Isogeny-based hashing
despite known endomorphisms

Lorenz Panny

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, Netherlands
lorenz@yx7.cc

Abstract. The Charles—-Goren-Lauter hash function on isogeny graphs
of supersingular elliptic curves was shown to be insecure under collision
attacks when the endomorphism ring of the starting curve is known.
Since there is no known way to generate a supersingular elliptic curve
with verifiably unknown endomorphisms, the hash function can currently
only be used after a trusted-setup phase. This note presents a simple
modification to the construction of the hash function which, under a few
heuristics, prevents said collision attack and permits the use of arbitrary
starting curves, albeit with a performance impact of a factor of two.

Keywords: Isogeny-based cryptography, expander graphs, hash functions.

1 Introduction

In 2009, Charles, Goren, and Lauter described a construction of cryptographic
hash functions from certain superpolynomially-sized graphs [1], essentially by
mapping the input message to a walk in the graph in an injective manner and
returning a representation of the walk’s end node as the hash value; cf. Figure 1.
For security, it is required that the graph is strongly interconnected (fast mixing),
as well as that finding non-trivial cycles in the graph is hard.

As an example instantiation, [1] proposed using ¢-isogeny graphs of super-
singular elliptic curves, which provably have the fast mixing property [8], but
unfortunately Petit and Lauter later showed that cycle finding is easy when the
endomorphism ring of the starting node is known [7, 4]. Since there is no known
method to generate a supersingular elliptic curve in a verifiably pseudorandom
way such that nobody can know the endomorphism ring, this means the CGL
supersingular-isogeny hash function is only usable after a setup phase in which a
trusted entity (which might be a multi-party computation) takes a random walk
to generate a starting curve, then makes sure to forget the path that led there.

In Section 2, we introduce and analyze a slight tweak to the construction of
the hash function that seems to thwart the Lauter—Petit attack without requiring
that the endomorphism ring be unknown.

* This work was supported in part by the Commission of the European Communities
through the Horizon 2020 program under project number 643161 (ECRYPT-NET).
Date of this document: 2019.08.14.

/’ T
L
|/2.\“\>c:’// / AN
o -> 1 A
\ el
0 ./1 \n\ -
\ /1/ \U\ S g R
[o= — >
\U ~a
\. 1—>e=="T_ z o
m\ ///» g

Figure 1. A graph-based hash function consuming the message 0111. The hash value
is the identifier of the end node h of the walk. The gray edges exemplify a much bigger
ambient graph (containing lots of big cycles, which are supposed to be hard to find).

1.1 The Charles—Goren—Lauter hash function [1]

The construction of the supersingular-isogeny CGL hash function follows easily
from the general picture and some specific properties of supersingular isogeny
graphs: For prime ¢, the ¢-isogeny graph is a (¢+1)-regular undirected graph
almost everywhere (save < 2 exceptional nodes). Charles, Goren, and Lauter
suggest setting ¢ = 2, such that each node has three outgoing edges, and consume
one input bit at a time to deterministically select one of the two out-edges distinct
from the edge that was taken to arrive at the current node.

More formally, at each point in time, the state of the hash function consists
of a pair (E, Tpaer) where E: y? = 2®+ax+b is a supersingular elliptic curve and
Tpack 18 the z-coordinate of a point of order 2 on F that leads back to the previous
node on the walk and must be avoided. Consuming a bit b proceeds as follows:
Find the two roots the polynomial g(z) = (23 + ax + b)/(x — Tpaer); they are
the z-coordinates of the remaining points of order 2 on E. Use an arbitrary, but
fixed, deterministic ordering on the two roots of g(x) to assign them the labels
xo and x1, and let P; = (2;,0) be the corresponding points on E. Compute the
isogeny ¢: E — E/(P,) and update the state to (E/(Ps), z(¢(Pi-p))). Once all
input bits have been consumed, the curve E from the state (or a shorter value
derived from it) is returned.

Remark 1. In the typical setting p = 3 (mod 4) and FEy: y?> = 2® + 2, the
initial state needs to be chosen with caution: Since Ey admits the nontrivial
automorphism ¢: (x,y) — (—z,v/—1-y) of order 4, there is (up to isomorphism)
only one curve 2-isogenous to Fy besides itself, which leads to easy collisions if
not addressed properly. Luckily, it seems that initializing the hashing process by
taking the isogeny Ey — Ey/{(v/—1,0)) before starting to consume input bits
gets around this issue.

1.2 The Lauter—Petit attack [7, 4]

We now outline the collision attack against the CGL hash function when the
starting curve has known endomorphism ring O = End(Ep). Recall that O is an
order in a quaternion algebra since Ej is supersingular.

First, notice that hash collisions correspond to cycles in the f-isogeny graph
containing Fy, which in turn correspond to endomorphisms of Ey of ¢-power
norm. Finding an endomorphism of ¢-power norm consists of solving a norm
equation coming from the known description of O, but in general the kernel sub-
group of such an endomorphism (so as to iteratively compute the curves on the
corresponding cycle) is impossible to write down without passing to prohibitively
large extension fields.

This is where the second observation comes into play: Isogenies Fy — FE
correspond (up to isomorphism of F) to left-ideals of O, and (since principal
ideals correspond to endomorphisms) the isogeny codomains corresponding to
two ideals are isomorphic if and only if the ideals are equivalent. Algorithmically
speaking, this allows one to replace the ideal of norm ¢™ by an equivalent ideal of
powersmooth norm, which keeps the extension degrees under control and thereby
makes computing the codomain curve feasible [5].

Now finally, for any factorization ¢ = ¢’ o ¢ of a cyclic isogeny ¢: Fg — E,
it is easy to compute the ideal corresponding to 1 from the degree of 1 and
the ideal corresponding to ¢. In particular, this implies that knowing the ideal
a C O of a cyclic £™-isogeny ¢ = 1, 0---01)1, where each 1; has degree ¢, one can
efficiently compute the ideals corresponding to the partial isogenies 11, 19 0 91,
etc., up to ¥, o ---o;. Concretely, the left ideal corresponding to the partial
isogeny ¥y, o - - - 0 11 simply equals the sum a + OFF.

With these ingredients, the Lauter—Petit collision attack proceeds as follows:
Solve a norm equation to find an endomorphism a € O of norm ¢" for some n.
For each k from 1 to n—1, compute the ideal Oa+O¢* corresponding to the first
k steps in the f-isogeny cycle given by «. Using an algorithm of Kohel, Petit,
Lauter, and Tignol [6], transform each of these ideals into an equivalent ideal
of powersmooth norm and compute the corresponding codomain curve. At this
point, one has a list of curves (Eg, E1, ..., Fn_1, E, = Eg) such that each pair
(E;, Ei+1) is connected by an f-isogeny. In the original CGL hash function as
described above, this cycle corresponds to a collision, by choosing the input bits
in such a way that the edges taken are exactly the f-isogenies on the cycle.

2 Hardened variant of the hash function

Our main contribution is the following simple idea:
Use only a fraction of the available edges at each step.

The remainder of this note will be devoted to the analysis of this approach.
As a starting point, note that the Lauter—Petit attack outlined above relies
crucially on the assumption that all (or a significant portion) of the ¢-isogeny

cycles in the graph yield a collision. This makes use of the fact that (for £ = 2),
except at the starting node, there are exactly two outgoing edges at each step,
corresponding to consuming the input bits 0 and 1. In other words, essentially
all paths starting at E are reachable by twiddling with the input bits.

We will now analyze a variant of this construction, where instead of setting
¢ = 2 and consuming one bit per step, we shall leave ¢ variable and suppose that
we use the input to select one of r outgoing cyclic f-isogenies at each step. By
counting cyclic subgroups of E[¢] 2 Z/{ x Z/{, one sees that (even for composite
degrees) the number of cyclic ¢-isogenies emerging from any given node is lower
bounded by ¢ 4 1. Thus the probability that a given cycle of length C' yields a
collision can very roughly be estimated as < (r/¢)°, as all edges along the way
need to be ‘valid’, but see below.

Note that there are two opposing trends when increasing ¢: On one hand, the
quotient r/¢ shrinks, which decreases the chance that a given cycle leads to a
collision, but on the other hand, the expected cycle length in the graph shrinks
as well (since there are more edges), increasing the chance. Luckily, we will see
that it is possible to balance these effects.

Finally, note that all of this requires the heuristic assumption that the cycles
obtained from the Lauter—Petit attack are more or less random: If, for instance,
it turns out that one can pick the endomorphism « in a smart way to increase
the probability of finding a collision, the estimates below are clearly void.

2.1 Analysis

We now estimate the chance that a ‘random’ ¢-isogeny cycle yields a collision.

Expected cycle lengths. As hinted above, we require an estimate on minimum
length of cycles in the (-isogeny graph. By basic counting, there are (£+41)-¢¢~1
paths of length k. Therefore, by the birthday paradox, it can be expected that
two such paths meet once approximately a square-root fraction of the ~ p/12
nodes has been covered, that is, after roughly %logz p steps. The concatenation
of two such paths thus gives rise to a cycle of length log, p.

Remark 2. For some curves, there are evident endomorphisms of very small /-
power norm: For instance, whenever End(Ey) contains a square root of —1, such
as in the typical case p = 3 (mod 4) and j(Ep) = 1728, the endomorphism
1+ +/—1 of Ey has norm 2. In such cases, care needs to be taken to avoid
collisions coming from these special, exceptionally short cycles, for instance by
forcing the first steps away from ‘dangerous’ edges.

Chance of ‘good’ cycles. Naively, the chance that a cycle yields a collision
looks like (r/£)€, corresponding to a chance of r/¢ each that an edge on the
cycle can be taken by the hash function. However, in reality, this is slightly more
complicated: The cycle can be traversed in both directions, and any way of split-
ting the cycle into two distinct paths to the same node needs to be considered.

Although it is not difficult to compute this exactly, it is fairly obvious that the
increase in the attacker’s success probability due to this degree of freedom is
upper bounded by the cycle length C, which will be a good enough estimate in
the following.

Longer cycles? An attacker may opt to try out cycles (much) longer than the
expected minimum length log, p, but since the success probability is exponen-
tially small in the cycle length, this strategy seems to be inferior to minimizing
cycle lengths and will thus be disregarded in the following.

Incremental cycle finding? Our estimates below make use of the assumption
that the best an attacker can do is pick a random endomorphism, corresponding
to an isogeny cycle, and hoping that it leads to a collision. However, it is possible
to modify the KLPT algorithm to adaptively tweak the chosen endomorphism
when the isogeny walk gets stuck due to a disallowed edge, as to obtain another
continuation of the path that has already been started. One may hope that
repeating this corrective step sufficiently often may lead to an admissible closed ¢-
isogeny walk. We now estimate the effectiveness of this approach, for concreteness
focusing on a suborder O of End(Ey) with norm form a? + b% + pc? + pd®. Such
a subring exists in the common case Ey: y? = 2® + z /F,2 with p =3 (mod 4).

Suppose the attacker has started out with an endomorphism a of ¢-power
norm a? + b + pc? + pd? and gets stuck after k steps in the f-isogeny graph.
They wish to compute a new endomorphism o’ # « of f-power norm such that
0o + OLF = Oa + OFF, which can be done by solving the norm equation

a’? + b2 +pc’2 Jrpd/2 s

subject to the constraints a’ = a (mod ¢*), etc., with small ¢’. Estimating the
number of choices for (a/,V',¢/,d’,e’) for a given upper bound e’ < M, we get
#a' #Y =~ VIME 4 H#d = [0 [p/lF, and #€' ~ M. Hence the total
number of choices is ~ (2 =4k)/ /p. A single choice has a heuristic chance of
~ 1/fM to satisfy the equation, hence there should be solutions roughly when
(M=4k DN /p > 1; thus we can expect €’ + log, ¢/ > 4k + log, p. Note that we will
want £ to be very large (see Table 1), hence this implies roughly e’ > 4k +log, p.
Since €’ —k is expected to be bigger than the original expected cycle length log, p,
it seems that this approach will only make the attacker’s life (even) harder.

Expected success probability. In summary, the probability that an attacker
can transform a given ‘random’ isogeny cycle into two colliding hash function
inputs is coarsely upper bounded by

r C
-3
é .
Translating this into the amount of work for an attacker, we recall that we can
assume C' = log, p and point out that finding a cycle using the KLPT algorithm

surely takes time 2(logp) > C, hence we can estimate the total attack cost as

(g)c N (g)logzp _ (gplog”)logep — pl-loger

r r

For any target security level A, one therefore obtains a tradeoff curve between
the size of p and the relative sizes of £ and r. For example, when r = 2, such
that one bit is consumed at a time, one requires the prime p to be about 2.71\
bits long when ¢ = 3, about 2\ bits long when ¢ = 4, about 3\/2 bits when
¢ =8, and about 4)/3 bits when ¢ = 16, to (conjecturally) achieve A-bit security
against this specific attack.

Note that for log,r < 1/2, the Petit—Lauter attack against this variant is
in fact more expensive than generic birthday attacks against the hash function,
hence whenever 72 < ¢ the cycle-finding approach can be neglected. In summary,
to protect the CGL hash function against both the Petit-Lauter attack as well
as generic collision finding, the choice of (p,log, r) should satisfy

log, p > max {2\, A\/(1 —log,)} =: mx(log, 7). (1)

Optimizing parameter choices. Clearly, larger p and smaller log, r have a
negative impact on the performance of the hash function. Following [3], it is
beneficial to pick the pair (p,¢) in such a way that £ = 2™ is a big power of
two and p = 2" - f — 1, where f is a small cofactor. With the starting curve
Ey: y? = 23 + x, these choices ensure that at each step of the hash function a
big chunk of the input message can be encoded injectively, but not necessarily
surjectively, as a cyclic F,2-rational subgroup of size 2", whose corresponding
isogeny can be evaluated efficiently using the tree-based strategy of [2] using
O(nlogn) operations.

While the exact cost of arithmetic in IF,,> depends rather strongly on specific
implementation details (e.g., word-size boundaries), we can roughly model the
growth in complexity as (logp)?, which corresponds to the cost of schoolbook
arithmetic. Therefore, for a fixed choice of (logp,¢,r), we can expect the cost
per bit of evaluating our modified hash function to roughly scale as

(log p)*(nlogn)/log r ~ (log p)*(loglog p) /log,r =: C(logp,log,r).

The objective is therefore to minimize this function while respecting the con-
straint log, p > my (log, r) from (1) for a certain security level A. Clearly, for fixed
log, r, it is optimal to choose p as small as possible, i.e., logy p & m)(log, r). See
Figure 2 for plots of C' restricted to this choice of log, p for various values of A;
it is evident that log,r = 1/2 minimizes the cost. Based on this, Table 1 lists
some parameter choices expected to work well for the case where ¢ and r are
(following [3]) both powers of two, for some typical target security levels .

Since we only consume log, r ~ half of the possible input bits at each step, but
can make use of all existing optimizations otherwise, we expect the performance
of our modified hash function to be very close to half the speed of the optimized
CGL hash function variant from [3].

~ cost for A\=128 ~ cost for A=192 ~ cost for A= 256

100

107

106
0 01 02 03 04 05 06 07 08 09 0 o1 0z 03 04 05 08 07 08 08 0 o1 0z 03 04 05 06 07 08 09

Figure 2. Plots of the cost estimate C'(2™2(°8¢") log, r) for A € {128,192,256}. The
exact values are meaningless, but notice the clear-cut global minima at log, r = 1/2.

Table 1. Reasonable choices of (p, ¢, r) for conjectured security levels .

A ‘ l r
128 9256 45 9256 9128
192 9391 9390 9195
256 2512 243 2512 2256

References

(1]

(8]

Denis X. Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash
functions from expander graphs. J. Cryptology, 22(1):93-113, 2009. https://ia.
cr/2006/021.

Luca De Feo, David Jao, and Jérome Plit. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. J. Mathematical Cryptology,
8(3):209-247, 2014. https://ia.cr/2011/506.

Javad Doliskani, Geovandro C. C. F. Pereira, and Paulo S. L. M. Barreto. Faster
cryptographic hash function from supersingular isogeny graphs, 2017. IACR
Cryptology ePrint Archive 2017/1202. https://ia.cr/2017/1202.

Kirsten Eisentrager, Sean Hallgren, Kristin E. Lauter, Travis Morrison, and Chris-
tophe Petit. Supersingular isogeny graphs and endomorphism rings: Reductions
and solutions. In EUROCRYPT, volume 10822 of LNCS, pages 329-368. Springer,
2018. https://ia.cr/2018/371.

Steven D. Galbraith, Christophe Petit, and Javier Silva. Identification protocols
and signature schemes based on supersingular isogeny problems. In ASIACRYPT,
volume 10624 of LNCS, pages 3-33. Springer, 2017. https://ia.cr/2016/1154.
David Kohel, Kristin E. Lauter, Christophe Petit, and Jean-Pierre Tignol. On
the quaternion ¢-isogeny path problem, 2014. TACR Cryptology ePrint Archive
2014/505. https://ia.cr/2014/505.

Christophe Petit and Kristin E. Lauter. Hard and easy problems for supersingular
isogeny graphs, 2017. IACR Cryptology ePrint Archive 2017/962. https://ia.cr/
2017/962.

Arnold K. Pizer. Ramanujan graphs and Hecke operators. Bull. Amer. Math. Soc.
(N.S.), 23(1):127-137, 07 1990.

https://ia.cr/2006/021
https://ia.cr/2006/021
https://ia.cr/2011/506
https://ia.cr/2017/1202
https://ia.cr/2018/371
https://ia.cr/2016/1154
https://ia.cr/2014/505
https://ia.cr/2017/962
https://ia.cr/2017/962

	Isogeny-based hashing despite known endomorphisms

