
iai = gxi , TKi = hxi = cyi , when ai = 1, we know

c′i = gxi , TKi · h2
i

= hxi = (c′i)
y, then we get the correctness of TBoRP. �

Proof of Zero-knowledge

Theorem 19 (Zero-knowledge of TBoRP) TBoRP is computational zero-
knowledge for any PPT adversary A (without possession of trapdoor).

Proof. For every i = 0, · · · , n− 1, we consider the impact that TKi being added
into the system, and prove that (ci, TKi) does not reveal any knowledge of ai = 0

or 1. Formally, we prove for ci = gxih2
iai , c′i = gxih2

iai−2i with ci/c
′
i = h2

i

is a
constant, any PPT adversary A cannot distinguish (ci, TKi) = (gxi , hxi) (when

ai = 0) from (ci, TKi) = (gxih2
i

, hxi−2
i

) (when ai = 1).
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Actually, we know that (g, h, gxi , hxi) and (g, h, gxi , r) are computational
indistinguishable for uniformly generated xi ∈ Z∗q , under the DH assumption.
For g is a generator of G, the distribution of (g, h, gxi , r) and (g, h, r′, r) are

identical. Let constant u = h2
i

, we know that the distribution of (g, h, r′, r)
and (g, h, r′u, ru−1) are identical. Again from the DH assumption, we know
(g, h, r′u, ru−1) and (g, h, gxiu, hxiu−1) are computational indistinguishable. Then
we have the relations between the following distributions:

(g, h, gxi , hxi) ≈c (g, h, r′, r) = (g, h, r′u, ru−1) ≈c (g, h, gxiu, hxiu−1).

Where g, h, u are constants, r, r′, xi are uniform random variables.
Since (gxi , hxi) = (ci, TKi)ai=0 and (gxiu, hxiu−1) = (gxih2

i

, hxi−2
i

) =
(ci, TKi)ai=1, we know they are computational indistinguishable for any PP-
T adversary A, for every i = 0, · · · , n − 1, then we finish the zero-knowledge
proof of TBoRP. �

Traceability

Theorem 20 (Traceability of TBoRP) TBoRP is traceable for any PPT ad-
versary A (without possession of trapdoor).

Proof. For a PPT adversary A without possession of the trapdoor y, when A
finished the tracing game with S in Definition 17,A generates a commitment c for
a hidden value a and range proof π(c) = (σ, c, LPK , {TKi, π(ci, TKi)}i=0,··· ,n−1),
We assume that A wins the tracing game with nonnegligible advantage δ, that
is, π(c) satisfying the following:

1. Verify(c, π(c)) = 1.
2. Trace(π(c), trapdoors) 6= a.

According to the soundness of Borromean range proof, we know c = gxha

with a ∈ [0, 2n − 1] and ci = gxih2
iai for every i = 0, · · · , n − 1 except for

negligible probability ε1. If Trace(π(c), trapdoors) 6= a, then there exists j s.t.

TKj 6= hxj−2
jaj , we set TKj = gsht without loss of generality. From the va-

lidity proof π(cj , TKj) = (z1, z2, e1, e2) which proves TKj is a power of h and

TKj · cj = gs+xiht+2iai is a power of gh, then we have e1 = H(hz1/(TKj)
e1)

and e2 = H((gh)z2/(gs+xjht+2jaj )e2), similar to Theorem 16, we know that
e1 = H(gr1hr2), e2 = H(gr3hr4), then we have:

r1 = −se1, r2 = z1 − te1, r3 = z2 − e2(s+ xj), r4 = z2 − e2(t+ 2jaj).

If s 6= 0, then we have e1 = −r1s−1, which means A computes e1 before he
runs the hash function (query the random oracle), this happens with negligible
probability ε2. So we get s = 0, then r3−r4 = e−12 (t+2jaj−xj), if t+2jaj−xj 6=
0, then e2 = (t + 2jaj − xj)−1(r3 − r4), which means A computes e2 before he
runs the hash function with nonnegligible probability δ − ε1 − ε2. This is a
contradiction, we get TKj = gsht = hxj−2

jaj and then TKj = hxj−2
jaj , which

contradicts to the assumptions before, so we finish the traceability of TBoRP. �
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Modification In the construction of TBoRP, there are totally n validity proofs
π(ci, TKi) and 2n verifications of them (n for TKi and n for TKi · ci), the
size and time are large compared to original Borromean range proof. In this
subsection we modify the validity proofs and verifications of all TKis to improve
their efficiency (with size reduced by n times, and time reduced by twice at
least). We also modify the Trace algorithm to reduce the tracing time by twice.
We only describe the differences in the following:

− (LPK , SK, c, {TKi}i=0,··· ,n−1, π)← Gen’(Par, a):

4’. For every i = 0, · · · , n − 1, Alice computes TKi = hxi−2
iai and ei =

H(c0, · · · , cn−1, TK0, · · · , TKn−1, i), gives all TKi’s validity proof

π({ci}, {TKi}, {ei}) that
∏n−1
i=0 TK

ei
i is a power of h and

∏n−1
i=0 (TKi ·

ci)
ei is a power of gh;

5’. Alice outputs LPK = {L0
PK , · · · , L

n−1
PK }, c, {TKi}i=0,··· ,n−1, π and re-

tains SK = (x0, · · · , xn−1), a.
− 1/0← Verify’(σ, c, LPK , {TKi}i=0,··· ,n−1, π):

1’. Verifier computes e0, · · · , en−1 and checks the validity of π({ci}, {TKi}, {ei}).
− a∗ ← Trace’(σ, LPK , y, {TKi}i=0,··· ,n−1):

1’. For every i = 0, · · · , n− 1, regulator computes cyi ;
2’. For every i = 0, · · · , n − 1, if cyi = TKi then outputs a∗i = 1, otherwise

outputs a∗i = 0;

The TKis validity proof π({ci}, {TKi}, {ei}) works as follows:

1. Let P1 =
∏n−1
i=0 TK

ei
i and P2 =

∏n−1
i=0 (TKi · ci)ei , prover generates r1, r2 ∈

Z∗q , computes f1 = H(hr1), f2 = H((gh)r2), then computes z1 = r1 +

f1
∑n−1
i=0 ei(xi − 2iai), z2 = r2 + f2

∑n−1
i=0 eixi, outputs the proof is π =

(z1, z2, f1, f2).

2. Verifier checks f1
?
= H(hz1/(P1)f1) and f2

?
= H((gh)z2/(P2)f2).

The security of modified scheme is easy to prove and we omit them for brevity,
here we only need to discuss the improvement of efficiency:

For size: in the original TBoRP, every π(ci, TKi) = (z1, z2, e1, e2), then there
are totally 2n elements from G and 2n elements from Z∗q . In the modified scheme,
π = (z1, z2, f1, f2), then there are only 2 elements from G and 2 elements from
Z∗q . It is easy to see that we reduce the size by n times.

For proving time: in the original TBoRP, prover need 2n hash computations,
2n exponentiations. In the modified scheme, prover need n+2 hash computations,
2 exponentiations. It is easy to see that we reduce the proving time by about n
times.

For verification time: in the original TBoRP, verifier need 2n hash com-
putations, 4n exponentiations, 2n multiplications and 2n comparisons. In the
modified scheme, verifier need n+ 2 hash computations, 2n+ 4 exponentiations,
2n + 1 multiplications and 2 comparisons. It is easy to see that we reduce the
verification time by about twice.

For tracing time: in the modified scheme, regulator no longer computes (c′i)
y,

which reduce the tracing time by about twice.
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4.3 Traceable Bulletproofs Range proof

Construction In the construction of TBuRP, similar to TBoRP, we use ped-
ersen commitment and bit expansion of amount, then add tracing keys bitwise
into the proof, together with the validity proof of tracing keys. The regulator
can use the trapdoors and tracing keys to recover the hidden amount.

We give the introduction of TBuRP in the following:

− Par← Setup(λ): system chooses elliptic curve G and generators g, h, g0, · · · ,
gn−1 ∈ G, the regulator generates y0, · · · , yn/2−1 ∈ Z∗q as the trapdoors,
computes h2i = gyi2i , h2i+1 = gyi2i+1, i = 0, · · · , n/2 − 1, system output-
s (G, q, g, h,g,h) as the public parameters, where g = (g0, · · · , gn−1) ∈
Gn,h = (h0, · · · , hn−1) ∈ Gn.

− (A,S, c, {TKi}i=0,··· ,n−1, π(TK0, · · · , TKn−1, A))← Gen(Par, a):
1. According to the public parameters (G, q, g, h,g,h) and amount a ∈

[0, 2n − 1], prover Alice samples x ∈ Z∗q uniformly, computes c = hxga

as the commitment (consistent with Bulletproofs);
2. Alice computes the binary expansion a = a0 + · · ·+ 2n−1an−1, ai = 0, 1

for i = 0, · · · , n− 1, sets aL = (a0, · · · , an−1);
3. Alice computes aR = aL − 1n = (a0 − 1, · · · , an−1 − 1);
4. Alice samples α ∈ Zq uniformly at random, computes

A = hαgaLhaR = hαga11 · · · g
an−1

n−1 h
a1−1
1 · · ·han−1−1

n−1 ;

5. Alice samples sL, sR ∈ Znq , ρ ∈ Zq uniformly at random, computes S =
hρgsLhsR ;

6. For every j = 0, · · · , n/2 − 1, Alice computes TK2j = g
α−a2j
2j g

α−a2j+1

2j+1 ,

TK2j+1 = h
−α−a2j+1
2j h

−α−a2j+1+1
2j+1 , the number of TKis is n;

7. Alice gives the validity proof π(TK0, · · · , TKn−1, A) of all TKis that
TK2j is a production of g2j ’s power and g2j+1’s power, TK2j+1 is a

production of h2j ’s power and h2j+1’s power, and A ·
∏n−1
i=0 TKi =

(h
∏
gi/

∏
hi)

α is a power of h
∏
gi/

∏
hi;

8. Alice outputs (A,S, c, {TKi}i=0,··· ,n−1, π(TK0, · · · , TKn−1, A)).
− (T1, T2, τx, µ, t, l, r)← Prove(A,S, c, {TKi}i=0,··· ,n−1, π(TK0, · · · , TKn−1, A)):

1. Prover sends (A,S, c, {TKi}i=0,··· ,n−1, π(TK0, · · · , TKn−1, A)) to verifi-
er;

2. Verifier samples y, z ∈ Zq uniformly at random, and sends them to
prover;

3. Prover computes T1, T2 and sends them to verifier;
4. Verifier samples x ∈ Zq uniformly at random, and sends it to prover;
5. Prover computes τx, µ, t, l, r and sends them to verifier.

− 1/0← Verify: we only introduce the verification of π(TK0, · · · , TKn−1, A):
1. For every i = 0, · · · , n− 1, verifier checks the validity of TKi;
2. Verifier computes A ·

∏n−1
i=0 TKi and checks the validity of A ·

∏n−1
i=0 TKi;

3. Verifier continues the rest verification of Bulletproofs;
4. If all pass then outputs 1, otherwise outputs 0.

− a∗ ← Trace({TKi}i=0,··· ,n−1, y0, · · · , yn/2−1):
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1. For every j = 0, · · · , n/2− 1, regulator computes TK2j+1 · TK
yj
2j ;

2. If TK2j+1 · TK
yj
2j = h2jh2j+1, then outputs (a∗2j , a

∗
2j+1) = (0, 0);

3. If TK2j+1 · TK
yj
2j = h−12j h2j+1, then outputs (a∗2j , a

∗
2j+1) = (1, 0);

4. If TK2j+1 · TK
yj
2j = h2jh

−1
2j+1, then outputs (a∗2j , a

∗
2j+1) = (0, 1);

5. If TK2j+1 · TK
yj
2j = h−12j h

−1
2j+1, then outputs (a∗2j , a

∗
2j+1) = (1, 1);

6. Regulator outputs a∗ = a∗0 + · · ·+ 2n−1a∗n−1.

Correctness

Theorem 21 (Correctness of TBuRP) For an honest user Alice in TBuR-
P, she can complete the Bulletproofs, and the regulator can trace her amount.

Proof. We already know the correctness (completeness) of Bulletproofs, it re-
mains to prove correctness of Trace. Since h2j = g

yj
2j , h2j+1 = g

yj
2j+1 and TK2j =

g
α−a2j
2j g

α−a2j+1

2j+1 , TK2j+1 = h
−α−a2j+1
2j h

−α−a2j+1+1
2j+1 for every j = 0, · · · , n/2− 1,

then we have:

− When (a2j , a2j+1) = (0, 0),

TK2j+1 · TK
yj
2j = (g

α−a2j
2j g

α−a2j+1

2j+1 )yj · h−α−a2j+1
2j h

−α−a2j+1+1
2j+1 = h2jh2j+1;

− When (a2j , a2j+1) = (1, 0),

TK2j+1 · TK
yj
2j = (g

α−a2j
2j g

α−a2j+1

2j+1 )yj · h−α−a2j+1
2j h

−α−a2j+1+1
2j+1 = h−12j h2j+1;

− When (a2j , a2j+1) = (0, 1),

TK2j+1 · TK
yj
2j = (g

α−a2j
2j g

α−a2j+1

2j+1 )yj · h−α−a2j+1
2j h

−α−a2j+1+1
2j+1 = h2jh

−1
2j+1;

− When (a2j , a2j+1) = (1, 1),

TK2j+1 · TK
yj
2j = (g

α−a2j
2j g

α−a2j+1

2j+1 )yj · h−α−a2j+1
2j h

−α−a2j+1+1
2j+1 = h−12j h

−1
2j+1.

Then we get the correctness of TBuRP. �

Proof of Zero-knowledge

Theorem 22 (Zero-knowledge of TBuRP) TBuRP is computational zero-
knowledge for any PPT adversary A (without possession of trapdoors).

Proof. For the structure of TK2j = g
α−a2j
2j g

α−a2j+1

2j+1 , TK2j+1 = h
−α−a2j+1
2j ·

h
−α−a2j+1+1
2j+1 in TBuRP, we prove that, TBuRP is computational zero-knowledge

for all TKis are substituted for Si = gα−aii , Ti = hα+aii . In fact, TK2j =

g
α−a2j
2j g

α−a2j+1

2j+1 = S2jS2j+1, TK2j+1 = h
−α−a2j+1
2j h

−α−a2j+1+1
2j+1 =

(T2jT2j+1)−1h2jh2j+1.
For every i = 0, · · · , n−1, we only need to prove that (Si, Ti) does not reveal

any knowledge of ai = 0 or 1. Formally, we prove for any PPT adversary A, can-
not distinguish (Si, Ti) = (gαi , h

α
i ) (when ai = 0) from (Si, Ti) = (gα−1i , hα+1

i )
(when ai = 1). Using the same argument from Theorem 19, we know that
(gi, hi, g

α
i , h

α
i ) and (gi, hi, g

α
i , r) are computational indistinguishable for uniform-

ly generated α ∈ Z∗q , under the DH assumption. Meanwhile, (gi, hi, g
α
i , r) and

(gi, hi, r
′, r) are identical distributions as g is a generator of G. We also know
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that the distribution of (g, h, r′, r) and (g, h, r′g−1i , rhi) are identical. Moreover,
again from the DH assumption, we know (g, h, r′g−1i , rhi) and (gi, hi, g

α−1
i , hα+1

i )
are computational indistinguishable. So we have:

(gi, hi, g
α
i , h

α
i ) ≈c (gi, hi, r

′, r) = (g, h, r′g−1i , rhi) ≈c (gi, hi, g
α−1
i , hα+1

i ).

Where gi, hi are constants, r, r′, α are uniform random variables.
Since (gαi , h

α
i ) = (Si, Ti)ai=0 and (gi, hi, g

α−1
i , hα+1

i ) = (Si, Ti)ai=1, we know
they are computational indistinguishable for any PPT adversary A, for every
i = 0, · · · , n− 1, then we finish the zero-knowledge proof of TBuRP. �

Traceability

Theorem 23 (Traceability of TBuRP) TBoRP is traceable for any PPT
adversary A (without possession of trapdoor).

Proof. The proof is quite similar as Theorem 16 and Theorem 20, which will be
omitted for brevity. �

From the traceability of TBuRP, we can also modify the Trace to Trace’,
which reduces the time of tracing:

− a∗ ← Trace’({TKi}i=0,··· ,n−1, y0, · · · , yn/2−1):
5’. Otherwise outputs (a∗2j , a

∗
2j+1) = (1, 1).

We denote the modified scheme as TBuRP’.

4.4 Discussion and Comparison

In the construction of TBuRP’, there are n/2 trapdoors with 2 bits per round
in the Trace’ algorithm, moreover, for n bits amount, we set the number of
trapdoors is n0 and the number of bits in each round of Trace algorithm is n1,
we can get a conclusion that n0 · n1 = n. Meanwhile, for Trace algorithm, the
computation time in each round requires is 2n1 . To sum up, the total tracing
time is T = (2n1 − 1) · nn1

, which meets the minimum n when n1 = 1. When
n1 = 1, there will be n trapdoors, together with 2n TKis, which is twice as
much as TBuRP’, so we choose n1 = 2 as our parameter (T = 1.5n), with n/2
trapdoors and n TKis. In the future work, the n1 can be modified (such as
1, 4, 8, · · · , n) to adapt to different application requirements with tracing time
increased and tracing keys number (and size) decreased.

Scheme n0 TKis Tracing Time Proof Size (G,Z∗
q) Soundness for Regulator

TBoRP’ 1 n n (2, 2) honest
TBuRP’(n1 = 1) n 2n n (2n + 1, 2n + 1) malicious
TBuRP’(n1 = 2) n/2 n 1.5n (2n + 1, n + 1) malicious

In the table above we compare TBoRP’ (the modified TBoRP) with TBuRP’
in various aspects (where the proof size is the size of all TKis validity proof).
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5 Applications

Applications of TLRS, TBoRP and TBuRP for multiple regulators and auxiliary
computing will be introduced in the full version (coming soon).

6 Conclusion

In the current research field of blockchain technology, the most important re-
quirements are decentralization, privacy protection and regulation. On the one
hand, users need to have sufficient security mechanisms to ensure the privacy
of their personal data; on the other hand, it is necessary for the regulatory a-
gencies to maintain legitimacy in the blockchain and effectively combat crimes;
meanwhile, the essential feature of blockchain technology is “decentralization”.
The privacy-preserving blockchain systems represented by Monero and Zerocash
realize the functions of decentralization and privacy protection, but they cannot
provide regulation. The consortium blockchain system with trusted center has
privacy protection and regulation, but can not meet the decentralization require-
ments. How to balance and fully realize these three characteristics is an open
problem in the academia and business community.

In this paper, we study and classify the regulatability of privacy-preserving
blockchains, and determine the regulatory model with unconditional regulation,
static regulation, and self-participation of users as the core principals. Then,
based on cryptographic components such as classic ring signature, one-time sig-
nature and switch proofs, we propose the traceable and linkable ring signature
TLRS for the first time, and give the security proofs. TLRS realizes the regula-
tory function for users’ identities, and can prevent the malicious regulator from
double spending, escaping from regulation, slandering users and forging signa-
tures, which is a regulatable scheme that minimizes the regulator’s power and
meets the characteristic of ”decentralization” to the greatest extent. Moreover,
based on cryptographic techniques such as commitment proofs, binary expan-
sion, and randomized combination, we propose the traceable Borromean range
proof TBoRP and traceable Bulletproofs range proof TBuRP for the first time,
together with their security proofs and modifications for efficiency. Both TBoR-
P and TBuRP achieve the regulatory function for amounts of transactions, and
are well suited for replacement of Monero system. Finally, we give the appli-
cations including multiple regulators and auxiliary computing on the basis of
TLRS, TBoRP and TBuRP, which have potential in future scenarios such as
multi-currency transfer, international trades and taxing.

Future Works In the future, we need to study and improve in the following
aspects:

1. For TLRS, TBoRP and TBuRP, improve their efficiency to reach the level
of Monero system;
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2. Considering the weakness of Pedersen commitment (in TBoRP), where reg-
ulator can alter the hidden amount by use of trapdoor, we need to design
new schemes as well as new commitments to prevent the attack of malicious
regulator;

3. Study new range proof systems without using of binary expansion to reduce
the number of tracing keys;

4. Study post-quantum ring signatures and range proofs, such as lattice-based,
code-based, multi-variant-based and isogen-based schemes to prepare for the
future applications and replacement in the era of quantum computing.
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