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Abstract. Fault attacks (FA) are one of the potent practical threats
to modern cryptographic implementations. Over the years the FA tech-
niques have evolved, gradually moving towards the exploitation of device-
centric properties of the faults. In this paper, we exploit the fact that
activation and propagation of a fault through a given combinational cir-
cuit (i.e. observability of a fault) is data dependent. Next, we show that
this property of combinational circuits leads to powerful fault attacks
even for implementations having dedicated and provably secure protec-
tions against both power and fault-assisted vulnerabilities. The attacks
found in this work are applicable even if the fault injection is made at
the middle rounds of a block cipher, which are out of reach for most
of the other existing fault analysis strategies. Quite evidently, they also
work for a known plaintext scenario. Moreover, the middle round attacks
are entirely blind in the sense that no access to the ciphertexts (cor-
rect/faulty) or plaintexts are required. The adversary is only assumed
to have the power of repeating an unknown plaintext several times. Ex-
perimental validation over software implementations of PRESENT and
AES proves the efficacy of the proposed attacks.

Keywords: Fault Attack - Fault Propagation - Masking.

1 Introduction

Implementation-based attacks are one of the most practical threats to modern
cryptography. With the dramatic increase in the usage of embedded devices for
IoT and mobile applications, such attacks have become a real concern. Most
of the modern embedded devices carry cryptographic cores and are physically
accessible by the adversary. Therefore, suitable countermeasures are often im-
plemented to protect the cryptographic computations from exploitation.
Side-channel attacks (SCA) [7] and Fault attacks (FA) [4, 6] are the two
most widely explored implementation attack classes till date. The main idea
behind the first one is to passively exploit the operation dependency (simple-
power-analysis) or data-dependency (differential/correlation power analysis) of
the cryptographic computation to infer the secret key by measuring power or
electromagnetic (EM) signals. In contrast, fault attacks are active in nature
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as they work by corrupting the intermediate computation of the device in a
controlled manner. Intentionally injected faults usually create a statistical bias
in some of the intermediate computation states, which are exploited by the
adversary either analytically or statistically to reduce the entropy of the unknown
key and thereby recover it [4].

The protection mechanisms found in modern devices mostly try to mitigate
the two above-mentioned classes of attacks. In this context, hardening the ci-
pher algorithm itself with countermeasures is often preferred than the sensor and
shield-based physical countermeasures. This is due to the fact that algorithm-
level countermeasures are flexible and low cost. Moreover, they often provide
provable security guarantees. Masking is the most prominent and widely de-
ployed countermeasure so far, against passive SCA [12,15, 20, 23]. Masking is a
class of techniques which implement secret sharing at the level of cryptographic
circuits. Each cipher variable x is split into a certain number (say d) of shares
in masking which are statistically independent by their own, and also while
considered in groups of size up to d. Each underlying function of the cipher is
also shared into d component functions (respecting the correctness) to process
the shared variables. The order of protection d intuitively means that an ad-
versary has to consider SCA leakages for d 4+ 1 points, simultaneously, to gain
some useful information about the intermediate computation. In the context of
FA, detection-type countermeasures are the most common one. The main prin-
ciple of these FA countermeasures is to detect the presence of a fault via some
redundant computation (time/space redundancy or information redundancy),
and then react by either muting or randomizing the corrupted output [13,18].
Another alternative way is to avoid the explicit detection step altogether and
perform the computation in a way so that it gets deliberately randomized if
there is any error in computation [30].

Symmetric key primitives (such as block ciphers) are the most widely ana-
lyzed class of cryptographic constructs in the context of implementation-based
attacks. Quite evidently, the current evaluation criteria for a block cipher de-
sign takes the overhead due to SCA and FA protections directly into account.
In other words, countermeasures are nowadays becoming an essential part of a
cipher. In practice, there exist proposals which judiciously integrate these two
countermeasures for block ciphers [27]. Whether such hardened algorithms are
actually secured or not is, however, a crucial question to be answered.

Recent developments in FA show that the answer to the above-mentioned
question is negative. Although combined countermeasures are somewhat suc-
cessful in throttling passive attacks, they often fall prey against active adver-
saries. In [8,9], it was shown that if an adversary has the power of injecting a
sufficient number of faults, even the correct ciphertexts can be exploited for the
attack. The attack in [8], also known as Statistical Ineffective Fault Analysis
(SIFA), changed the widely regarded concept that fault attacks require faulty
ciphertexts to proceed. Most of the existing FA countermeasures are based on
this belief and thus were broken. In a slightly different setting, the so-called Per-
sistent Fault Analysis (PFA) [21,32] presented a similar result. The main reason



Breach the Gate 3

behind the success of SIFA and PFA is that they typically exploit the statisti-
cal bias in the event when a fault fails to alter the computation. However, this
seemingly simple event can be exploited in several other ways too, which may
lead to more powerful attacks on protected implementations. This paper reports
some of such newly found vulnerabilities. Our contributions here are as follows:

Our Contributions:

In this paper, we propose a new attack strategy for protected implementations
which exploit fundamental principles of digital gates to extract the secret. The
main observation we exploit is that the output observability of a fault, injected at
one input of an AND gate depends on the values of the other inputs. In general,
the activation and propagation of a wire-fault inside a circuit depend upon the
value under process which is indeed a side channel leakage. Based on this simple
albeit fundamental observation we devised attacks which can break masking
schemes of any arbitrary order, even if it is combined with FA countermeasures.
The strongest feature of this attack strategy is that it can enable attacks in the
middle round of a cipher without requiring any explicit access to the ciphertexts
even if they are correct. Just knowing whether the outcome of the encryption
s faulty or not would suffice. The plaintexts are also meeded not to be known
explicitly in all scenarios, but the adversary should be able to repeat them any
number of times. One should note that the attacks like SIFA requires ciphertext
access and are also not applicable to the middle rounds. ! In some sense, the
proposed attack strategy further challenges the belief that practical fault attacks
at least require access to the correct ciphertexts.

The fault model utilized in this attack is similar to the wire-fault model of
digital circuits. A similar fault model was exploited for SIFA [8]. However, the
exploitation methodology of the faults is entirely different from SIFA. While
SIFA uses statistical analysis based on the correct ciphertexts, we propose a
novel strategy based on fault templates. The template-based attack strategy,
abbreviated as FTA, efficiently exploit fault characteristics from different fault
locations for constructing distinguishing fault patterns, which enable key/state
recovery. In principle, FTA is closer to SCA than FAs and hence, evaluation of
masking against this new class of attack becomes extremely important.

The attacks proposed in this paper require multiple fault locations to ex-
tract the entire key. Note that, we do not require multiple fault locations to be
corrupted at the same time, but injections can be made one location at a time in
different independent experiments. While faulting intermediate wires of a com-
binational net is challenging, it is still practically feasible with modern fault
injection setups like laser-based injection [24,28]. In particular, it was shown

! Several modern symmetric-key protocols do not expose the ciphertexts. One promi-
nent example is the Message Authentication Codes (MAC) in certain application
scenarios. Furthermore, for many existing Authenticated Encryption schemes, di-
rect access to the plaintext is not available for the block ciphers used within the
scheme. However, fixing the plaintext value may be achieved. Also, in real devices,
the accessibility of plaintexts cannot be assumed in every scenario. One typical ex-
ample is the shared root key usage in UTMS [19].
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in [28] that for FPGA-based implementations, each gate can be targeted with
laser-induced faults resulting in stuck-at faults at their inputs. Further, in [24]
it was shown that targeting microcontrollers with laser results in bit set/reset
faults with reasonably high probability. Both of these results are of high rele-
vance in the present context as they clearly establish the practicality of our fault
models for both software and hardware implementations. One advantage of the
proposed FTA attack strategy is that the target implementation can be exten-
sively profiled before attack and parameters for obtaining the desired faults can
be accurately identified. In summary, the fault model in our attacks is practically
achievable, which establishes the potency of these attacks.

The idea of FA without direct access to the plaintext and ciphertext has
been explored previously. The closest to our proposal are so-called Blind Fault
Analysis (BFA) and the Safe-Error-Attack (SEA). However, none of these attacks
exploit the inherent circuit properties as we do in our case. Finally, both BFA
and SEA can be throttled by masking. The greatest advantage of our proposal
lies at this point that our attacks are applicable for masking countermeasures
even while combined with a state-of-the-art FA countermeasure. Although SIFA
and PFA work on masking, both of them require ciphertext access to attack.

In order to validate our idea, we choose the block cipher PRESENT as a test
case [5]. PRESENT is a fairly well-analyzed design and a potential contestant
in the ongoing NIST competition for standardizing lightweight block ciphers [2].
The choice of a lightweight cipher is also motivated by the fact that countermea-
sures are extremely crucial for such ciphers as they are supposed to be deployed
on low cost embedded devices. However, the attacks are equally applicable to
larger block ciphers like AES. We shall present a practical example to justify
this claim.

The rest of the paper is organized as follows. We begin by explaining the fun-
damental principles behind the attacks in Sec. 2 through interpretable examples.
Feasibility of the attacks for unmasked but FA protected implementations are
discussed in Sec. 3 taking PRESENT as an example. Attacks on combined coun-
termeasures are proposed in Sec. 4 (on PRESENT), followed by an evaluation
of a publicly available masked AES implementation in Sec. 5. Sec. 6 presents a
brief discussion on possible countermeasures. We conclude in Sec. 7.

2 The Fundamental Principle
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Fig. 1: Fault propagation: a) XOR gate; b) AND gate. The inputs for activation
and propagation are in blue and the value of the stuck-at fault is in red.




Breach the Gate 5
2.1 Fault Activation and Propagation

The concept of fault activation and propagation is instrumental for structural
fault testing of digital circuits. Almost every Automatic test pattern generation
(ATPG) algorithm relies on these two events. Consider a combinational circuit
C and an internal net ¢ in this circuit. The problem is to test if the net has been
stuck at a value 0 or 1. A test pattern for exposing this fault to the output is
required to perform the two following events in sequence:

1. Fault Activation: The test pattern is required to set the net ¢ to a value
z such that ¢ carries the complement of = (i.e., T) in the presence of a fault
and x, otherwise.

2. Fault Propagation: The test pattern has to ensure that the effect of the
fault propagates to the output of the circuit C.

Both the activation and propagation events strongly depend upon the structure
of the circuit graph, and the gates present in the circuit. However, understanding
the fault activation and propagation property of each gate is the very first step
to have an insight of the attacks we are going to propose. Let us first consider
a linear 2-input XOR gate as shown in Fig. 1(a). Without loss of generality, we
consider a stuck-at-0 fault at the input a, while the input b may take values inde-
pendently. In order to activate the fault at a, one must set a = 1. The next step
is to propagate the fault at the output. One may observe that setting the input b
to either 0 or 1 will expose the fault at a to the output o. A similar phenomenon
can be observed for an n-input XOR gate. This observation is summarized in
the following statement:

Given an n-input XOR gate having an input set I, (|I| = n), an output O,
and a faulted input i € I, the fault propagation to O does not depend upon the
valuations of the subset I\ {i}.

An exactly opposite situation is observed for the nonlinear gates like AND/OR.
For the sake of illustration let us consider the two input AND gate in Fig. 1(b).
Here a stuck-at fault (either stuck-at-0 or stuck-at-1) at input a can propagate
to the output o if and only if the input b is set to the value 12. An input value of
1 for an AND gate is often referred to as non-controlling value®. The activation
and propagation property of the AND gates, thus, can be stated as follows:

For an n-input AND gate with input set I, output O, and one faulty input i € I,
the fault propagation takes place if an only if every input in the subset I\ {i} is
set to its non-controlling value.

2 The fault activation takes place if a is set to 1 (stuck-at-1) or 0 (stuck-at 1).

3 A controlling input value of a gate is defined as a value, which, if present for at least
one input, sets the output of the gate to a known value. Non-controlling value is the
complement of the controlling value.
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2.2 Information Leakage Due to Fault Propagation

Now we describe how information leaks due to the propagation of faults. Once
again we consider the AND and the XOR gate for our illustration. Let us assume
that the gates are processing secret data and an active adversary A can only have
the information whether the output is faulty or not. The adversary can, however,
inject a stuck-at fault at one of the inputs of the gate*. We also consider that the
adversary has complete knowledge about the type of the gate she is targeting.
With these adversary model now we can analyze the information leakage due to
the presence of faults.

First, we consider the XOR gate. Without loss of generality, let us assume the
fault to be stuck-at-0, and the injection point is a. Then the fault will propagate
to the output whenever it gets activated. In other words, just by observing
whether the output is faulty A can determine the value of a. More precisely, if
the output is fault-free a = 0 and a = 1, otherwise.

The situation is slightly different in the case of AND gates. Here the output
becomes faulty only if the fault is activated at a and b is set to its non-controlling
value. In this case, the adversary can determine the values of both a and b.
However, one should note that the fault will only propagate if both a and b are
set to unity. For all other cases the output will remain uncorrupted and A cannot
determine what value is being processed by the gate. Putting it in another way,
the adversary can divide the value space of (a,b) into two equivalence classes.
The first class contains values (0, 0), (0,1)(1,0), whereas the second class contains
only a single value (1,1). One should note that the intra-class values cannot be
distinguished from each other.

One general trend in FA community is to quantify the leakage in terms of
entropy loss. The same can be done here for both the gates. Without the fault the
entropy of (a,b), denoted as H((a, b)), is 2. In the case of XOR gate, the entropy
reduces after the first injection event. Depending on the value of the observable
Oy,, which we set to 1 if the fault is observed at the output (and 0, otherwise),
the actual input value at the fault location can be revealed. More formally, we
have H((a,b)|Of, =0) =1 and H((a,b)|Oy, =1) = 1. Therefore, the remaining
entropy H((a,b)|Os,) = & x H((a,b)|Oy, = 0) + 3 x H((a,b)|0y, = 1) = 1.
In other words, the entropy of (a,b) reduces to 1 after one fault injection. The
situation is slightly different in the case of AND gate. Here the remaining entropy
can be calculated as H((a,b)|Oy,) = 2 xlogy 3+ § x log, 1 = 1.18. Although the
leakage here is slightly less compared to the XOR gate, once should note that it
is conditional on the non-faulty inputs of the gate too. In other words, partial
information regarding both a and b are leaked, simultaneously. In contrast, XOR
completely leaks one bit but does not leak anything about the other inputs.

As we shall show later in this paper, both of AND and XOR gate leakages
can be cleverly exploited to mount extremely strong FAs on block ciphers. In
the next subsection, we extend the concept of leakage for larger circuits.

4 Although for simplicity we are considering stuck-at faults here, our arguments are
also valid for single bit toggle faults
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2.3 Fault Propagation in Combinational Circuits
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Fig.2: Fault propagation through combinational circuits: a) Injection at XOR
gate input; b) Injection at AND gate input. The inputs for activation and prop-
agation are shown in blue and the nature of the stuck-at fault is shown in red.
The propagated faulty intermediate value is shown in green.

One convenient and general way of realizing different sub-operations of a
block cipher is by means of algebraic expressions over GF(2) also known as
Algebraic Normal Form (ANF). For the sake of explanation, we also use the ANF
representation of the circuits throughout this paper. ANF representation is also
common while implementing masking schemes. Therefore, a good starting point
would be to analyze the effect of faults on an ANF expression. For example,
let us consider the following ANF expression and its corresponding circuit in
Fig. 2.5

f=b+ca (1)

As in the previous case, we assume that the adversary A can only observe
whether the output is faulty or not, but cannot observe the actual output of
the circuit. Also, the inputs are not observable but can be kept fixed. With this
setting the adversary injects a stuck-at-0 fault in b (see Fig. 2(a)). Now, since
the input is fixed, a fault at the output would imply that b = 1. On the other
hand, the output will be correct only if b = 0. The property of the XOR get
mentioned in the previous subsection ensures that the other input coming from
the product term does not affect the recovery of the bit . In a similar fashion,
one can recover the output of the product term ca.

Let us now consider recovery of the bits a and ¢, with the fault injected at
a. From the properties of an AND gate, the fault will propagate to the wire ¢
(see Fig. 2(b)) if and only if ¢ = 1 and a = 1. This fault, on the other hand,
will directly propagate to the output as the rest of the circuit only contain
XOR gates. However, from adversary’s point of view, entropy reduction due to a
non-faulty output is not very significant (non-faulty output may occur for (¢, a)
taking values (0,0), (0,1) and (1,0)). Moreover, no further information is leaked
even if the attacker now targets the input ¢ with another fault. It may seem that
the AND gates are not very useful as leakage sources. However, it is not true
if we can somehow exploit the fact that it leaks information about more than

5 Note that the ”4” represents XOR operation here
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one bits. In the next subsection, we shall show the impact of this property for
attacking block ciphers.

2.4 Propagation Characteristics of S-Boxes
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Fig. 3: Fault propagation through S-Box Polynomials. The input pattern caus-
ing the propagation is shown in blue. The stuck-at fault type is shown in red
numbers.

The S-Boxes one of the most common constituents of modern block ciphers.
In most of the cases, they are the only non-linear function within a cipher.
Mathematically, they are vectorial Boolean functions consisting of high degree
polynomials over GF'(2). Such polynomials contain high degree monorails which
are nothing but several bits AND-ed together. As a concrete example, we con-
sider the S-Box polynomials for PRESENT as shown in Eq. (2). This S-Box has
4 input bits denoted as x1, x2, x3, x4 and 4 output bits y1, Yo, Y3, Ya-

Y1 = T1T2T4 + T1T3T4 + T1 + TaT3T4 + Tox3 + T3 + 74 + 1
Yo = T1ToT4 + T123T4 + 123 + T124 + T1 + T2 + 2374 + 1

(2)

Y3 = X1T2%4 + T1X2 + T1X3T4 + X123 + X1 + T2X3T4 + T3
Y4 = X1 + Tox3 + T2 + 24

Let us consider the first polynomial in this system without loss of generality. Also,
we consider a stuck-at-1 fault at x; during the computation of this polynomial.
The exact location of this fault in the circuit is depicted in Fig. 3. Given this
fault location, the fault propagates to the output only if (z1 =0, z2 =1, 23 =
0, x4 =1)or (x1 =0, z9 =1, z3 =1, x4 = 1). For the rest of the cases, the
output remains unaltered. Consequently, if the S-Boz inputs are changing and
the value is inaccessible for the adversary, she can still detect when the S-Bozx
processes the input (0,1,0,1) or (0,1,1,1), as compared to other inputs. 6 In the
next subsection, we shall show how this simple observation results in key leakage
for an entire cipher.

5 One should note that the faults need not be always injected at the input of a com-
binational block, but they can also be injected at internal wires too. Such a fault
model is easier to realize in case of software implementations as shown in [8]
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3 Fault Observability Attacks

In this section, we describe how information leakage from gates eventually re-
sults in key leakage for so-called FA resilient block cipher implementations. For
the sake of simplicity, we begin with implementations having redundancy-based
detection-type FA countermeasures. Implementations having both masking and
FA countermeasures will be considered in the subsequent sections. The detection-
type FA countermeasures under consideration may use any form of redundancy
(space, time or information redundancy) [13,18]. However, the attacks we are
going to describe are equally applicable to any member of this classical counter-
measure class. For the sake of simplicity, we, therefore, consider the most trivial
form where the redundancy check happens at the end of the computation before
outputting the ciphertexts.

3.1 Template-based Fault Attacks

Before going to the actual attack instances, let us first describe our general attack
strategy, which is based on constructing templates. Although the concept of fault
template attack (FTA) has previously been addressed in the literature, (first pro-
posed in [10]) their applicability was extremely limited. Similar to the template
attacks in SCA, fault template attacks also consist of two phases, namely:

1. Template Building (offline): This is an offline phase where the target im-
plementation is profiled extensively to construct an informed model for the
attack. The aim of this informed modeling is to directly reason about some
unknown in the online phase of the attack (mounted on a similar implemen-
tation), based on some observables from the online experiment”. Formally,
a template T for fault attack can be represented as a mapping T : F — X,
where an a € F is constructed by computing some function on the observ-
ables. Alternatively, a can also be a probability distribution defined over the
observables. The location for a fault injection can be used as an auxiliary in-
formation while computing the function from the observable set to the set F.
The range set X of the template T either represents a part of an intermedi-
ate state, (for example, the value of a byte/nibble) or a part of the secret key.

2. Template Matching (online): In this online phase, an implementation
(identical to one profiled in the offline phase) with an unknown key is tar-
geted with fault injection. The injection locations may be pre-decided from
the template construction phase. The unknown is supposed to be discovered
by first mapping the observables from this experiment to a member of the
set F and then by finding out the corresponding value of the unknown from
the set X using the template 7.

" The observable, for example, can be the knowledge that whether the output of the
encryption is faulty or not.
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Unlike differential or statistical fault attacks, the key recovery algorithms in fault
template attacks are fairly straightforward in general. The fault complexity of
the attacks is somewhat comparable with that of the statistical fault attacks.
However, one great advantage over statistical or differential fault attacks is that
access to ciphertexts or plaintexts is not essential in certain instances of FTA.
The attacker only requires to know whether the outcome is faulted or not. More
precisely, FTA can target the middle rounds of block ciphers, which are otherwise
inaccessible by statistical or differential attacks due to extensive computational
complexity. Apart from that, the FTA differs significantly from all other classes
of fault attacks in the way it exploits the leakage. While attacks differential or
statistical attacks use the bias in the state due to fault injection as a key distin-
guisher, template-based attacks directly recover the intermediate state values.
From this aspect, this attack is closer to the SCA attacks. However, there are
certain dissimilarities with SCA as well, in the sense that SCA template attacks
try to model the noise from the target device and measurement equipment. In
contrast, FTA goes beyond noise modeling and build templates over the fault
characteristics of the underlying circuit.

Algorithm 1 BUILD_TEMPLATE

Input: Target Implementation C, Fault fI
Output: Template T

T:=0
w := GET_SBOX_SIZE() > Get the width of the S-Box
for (0 <k <2¥)do > Vary one key word
Fy =10
for (0 <p<2%)do > Vary one plaintext word
rz:=pDk
yr = C(x)fl > Inject fault in one of the S-Boxs for each execution
ye := C(x)
if DETECT_FAULT(ys, y.) == 1 then > Fault detection function
Fy .= F, U {1}
else
F, := F, U {0}
end if
end for
T = T U{(F, k)}
end for

Return 7
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Algorithm 2 MATCH_TEMPLATE

Input: Protected cipher with unknown key Cj, Fault fl, Template T
Output: Set of candidate correct keys k.

keand == 0 > Set of candidate keys
w := GET_SBOX_SIZE()
Fy =10
for (0 < p <2%) do > Vary a single w bit word of the plaintext
O := (Cr(p)" > Inject fault for each execution
if (O ==1) then > Fault detected
Fy .= Fy U {l}
else
F, == F, U {0}
end if
end for

kcand = kcand U {T(F’f)}
Return k.qnd

3.2 Attacks on Unmasked Implementations: Known Plaintext

In this subsection, we present the first concrete realization of FTA. The first
attack we present requires the plaintexts to be known and controllable. However,
explicit knowledge of the ciphertexts is not expected. The adversary is only
provided with the information whether the outcome of encryption is faulty or
not. One practical example of such attack setup is a block-cipher based Message-
Authentication Code (MAC), where the authentication tag might not be exposed
to the adversary, but the correctness of the authentication is available. We also
assume a stuck-at-1 fault model for simplicity. However, the attack also applies
to stuck-at-0 and bit-flip models. For the sake of illustration, we mainly consider
the PRESENT block cipher as our target. The attack consists of two phases:

3.2.1 Offline Phase: Template Building

Perhaps the most important aspect of the attacks we describe is the fault lo-
cation. As elaborated in Sec. 2 leakage from the non-linear or the linear gates
can be exploited. For this particular case, we choose an AND gate for fault in-
jection respecting the fact that information regarding multiple bits is leaked,
simultaneously. For the sake of simplicity, the same fault location as in Sec. 2.3
is utilized. The observables, in this case, are the 0,1 patterns, from the protected
implementation where 0 represents a correct outcome and 1 represents a faulty
outcome. The domain set F of the template consists of patterns called fault pat-
terns (denoted as F; in the algorithm) constructed from the observables. The
fault location, in this case, is fixed. The process of transforming the observables
to fault patterns and then mapping them to the set X is outlined in Algorithm 18.
For each choice of the key nibble (which is a member from set X), all 16 pos-
sible plaintext nibbles are fed to the S-Box equations according to a predefined
sequence, and the stuck-at-1 fault is injected for each of the cases. Consequently,

8 Note that, in this attack in all our subsequent attacks, constructing the template
for one S-Box is sufficient. The same template can be utilized for extracting all key
nibbles of a round one by one.
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for each choice of the key one obtains a bit-string of 16 bits which is the desired
fault pattern (F}). The fault patterns are depicted in Table 1. It can be observed
that corresponding to each fault pattern there can be two candidate key sugges-
tions. One should also note that changing the fault location might change the
fault patterns and the mapping 7 : F — X.

3.2.2 Online Phase: Template Matching

The online phase of the attack is fairly straightforward. The attacker now targets
an actual implementation (similar to that used in the template building phase)
with an unknown key and constructs the fault patterns. The fault patterns are
constructed for each S-Box at a time, by targeting the first round °. Next, the
template is matched and the key is recovered directly. The algorithm for the
online phase is outlined if Algorithm 2 for each nibble/byte. Although, the overall
attack procedure is fairly simple several intricacies are still associated with it.
We address them in the following paragraphs.

Table 1: Template-1 for attacking the Table 2: Template-2 for attack-
first round of PRESENT by varying ing the first round of PRESENT.
the plaintext nibble. The black cells The black cells represent 1

represent 1 (faulty output) and the (faulty output) and the gray cells

gray cells represent 0 (correct out- represent 0 (correct output).
put).
0[1]2(3[4(5/6|7|8|9|a|b|c|d|e|f|Key 0|Key
13, 15 2,3,6,7,10, 11, 14, 15
9,11 o.1,45389 12 13

4,6
5, 7
Bl | 21

1,3
0, 2

| | B

Unique key recovery: The template used in the proposed attack reduces the
entropy of each key nibble to 1-bit. The obvious question is whether the entropy
can be reduced to zero or not. In other words, is it somehow possible to create a
template which provides unique key suggestions for each fault pattern? Unfortu-
nately, the answer is negative for this particular example. This is because, with
the chosen fault location, no leakage happens for the variable x3. In fact, there

9 Extraction of round keys in a per-nibble/byte basis is done for all the attacks de-
scribed in this paper.
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is no such location in the S-Box equations which can simultaneously leak infor-
mation regarding all the bits. Therefore, one-bit uncertainty will always remain
for the given template and for all other similar templates. However, the key can
still be recovered uniquely if another template, corresponding to a different fault
location is utilized. The choice of this fault location should be such that it leaks
about x3. The main challenge in this context is to keep the number of injections
as low as possible for the second template. Fortunately, it was observed that the
second template can be constructed in a way so that it only requires a single fault
injection. The trick is to corrupt a linear term x3 (The template is depicted in
Table. 2). Due to the activation-propagation property of the XOR gates, a single
injection would reveal the value of the bit x3. In practice, we take the intersec-
tion between the key suggestions obtained from two different templates and can
identify the key uniquely. As a concrete example for why it works consider that
the key suggestion from the first template is (13,15) for some specific nibble.
The second template will provide either of the two suggestion sets described in
it. Now, since 13 and 15 only differ by the bit z3, the suggestion set returned by
template-2 is suppose to contain only one of them. Hence taking the intersection
of this second key suggestion set with the first one would uniquely determine
the key.

Required number of faults: The key recovery process in our proposed attack
is nibble-wise. For each nibble, we require total 17 fault injections (16 for the
first template matching and 1 for the second template matching). In order to
retrieve a total round key, we thus require 17 x 16 = 272 fault injections. A
general trick for minimizing the number of faults is to first choose the highest
degree monomial for injection so that the maximum number of bits can be leaked
at once. The remaining bits can then be leaked by choosing lower degree terms
and constructing templates for them. The injections in our attack are supposed
to be precise, repeatable and at different locations. However, it is still practically
feasible as pointed out in the introduction. Moreover, one should also note that
all fault locations within a single higher degree monomial are equivalent in terms
of leakage. This fact gives the attacker extra flexibility while choosing the fault
locations during practical evaluation.

It should be observed that although the attack described here requires at most
two fault locations to be corrupted to uniquely recover the key, the corruptions
need not be simultaneous. In practice, one can run independent fault campaigns
on the target implementation and combine the results to finally recover the
key. A similar attack is also applicable for AES (see Appendix B for a brief
description of this attack). In the next subsection, we will explore the situations
where the fault is injected in the middle round of the cipher. As we shall see, the
attack methodology of ours still allows the recovery of the key within reasonable
computational and fault complexity.
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Algorithm 3 BUILD_TEMPLATE_MIDDLE_ROUND

Input: Target implementation C, Faults flo, fl1, ..., fln
Output: Template T
T:=0
w := GET_SBOX_SIZE() > Get the width of the S-Box
for (0 <z <2%) do > The key is known and fixed here and = p + k
F, =0
for each fl € {flo, fl1,..., fln} do
Yy = C(z)fl > Inject fault in one copy of the S-Box for each execution
ye 1= C(x)
if DETECT_FAULT(ys, y.) == 1 then > Fault detection function
F,:=F, U{1}
else
F, == F, U {0}
end if
end for
T :=TU{(F:,x)}
end for
Return 7

3.3 Attacks on Unmasked Implementations: Middle Rounds

Classically FAs target the outer rounds of block ciphers. Attacking middle rounds
are not feasible due to the extensive exhaustive search complexity involved, which
becomes equal to the brute force complexity. However, the proposed template-
based attack techniques do not suffer from this limitation. In this subsection, we
shall investigate the feasibility of template-based attacks on the middle rounds
of a given block cipher.

The main challenge in a middle round attack is that the round inputs are
not accessible. Therefore, the attacks described in the last subsections cannot be
directly applied in this context. However, template construction is still feasible. A
single attack location, in this case, cannot provide sufficient exploitable leakage.
The solution here is to corrupt multiple chosen locations and to construct a single
template combining the information obtained. Unlike the previous case, where
the plaintext was varying during the attack phase, in this case, it is required to
be kept fixed. Formally, the mapping from the set of observables to the set F, in
this case, is a function of fault locations. Also, the range set X of the template,
in this case, contains byte/nibble values from an intermediate state instead of
keys (more precisely, the inputs of the S-Boxes).
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Algorithm 4 MATCH_ TEMPLATE_MIDDLE_ROUND

Input: Protected cipher with unknown key C}, Faults flo, fl1, ..., fln,, Template T
Output: Set of candidate correct keys k.
keand == 0 > Set of candidate keys
w := GET_SBOX_SIZE()
Fy =10
for each fl € {flo, fl1, ...flp} do
O := (Cr(p)" > Inject fault for each execution
if (O ==1) then > Fault detected
Fy .= Fy U {l}
else
F, := F, U {0}
end if
end for
kecand = Kcand U {T(F’f)}
Return k.qnq

One critical aspect of this attack is to select the fault locations which would
lead to maximum possible leakage. In contrast to the previous attack, where
corrupting the highest degree monomials leak the maximum number of bits, in
this new attack we observed that linear monomials are better suited as fault
locations. This is because linear monomials leak information irrespective of the
value of their input or the other inputs of the gate and as a result minimum
number of injections would be required for them. Considering the example of
PRESENT, one bit is leaked per fault location and hence 4 different locations
have to be tried to extract a complete nibble of an intermediate state. The
template construction and the attack algorithm (in per S-Box basis) are outlined
in Algorithm 3 and 4.

The template for the middle round attack on PRESENT is shown in Table. 3.
Since the linear terms are corrupted, each intermediate can be uniquely classified.
in the online phase of the attack, the plaintext is held fixed. The specified fault
locations are corrupted one at a time, and the fault patterns are constructed. An
intermediate state can be recovered with this approach immediately (by applying
the Algorithm 4 total 16 times). However, one should notice that recovering a
single intermediate state does not allow the recovery of the round key. At least,
two consecutive states must be recovered for the actual key recovery. Fortunately,
recovery of any state with the proposed attack strategy is fairly straightforward.
Hence, one just need to recover the states corresponding to two consecutive
rounds and extract one round of key in a trivial manner. In essence, the round
key corresponding to any of the middle rounds can be recovered. The number of
faults required for entire round key recovery is 128 in this case for PRESENT.

3.4 Discussion

The attack technique outlined for the middle rounds requires the fault to be
injected at many different locations. Although the SEA attacks would also re-
quire a similar number of fault injections'®, as we show in the next section, the

10 Tn fact, one can perform the same attack at the key addition stages to recover the
key directly.
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proposed attack strategy still works when masked implementations are targeted.
This is an advantage over SEA or BFA or as they are not applicable on masking
implementations [17].

Table 3: Template for attacking the middle rounds of PRESENT

folf1] /2| fs|Statel||| fo|f1|f2]f3|State
0 8

| O O | W N =
o |alo|oce|o

It is interesting to observe that a trade-off is involved regarding the required
number of fault locations with the controllability of the plaintext. If the plain-
text is known and can be controlled, the number of required fault locations are
low. On the other hand, the number of different fault locations increases if the
plaintext kept fixed. This can be directly attributed to the leakage characteris-
tics of the gates. The leakage from AND gets are more useful while its inputs are
varying and it is exactly opposite for the XOR gates. It is worth mentioning that
the middle round attacks can also be realized by corrupting several higher order
monomials in the S-Box polynomials. However, due to the relatively low leakage
from AND gates for one fault, the number of injections required per location is
supposed to be higher.

From the next section onward, we shall focus on attacking masked implemen-
tations. Although, masking is not meant for fault attack prevention, in certain
cases it may aid the fault attack countermeasures [17]. The study on masking
becomes more relevant in the present context because our attacks, in principle,
are close to SCA attacks (in the sense that both tries to recover values of some
intermediate state).

4 Attack on Masked Implementations

Masking is a provably secure countermeasure for SCA attacks. Loosely speaking,
masking implements secret sharing at the level of circuits. Over the years, several
masking schemes have been proposed, the most popular one being the Threshold-
Implementation (TT) [20]. For illustration purpose, in this work, we shall mostly
use TT implementations.

Before going into the details of our proposed attack on masking, let us briefly
comment on why SEA does not work on masking. Each fault injection in the
SEA reveals one bit of information. However, each actual bit of a cipher is shared
in multiple bits in the case of masking, and in order to recover the actual bit,
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all three bits have to be recovered, simultaneously. Moreover, the mask changes
at each execution of the cipher. Hence, even if a single bit is recovered with
SEA, it becomes useless as the next execution of the cipher is suppose to change
this bit with probability % By the same argument, attacking linear terms in the
masked S-Box polynomials would not work for key/state recovery, as attacking
linear monomials typically imply faulting a XOR gate input. As a XOR gate
only leaks about the faulted input bit, in this case, the attacker will end up
recovering a uniformly random masked bit.

4.1 Leakage from Masking

;
T } j) j >

q1

Fig. 4: Fault propagation through masked AND gate.

Table 4: Output status for faulted masked AND gate for different input values.
The variables  and y are used for representing the unshared variables (i.e.
2o+ 21 =z and yo + y1 = y). C and F denote correct and faulty outputs.

zo T Yo y 70,1 C/F To T Yo y 0,1 C/F
0 0 0 0 0 C 0 0 0 0 1 C
0 0 0 1 0 F 0 0 0 1 1 F
0 1 0 0 0 C 0 1 0 0 1 C
0 1 0 1 0 F 0 1 0 1 1 F
0 0 1 1 0 F 0 0 1 1 1 F
0 0 1 0 0 C 0 0 1 0 1 C
0 1 1 1 0 F 0 1 1 1 1 F
0 1 1 0 0 C 0 1 1 0 1 C
1 1 0 0 0 C 1 1 0 0 1 C
1 1 0 1 0 C 1 1 0 1 1 C
1 0 0 0 0 C 1 0 0 0 1 C
1 0 0 1 0 C 1 0 0 1 1 C
1 1 1 1 0 C 1 1 1 1 1 C
1 1 1 0 0 C 1 1 1 0 1 C
1 0 1 1 0 C 1 0 1 1 1 C
1 0 1 0 0 C 1 0 1 0 1 C
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Let us recall the unique property of AND gates that they leak about multiple
bits, simultaneously. We typically exploit this property for breaching the security
of masked implementations. To illustrate how the leakage happens we start with
a simple example. Consider the circuit depicted in Fig. 4, which corresponds to
the first-order masked AND gate. The corresponding ANF equations are given
as follows:

qo = ToYo + 70,1
@ = r1y1 + (ro,1 + zoy1 + 2190)

3)

Here (qo,q1) represents the output shares and (xo, 1), (yo,y1) represents the
input shares. We assume that actual unmasked input to the gate (denoted as x
and y) remains fixed. However, all the shares vary randomly due to the property
of masking. Consequently, all the inputs to the constituent gates of the masked
circuit also vary randomly. Without loss of generality, let us now consider that
a stuck-at-1 fault is induced at the input share zy during the computation of
both the output shares. Now, from the ANF expression, it can be observed that
xo is AND-ed with yg and y; in two separate shares. So, faulting xy would leak
information about both yo and y;. From the properties of the AND gate, the
stuck-at-1 fault will propagate to the output only if xg = 0 and y; = 1 with
i € {0,1}. However, it should also be noted that faults from both of the gates
should not propagate, simultaneously. This is because in that case, the faults will
cancel each other. The actual output of the masked AND circuit (i.e., go + q1)
will be faulty only if one of the constituent AND gates propagate the fault effect.
More specifically, the effective fault propagation requires either (yo = 0,y; = 1)
or (yo = 1,y1 = 0). In other words, the fault will propagate if and only if the
actual unshared bity (y = yo+y1) equals to 1. There will be no fault propagation
if y = 0. The fact is illustrated in the truth table presented in Table. 4.

The above-mentioned observation establishes the fact that a properly placed
fault can leak the actual unshared input bits from a masked implementation.
This observation is sufficient for bypassing masking countermeasures as we shall
show subsequently in this paper. However, to strongly establish our claim we go
through several examples before describing a complete attack algorithm.

4.2 Leakage from TI AND Gates

The second example of ours involves a TT implemented AND gate. We specifically
focus on a four-share realization of a first-order masked AND gate proposed by
Nikova et al. [20]. The ANF representation of the implementation is given as:

qo = (z2 +x3)(y1 +y2) + Y1 + Y2 + y3 + 21 + 22 + 73
q1 = (w0 + 72)(Yo + y3) + Yo + Y2 + Y3 + To + T2 + T3
q2 = (1 +23)(yo +y3) +y1 + 21
q3 = (zo +21)(y1 +y2) + %o + 20

(4)

Let us consider a fault injection at the input share x3 which sets it to 0. An
in-depth investigation of the ANF equations reveal that x3 is multiplied with
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y1+y2 and yo+ys3. The leakage due to this fault will reach the output only when
Yo+y1+y2+ys =y = 1. One may notice that xs also exists as linear monomial in
the ANF expressions. However, the effect of this linear monomial gets canceled
out in the computation of the actual output bit. Hence the fault effect of this
linear term does not hamper the desired fault propagation. In essence, the TI
AND gate is not secured against the proposed attack model.

D9 ;
i 19 —
w |_/<

1

Fig. 5: Fault propagation through an S-Box having TI gates. The fault location
is marked with the cross. Note that each wire is of 4-bit width.

A\ %
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TI AND gates are often utilized as constituents for Masked S-Boxes. One
prominent example of this is a compact 4-bit S-Box from [31]. The circuit dia-
gram of the S-Box is depicted in Fig. 5. We specifically target the highlighted
AND gate in the structure, which is TT implemented. If we inject the same fault
as the TT AND gate, the fault effect propagates to the output with exactly the
same probability as the TI AND. This is because there is no non-linear gate in
the output propagation path of this fault. As a result, we can conclude that even
this S-Box leaks. It is worth mentioning that the choice of the target AND gate
is arbitrary and, in principle, any of the TT AND gates depicted in the circuit
can be targeted. One may also target the OR gate based on the same principle.
However, the non-controlling input or OR being 1, the leakage will happen for
the input value 0 instead of input value 1.

One important practical question is how many of such desired fault locations
may exist for a masked implementation. It turns out there are plenty of such
locations even for the simple TT AND gate implementation. It is apparent that
any of the input shares from (zg, 21,2, 23) or (yo,y1,y2,y3) can be used for
causing leakage. In fact, changing the target input share will enable recovery
of both = and y separately. Another critical question here is that whether there
will always exist such favorable situations where faulting a share will lead to the
leakage of an unmasked bit. We argue that it will always be the case because the
output of any masking scheme must always satisfy the property of correctness.
Putting it in a different way, the output of the masked AND gate must always
result in ¢ = zy = (xg + 21 + @2 + x3)(Yo + y1 + y2 + y3). Although shares
are never supposed to be combined during the masked computation, ensuring
correctness always requires that the monomials x3yo xsy1, r3ys and z3ys are
computed at some share during the masked computation (considering zs to
be the fault location). Hence, irrespective of the masking scheme used, we are
supposed to get fault locations which are exploitable for our purpose (i.e. leaks
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(yo+y1 +y2+y3) = y). Finding out such locations becomes even easier with our
template based setup where extensive profiling of the implementation is feasible
for known key values.

So far we have discussed regarding the feasibility of leakage for AND gates
and indirectly shared masked implementations of S-Boxes. The obvious next step
is to verify our claim for explicitly shared S-Boxes which we elaborate in the next
subsection. As it will be shown, attacks are still possible for such S-Boxes.

Table 5: The GIFT S-Box
T 0 1 2 3 4 5 6 7 8 9 a b c d e f
Sz) 1 a 4 ¢ 6 f 3 9 2 d b 7 5 0 8 e

4.3 Leakage from Shared S-Boxes

There are numerous examples of TI S-Boxes in the literature. For the sake of
illustration, we choose the 4 x 4 S-Box from the GIFT block cipher [3]. The
actual mapping of the S-Box is shown in Table. 5. For our purpose, we se-
lect the 3-share TT implementation of this S-Box proposed in [14]. One should
note that the GIFT S-Box is originally cubic. In order to realize a 3-shared TI,
the original S-Box function S : GF(2)* — GF(2)* is broken into two bijective
sub-functions F' : GF(2)* — GF(2)* and G : GF(2)* — GF(2)*, such that
S(X) = F(G(X)). Both F and G are quadratic functions for which 3-share TI
is feasible. In [14], it was found that for the most optimized implementation
in terms of Gate Equivalence (GE), F' and G should be constructed as follows:

G(x3,22,71,70) = (93, 92,91, 90) F(x3,22,71,70) = (f3, f2, f1, fo)

gs = xo + 21 + T1T2 fs =z1m0 + 23

g2 =1+ x> (5) fo=14x1 + 2+ 23+ 2370 (6)
g1 = T1 + T2Xo fi=zo+z1

go = To + X1 + T1T0 + T2 + X3 Jfo=1+zo

Both G and F' are shared into three functions each denoted as G1, G2, G3 and
Fy, Fy, F3, respectively. Details of these shared functions can be found in [14].
For our current purpose, we only focus on the shares corresponding to the bit
go of G. The ANF equations corresponding to this bit are given as follows:

3, 3, 3,.3,.22,. .23, 33
Gro = o + &) + T3 + T3 + TGLTT + XY + T2

1,01, .1 .1, .1.3, 3.1, .33
920 = T + Xy + Ty + T3 + TeX] + LTy + T (7)

2 2 2 2 1.1 1.2 2.1
g30 = Tg + 27 + 25 + 23 + xox] + 2] + 2Ty

Here x; = a3 + 22 + 2} for i € {0,1,2,3}, and go = g10 + g20 + g30-
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‘We now search for suitable fault locations for our purpose. One such feasible
location is z2. One should observe that the leakage due to this fault injection
actually depends upon (x1 + 2% 4+ 23 + 1) = x1 + 1. Hence the fault propagation
will take place in this case while x; is equal to zero. Similarly, it can be shown
that a fault injection at x? will leak the actual value of zg. One interesting
observation here is that fault injection at any of the shares of an input bit x; is
equivalent to the injection at any other share of the same input. This is because
all of them actually cause the leakage of the other unshared input bit associated.
This is, in fact, extremely useful from an attacker’s point of view as she may
select any one of them for leaking information.

Table 6: Output status for faulted masked AND gate for different input values
with bit-flip fault. The variables  and y are used for representing the unshared
variables (i.e. o+ z1 = z and yo + y1 = ¥).

Zo z Yo Y T0,1 C/F xo z Yo Y 70,1 C/F
0 0 0 0 0 C 0 0 0 0 1 C
0 0 0 1 0 F 0 0 0 1 1 F
0 1 0 0 0 C 0 1 0 0 1 C
0 1 0 1 0 F 0 1 0 1 1 F
0 0 1 1 0 F 0 0 1 1 1 F
0 0 1 0 0 C 0 0 1 0 1 C
0 1 1 1 0 F 0 1 1 1 1 F
0 1 1 0 0 C 0 1 1 0 1 C
1 1 0 0 0 C 1 1 0 0 1 C
1 1 0 1 0 F 1 1 0 1 1 F
1 0 0 0 0 C 1 0 0 0 1 C
1 0 0 1 0 F 1 0 0 1 1 F
1 1 1 1 0 F 1 1 1 1 1 F
1 1 1 0 0 C 1 1 1 0 1 C
1 0 1 1 0 F 1 0 1 1 1 F
1 0 1 0 0 C 1 0 1 0 1 C

4.4 Different Fault Models

So far in this paper, we have mostly utilized stuck-at faults for all our illus-
trations. The attacks are equivalent to stuck-at-0 and stuck-at-1 fault models.
Interestingly, they are also equally applicable while the fault flips the value of
the target bit. To show why it works we recall the concept of fault activation and
propagation described at the beginning of this work. Fault reaches the output
of a gate from its input only while these two events are satisfied, simultane-
ously. Considering AND gates (and other non-linear gates), the fault activation
depends on specific values at the target input for stuck-at faults (value 0 for
stuck-at 1, and value 1 for stuck-at 0). However, for bit flip faults the fault is
always active. In other words, in the case of stuck-at faults the fault activa-
tion event happens with probability %, whereas for toggle faults it happens with
probability 1. The fault propagation, however, still depends on the occurrence
of a non-controlling value at other inputs of the gate. Hence, the main property
we exploit for attacking masking schemes (that is, the fault propagation to the
output depends on the value of unmasked bits) still holds for bit flip fault mod-
els, and attacks are still feasible. As concrete proof of our claim, we present the
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truth table corresponding to the simple first order masked AND gate once again
in Table 6, this time for a bit flip fault at z.

4.5 Template Attack on Masked PRESENT: Main Idea

In this subsection, we utilize the concepts developed in the previous subsections
for attacking a complete block cipher implementation. Once again we choose
PRESENT as our target. A three-share TI implementation of PRESENT, with
simple redundancy countermeasure, is considered for our experiments. As for the
three-shared T1I, we implemented the lightweight scheme proposed by Poschmann
et al. [22]. The implementation technique for the S-Box closely resembles the
GIFT S-Box discussed in Sec. 4.3. Considering the fact that PRESENT S-Box
is also cubic, it is first represented as a combination of two quadratic bijective
mappings F' and G. Each of these mappings is then converted to three-shared T1
implementations. The implementation of the linear mappings is straightforward.
For the sake of completeness, the keys are also masked. As for the fault counter-
measure is concerned, we implemented the most common form of redundancy,
where the redundancy check happens at the final stage just before outputting the
ciphertext. Two separate copies of the masked PRESENT with different masks
are instantiated as two redundant branches of computation. Upon detection of
a fault, the output is muted or randomized®.

The three-shared ANF equations for F' and G functions can be found in [22].
For our purpose, it is sufficient to focus only on the shared implementation of F’
which is given below. For the sake of illustration, we first present the unshared
version of F' (Eq. (8)), and then the shares corresponding to it (Eq. (9)).

F(.’IJ37.'IJ2,ZC1,$0) = (f37f2af17f0)
fa =x2+ 21 + 20 + T370; f2o = 3 + 21705 f1 = T2 + T1 + T3T0; (8)

fo=x1 + z220.

fio= x% + x%mg + x%xg + a:gxg fii= x% + a:% + x%x% + J;ga:g + x%x%

foo =t + adad + ajad + el fa=ad +at +adad +agad +aday  (9)

fao = @] +@ywy + whap +adwy  far = wh+ ay + wiwg + w3wg + 30
fro = a2 +atad +adad 42l fiz =k +ad 4ok 4 adad o aed + 2l
for = @} + afay + wiag +ateg  foy = a2t + xg + adag + wza + 2
fao = ab +atad v alad v alal  fay = ad 4ol +ad +alad + adad + 2dad

4.6 Middle Round Attacks

The most interesting question in the current context is how to attack the middle
rounds of a cipher without direct access to the plaintexts or ciphertexts. The

11 Actually, our attacks do not depend on this choice and would equally apply for any
detection-type countermeasure
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attacks in the first round with known plaintext will become trivial once the
middle round attacks are figured out. Note that, in all of these attacks (even for
the known plaintext case), we assume the plaintext to be fized, whereas the masks
vary randomly. The attacker is only provided with the information whether the
outcome is faulty or not and nothing else. For the case of middle round attacks,
the value of the fixed plaintext is unknown to the adversary.

4.6.1 Template Construction

Algorithm 5 BUILD_TEMPLATE MASK

Input: Masked cipher S, Faults flo, fl1,: -, fln, Number of masked executions per input M
Output: Template T
T:=0
w := GET_SBOX_SIZE() > Get the width of the S-Box
for (0 <z <2%) do
Fy =10

for each fl € {flo, fl1, fln} do
V=20
for minqg < M do
m := GEN_MASK() > Generate fresh mask for each execution
yr = C(x, m)fl > Inject fault in one copy of the S-Box for each execution
m := GEN_MASK()
ye i= Clz,m)
if DETECT _FAULT(ys, y.) == 1 then > Fault detection function
V:=Vu({l}
else
V:=Vu{0}
end if
end for
if V ~ Dy then
Fy:= F, U {1}
else
F, := Fy U {0}
end if
end for
T :=TU{(F:,x)}
end for
Return 7

Table 7: Template for attacking TT PRESENT (middle round). The black cells
indicate a faulty outcome and yellow cells represent correct outcome.

flo = a3| fli = 3| flz = «3| fls = a3 flo = 3| fli = 3| flz = 3| fls = a3
(f10, (f11, (f12, (f13, . (f10, (f11, (f12, (f13, .
f20, fa1, faz, f23, State f20, fa1, fa2, fas State

f30) f31) fss)

f33) f32)

f30) f31) f32)

o

| o Ut x| o DOf =
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The very first step of the attack is template-building. The attacker is assumed
to have complete knowledge of the implementation and key, and also can figure
out suitable locations for fault injection. One critical question here is how many
different fault locations will be required for the attack to happen. Let us take a
closer look at this issue in the context of the shared PRESENT S-Box. Without
loss of generality, let us assume the input share 23 as the fault injection point
during the computation of the shares (f10, f20, f30)- It is easy to observe that this
fault leaks about the expression (22423 +x1) = x5. In a similar fashion the fault
location 2 during the computation of the shares (fi1, fa1, f31) leaks about x3;
the location 22 during the computation of the shares (fia, fa2, f32) leaks about
x1; and the location x% during the computation of (fi3, fa3, f33) leaks about
xg. Consequently, we obtain the template shown in Table 7 for independent
injections at these selected locations.

The template construction algorithm is outlined in Algorithm 5. The aim is to
characterize each S-Box input (denoted as z in the Algorithm 5) with respect to
the fault locations. The plaintext nibble is kept fixed in this case during each fault
injection campaign, while the mask varies randomly. One important observation
at this point is that the fault injection campaign has to be repeated several times
with different random mask for each valuation of an S-Box input. To understand
why this is required, once again we go back to the concept of fault activation
and propagation. Let us consider any of the target fault locations; for example,
x3. The expression which leaks information is (23 + 23 + z3). Now, for the fault
to be activated in a stuck-at fault scenario, x3 must take a specific value (0 or
1 depending on the fault). Since all the shared values change randomly at each
execution of the cipher, we can expect that the fault activation happens with
probability % 12 Once the fault is activated, the propagation happens, depending
on the value of the other input of the gate which actually causes the leakage.
In order to let the fault activate, the injection campaigns have to run several
times, corresponding to a specific fault location for both the template building
and online attack stage. Given the activation probability of %, 2 executions
(injections) with different valuations at 3, would be required on average.

As a consequence of performing several executions of the cipher corresponding
to one fault location, we are supposed to obtain a set of suggestions for the
valuation of the bit to be leaked. For example, for two separate executions we
may get two separate suggestions for the value of (v2 423 +x3). If the fault at 23
is not activated, the suggestion will always be 0. However, if the fault is activated
the suggestion reflects the actual value of x5. There is no way of understanding
when the fault at o3 gets activated. So, a suitable technique has to be figured out
to discover the actual value of zo from the obtained set of values. Fortunately,
the solution to this problem is simple. Let us consider the set of observables
corresponding to a specific fault location as a random variable V taking values 0
or 1. The value of V is zero if no fault propagates to the output and 1, otherwise.
Mathematically, V can be assumed as a Bernoulli distributed random variable.
Now, it is easy to observe that if the actual value to be leaked is 0, V will never

12 for bit-flip faults, however, the fault activation will happen with probability 1
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take a value 1 (that is, the fault never propagates to the output). Therefore, the
probability distribution of V for this case can be written as:

Algorithm 6 MATCH TEMPLATE MASK

Input: Protected cipher with unknown key Cj, Faults flo, fl1, ..., fl), Template T
Output: Set of candidate correct keys k.

kcana :=0 > Set of candidate keys
w := GET_SBOX_SIZE()
Fy =10

for each fl € {flo, fl1, fln} do
V=20

for minq < M do

O := (Cx(P)! > Inject fault for each masked execution
if (O ==1) then > Fault detected
V:=Vu{l}
else
V:=Vu{0}
end if
end for

if V ~ D; then
Fy:=F, U{1}
else
F, := F, U {0}
end if
end for
kcand := Kkcanda U {T (F%)}
Return k.qnq

Dy:PV=0=1and PY=1]=0 (10)

In contrast, if the value to be leaked is 1, the probability distribution of V

becomes: 1 1
Dy :PV=0]=;and PV=1=; (11)

The template construction procedure becomes easy after the identification of
these two distributions. More precisely, if V ~ Dy the corresponding location in
the template takes a value 0. The opposite thing happens for V ~ Dy.

4.6.2 Online Phase

The online phase of the attack algorithm is outlined in Algorithm 6. Fundamen-
tally it is similar to the template construction phase. We keep the plaintext fixed
and run the fault campaigns at pre-decided locations. The templates are decided
by observing the output distributions of the random variable V' as described in
the previous section. At the end of this step, one round of the cipher is com-
pletely recovered. However, in order to recover the complete round key, recovery
of two consecutive rounds is essential. Recovery of another round is trivial with
this approach, and therefore a round key can be recovered uniquely.

Number of Faults: In the case of PRESENT, we use 4 fault locations, and
each of them requires several fault injections with the mask changing randomly.
The number of injections required for each of these locations depends upon the



26 S. Saha et al.

number of samples required to accurately estimate the distribution of the vari-
able V. In an ideal case, two fault injections on average should reveal the actual
leakage. Experimentally, we found that 4-5 injections on average are required to
reveal the actual distribution of V. The increased number is probably caused by
the fact that an entire mask of 128-bit is generated randomly in our implemen-
tation and the activation of an injected fault happens with a slightly different
probability than expected. Assuming, 5 injections required per fault location the
total number of fault requirements for a nibble becomes roughly 20. Therefore,
around 32 x 20 = 640 faults are required to extract the entire round key of the
PRESENT cipher 3. Note that, in practical experiments, this number may rise
given the fact that some of the injections may be unsuccessful. However, given
the fact that the accuracy of modern fault injection setups like laser stations are
almost 100%, this should not be of significant concern. It is somewhat apparent
that the attack outlined above will also work for situations where the plaintext
is known. In fact, the required number of injections reduces 320 in that case.

5 Practical Validation

In this section, we evaluate the applicability of the proposed FTA strategy for
a publicly available masked implementation. One should note that profiling of
the target implementation to detect desired fault locations is an important fac-
tor in FTA attacks. This section demonstrates how to perform such profiling
for a relatively less understood public implementation. The target implementa-
tion of ours is a masked implementation of AES targeted for 32-bit Cortex M4
platform with Thumb-2 instruction set. Since the original implementation lacks
fault countermeasure, we added simple temporal redundancy, that is the cipher
is executed multiple times, and the ciphertexts are matched before output. In all
of our experiments, the observable is a string of 0,1 bits with its corresponding
interpretations.

5.1 Simulated Experiments on a Public Implementation of AES

So far in this paper, we have mainly demonstrated the attacks in the context of
PRESENT block cipher. However, it is interesting to analyze whether AES is
also susceptible to the proposed attacks. Although in principle the answer should
be yes, it is always important to analyze the attacks for third-party implemen-
tations. With this viewpoint, we choose one publicly available implementation
of optimized, bit-sliced, 1st-order masked AES from [1]. The masked S-Box in
this implementation utilizes Trichina gates [29] for SCA protection.

13 Given the fact, that PRESENT uses an 80-bit master key, and 64-bit round keys,
the remaining keyspace after one round key extraction would be of size 2!, which
is trivial to search exhaustively.
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Analyzing the S-Box: The main concern of analyzing third-party implementa-
tions is that the high-level structure is not very well-understood during profiling.
This being a practical issue, we decide to handle it with a simple trial-and-error
based profiling of the S-Box. We target each instruction at once and simulate a
bit stuck-at or bit-flip fault for one of its operands. One should note that in this
experiment, we do not restrict ourselves to the faults in the input shares during
the shared execution of a single bit. The faults can now happen at any interme-
diate wire, and we accept them as long as they are found useful for constructing
templates. The compiled code in Thumb-2 of the S-Box is found to have 2621
instructions in total. It was found that a total of 1102 among them results in
exploitable fault locations in our case. The exploitability was decided based on
the fact whether the fault location can reduce the entropy of the S-Box input.
The result of this experiment is summarized in Table. 8 and it indicates that
one can have plenty of exploitable fault locations to run practical FTA attacks.

Table 9: Summary of the templates

Table &8: Summary of ex- X
for different fault models.

ploitable instructions.

c . #Patterns |#Patterns
thal . # Exploitable|% Vulnerable Fault #Fau%t #Distinct with 2 value|with 1 value
Instruction . . Model |Locations|Patterns ) .
Count Instructions |Instructions suggestions [suggestion
5621 1102 YOS Stuck-at |16 200 56 144

= Bit-flip |15 198 58 140

Different Fault Models: The next step is to construct templates and use
them to perform full-scale attacks. We specifically consider two different fault
models for template construction: 1) stuck-at fault; 2) bit flip fault. The corre-
sponding templates are summarized in Table 9. For the first model, we found
200 distinct patterns in the template having 16 different fault locations. Each
pattern maps to either one or two suggestions for the intermediate state byte
value. The result for the other case is very similar. During the online phase, it
was found that roughly 7 — 8 fault injections per location with different mask
values are sufficient for template matching. One should note that none of the
templates constructed can uniquely identify a complete state. In the worst case,
we may get 2'6 equally likely suggestions for one single intermediate round'4. As
two consecutive states are required in the case of middle round attack, the total
number of key suggestions become 26 x 216 = 232 However, one should note
that this is simply a worst case estimate and in practice, the attack complexity
is supposed to be lower than this. Even if the complexity reaches the worst-case
estimate, the exhaustive search complexity of 23? is fairly reasonable. It is worth
mentioning that the choice of this AES implementation was entirely random and
subject to the availability of public codes. To summarize, the FTA attacks work
fairly well for masked AES implementations having fault countermeasures and
suitable measures should be considered.

The attack applies to popular design styles for both software and hardware
implementations of ciphers with TI protection. To illustrate, consider the TI
implementation as shown in [26] , where table lookups have been utilized for

14 Although, in our experiments, we got several states with single suggestions.
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processing the input shares of an S-Box. This specific implementation performs
the share computations in a per-bit manner via table look-up (bits corresponding
to different independent S-Boxes are packed in one register). For our purpose,
it is sufficient to inject a bit fault during this table look-up which is a common
fault model used for FAs [16]. In the next section, we discuss some of the state-
of-the-art FA countermeasures in the context of FTA.

6 Possible Countermeasures

In this section, we discuss the applicability of some of the well-known fault attack
countermeasures for preventing the proposed attacks. Both the middle round and
known plaintext attacks on the masking schemes are taken into consideration.

6.1 Device-Level Countermeasures:

Self-destruction is one of the most radical steps that can be taken to prevent
against FAs. However, given the fact that most of the cryptographic devices in
the modern day is supposed to operate in an open environment, self-destruction
can be extremely costly and will have a very low yield. This is because small
embedded devices cannot afford to have extremely efficient methods to handle
power-spikes and electromagnetic radiation effects. As a result, deciding between
malicious fault and accidental fault becomes almost impossible. One reasonable
trade-off could be to destroy the device after a certain number of faults has
been encountered. However, a resourceful attacker may always try to bypass it
by first corrupting the fault counter, which is reasonable with any standard lab
setup and may not even require precise faults. Another option to prevent FA is
to use tamper resilient shielding. However, this is not cost-effective for most of
the embedded devices and can also be bypassed by careful de-packaging of the
chip.

6.2 Infection Countermeasures

Infection countermeasures were mainly proposed to get rid of the explicit check
operation often used in detection countermeasures. The explicit check operation
has been shown to have serious consequences in the context of security [11, 30].
Another distinct property of infection countermeasures is that they try to make
the faulty ciphertexts unexploitable by somehow destroying (often called infect-
ing) the useful patterns within them. Usually, an infection function is called
upon detection (not via explicit check) of a fault to infect the computation.
In the present context, we consider the infection countermeasure proposed by
Tupsamudre et al. in [30]. The infection function is fairly simple albeit effective
in this case. The idea is to output a uniformly random string upon the detec-
tion of a fault. Additionally, the countermeasure involves random dummy round
computation to make a targeted fault injection difficult.
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The infection function and the fault detection mechanism do not found to
have any significant effect on the proposed attacks. However, the dummy rounds
have some interesting effects. The presence of dummy rounds makes the ob-
servable distributions noisy thus making the template matching difficult at the
attack phase. However, the attacks cannot be fully mitigated. In particular, we
found that the middle round attacks were throttled in the case of PRESENT due
to an excessive number of key suggestions returned during template matching.
However, the known plaintext version of the attack can still work with slightly
higher complexity. Further analysis of infection countermeasures can be found
in the Appendix D.

6.3 Code-based Error-Detection

Code-based error detection is one of the lightweight alternatives for throttling
fault attacks. The low resource overhead comes at the cost of limited fault cov-
erage. The simplest example of code-based error detection is simple single-bit
parity checking which can detect 50% of the injected faults. The error-detection
capability can be improved further by using non-linear codes [18]. The proposed
attack strategy remains unaltered at the presence of such countermeasures. This
can be explained by the fact that even if some of the errors remain undetected,
the distribution Dy in Eq. 10 remains unaltered. Although the distribution D,
might get affected slightly, it still remains distinguishable from Dy. On the other
hand, code-based detection schemes with high error detection rate behave al-
most identically with standard time/space redundancy countermeasures. Hence,
the proposed attacks would not get throttled with such detection schemes.

6.4 Error Correction

Error correction is an alternative countermeasure strategy, which is relatively
less explored compared to other countermeasure classes. Error correction can be
somewhat effective in the present context. However, with a little more power
given to the adversary, the effectiveness of error correction may fall short. One
should recall that the attacks described in this paper only need to know whether
the fault has happened or not. An adversary having the power of measuring
side-channel information may still get this information even in the presence of
error correction. This is because the error correction logic is supposed to make
more transitions while it has to correct a bit, than the situations while nothing
has to be corrected. Also, an error would make a valid code-word deviate from
its predefined structure. It is not very difficult for a side-channel adversary to
detect such deviation via side-channel. The vulnerability of such check opera-
tions have already been shown as exploitable in [25] in the context of detection
countermeasures. Availability of such information is sufficient to make the FTA
attacks work.
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7 Conclusion

Modern cryptographic devices incorporate special algorithmic trick to throttle
both SCA and FA. In this paper, we propose a series of attacks which can
efficiently bypass most of the state-of-the-art countermeasures against SCA and
FA even if they are incorporated together. The attacks, abbreviated as FTA, are
template-based and exploit the characteristics of basic gates under the influence
of faults for information leakage. Although the fault model is similar to the
SIFA attacks, the exploitation mechanism is entirely different from SIFA. Most
importantly, FTA enables attack on the middle round of a protected cipher
implementation, which is beyond the capability of SIFA or any other existing
FA technique proposed so far. Middle round attacks without explicit knowledge
of plaintexts and ciphertexts may render many well-known block cipher-based
cryptographic protocols vulnerable. Practical validation of the attacks has been
shown for PRESENT and a publicly available implementation of AES. One
interesting future application would be to make these attacks work for secured
public key implementations. Another potential future work in this direction is
to figure out a suitable countermeasure against FTA attacks.
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A Impact of Fault Propagation on Pseudorandomness

In this paper, we demonstrate the impact of fault propagation characteristics
on the security of block ciphers. However, conceptually, one could view the ob-
servation of fault propagation as a means to compromise the security of any
pseudorandom function (PRF) in general. In this section, we shed light on how
one can exploit the key-dependent fault propagation behavior exhibited by any
PRF to distinguish it from a uniformly random function. We begin by formally
defining a PRF.

Pseudorandom Functions. Informally, an efficiently computable function %

is called pseudorandom if there exists no probabilistic polynomial-time (PPT)
adversary that can distinguish it from a truly random function. More formally,
a PRF family is an efficiently computable function family {F'(k,-) : Y — Z}rex
(where K, Y and Z are indexed by the security parameter \) such that for all
PPT adversaries A we have

PLAFED (1%) = 1] = PLATO (1Y) = 1]| < negl()),

where k is a uniformly sampled key from the keyspace K and f: )Y — Z is a
(truly) random function.

It follows from this definition that any pair of uniformly sampled functions
from a given PRF family should be computationally indistinguishable. More
formally, for all PPT adversaries A we should have

PlAFFL) (12 = 1] — PLAT R0 (12 = 1]| < negl()),

where k1 and ko are uniformly sampled keys from the keyspace K. The proof of
this claim follows from the definition of a PRF and a simple hybrid argument.

Fault Observability Oracle. Now assume that in addition to the PRF oracle,
the adversary A has black-box access to a second oracle called a “fault observ-
ability oracle” (or Opo in short). This oracle takes as input a PRF key k € K
and an input y € ), and a fault description fI 16, and outputs a bit b € {0,1}.
The output bit b is supposed to indicate whether a fault with description fI,
upon injection into the PRF evaluation algorithm, propagates to the eventual
PRF output. In particular, the adversary A does not have access to the actual
output of the faulty evaluation algorithm.

In the presence of this additional oracle, the advantage of the adversary A in
distinguishing any pair of uniformly sampled functions from a given PRF family
is given by

€ := |P[AF (1), Oro (ki) (qA) = 1] — P[AS()Orolkz) (1A = 1| |

15 A function is said to be efficiently computable if there exists a poly-time algorithm
that can evaluate this function on any arbitrary valid input.

16 The fault description fI is assumed to include all information relevant to a fault
injection, such as the nature, timing and precise location of the fault
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where k1 and ko are uniformly sampled keys from the keyspace K.

Exploiting Key-Dependent Fault Observability. Now suppose that there
exists a class of faults for which the corresponding fault observability behavior
depends on the PRF key. In this case, the output of the oracle Opg leaks some
information about the information about the underlying key k, which an adver-
sary A can exploit to distinguish any pair of uniformly sampled functions from
a given PRF family.

More formally, suppose there exists a set of fault descriptions FS such that
for any fault with description fl € FS, we have

|P[Oro (k1,y, f1) # Oro(ka,y, f1)] —1/2| > €,

where k1 and ko are uniformly sampled keys from the keyspace IC, y is any
arbitrarily chosen input from the input space Y, and €' is non-negligible in the
security parameter \. It is easy to see that by querying the Opg on arbitrary
inputs fault descriptions in the set FS, the adversary A can distinguish between
F(ky,-) and F(ks,-) with advantage at least €.

In summary, the existence of a fault observability oracle and a set of faults S
with key-dependent fault behavior poses a threat to the security of any family
of PRFs. In this paper, we develop this idea into a full-fledged key-recovery
attack on block ciphers. Fundamentally, our approach is based on the following
observations:

1. First of all, it is practically feasible to realize fault observability oracle with
respect to block ciphers by simply injecting faults into an implementation of
the block cipher under test, and observing whether the fault propagates to
the ciphertext.

2. Secondly, as pointed out in Section 2, it is possible to inject faults into the
circuitry of block cipher sub-components such as S-Boxes, where the fault
observability at the output of the S-Box depends on the input. Since the
input to an S-Box is typically a function of the secret key and the cipher
internal state, Section 2 implies the existence a class of faults FS as described
above.

B More on the Attack from Sec. 3.2: AES Example

It would be interesting to see how the first round attack described in Sec. 3.2
works in the case of AES. The S-Box polynomials for AES has the highest degree
of 7. As the first injection location, we choose the highest degree monomial
T1T2T3T4T5T7Tg from the polynomial corresponding the 0’th output bit of the
AES S-Box. Very similar to the PRESENT case, the fault template here also
suggests two keys per pattern. However, the total number of injections required
are 256 for the first template and 257 in total to recover a single byte of the key.
The first template for the AES attack contains a total of 128 distinct patterns
with two key suggestion per pattern. The second template, which is based on
fault injection at a linear term, contains two patterns.
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C Alternative Fault Template for Masked PRESENT

In this section, we present an alternative fault template for the 3-share imple-
mentation of PRESENT. In this case, the fault is injected in the shares of the G
function. In fact, concentrating on the shares corresponding to any two bits of G
are sufficient. For the sake of illustration, we first present the unshared version
of GG, and then the shares corresponding to two of the actual output bits of it.
The unshared G, and the shares corresponding to go and g; are presented in
Eq. (12), Eq. (13) and Eq. (14), respectively.

G(x3,x2,71,20) = (93, 92, 91, 90)
g3 =xa+x1 +T0,;92=1+22+ 21591 =1+ 23+ 21 + 2270 + 21T0;

go =1+ 20 + 2372 + 2371 + T271
(12)
2, 22 .23 392 292 23 393 9295 23, 32
gro = 1+ g + 2325 + 2375 + 375 + 2327 + X307 + X327 + Xyw] + Xo¥] + ¥5¥]
3,33, .13 31 33 1.3 31, 33 1.3, 391
G20 = Tg + T35 + T3x5 + X3x5 + x3T7 + T3] + 307 + Tox] + X1 + 25T
1,11, 1.2 21 11, 12 21 11, 12, 2.1
930 = To + T3y + T3T3 + T3Ty + T3y + T3TT + T3T + Tay + 77 + 127
(13)
2, 2., .22, 23, 392 929 923 32
g = 1+ 3 + 7 + w35 + 2300 + 2900 + 0 + TG + TG
3,3, .33, 1.3, 31, 33, 13, 31
g21 = T3 + T + Ty + T + TaTp + T1TH + 1T + T1T (14)
1,1, 11, 1.2 21 11, 1.2, 21
931 = T3+ Ty + Tog + 2% + 22T + T1Tg + 175 + 21T

Without loss of generality, let us consider the input 22 as the first fault injection
point. It is easy to observe that this fault leaks about the expression (21 + 2% +
23 + 2} + 23 4+ 23) = 21 + zo. Further investigation reveals that fault injection
at any share of z; in Eq. (13) leaks information regarding x5 + x2, and a similar
injection in one of the shares of x4 reveals about x3 + 1. Independent injections
at these locations thus reduces the entropy of the three actual bits (z3, 2, z1) to
1 bit. However, no information regarding the bit 2 can be revealed from Eq. (13)
as the shares of xg are only present as linear monomials. In order to extract this
bit we have to consider the shares from Eq. (14). Corrupting any single share of
To Or X1 exposes xq in this case. However, one should note that even after the
extraction of xg the overall entropy of the entire state (x3, 2, 1, z¢) still remains
as 1. Consequently, this template provides two suggestions for each S-Box input
at an intermediate round. The template is depicted in Table. 10.

D Infection Countermeasures Against FTA Attacks

One of the most prominent infection countermeasure is due to Tupsamudre et.
al. [30]. In order to detect a fault, this countermeasure performs two executions
of each round (denoted as cipher and redundant rounds). There can be arbitrary
number of dummy rounds happening between a cipher and a redundant round.
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Table 10: Alternative Template for attacking TI PRESENT (middle round). The
black cells indicate a faulty outcome and yellow cells represent correct outcome.
fl() fll fZQ flg State

3,13

5, 11

12
15

oo

—
o

SEINEREES
—
=~

Nej

The whole computation is controlled by a random bit-string of fixed length
(denoted as rstr). A bit zero in rstr denotes a dummy round and a bit value of
one denotes a cipher or redundant round.

Let us consider FTA for infection countermeasures. To validate the robustness
of this countermeasure we implemented it on a 3-share masked PRESENT im-
plementation. In order to prevent SCA-based identification of individual rounds
the final key addition operation of PRESENT is converted into a complete round
by adding a dummy S-Box layer and pLayer. In other words, the implementa-
tion processes 32 cipher and 32 redundant rounds, and a predefined number of
dummy rounds. The security against the proposed fault-template attacks was
evaluated for 16, 32 and 64 dummy round computations.

The proposed attacks does not get affected by the fact that the ciphertext is
randomized upon the detection of a fault. However, the dummy round compu-
tations are found to have significant effects. Basically, the existence of dummy
rounds add noise to the observables as the target fault location cannot be deter-
mined exactly. Let us now have a closer look on these noisy observables. Let the
cipher processes total R rounds among which there are total n cipher and re-
dundant rounds and R —n dummy rounds. As already pointed out, an arbitrary
number of dummy round computation may take place between any cipher round
and its corresponding redundant round. Let us further assume that the fault
location is set at loop iteration t.'” Depending upon the random rstr string, the
fault injection may either hit the desired cipher round r (or its corresponding
redundant round), or some arbitrary cipher or dummy round. The event that
fault injection happens at round r (cipher or redundant) is considered as signal,
whereas injection at any other round or at a dummy round is considered as
noise.

As mentioned previously, the noise directly affects the observables in this
case. This is because even if the fault affects an undesired location, the fault
effect would propagate to the output. This fact influences the decision mak-

17 For simplicity, we assume that the attacker can deterministically identify the target
S-Box and fault location within a round
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Fig.6: Variation of signal probability with targeted loop iterations for injec-
tion(for different number of dummy rounds).
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ing procedure of our attacks. In other words, the fault patterns for template
matching cannot be constructed properly during the online phase. As described
in Sec. 4.6.1, for a specific fault location inside the S-Box the observable is a
Bernoulli distributed random variable (V). The aforementioned noise actually
affects this distribution. The random variable corresponding to this noisy dis-
tribution is denoted as V. In order to make the attacks happen, we need to
decide the actual fault patterns by nullifying effect of noise. As already shown in
Eq. (10), and (11), the noise-free distributions Dy and D; only depend upon the
leaked values. The main task there was to decide whether the noise-free random
variable for the observable V is distributed according to Dy or D;.

Let us now characterize the noisy distribution. For convenience, let us define
another random variable V,, denoting the distribution of the noise. The noisy
random variable V' is then distributed as follows:

PV = 1] = paig X P[V = 1]+ (1 — paig) X PV, = 1]

, / (15)

PV =0l=1-P[V =1]
Here ps;q represents the signal probability. Given the fault is injected at the loop
iteration ¢, with the aim of affecting the r-th cipher or redundant round p,;, can
be given as follows:

R €7 [P R A [ 6y
’ @

n

(16)

The decision making procedure for fault pattern recovery now takes the following
form. Consider two noisy distributions, D, and D;, given as follows:

Dy PV = 1] = paig X P[V = 1|z = 0] + (1 — paig) X P[V, = 1] an

and

Dll :P[V/ =1] = Dsig x PV =1z = 1]+(1_psig) x PV, =1] (18)
PV =0/ =1-P) =1]

Here z denotes the leaking intermediate. The decision making process then can
be stated as:

Decide the outcome(one component of the target fault pattern) to be 0 (no fault
propagation) if V' ~ Dy, and to be 1, otherwise.

In order to nullify the effect of the noise in decision making process, we need to
ensure two things; firstly, fault injection must happen at a loop iteration where
the probability of signal pg;4 is the highest. This can be achieved easily using
the expression for py;, given in Eq. (16). The variation of signal probabilities for
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a specif choice of r with different counts of dummy rounds is depicted in Fig. 6.
It can be observed that py;, achieves its highest value corresponding to a given
r only at certain loop iterations.

The second factor which can nullify the noise effect is an accurate estima-
tion of the distribution of V,,. Unlike the py;g4, estimation of V,, was found to be
tricky. One may observe that noise in this case comes from two points: 1) injec-
tion at a dummy round; 2) injection at arbitrary cipher or redundant rounds.
Note that the propagation of the fault in our case typically depends upon the
actual unshared value. For an injection at a dummy round this value dependent
propagation effect becomes random (as the data inside the dummy rounds are
random) and can be estimated properly. However, for the second case, the noise
is somewhat correlated with the signal. This is attributed to that fact that the
plaintext in our attacks are typically held fixed, which also fixes the unshared
values processed in all cipher and redundant computation rounds. Although the
desired round of injection is 7, some of its neighbouring cipher and dummy
rounds get hit by the fault with significantly high probability. In essence, the
noise in our case is correlated with the signal, which makes the detection of
signal significantly challenging.

One option to reduce the correlation of the noise with the signal compo-
nent is to increase the number of dummy rounds. Fig. 7, presents the mean
and variances for the expected value of the noise distribution (V},) for different
number of dummy round computations. The expected value of V,, is normally
distributed, in general. The distributions were estimated during the profiling
(template-building) phase by changing the plaintext values. It can be observed
that the variance of noise is significantly high while the number of dummy rounds
are low and it gradually improves with the increased number of dummy rounds'®.
This observation also indicates that may be a better estimation of the noise
distribution would be possible if the number of dummy rounds are increased
arbitrarily. However, having a huge number of dummy rounds is impractical as
the overhead will be extremely high.

Let us now try to see if the signal components can be recovered for a rea-
sonable count of dummy rounds. Without loss of generality, we set the number
of dummy rounds to be 64 for this specific experiment. The expected value py,,
of V,, (which is nothing but P[V,, = 1]) is normally distributed. This makes the
mean of D(/) (denoted as D) and D/l (D,,,) normally distributed as well. In
order to make the abovementioned decision process work with high confidence,
both the means should be accurately estimated and their distributions should
overlap as less as possible.

With a proper mathematical model, we are now at the position to state our
detection procedure for the fault patterns. Corresponding to each fault location
we perform the fault injection campaign for several different mask values and

8 One should note that even a noise standard deviation of 0.07 is high in this context,
as the psig is in the range of 0.1-0.2 for any reasonable count of dummy rounds.
In other words, the contribution of noise component is so high that even a small
standard deviation value can distort the fault pattern detection mechanism.
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gather sufficient number of observations for the noisy observable random variable
V . The mean of V' is next estimated as p,. In the next step, we simply estimate
the probability of 1, belonging to any of the two distributions D,,, or D,,,. More
precisely, we calculate the following:

P[D,, | pyy] and and P[D,, | p] (19)

The outcome (one component of the target fault pattern) is assumed to take the
value for which the probability is the highest.

Unfortunately, the abovementioned detection strategy is found to have some
accuracy issues. To understand the reason we refer to the distributions of D,
and D,,, depicted in Fig. 8. The highly overlapped patterns of these distributions
are the sole cause behind the inaccuracies in the detection. To deal with these
inaccuracies, we set a threshold window in the detection mechanism which gives
an indication if the detection confidence is sufficiently high or not (Typically,
some part of the shaded region in Fig. 8 is selected as threshold window). The
threshold is set simply based on the observed value of u,,. If the value is within
the low confidence region, the detection process raises a flag indicating the un-
certainty in the detection. Having this threshold at place, it is observed that in
the case of PRESENT, two components of the fault pattern vector (which is of
length 4) may remain undecided on average. Given there are total 16 possible
fault patterns for the fault location we chose, the template-matching will now
return 4 suggestions on average for each intermediate value. As a result we would
get total 416 = 232 suggestions for an intermediate state. Note that, one may
further filter these suggestions by performing the same experiment for another
set of fault locations and taking the intersection between the value suggestions
corresponding to each nibble returned from these two experiments. In our case,
we tried with the fault locations at the G function (presented in Appendix. C)
and found that taking the intersection leaves us with 2 — 3 suggestions for each
intermediate nibble, with three suggestions occurring rarely. The size of the sug-
gestion set now becomes roughly 229,19

In the known plaintext scenario, where the target intermediate round is the
first round, the abovementioned complexity figure is still reasonable for recov-
ering a round key. However, for middle round attacks one need to estimate two
consecutive intermediate states to recover a complete round key. In the present
context, the number of key suggestions for a middle round key recovery would
become 2%° (and 2°¢ for the entire master key), which, although, is less then
brute force complexity, but still impractical. It is worth mentioning that the
results we consider in this case are specific for the attack on PRESENT (how-
ever, the attack procedure is generic). There is always a chance that changing
the TI equations or the fault locations result in an attack with better accu-
racy and complexity figures. In nutshell, although infection countermeasures are
somewhat promising as protections against the proposed attacks, they cannot
be considered as an ultimate solution against FTA.

19 For the entire master key it becomes 23°.



