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ABSTRACT
Electronic chips in consumer, industrial, and military applications
are targeted by untrusted entities in the design and fabrication
process, aiming at reverse-engineering and Intellectual Property
(IP) piracy. Hardware obfuscation techniques, namely logic locking
and IC camouflaging, have been developed to mislead an adversary
hoping to reverse engineer the netlist and extract the functionality.
However, virtually all existing hardware obfuscation schemes de-
veloped over the last decade have been shown to be vulnerable to
oracle-guided attacks, e.g., SAT and machine learning attacks. More-
over, most of these schemes rely on an ideal tamper- and read-proof
memory to store the key used to unlock the circuit after manufactur-
ing. In this work, we propose two novel cryptographically-secure
hardware obfuscation schemes using garbled circuits, which are
compatible with current circuit synthesis and fabrication tools.
Our first construction does not require any secure hardware with
tamper- and read-proof memory. In this case, the security of the
obfuscation is guaranteed by Proof-of-Stack blockchain protocols
and witness encryption schemes. However, for our second construc-
tion, we assume the existence of secure memory in the hardware
to achieve higher performance and less overhead. Both construc-
tions are inspired by program obfuscation and one-time program
techniques enabling us to selectively encrypt and garble some IP
cores during integration as well as manufacturing to prevent IP
piracy. Furthermore, with the help of our constructions, we can
realize one-time and pay-per-use hardware, where a user can use
the electronic circuit for a limited amount of time.
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1 INTRODUCTION
Over the years, electronic components and their supply chains have
been considered secure and trustworthy. However, globalization of
the modern integrated circuit (IC) supply chain refutes this assump-
tion. As the fabrication of the semiconductors moves to smaller
nodes, more advanced and sophisticated fabrication facilities are
needed. To keep the production of ICs with the latest technology
nodes profitable, most market leading IC vendors have become
fabless [15], where the their products are fabricated overseas by an
independent foundry. Different phases of chip manufacturing, such
as design, integration, and fabrication can no longer be carried out
under the same roof, see Fig. 1. Therefore, original IP owners no

Figure 1: The supply chain in semiconductor industry. It is
assumed that the designer, packaging and distribution are
trusted, while the IP integrator, foundry and end-users are
untrusted.

longer have control over the entire supply chain. Consequently,
ICs become vulnerable to IP piracy, tampering, and counterfeiting.
These problems continue even when the devices are delivered to
the malicious end-users in the market.

To address these issues, several IP obfuscation schemes have
been proposed to prevent IP piracy of electronic chips attempted
by IP integrators and untrusted foundries. In an attempt to regain
control over the design, it is suggested to manufacture only the
front-end-of-line (FEOL) layers at an untrusted high-end foundry,
whereas a trusted low-end foundry should take over manufacturing
the back-end-of-line (BEOL) layers [12]. The split manufacturing
approach, although being a promising solution, has shortcomings
that have been identified in the literature (e.g., [28]). As a prime
example, it has been demonstrated that a malicious FEOL foundry
can launch a heuristic-based attack to circumvent security measures
offered by some split manufacturing techniques [20].

Further efforts to protect IPs cover a wide range of techniques
developed over the past decade: compiler-level, gate-level, and
layout-level hardware obfuscations. The former type of obfuscation
techniques refers mainly to Finite State Machine (FSM) locking,
so-called sequential logic locking, where the FSM is augmented by
adding a new set of states [7]. This type of approach can also be
applied at the gate-level as proposed in, e.g., [2, 3] and layout-level,
see [4, 16]. In addition to this, at the gate-level, the most prominent
example is (combinational) logic locking methods that include extra
key gates in a design, which are controlled by a key given to it as
input bits [21]. Logic masking [5] and logic permutation [8] are
other techniques built upon the idea of setting a fixed output for
wrong keys and permutation of interconnections by a key, respec-
tively. Although being effective in some scenarios, no proof has
supported the approaches mentioned above.

At the layout-level, camouflaging is performed to hide the func-
tionality of a standard cell by employing a combination of real
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and dummy contacts [19]. It has been assumed that an attacker re-
quires exponential time, in the number of camouflaged gates, to de-
camouflage a circuit; however, this assumption has become invalid
as the de-camouflaging problem is reduced to Boolean satisfiability
(SAT) problem and solved by applying off-the-shelf SAT-solvers.
The application of such solvers in the hardware obfuscation area is
not limited to this as they are widely adopted to compromise the
security of logic locked circuits, see, e.g., [27]. In addition to this,
modified, approximation-based versions of SAT attack, so-called
APP-SAT, has been applied to de-obfuscate circuits effectively [22].
A recent work has gone even beyond this by showing that the ex-
isting locking techniques cannot be resilient against approximation
attacks, when the adversary is given access to an oracle providing
her with the outputs of an unlocked design [23]. This can further
emphasize the importance of applying cryptographically-secure
techniques to guarantee the security of the obfuscated circuits.

Unfortunately, virtually all of these schemes have been developed
in an ad-hoc and heuristic fashion, as discussed above. Moreover,
the existence of a tamper- and read-proof memory is the primary
assumption made by several obfuscation techniques, e.g., logic
locking. However, the most secure memory candidates, which are
all based on non-volatile memory technologies, are susceptible to
physical attacks, making direct readout possible [18]. As a conclu-
sion, there is an ever-increasing need for an obfuscation technique,
which is provably secure against oracle-guided attacks and relies
on secure memories as little as possible.

OurContribution: This paper suggests a novel approach aimed
at not only addressing the issues with existing obfuscation methods
but also enabling “pay-per-use circuits.” This notion offers a higher
security level since not only the first access to the circuit can be
restricted, but also the total number of accesses can be pre-defined.
Interestingly, our approach relies on the existence of neither a
tamper-proof memory nor a self-destructing one, as required by a
scheme proposed in [10]. Instead, we rely on inherent characteris-
tics of the Blockchain (BC) technology that is, it can be regarded
as a “platform” enabling us to achieve the security in the sense
of cryptography. In this regard, as proved in [11], the security of
our scheme is related to the security of the BC. This also explains
the core difference between our work and [30], where the BC is
deployed to monitor the integrity of the electronics supply chain.

Finally, we stress that our idea can be considered as a step to-
wards the further development of a provable method, which has
rarely been fully researched in the hardware obfuscation area. Com-
pared with the most relevant study of this matter, i.e., [6], our paper
does not focus on a specific type of obfuscation approaches. How-
ever, both of our methods and one proposed by Crescenzo et al. [6]
apply formal models as an enabler. While we employ the BC cf. [11],
indistinguishability obfuscation is considered in [6], as such models
suggested for program obfuscation, the latter cannot adequately
reflect the challenges confronting hardware obfuscation, as also
mentioned in [6]. To address this, we provide an exhaustive discus-
sion on how and to what extent our scheme can be implemented
in real-world scenarios. In fact, this is a crucial contribution made
by our paper: although the security of the BC-enabled pay-per-use
circuits has been proven in the literature [11], we demonstrate how
to adopt those results to achieve secure hardware obfuscation.

2 BUILDING BLOCKS OF OUR SCHEME AND
ADVERSARY MODEL

The core idea of our solution is to overcome the limitations of
previous approaches by applying the notion of BC in conjunction
with witness encryption and garbled circuits, as described below.

2.1 BCs and Proof-of-Stake Protocols
In our scheme, BCs can be seen as an alternative to the trusted-setup
assumptions, i.e., the existence of tamper-proof hardware. This is
due to the fact that BCs have been proven to offer the security-
related features demanded by construction using tamper-proof
hardware, e.g., one-time programs and pay-per-use programs [11].
Moreover, BCs enable us to deal with malicious parties, namely
malicious foundries and users in our scenario.

Regarding the mechanism used to reach consensus, commonly
referred to as “mining”, BC protocols can be categorized as Proof-
of-Work (POW) and Proof-of-Stake (POS) [14]. As for the former
significant amount of computational power is required, in the latter
case, a miner has to provide a sufficient balance. More specifically,
if a party attempts to generate a block, the POS should be used as a
certificate to verify the correctness. In our scenario, POS BCs pro-
vides assurance that a party (legitimate or malicious) can evaluate
a circuit for only a limited time, depending on its balance [11].

2.2 Witness Encryption (WE)
The concept of (extractable) WE is similar to public-key encryp-
tion/ decryption, although the secrecy is handled in a different
manner. For public key-based scheme, a secret key associated with
a public one is required, whereas a message encrypted by an (ex-
tractable) WE can be decrypted if the solution to some NP-hard
search problem (so-called, a witness) is known [9]. For instance,
suppose that the decryption is possible if a solution to an NP-hard
puzzle is known. In our scheme, such witness is the existence of
users’ blocks in the BC. This is possible thanks to the NP relation on
the BC protocol defined based on the uniqueness of the local states
of parties and their transaction over the BC [11]. Especially, for the
pay-per-use application, there should be an evidence showing that
a pre-specified amount of cryptocurrency is transferred from the
user to the IP owner (i.e., service provider).

2.3 Garbled Circuits
The notion of garbled circuits can be thought of as randomized
encoding of Boolean circuits [1]. Among several interesting ap-
plications of garbled circuits, we are interested in how they are
employed to construct one-time programs, i.e., one-time circuits in
our case. In this regard, it is desired to encode a circuit into one that
can be executed only once, on an arbitrarily chosen input. Infor-
mally, after garbling a circuit C with n inputs, we obtain a garbled
circuit, together with 2n wire keys. Afterward, when evaluating
a garbled circuit on given key and input (see Section 4 for more
details), the output of the garbled circuit is the same as the output of
our circuitC (our circuit before garbling), when it is fed by the same
input. The security of such a scheme is associated with the fact
that during the evaluation of the garbled circuit, the information
neither on circuit C nor on the input is revealed.
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Figure 2: Generating garbled IPs and their deployment in the field. The wire keys can decrypt the garbled IP for evaluation.
Construction 1 (Evaluation with Blockchain and and Witness Encryption) stores encrypted wire keys on the chip and uses
Blockchain to get a witness along with the current state of the user to decrypt them. Construction 2 (Evaluation with Tamper-
proof Memory) stores the wire keys in plaintext in a tamper-proof memory.

After establishing the foundation of our framework, we can now
define the adversary model considered in our work.

2.4 Adversary Model
Similar to the most relevant studies on circuit obfuscation, we con-
sider adversaries attempting to run polynomial-time (in a security
parameter λ) algorithm to deobfuscate the netlist, cf. [6, 23]. In
our attack model, the adversary is given access to the black-box
hardware component. More precisely, there exists a probabilistic
polynomial time (PPT) adversarial algorithm, when being given the
above access, whose output is indistinguishable from the output
of a simulator with restricted oracle access to the circuit. As can
be understood, the crucial difference between our model and the
existing adversary model in the circuit obfuscation-related studies
is that we ensure limited oracle access given to the adversary.

Regarding the interaction between the adversary1 and the BC,
we assume that the adversary has complete access to the BC and
can possibly have a malicious influence on the protocol execution
by mining blocks or deviating from the protocol, cf. [11]. Finally,
with respect to the notion of WE, we say that the adversary can
extract some non-trivial information about the encrypted message

1Needless to say that by the term adversary, we refer to the above PPT algorithm
controlling all the corrupt parties.

only if she can come up with a witness for the instance used during
encryption. In Section 3, we explain how such a witness can be
crafted for honest parties and why the adversary cannot know any
witness.

3 CRYPTOGRAPHICALLY-SECURE
HARDWARE OBFUSCATION

Our proposal covers two constructions: Construction 1 ensures
a high degree of security that is, no tamper-proof hardware is
required. This can be achieved at the price of implementing POS
BCs equipped withWE. Nevertheless, if a tamper-proof hardware is
used, another construction (Construction 2) can be built exhibiting
provably-secure obfuscation. In both constructions, the Boolean
circuit of one or more IPs are garbled, and the wire keys associated
with them are generated locally, see Fig. 2. The garbled truth tables
or lookup tables are then sent to the IP integrator, and eventually to
the foundry. Consequently, the garbled lookup tables are integrated
and fabricated along with other IP cores on the chip. Note that for
both of the constructions explained here, the proofs of the security
has been given in [11], although we adapt those to the context of
hardware obfuscation.
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Figure 3: A Blockchain with forking distinguishability property. In our setting, the number of honest parties is n. The length
of the maliciously generated fork is ℓ′, and its minimum length is ℓ1 + ℓ2: ℓ

′
≥ ℓ1 + ℓ2 (the first part of the fork is denoted by

ℓ1). The length of the honest parties’ local blockchain is ℓ. The fraction of the amount of stake that is proven in the honest
parties’ blockchain is at least β , whereas in the adversarial fork, it is at most α . The above parameters (α , β , ℓ1, and ℓ2) reflect
the hardness of our Blockchain-based scheme [11].

3.1 Construction 1
The process of committing a circuit over the BC B begins with
garbling the circuit resulting in a garbled circuit and wire keys, as
described above. Clearly, these wire keys must be stored encrypted
on the chip so that the circuit cannot be evaluated freely. Although
one can encrypt the wire keys by employing a public key system,
we stick to WEs since they allow us to decrypt wire keys only
conditionally as required by the one-time circuit and pay-per-use
approaches [11]. Furthermore, WEs meet the one-time secrecy con-
dition, i.e., during the evaluation, only the wire keys corresponding
to the input given to the circuit is revealed. Therefore, the IP owner
(i.e., the service provider) encodes the wire keys independently by
using a WE system, see Fig. 2. Moreover, the IP owner defines a
unique identity (id) for each IC. Note that the security of our scheme
does not depend on the security of this id and it can be public.

When the IC is registered, the design - including the garbled
circuit and its correspondingwire keys- alongwith the id and the ini-
tial balance associated with that id is committed over a blockchain
B. It is evident that although the design is the same for a family of
chips, the garbled circuits are instance-specific, ID-related; other-
wise, the attacker can pay to use a circuit, but use her credential to
use other chips. To evaluate the compiled circuit, as a witness the
user has to generate a blockchain B’ that (1) contains a block with
the input, on which the circuit should be evaluated, and (2) that
block should be followed by at least a pre-defined, minimum num-
ber of blocks, e.g., n. These n blocks contain a minimum amount of
combined POS α to stop adversaries attempting to generate those n
blocks by themselves (i.e., malicious extension). It is worth noting
here that even if a malicious blockchain B̃ is extended, the adversary
still has to deal with the garbled circuit. Moreover, to ensure that
the user commits only one input over the BC, our scheme naturally
involves a mechanism to check the witness B’. Finally, to draw
a conclusion of this section, we stress that the one-time secrecy
and security against a malicious extension of the BC is reduced to
the security of the BC (e.g., chain consistency, etc.) equipped with
the WE and security of garbling scheme, respectively (see [11] for
the proofs). This point, as well as how existing approaches may

achieve the security-related requirements, have been summarized
in Table 1.

How to set parameters related to POS BC to achieve the
secure scheme: First, we again put emphasis on the role of the
BC. In our framework, the purpose of the BC is to offer a platform,
upon which we construct a provably-secure scheme. To base such
a platform on the POS BC, we must define a setting, in which the
security of our construction can be formalized and proved. To this
end, we begin with the requirement that is, any fork crafted by the
adversary on her own (i.e., in an off-line manner) must be clearly
distinguished from the real BC, cf. [11]. More precisely, with high
probability, we can distinguish an individual, invalid chain of blocks
generated by an adversary from the honest parties’ BC, see Fig. 3.

For this purpose, we define a threshold for the amount of POS
belonging to an adversary as well as a minimum value for the
POS owned by the honest parties. More specifically, the fraction
of the amount of stake proven in the honest parties’ blockchain
is at least β , whereas, in the adversarial fork, it is at most α . It
has been proven that the above parameters (α , β , and the length
of adversary’s fork, all polynomial in λ) reflect the hardness of
our Blochchain-based scheme [11]. Note that this requirement is
in line with the consistency and quality properties of appropriate
stake sharing between the honest parties, as satisfied by POS based
blockchain protocols, e.g., [14].

3.2 Construction 2
For the second construction, we assume the existence of a tamper-
and read-proof memory on the chip (see Fig. 2 and Table 1). In
this case, after the generation of the garbled IP, the wire keys are
not needed to be stored encrypted on the chip and can be merely
stored in the secure memory, see Fig 2. During the evaluation phase,
based on the user’s input, the corresponding wire keys are read
from the memory and fed to the garbled IP. As a result, the garbled
IP is decrypted and evaluated. While the assumption of having a
tamper- and read-proof memory on the chip makes this construc-
tion similar to the conventional logic locking schemes, the security
of the obfuscated IP is the primary difference of this construction.
In other words, in contrast to the heuristic locking techniques, this

4



Property Camouflaging Logic Locking Construction 1 Construction 2

Cryptographically-secure ✗ ✗ ✓ ✓
One-time Circuit ✗ (✓)* ✓ (✓)*

Pay-per-use Circuit ✗ (✓)* ✓ (✓)*
Protection against SAT Attacks ✗ ✗ ✓ ✓

Protection against Physical Attacks ✗ ✗ ✓ ✗

Requiring No Tamper-proof Memory ✓ ✗ ✓ ✗

* When equipped with self-destructing memory

Table 1: Security requirements and how they are met by previous approaches and ours

construction still deploys garbled circuits to obfuscate the netlist,
which is cryptographically secure.

4 PRACTICAL CONSIDERATION
Last but not least, to support our theoretical, abstract constructions,
here we highlight how the practical challenges facing our scheme
can be addressed. First and foremost, the question would arise
whether a WE scheme can be integrated into a BC system. This has
been already discussed and proposed in the literature [17]. More-
over, we should come upwith aWE scheme that offers extractability
and efficiency. For this purpose, a promising candidate can be ex-
tractable hash proof systems [29]. Secondly, the implementation of
POS BC systems should be considered. In this regard, we can rely on
already existing POS protocols, for instance, Ouroboros [14], whose
security-related features (e.g., consistency, chain quality, etc.) have
been proven. More crucially, although it may seem that a user has to
have access to the BC system to evaluate the circuit, we stress that
two possibilities are available: (1) for a security-critical IP, where
the user is not trusted, the BC access is essential, (2) if the user is
trusted, or the protection of intellectual property is less vital, our
one-time circuit scheme can be used to make the design (e.g., the
bitstream for FPGAs) unlocked once and forever and disconnect
the chip from the BC.

The second question would be whether the proposed schemes
can be synthesized and integrated into the current, real-world chips,
e.g., application-specific integrated circuits (ASICs) and Field Pro-
grammable Gate Arrays (FPGAs). It has been shown that any circuit
can be compiled in a very optimized way with current synthesis
tools [24–26]. In addition, regarding the realization of garbled cir-
cuits, since a garbled IP does not need any specific logic rather than
lookup tables to store the encrypted truth tables, it can be inte-
grated into any ICs. In this regard, in the case of ASICs, a memory
array as well as cryptoprocessors, capable of running symmetric
and asymmetric ciphers, should be built along with other IP cores.
The memory arrays can be programmed with encrypted truth ta-
bles during fabrication or later by the designer. Note that the truth
tables are different for each chip instance, and hence, different en-
crypted values have to be stored on the memory arrays of each
chip. On the other hand, in the case of FPGAs, this can be done in a
simple manner as FPGAs are configured by a bitstream, which can
contain arbitrarily garbled configurations, cf. [13]. In addition to
the above discussion, in the second construction, a mechanism for
storing the wire keys in the secure memory should be considered.
To this end, a tamper-proof memory can be realized by non-volatile
memories, such as flash or eFuses. Additionally, these memories

can be configured to support one-time usage, by erasing a secure
flash memory or burning an eFuse to make a rewrite operation into
them almost impossible. However, an adversary with access to the
advanced failure analysis equipment might still be able to reverse
this process. Last but not least, note that both ASICs and FPGAs
can also be configured to be connected to a network to transact on
blockchain protocols.

Finally, while our first construction consumes more die area and
its evaluation might take longer than the maximum time that some
specific applications can tolerate, the second construction causes
less overhead (i.e., die area and latency), but of course, offers only
limited security. Construction 2 can be further optimized if the
potential adversaries are foundries or IP integrators, but the user is
trusted. For instance, if an IC is used in a satellite with no physical
access, the garbled IP can be unlocked once and forever to further
decrease the latency and power consumption of the circuit.

5 CONCLUSION
This paper forms an idea of how cryptographically-secure hardware
obfuscation can be achieved by relying on the notion of Blockchain.
We explain why neither self-destructing nor tamper-proof mem-
ory is required, in contrast to several celebrated existing methods.
Furthermore, when such memories are available, we demonstrate
how our scheme can be adapted to further offer security guarantees.
These guarantees are based on concepts that are widely accepted in
cryptography, namely, witness encryption and garbled circuits. Last
but not least, we discuss the feasibility of our theoretical, abstract
constructions in practice. We believe that the latter can largely con-
tribute to the development of the knowledge and methodologies
within the domain of hardware obfuscation.
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