
This is the preprint (extended) version of an article with the same title that will appear at ACM CCS 2019 on Nov. 11–15, 2019, London,
UK. DOI: 10.1145/3319535.3354251

Efficient zero-knowledge arguments in the discrete log setting,
revisited

Max Hoffmann
max.hoffmann@rub.de
Ruhr-University Bochum

Horst Görtz Institute for IT-Security
Bochum, Germany

Michael Klooß
michael.klooss@kit.edu

Karlsruhe Institute of Technology
Department of Informatics

Karlsruhe, Germany

Andy Rupp
andy.rupp@kit.edu

Karlsruhe Institute of Technology
Department of Informatics

Karlsruhe, Germany

ABSTRACT
Zero-knowledge arguments have become practical, andwidely used,
especially in the world of Blockchain, for example in Zcash.

This work revisits zero-knowledge proofs in the discrete log-
arithm setting. First, we identify and carve out basic techniques
(partly being used implicitly before) to optimize proofs in this set-
ting. In particular, the linear combination of protocols is a useful tool
to obtain zero-knowledge and/or reduce communication.With these
techniques, we are able to devise zero-knowledge variants of the
logarithmic communication arguments by Bootle et al. (EUROCRYPT
’16) and Bünz et al. (S&P ’18) thereby introducing almost no over-
head. We then construct a conceptually simple commit-and-prove
argument for satisfiability of a set of quadratic equations. Unlike
previous work, we are not restricted to rank 1 constraint systems
(R1CS). This is, to the best of our knowledge, the first work demon-
strating that general quadratic constraints, not just R1CS, are a nat-
ural relation in the dlog (or ideal linear commitment) setting. This
enables new possibilities for optimisation, as, e.g., any degree n2
polynomial f (X) can nowbe “evaluated”with atmost 2n quadratic
constraints.

Our protocols are modular. We easily construct an efficient, log-
arithmic size shuffle proof, which can be used in electronic voting.

Additionally, we take a closer look at quantitative security mea-
sures, e.g. the efficiency of an extractor. We formalise short-circuit
extraction, which allows us to give tighter bounds on the efficiency
of an extractor.

CCS CONCEPTS
•Theory of computation→Communication complexity; In-
teractive proof systems; Cryptographic protocols.

KEYWORDS
zero-knowledge, argument system, quadratic equations, arithmetic
circuit satisfiability, discrete logarithm assumption,

1 INTRODUCTION
Zero-knowledge arguments (of knowledge) (ZKAoK) allow a party
P, the prover, to convince another partyV, the verifier, of the truth
of a statement (and knowledge of a witness) without revealing any
other information. For example, one may prove knowledge of a
valid signature on some message, without revealing the signature.
The ability to ensure correctness without compromising privacy
makes zero-knowledge arguments a powerful tool, which is ubiqui-
tous in theory and application of cryptography. Since the first prac-
tical construction of succinct non-interactive arguments of knowl-
edge (SNARK) [23], and their application to Blockchain and related

areas, research in theory and applications of efficient ZKAoKs has
progressed significantly, see theworks [3, 9, 12, 16, 20, 23–25, 45] to
name a few. Arguably, zero-knowledge proofs have become practi-
cal for many applications. As efficiency improved and demand for
privacy increased, possible use cases and applications have grown
explosively.

In this paper, we revisit a line of works [12, 15, 27] in the dis-
crete logarithms setting. From an abstract point of view, in terms
of [31], one part of our work is in the world of ideal linear commit-
ments (ILC). That is, our verifier can do “matrix-vector queries” on
a committed value w , e.g. request an opening for a matrix-vector
product Γw . A priori, this is more powerful than other settings
like PCP or IOP, where the verifier’s queries are restricted to point
or inner-product queries [31]. Nonetheless, the ILC-arguments in
[12, 15, 27] only work for the language R1CS “natively”, which is
also covered by more restricted verifiers. We show that with ILC,
one can directly handle systems of quadratic equations, of which
R1CS is a special case. This broadens possible optimisation from
(already used [1]) R1CS-friendly to quadratics-friendly cryptogra-
phy. Yet, even for R1CS, our performance improves upon Bullet-
proofs [15].

Another part of this work treats proofs of knowledge of preim-
ages of group homomorphisms. For example, proving knowledge
of the decryption of an ElGamal ciphertext. This does not fit into
the ILC setting. Hence we do not use the ILC abstractions in this
work. Combining this with our proofs for quadratic equations is ef-
ficient. Thus one can generically construct primitives such as shuf-
fle proofs, which are important for electronic voting.

1.1 Basic techniques
We identify and present basic design principles underlying most
efficient zero-knowledge arguments in the group setting.

In the following, we use implicit representation for group ele-
ments, see Section 2. Let us recall (a slight variant of) the stan-
dard Σ-Protocol (Σstd) for proving knowledge of a preimage w
for [A]w = [t] for [A] ∈ Gm×n . This proof covers a large class
of statements, including dlog relations, knowing the opening of a
commitment, etc. The protocol works as follows:

• Prover: Pick r ← Fnp , let [a] B [A]r , send [a].
• Verifier: Pick and send x = (x1,x2)← F2p (with x2 , 0).
• Prover: Send z B x1w + x2r .
• Verifier: Accept iff [A]z = x1[t] + x2[a].

Intuitively, this is zero-knowledge since r completely masks w in
z = x1w + x2r (since x2 , 0), and finding r from [a] is hard. It is
extractable, since two linearly independent challenges x1,x2 with

1

answers z1,z2 (for fixed [a]) allow to reconstruct w,r . But Proto-
colΣstd is not particularly communication-efficient, as it sends the
full masked witness z ∈ Fnp as well as [a] ∈ Gm . Using probabilistic
verification, one can often improve this.

1.1.1 Probabilistic verification. Theunderpinning of efficient argu-
ments of knowledge (without zero-knowledge) is probabilistic ver-
ification of the claim. For instance, instead of verifying [A]w = [t]
directly, the verifier could send a random y ← Fp . Both parties
compute y = (yi)i ∈ Fmp and verify [Â]w = [̂t] for [Â] = y⊤[A] ∈
G1×n and [̂t] = y⊤[t] ∈ G instead. This would result in a commu-
nication complexity which is independent ofm as [â] = [Â]r ∈ G.

Not all probabilistic verifications are alike. To work well with
zero-knowledge, we need “suitable” verification procedures, so that
techniques to attain zero-knowledge can be applied. This essen-
tially means that the verification should be linear, i.e. all tested
equations should be linear. (Abstract groups only allow linear op-
erations anyway.)

P V

[a]
−−−−−−−−→

x1←−−−−−−−−
x1w−−−−−−−−→

⊕

P V

[a]
−−−−−−−−→

x2←−−−−−−−−
x2r−−−−−−−−→

=

P V

[a]
−−−−−−−−−−−→

x1,x2←−−−−−−−−−−−
x1w + x2r−−−−−−−−−−−→

Figure 1: Linear Combination of Protocols. Left: The trivial
proof of knowledge: Send the witness. Middle: Send a ran-
dom statement. Then send the witness. Grayed out: Terms
for linear combination. Right: The linear combination with
verifier’s randomness.

1.1.2 Linear combinations of protocols. A core insight for achiev-
ing zero-knowledge (and reducing communication) in our setting
efficiently is that protocols can often be linearly combined, see
Fig. 1 for an illustration. This exploits the linearity of the computa-
tions and checks of verifier and prover in each round. By running
an “umasked non-zero-knowledge argument” (Fig. 1, left) and lin-
early combining it with an argument for a “masking randomness”
(middle), one can achieve zero-knowledge (right). All of our zero-
knowledge compilations rely on this strategy. We typically con-
sider random linear combinations of protocols, where the verifier
picks the randomness (x1,x2 in Fig. 1), as this often achieves ex-
tractability. In fact, this kind of linear combination recovers the
batch proofs of [43], see Appendix C. Non-randomised linear com-
binations are also used, e.g. Protocols B.1 and E.1, or [15].

1.1.3 Uniform(-or-unique) responses. In our setting, for simulation
it is typically enough to ensure that the prover’s messages are
distributed uniformly at random. More concretely, the responses
should be either uniformly distributed (conditioned on all later
messages, not previous messages), such as z in Protocol Σstd. Or
they should be uniquely determined and efficiently computable
from the challenges and all later messages, such as [a] in Proto-
col Σstd. This allows to construct a trivial simulator, which con-
structs the transcript in reverse: Starting with the final messages,
and working its way towards the beginning, the simulator picks

the uniformly distributedmessages itself, and computes the uniquely
determined ones. All simulators in this paper work like this.

1.1.4 Kernels and redundancy. Many interesting statements are
non-linear. For example, for polynomial commitments [14], wewant
to show that [c] ∈ Gm is a commitment to a polynomial f ∈ Fp [X]
(of degree at most d − 1) and f (x) = t , where x ∈ Fp is a random
challenge. Naively, one commits to the coefficients of the polyno-
mial with monomial basisX i for i = 0, . . . ,n−1. Suppose we have
a (linear) protocol which proves f (x) = t . We could hope that
running a random linear combination as in Fig. 1 should give us
uniform-or-unique responses (and hence zero-knowledge). How-
ever, we are in a predicament: For random д ∈ Fp [X], we have
(f +д)(x) , f (x) and thus we have to let V know y = д(x) some-
how. To ensure the prover does not send arbitrary y, we have to
rely on a proof again! But if this proof leaks information we can-
not use it to randomise the response. We can escape by having a
way to randomise without changing the statement. In other words,
we need some д with д(x) = 0 for all x ∈ Fp . Clearly, that means
д = 0, and there’s nothing random anymore! Another dead end.

One solution is to add redundancy, which does not “influence”
soundness: Here, we artificially create a non-trivial kernel of the
“evaluate at x”-map.We can do so by representing f (X) as

∑
i (αi+

βi)X
i and commit to all αi and βi . Now we can mask with д(X)

where αi ← Fp and βi = −αi . Thus, we successfully injected
randomness into the response. Generally, adding just enough re-
dundancy to achieve uniformly random responses is our goal.

1.1.5 Composition of arguments systems. By committing to and
then sharing intermediate results in multiple argument systems,
one can combine the most efficient arguments for each task.

Example 1.1. In our logarithmic communication zero-knowledge
inner product argument IPAalmZK for ∃x ,y : ⟨x ,y⟩ = t , we ran-
domise as ⟨x + r ,y + s⟩ = t so that ⟨r ,y⟩ = ⟨r , s⟩ = ⟨x , s⟩ = 0
with only logarithmically many (specially chosen) random compo-
nents inr , s .This is an application of the “redundancy/kernel” tech-
nique.The “uniform-or-unique” guideline ensures that it is enough
that each response is random.Hence a logarithmic number of (well-
chosen) random components in r , s does suffice.

On the other hand, our logarithmic communication linear map
preimage argument LMPAZK for∃w : [A]w = [t] uses a linear com-
bination of a non-zero-knowledge argument for [A], plus a similar
argument for a different [A] and [t] (of the same size). Finally, for
our logarithmic communication shuffle argumentΠshuffle (Appen-
dix D), we compose QESAZK (our quadratic equation argument)
and LMPAZK by sharing a commitment to the witness.

1.2 Contribution
To the best of our knowledge, there is no work which presents
these techniques, in particular linear combination of protocols, as
unifying guidelines. Implicitly, these techniques are used in many
works [12, 14, 15, 27, 43]. We follow the above guidelines for con-
structing and explaining our zero-knowledge arguments.

See Appendix I for protocol diagrams.
2

1.2.1 Linearmap preimage argument (LMPA). Wegive in two steps
an argument for ∃w : [A]w = [t] for [A] ∈ Gm×n with commu-
nication O(log(n)). The idea is to first use batch verification. Es-
sentially, LMPAbatch multiplies the equation with a random vector
y ∈ Fmp from the left to obtain [Â] = y⊤[A] ∈ G1×n and [̂t] =

y⊤[t] ∈ G. Thus, communication is independent of m. Now, we
prove ∃w : [Â]w = [̂t] using LMPAZK, which is derived from [12].
It is enhancedwith zero-knowledge for overheadwhich is constant
w.r.t. communication and logarithmic w.r.t. computation (in n).

1.2.2 Quadratic equation commit-and-prove. First of all, we derive
a(n almost) zero-knowledge inner product argument IPAalmZK from
[12, 15], again with constant communication and logarithmic com-
putational overhead compared to [12, 15]. From IPAalmZK we ob-
tain an argument for proving ∃w : ∀i : ⟨w,Γiw⟩ = 0, where Γi ∈
Fn×np and w is committed to. For efficiency, we carry out a batch
proof, i.e. we prove ⟨w,Γw⟩ withΓ B

∑
i riΓi for random ri ∈ Fp .

The resulting argument,QESAZK, is “adaptive commit-and-prove”,
i.e. the statement Γi may be chosen after the commitment tow .

The commit-and-prove system QESAZK is conceptually simple
and can be efficiently combined with other arguments. We leave as
an open question whether its strategies can be adapted by linear
IOPs or whether they are unique to ILC.

1.2.3 Sets of quadratic equations. Being able to prove arbitrary
quadratic equations instead of R1CS equations, i.e. equations of the
form (

∑
aixi)(

∑
bixi)+

∑
cixi = 0, gives much flexibility. To the

best of our knowledge, expressing the quadratic equation ⟨x ,x⟩ =∑
x2i = t as R1CS requires n equations: yi = x2i (i = 1, . . . ,n − 1)

and x2n = t −∑
i yi , where yi are additionally introduced variables.

Requiring n equations is surprising for [12, 15] which build on an
inner product argument. Obviously, QESAZK needs one (quadratic)
equation to express ⟨x ,x⟩ = t .

Using general quadratic equations, one can evaluate any (uni-
variate) polynomial f (X) =

∑d2−1
i=0 aiX

i of degree d2 − 1 with 2d

equations and intermediate variables. Concretely, let yi = x i =

yi−1x , zi = xdi = z1zi−1, for i = 2, . . .d − 1 and z1 = yd−1x and
z0 = 1. Then f (x) =

∑d
i, j=0 ai+jdyizj . This can speed up “table

lookups”, which are typically encoded as polynomial evaluation.
For S(N)ARK-friendly cryptography [36], supporting quadratic

equations is very useful. Matrix-vector multiplications are efficient
even when both matrix and vector are secret. “Embedding” an el-
liptic curve (see Jubjub [1]), is also more efficient than for R1CS.
For general point addition in a (twisted) Edwards curve, we need
5 instead of 8 constraints per bit.

Similar to SNARK- and MPC-friendly cryptography, quadratics-
friendly cryptography may enable significant speedups. A prime
candidate is multi-variate quadratic cryptography, where suitably
adapted schemes might integrate very well with our proof system.

1.2.4 Correctness of a shuffle. By instantiating the shuffle proof of
Bayer and Groth [5] with LMPAZK and QESAZK as sub-protocols,
we obtain an argument Πshuffle for correctness of a shuffle. To the
best of our knowledge, this is the first efficient argument with
proof size O(log(N)). Our computational efficiency is compara-
ble to [5], which has proof sizeO(

√
N). More concretely, we (very

roughly) estimate at worst 2–3× the computation.

1.2.5 Knowledge errors, tightness and short-circuit extraction. From
a quantitative perspective, our notion of testing distributions and
their soundness errors, are useful to separate study of knowledge
errors and extraction in the setting of special soundness. Testing
distributions have associated soundness errors, which (up to tech-
nical difficulties we state as open problems) translate to knowledge
errors of the protocol. Explicit knowledge errors achieve tuneable
levels of soundness, e.g. 2−120 instead of 2−256, which impacts
runtime positively.

Short-circuit extraction. We give a definition of short-circuit ex-
traction. This treats extraction assertions such as “Ext either finds a
witness or it solves a hard problem”. It formalises the (common) be-
haviour of an extractor to either find awitness with few transcripts,
or solve the hard problem (e.g. equivocating a commitment). With-
out distinguishing these cases, the bounds on the necessary num-
ber of transcripts for extraction is much higher. For example, we
show that the extractor for the LMPAZK and IPAalmZK (and also
[12, 15]) needs a tree of transcripts of sizeO(log(n)n) in the worst
case. For QESAZK, extracting a proof for N quadratic equations in
n variables requiresO(log(n)nN) transcripts. The extractor in [15]
needs O(n3N) transcripts, which for n,N ≈ 216 implies a secu-
rity loss of ≈ 264 instead of ≈ 234. This also opens the possibil-
ity for using small exponents as challenges, further improving our
argument systems performance. Note that, due to their structure,
Bulletproofs [15] are not well-suited for small exponents.

In Appendix F, we give a conjectured relation between commu-
nication efficiency and extraction efficiency, which implies that
extraction from O(n

log(n)) transcripts would be optimal. We also
elaborate on a loophole in above security estimates, namely how
to efficiently obtain the transcripts.

1.2.6 Dual testing distributions. Dual testing distributions are a
technical tool which allow us to sample a “new” commitment key
from a given one, such that knowledge (e.g. commitment opening)
cannot be transferred. This turns out to be more communication
efficient than letting the verifier send a new commitment key. To
the best of our knowledge, this is a new technique.

1.2.7 Theoretical comparison to [15] and improved inner product ar-
gument (IPA). In Table 1, we compare our argument systems with
related work in the group setting. In Table 2, we give precise effi-
ciency measures for LMPAZK and QESAZK. In any case, n = |w |
is the size of the witness w ∈ Fnp . Since it is statement dependent,
we ignore that QE is more powerful than R1CS, possibly allowing
smaller witness size (as seen in the example ⟨x ,x⟩ = t above). In
Table 2, we omit the verifier’s computation, since after optimisa-
tions [15], both are almost identical. For the prover, we do not op-
timise (e.g. we use no multi-exponentiations), and are not aware of
non-generic optimisation. Much of our theoretical improvement is
due to our improvements to the IPA. Using [15] with our IPA yields
identical asymptotics. Even then,QESAZK covers general quadratic
equations, while Bulletproofs [15] which only cover R1CS.

1.2.8 Comparison with other proof systems. It is hard to make an
apples-to-apples comparison of proof systems. There are many rel-
evant parameters, such as setup, assumptions, quantum resistance,
native languages, etc. beyond mere proof size and performance.

3

Setup Ass. Moves Comm. Comp. P Comp. V Nat. R
[23] 7 KoE 1 O(1) O(n) ≤ |w | R1CS
[15] 3 dlog O(log(n)) O(log(n)) O(n) |w | R1CS
This 3 dlog O(log(n)) O(log(n)) O(n) |w | QE
Table 1: Comparison of [23], Bulletpoofs [15] and this
work. Setup: Common random string sufficient? Secu-
rity Ass(umption): Knowledge of exponents (KoE); Hard-
ness of dlogs. Moves: The number of messages sent.
Comm(unication) in group elements. Comp(upation) in
group exponentiations. Nat(ive) relation R.

Comm. G Comm. Fp Comp. P R

LMPAZK ≈ 4m log2(n) 4m ≈ 4mn LMP
QESAZK 2⌈log(n + 2)⌉ + 3 2 ≈ 8n QE

[15] 2⌈log(n)⌉ + 8 5 ≈ 12n R1CS
Table 2: Estimates in terms of the group elements and expo-
nentiations. By “≈ f ” we denote f +O(log(f)).

See Section 1.3 for a high-level discussion. To draw (non-trivial)
conclusions from comparisons on an implementation level, one
should compare fully optimised implementations.Thus, we restrict
ourselves to a comparison with Bulletproofs (which we reimple-
mented with the same optimisation level as our proof systems).
For somewhat concrete numbers regarding implementation per-
formance, as well as other factors relevant in comparing proof
systems, we refer to [9, Figure 2]. Our proof systems are similar
enough to Bulletproofs for these comparisons to still hold.

1.2.9 Implementation. In Section 5, we compare our implemen-
tations of (aggregate) range proofs. The theoretical prediction of
0.75× prover runtime compared to [15] is close to measurements,
which suggest 0.7×. Using 140bit exponents, we experimentally at-
tain ≈ 0.63× compared to [15] on the same platform. As an impor-
tant remark, we compare the dedicated range proofs of [15] with
our generic instantiation of QESAZK.

1.3 Related work
Due to space constraints, we only elaborate on the most important
concepts and related work. We refer to [31] for an overview and a
general taxonomy.

The dlog setting and ILC. Very closely related works are [12, 14,
15, 27], which are efficient proofs in the dlog setting. Many zero-
knowledge proofs in the group setting are instantiations of [18,
39]. The possibilities of our setting, namely ability to apply linear
transformations to a committed witness has been abstracted in the
ideal linear commitment model [13]. (Our techniques for QESAZK
are amenable to ILC.)

Knowledge assumptions. Another line of work [11, 20, 23, 28, 29,
38] gives non-interactive arguments using knowledge of exponent
assumptions. They attain constant size proofs for arithmetic cir-
cuits and sublinear verification costs, but require a trusted setup.

PCPs, IOPs, MPC-in-the-head. Techniques, such as probabilisti-
cally checkable proofs (PCP), MPC-in-the-head [35], interactive
oracle proofs (IOP) and more, construct efficient zero-knowledge

proofs without relying on public key primitives. The possible per-
formance gain (and quantum resistance) is interesting from a prac-
tical point of view. There is much progress on improving these
techniques [3, 9, 16, 24, 45], which until recently suffered from
relatively large proof size or unacceptable constants. In [9], Ben-
Sasson et al. present a logarithmic communcication IOP for R1CS,
which, by avoiding public key primitives, likely outperforms our
QESAZK by order(s) of magnitude. Still, according to [9], proof
sizes for R1CS statements of sizeN = 106 are about 130kbwhereas
our proofs, like Bulletproofs, stay well below 2kb. For combining
proofs in the “symmetric key” settingwith efficient proofs for “pub-
lic key” algebraic statements, [2] can be used. Our proofs can be
directly combined with algebraic statements over the same group
G.

2 PRELIMINARIES
For a set S and probability distribution χ on S we write s ← χ for
drawing s according to χ . We write s ← S for a uniformly random
element. We also write y ← A(x ; r) for running an algorithm A

with randomness r andy ←A(x) for runningA with (uniformly)
random r ← R (where R is the randomness space). We let κ denote
the security parameter and note that almost all objects are implic-
itly parameterised by it. By negl we denote some (fixed) negligible
function, i.e. a function with limκ→∞ κcnegl(κ) = 0 for any c ∈ N.
We assume we can sample uniformly random from any {1, . . . ,n}.
The number p ∈ N will always denote a prime, Fp B Z/pZ, and G
is a (cyclic abelian) group of order p. We use additive implicit nota-
tion forG as introduced in [22].That is, wewrite [1] for some (fixed
public) generator associated withG and [x] B x [1]. We extend this
notation to vectors andmatrices, i.e. for compatibleA,B,C over Fp ,
we write A[B]C = [ABC]. Matrices are bold, e.g. [a], components
not, e.g. [ai]. By ei we denote the i-th standard basis vector. We
write diag(M1, . . . ,Mn) for a block-diagonal matrix. By idn we
denote the n × n identity matrix.

2.1 Matrix kernel assumptions and Pedersen
commitments

Instead of discrete logarithm assumptions, the generalisation of
hard (matrix) kernel assumptions [40], but for right-kernels, bet-
ter suits our needs.

Definition 2.1. Let G← GrpGen(1κ) be a group generator (we
let [1] and p be implicitly given by G). Let Dm,n be a (efficiently
samplable) distribution overGm×n (wherem andnmay depend on
κ). We sayDm,n has a hard kernel assumption if for all efficient
adversaries A, we have

P

(
G← GrpGen(1κ); [A]← Dm,n ;

x ←A(1κ ,G, [A]) : [A]x = 0 ∧ x , 0

)
≤ negl(κ)

For simplicity, we will often only implicitly refer to Dm,n and
just say [A] has hard kernel assumption. Matrix kernel assump-
tions generalise DLOG assumptions: A non-trivial kernel element
of [h, 1] ∈ G2 immediately yields the discrete logarithm h of [h].

If Dm,n is a matrix distribution with hard kernel assumption,
then [A]← Dm,n is a (Pedersen) commitment key ck. Commit to
x ∈ Fnp via Comck(x) = [c] ∈ Gm . Breaking the binding property
of the commitment is equivalent to finding non-trivial elements

4

in ker([A]). The common case will be [д] ∈ G1×(n+1) drawn uni-
formly as commitment key ck. Breaking the hard kernel assump-
tion for [д] is tightly equivalent to breaking the dlog assumption in
G. Write x = (rw ,w) with rw ∈ Fp ,w ∈ Fnp . If rw ← Fp is drawn
uniformly, it is evident that [c] = [д]x perfectly hides w , i.e. [c] is
uniformly distributed in G.

2.2 Interactive arguments, extractability and
zero-knowledge

Our setting will be the common reference string model, i.e. there
is some CRS crs, typically a commitment key, set up by a trusted
party. In the followingR denotes a binary relation forwhich (st,w) ∈
R is efficiently decidable. We call st the statement and w the wit-
ness. (R does depend on crs, i.e. actually we consider (crs, st,w)
tuples, but we suppress this.) The (NP-)language L defined by R

is the language of statements inR, i.e.L = {st | ∃w : (st,w) ∈ R}.
Definition 2.2. An (interactive) argument system for a rela-

tionR is a protocol between two parties, a proverP and a verifier
V. We use the name (interactive) proof system interchangably.
The transcript of the interaction of P and V on inputs x and y is
denoted ⟨P(x),V(y)⟩where both parties have a final “output”mes-
sage. We write b = ⟨P(x),V(y)⟩, for the bit b indicating whether
an (honest) verifier accepts (b = 1) the argument.

Definition 2.3 (Completeness). An interactive argument system
for (st,w) ∈ R is (computationally) complete if for all efficient
adversaries A, the probability

P

(
crs← GenCRS(1κ); (st,w)←A(crs) : (st,w) < R or

⟨P(st,w),V(st)⟩ = 1

)
is overwhelming, i.e. bounded below by 1−negl(κ). It is perfectly
complete if negl = 0.

In Appendix F, we give a definition of witness-extended emula-
tion [12, 30] with extraction error (i.e. knowledge error). It turns
out that preserving a good extraction error over multiple rounds
is non-trivial. See Sections 2.3 and 2.4.

Definition 2.4 (Public coin). An interactive argument system for
R is public coin if all of the verifier’s challenges are independent
of any other messages or state (essentially V makes his random
coins public). Furthermore, V’s verdict is a function Verify(tr) of
the transcript.

Honest verifier zero-knowledge guarantees the existence of a
simulator which, without the witness, generates transcripts which
are indistinguishable from transcripts of a real interaction with an
honest verifier. Hence, an honest verifier learns nothing from the
proof.

Definition 2.5. Let (P,V) be an interactive argument system for
R.We call (P,V) (ε-statistical) honest-verifier zero-knowledge
(HVZK), if there exists an expected polynomial-time simulator Sim
such that for all expected polynomial-timeA the probabiliy distri-
butions of (crs, tr, state), where
• crs← GenCRS(1κ); (st,w)←A(crs); tr← ⟨P(st,w),V(st)⟩
• crs← GenCRS(1κ); (st,w)←A(crs); tr← Sim(st, ρ);
are indistinguishable (have statistical distance at most ε), assuming
tr B ⊥ if (st,w) < R.

Remark 2.6. We focus on HVZK, not special HVZK, The latter
states that even if the adversary chooses statement, witness and
the verifier’s randomness (ρ in Definition 2.5), the special simulator
will “succeed”. Our security proofs make use of honest challenges.
Different (more complex) security proofs may be possible.

2.2.1 Full-fledged zero-knowledge. To obtain security against dis-
honest verifiers, i.e. full-fledged zero-knowledge, simple transfor-
mations exist [17, 19, 26, 37] for public coin HVZK arguments. The
most straightforward one is to use an equivocable coin toss be-
tween prover and verifier to generate the challenge.

2.2.2 The Fiat–Shamir heuristic. In the random-oraclemodel (ROM),
public coin arguments can be converted to non-interactive argu-
ments by computing the (verifier’s) challenges as the hash of the
transcript (and relevant “context”) up to that point. The statement
of the argument should be part of the “context” [10].

2.3 Testing distributions
Intuitively, testing distributions are a special form of probabilis-
tic verification where one can efficiently recover the “tested” value
given enough “tests”. Thus, they are used to recover the witness
in proofs of knowledge. We only define testing distributions over
Fmp .

Example 2.7. To test if a vector [c] ∈ Gm is [0], test ifx⊤[c] ?
= [0]

for random x ∈ Fmp . The soundness error is 1/p.

Definition 2.8 (Subdistribution). Let χ andψ be distributions on
Fmp . We callψ a subdistribution of χ of weight ε if
• there exists a subdensity ρψ : Fmp → [0, 1]. (It is important

that ρψ (x) ≤ 1.)
• ε = ∑

x ∈Fnp ρψ (x)χ(x), and
• ψ has probability ψ (x) = 1

ε ρψ (x) to pick x . (That is, ψ has
density 1

ε ρψ w.r.t. χ .)

The definition of a subdistribution is constructed to deal with
adversaries. As a concrete example consider extraction by rewind-
ing: It may happen that the adversary does not correctly answer a
challenge.Thus, the challenges which are answered are a subset, or
more generally a subdistribution. An adversary with success prob-
ability ε must succeed on a subdistribution of weight ε .

Definition 2.9. A testing distribution χm for Fmp with sound-
ness δsnd(κ) is a distribution over Fmp with following property: For
all subdistributionsψ of χm with weight ε ≥ δsnd B δsnd(χm), we
have

P(xi ← ψ ,X = (x1, . . . ,xm) : det(X) = 0) ≤ 1
ε δsnd.

We write δsnd(χm) for some (fixed) soundness error of χm .

Note that det(X) , 0, is equivalent to all xi being linearly inde-
pendent, and to

∩m
i=1 ker(x⊤i) = {0}. These interpretations allow

to generalise in different directions. For more about testing distri-
butions, see Appendix G. Typically, we want that δsnd(χ) is very
small, e.g. 2−100 in practice.

For our examples, we need a minor generalisation of the lemma
of Schwartz–Zippel. For details, see Appendix A.1.

5

Example 2.10 (Polynomial testing). The distribution induced by
x = (x0, . . . ,xm−1), where x ← Fp , is a testing distribution.
This follows from X being a Vandermonde matrix, hence invert-
ible except if the same x was chosen twice. It is easy to see that
δsnd(χ) ≤ m

p .

Example 2.11. For the special casem = 2, and testing distribu-
tion with x = (α , 1)where α ← S for some S ⊆ Fp we write χ (β)

and α ← χ (β). If S ⊆ F×p , i.e. α , 0, we write χ (β,0).

Example 2.12 (Random testing). The uniform distribution over
Fmp is a testing distribution.The Lemma of Schwartz–Zippel imme-
diately yields δsnd(χ) ≤ m

p . Drawing from a set S of “small expo-
nents”, e.g. from S = {1, . . . , ℓ}, still has soundness δsnd(χ) ≤ m

ℓ .

Example 2.13 (Pseudo-random testing). The verifier can replace
truly random choices, e.g. x ← Fmp as above, by pseudorandom
choices, e.g. x ← PRG(s) for s ← {0, 1}κ . This allows the verifier
to compress such challenges to a random seed s .

It is heuristically plausible, that any non-pathological PRG has
distribution with soundness error (negligibly close) to that of the
respective uniform distributions. In fact, for a PRG which is se-
cure against non-uniform adversaries, this is easy to see. However,
this is a strong assumption and there are distributions χ which
are pseudorandom (under plausible assumptions), but where the
soundness errorδsnd(χ) is large, e.g. greater than 1

2 .Thismotivates
some computational notion of soundness error, which is discussed
in Appendix G.

Note that soundness of testing distributions is a combinatorial
property. No pseudorandomness property is required, as illustrated
by Example 2.10. Thus, there may be better options to use “small
exponents” than (pseudo)random testing.

2.3.1 Dual testing distributions. Due to space constraints, dual test-
ing distributions are not explicitly used in the main body, so we
omit their definition. Morally, testing distributions test whether
some z ∈ Fmp is 0. Dual testing distributions enforce z = 0. Dual
testing distributions can be used to derive fresh (Pedersen) com-
mitment keys, and guarantee that no commitment generated prior
can be opened (except to 0).

2.4 Special soundness
In the main body, we only consider special soundness and give ex-
tractors which produce a witness given a suitable tree of accepting
transcripts, see also [12].

Definition 2.14 (µ-special soundness (overFp)). Let (GenCRS,P,V)
be a public coin argument system forR. Suppose the verifier sends
n challenges and µ = (µ0, . . . , µn−1) ∈ Nn . Furthermore, suppose
the challenges are vectors in Fnip . Then the protocol is µ-special
sound if there exists an extractor Ext such that given any good
µ-tree treeµ of transcripts, Ext(st, treeµ) returns a witness w with
(st,w) ∈ R. A µ-tree of transcripts is a (directed) tree where nodes
of depth i have µi children, with edges labelled with the i-th chal-
lenge, and nodes labelled with the prover’s i-th answer, and every

path along the tree constitutes an accepting transcript. We call a µ-
tree good if for every node, all its challenges (i.e. outgoing edges)
are in general position.¹

Given a TreeFind algorithm, which produces good µ-trees (with
oracle access to a successful prover), and an extractor as above,
one obtains witness extended emulation by plugging the tree into
the extractor. To be able to speak about the security of the resulting
protocol, one needs success and runtime guarantees of TreeFind.We
do not deal with this here as it is a separate issue. See [12, 46] for
TreeFinders and Appendix F for more details.

2.4.1 Short-circuit extraction. Suppose TreeFind produces the tree’s
nodes and leaves on demand, and Ext queries TreeFind as an oracle,
and traverses the tree in depth-first order. Moreover, suppose Ext ei-
ther extracts a witness for some statement, or a solution to a (sup-
posedly) hard problem, or both. Concretely, we have statements
like “we extract w such that either [д]w = [c] is a valid commit-
ment opening, or [д]w = [0] breaks the hard kernel assumption
for [д].” In such a situation, short-circuit extraction with µ ′ ≤ µ
asserts that, extraction either finds the opening w using only the
µ ′-subtree of treeµ , or for one layer i , all µi children are examined,
and the extractor finds a non-trivialw in ker([д]).

Definition 2.15. Consider the situation in Definition 2.14. Sup-
pose R is OR(R1,R2), i.e.

R = {((st1, st2), (w1,w2)) | (sti ,wi) ∈ Ri for i = 1 or i = 2}.

Suppose there is some µ ′ ≤ µ (i.e. µ ′i ≤ µi for all i) such that
extractor Ext has following property. For any good µ-tree treeµ ,
Ext(st, treeµ) we have either:
• Ext finishes after exploring a µ ′-subtree of treeµ and returns

a witness for st1. We call this quick-extraction.
• If in layer ℓ of the tree, Ext must explore more than µ ′

ℓ
chil-

dren of some node, then after exploring all µℓ children, Ext
returns a witness for st2 (and perhaps st1). (That is, Ext short-
circuits in layer ℓ.)

We say that such an Ext has short-circuit extraction with µ ′ ≤ µ
for finding a witness to st1 or to st2. (Note that order of the state-
ments matters!)

Our definition is ad-hoc and tailored to our needs. We leave a
solid definition and precise treatment of short-circuit extraction
for future work.

Corollary 2.16. If Ext as in Definition 2.15 traverses a good tree
treeµ in depth-first order, we have following “runtime” guarantees:
Let µ ′ = (µ ′0, . . . , µ

′
n−1) ≤ (µ0, . . . , µn−1) = µ. In case of quick-

extraction, at most
∏n−1

i=0 µ
′
i leafs are explored. In case of short-circuit

extraction, at most s0+1 leaves are explored, where s0 =
∑n−1
i=0(µi −

1)
∏n−1

j=i+1 µ
′
j . In particular, s0 ≤ (

∑n−1
i=0 µi)(

∏n−1
i=0 µ

′
i).

We note that since the tree treeµ is randomised (or Ext might
explore children in random order), the above worst-case analysis
is very conservative.

¹ Vectors x1, . . . , xN ∈ Fnp are in general position if any subset of size n is a basis.
6

3 HVZK ARGUMENTS FOR [A]w = [t]

Let ck B [д] = [д0,д]← G1×n+1 be a Pedersen commitment key,
where [д0] ∈ G and [д] ∈ Gn . Define Comд(w; r) B [д0]r + [д]w
for r ∈ Fp , w ∈ Fnp . In the whole section, we work with matrices
[A] ∈ Gm×n , and vectors w ∈ Fnp and [t] ∈ Gm . The dimensions
are as above, unless otherwise specified. Our witness relationR is
st = ([A], [t]) and w = w such that (st,w) ∈ R ⇐⇒ [A]w = [t].

3.1 Intuition
In this section, we devise communication efficient public-coinHVZK
arguments for knowledge of a preimage of a linearmap, i.e.∃w : [A]w =
[t]. We follow two principles: “Use probabilistic (batch) verifica-
tion to check many things at once” and “If messages are too long,
replace them by a shorter proof (of knowledge).” For this, we use
shrinking commitments, to keep the messages small.

Our strategy is as follows: First, we recall the well-known gen-
eral HVZK protocol [18, 39] for proving ∃w : [A]w = [t] where
[A] ∈ Gm×n . Then, we show how to apply batch verification to re-
duce the argument for ([A], [t]) to another an argument for some
([B], [u])with [B] ∈ G2×n .This makes communication independen-
dent of the numberm of rows of [A]. After this, we revisit the ar-
guments from [12] which recursively batch statement and witness,
i.e. they reduce the number n of columns of [A]. Unlike [12, 15], we
need a zero-knowledge version of these arguments. We provide a
very efficient conversion with constant communication and loga-
rithmic computational overhead. Taken together, we can for any
[A] prove knowledge ofw in communication O(log(n)) now.

3.2 Step 0: A standard Σ-protocol for [A]w = [t]
We recall the prototypical Σ-protocol in a group setting [18, 39].

Protocol 3.1 (Σstd). The following is a protocol to prove∃w : [t] =

[A]w , using testing distribution χ (β) for challenges, c.f. Example 2.11.
Common input is ([A], [t]) ∈ Gm×n × Gn . The prover’s witness is
somew ∈ Fnp .
• P→ V: Pick r ← Fnp and let [a] = [A]r . Send [a] ∈ Gm .
• V→ P: Pick β ← χ (β). Send β ∈ Fp .
• P→ V: Compute z = βw + r . Sends z ∈ Fnp .
• V: Check if [A]z = β[t] + [a]. (Accept/reject if true/false.)

It is straightforward to show that any (x1,x2)← χ2 can be used
instead of χ (β), as long as x2 , 0, so that x1w + x2r is uniformly
distributed, c.f. Section 1.1.

Lemma 3.2. Protocol Σstd is a HVZK-PoK for ∃w : [A]w = [t]. It
is perfectly complete, has perfect HVZK and is 2-special sound.

Proof. Completeness is straightforward. Extraction: We are
given two accepting transcripts ([a], β,z), and ([a], β ′,z′)with β−
β ′ , 0. Due to the final check of the verifier, we obtain 1

β−β ′ [A](z−
z′) = [t]. Consequently,w B 1

β−β ′ (z − z
′) is a witness.

HVZK: Pick β ← χ (β) and z ← Fmp . Then [a] B [A]z − β[t]
is uniquely defined. Since the distribution of β and z is as in an
honest execution, this yields a perfect simulation. □

Now, we improve communication efficiency. We apply the tech-
niquesmentioned in the introduction, using shrinking commitments

to keep messages small. Composition of proof systems is implicit
due the following remark.

Remark 3.3. AND-proofs for statements of the form∃w : [A]w =
[t] are trivial. Namely, to prove ∃w : [A1]w = [t1] ∧ [A2]w =

[t2], it suffices to define [A] =
[
A1

A2

]
and [t] =

[
t1
t2

]
and prove

∃w : [A]w = [t]. This AND-compilation technique will be used
without explicit mention. Evidently, many trivial optimisations are
possible, e.g. removing duplicate rows.

3.3 Step 1: Batching all equations together
In this step, we devise a HVZK-AoK for ∃w : [A]w = [t], where
P’s communication is independent of m, the “number of equa-
tions”. Thus, we have to shrink the message [a] ∈ Gm somehow.
We would like to batch all m linear equations (given by [A]) into
a single linear equation, i.e. replace [A] by a random linear combi-
nation of its rows. We do not know whether this is sound or not,
c.f.Question 3.5. Nevertheless, ifP has explicitly committed to the
witness w (or [a]), the statement — excluding the commitment —
can be batched, as P cannot change his mind anymore. Note that
the value [t] is in general not a commitment, since the adversary
may supply (parts of) [A] in the soundness experiment. Thus, he
may know dlogs and generate preimages of [t] freely. By adding
a commitment to w , we get around this problem. Using a shrink-
ing (Pedersen) commitment to w , keeps the communication over-
head small. Now, the verifier can send batching randomness, and
a HVZK-AoK for the batched statement is carried out. Details are
in Appendix B.2 We thus reduced general [A] to [B] ∈ F2×np , where
the (say top) row of [B] is a commitment key.

Remark 3.4 (Commitment extending). When working with ad-
versarial [A] (and [t]), one can not rely on hardness assumptions.
Extending [A] to, for example, [B] =

[д
A

]
with commitment key

[д] is one way to circumvent problems. For the sake of referenc-
ing, we call this commitment extending [A]. If [A] already contains
a commitment submatrix, there is an obvious adaption of Proto-
col LMPAbatch.

Note that commitment extending [A]was not necessary for Pro-
tocolΣstd, where extraction is unconditional.This raises following
(to the best of our knowledge open) question.

Question 3.5. Is batch-verification without an (unbatched) com-
mitment sound? That is, V initiates LMPAbatch and sends x imme-
diately. Then ∃w : [Â]w = [̂t] is proven. Since the statements are
adversarially chosen, this is essentially an information-theoretic
question. Partial results show that soundess holds at least in cer-
tain (very) special cases. The gist of this question recurs in differ-
ent guises, and culminates in the question whether many of the
presented arguments (and many in the literature) may in fact be
proofs of knowledge.

3.4 Step 2: “Batching” the witness
In this section, we show how to “batch” the witness, i.e. proving
∃w : [A]w = [t] for [A] ∈ Gm×n with communication sublinear in
n. For the introduction, one may assumem = 1, e.g. [A] = [д].

Remark 3.6. We can also reduce tom = 1 conceptually. Namely,
let H B Gm . Then [A] and [t] can be interpreted as [A] ∈ H1×n ,

7

[t] ∈ H, and [A]w = [t]. Using H means working over a vector
space of dimensionm > 1. This is a relevant difference, but mostly
affects zero-knowledge.²

3.4.1 The general idea. We present the technique of [12], but in
our situation and notation. For the motivation, let us ignore zero-
knowledge, and only construct an argument (of knowledge). We
add zero-knowledge later.

In general, one can achieve a size reduction of k ∈ N recursive
step. For proof size, k = 2 is optimal, so we restrict ourselves to
that.The full version [34] deals with general k . Assume for simplic-
ity that 2|n, i.e. n/2 ∈ N. We will reduce the equation [A]w = [t]

to [Â]ŵ = [̂t], where [Â] ∈ Gm×n/2, ŵ ∈ Fn/2p , [̂t] ∈ Gm . To do so,
divide [A] and w into 2 equal blocks,³ obtaining vectors/matrices
of vectors/matrices i.e. [A] = [A1 |A2] ∈ (Gm×n/2)1×2 with [Ai] ∈
Gm×n/2, and likewise w =

(w1
w2

)
∈ (Gn/2)2. We want to prove∑2

i=1[Ai]wi = [t].
Still, the techniques from Section 3.3 are not applicable, because

[t] ∈ G (ifm = 1). The trick of [12] is to embed our problem into a
different one which can be batch-verified. Namely, we exploit that
the scalar product is the sum of the diagonal entries (i.e. the trace)
of the outer product:[

A1

A2

]
(w1,w2) =

[
A1w1 A1w2

A2w1 A2w2

]
∈ G2×2 (3.1)

Nowwe can send all terms [Ai]wj to the verifier. Our probabilis-
tic test has to map both [A] andw to a new (smaller) statement. We
can do that by multiplying from the left by x ∈ F2p and from the
right by y ∈ F2p where x ,y ← χ2. Consequently, we obtain

x⊤
([
A1

A2

]
(w1,w2)

)
y

=

(
x⊤

[
A1

A2

])
︸ ︷︷ ︸

B
∑
i xi [Ai] C [Â]

((w1, . . . ,wk)y)︸ ︷︷ ︸
B

∑
i yiwiC[ŵ]

=
∑
i, j

xiyj [Ai]wj︸ ︷︷ ︸
C[̂t]

Theprover thus sends the (purported) [Aiwj], denoted [ui, j], and ŵ ,
the shrunk witness. The verifier checks

∑
i [ui,i]

?
= [t] and [Â]ŵ

?
=

[̂t] =
∑
i, j xiyj [ui, j].

If each [Ai] satisfies a hard kernel assumption, the prover is com-
mitted to w1,w2. It is not hard to see that given enough (linearly
independent) challenges, one can extractw . We will show this for
a more efficient special case. All in all, we reduced the statement
([A], [t]) to ([Â], [̂t])which is smaller by a factor of k = 2. This can
be applied recursively.

3.4.2 Refining the testing distribution. It turns out, that by a good
choice of testing distribution, we can reduce communication. Namely,
we can pick testing distributions with xiyj = zj−i for all i, j. Then
it is sufficient for the verifier to know the sum of the off-diagonals
i.e. [A2]w1 and [A1]w2 (and [t]). We denote the (purported) [Ai]wj ,
sent by the prover, as [uℓ], i.e. [u−1] B [A2]w1 and [u1] B [A1]w2.

² Drawing a random [b] ← H needs a basis [hi] of H and sets [b] =
∑
ri [hi] for

ri ← Fp .
³ It may be helpful to think of the vector space (Fn/2

p)2 as Fn/2
p ⊗ F2p .

Note that [u0] = [t] need not be sent. From the testing distribution
χ̃3 we require that z = (z−1, z0, z1)← χ̃3, belongs to a pair (x ,y).

One testing distribution with this property comes from mono-
mials ξ i , e.g. x = (1, ξ) and y = (1, ξ−1).⁴ In this case, zℓ = ξ−ℓ .

For efficiency, picking x as above, buty = (ξ , 1) is useful, since
this preserves small ξ . In this case, z = (z−1, z0, z1) = (ξ2, ξ , 1).

Protocol 3.7 (LMPAnoZK). The following is a protocol to prove
∃w : [t] = [A]w . Let χ̃3 be a testing distributions with the prop-
erties described above. Common input is ([A], [t]) ∈ Gm×n × Gm .
We assume n = 2d . The prover’s witness is somew ∈ Fnp .

Recursive step. Suppose n = 2d > 2.
• Notation: Let [A] = [A1,A2] andw =

(w1
w2

)
be as above.

• P → V: Compute [u−1] B [A2]w1 and [u1] B [A1]w2.
Send [uℓ] for ℓ = ±1. ([u0] B [t] is known to the verifier.)
• V→ P: Pickz ← χ̃3 with correspondingx ,y. Send (x ,y,z).
• Both parties compute [Â] = x1[A1] + x2[A2] ∈ Gm×n/2

and [̂t] =
∑1

ℓ=−1 zℓ [uℓ] ∈ G as the new batched statement.
Moreover,P computes ŵ = w1y1+w2y2.The protocol may
then be (recursively resumed), setting n ← n/2, w ← ŵ ,
[t]← [̂t], [A]← [Â].
Base case. Suppose n ≤ 2.
• P→ V: Sendw .
• V: Tests if [A]w ?

= [t].
See Appendix I for a sketch of the protocol. For efficiency, our

base case could also start at n = 4, as this saves one round-trip.
Lemma 3.8 (Recursive extraction). Consider the situation above.

Let χ̃3 be a testing distribution with xiyj = zj−i as above.⁵ Let [uℓ],
[Ai], [t],wj and [Â], [̂t] be defined as above. Then:

• Given a non-trivial kernel element of [Â], we (efficiently) find
a non-trivial kernel element of [A].
• Given 3 linearly independent challenges (with accepting tran-
scripts), i.e. an invertible matrix Z , one can extract (uncondi-
tionally) a witness [A]w = [t].
• Given 4 challenges in general position,⁶ if the witness from
above does not fit w.r.t. the [uℓ], i.e. if an honest prover would
send different [uℓ] for w , then we find (additionally) a non-
trivial kernel elementv , i.e [A]v = 0.

Moreover, we have short-circuit extraction: From 2 independent
challenges, one can compute a candidate witnessw ′ for quick-extraction.
If [Ai]w ′j , [uℓ] for some ℓ = ±1, then we are guaranteed to find a
non-trivial kernel element from 4 challenges in general position.

Note that, maybe surprisingly, extraction of a witness w with
[A]w = [t] is unconditional, i.e. we have a proof of knowledge. (See
also Question 3.5.) The proof is a minor generalisation of [12, 15].
See [34] for details.

Remark 3.9. There are variants of LMPAnoZK which use other
testing distributions so that only one element [u−1]+ [u1] is trans-
ferred. Unfortunately, these testing distributions require to run
two subprotocols. All in all, this does not improve overall perfor-
mance. See [34] for details.
⁴ It can be shown that, up to scalar multiples, these are all such testing distributions.
⁵ Note that the soundness error δsnd(χ̃3) is an upper bound for the soundness errors
of the (induced) testing distributions for x and y .
⁶ By Footnote 4, if x2/x1 is different for all challenges, they are in general position.

8

3.4.3 Going zero-knowledge. There are many variations for going
zero-knowledge.Themost straightforward one is to run ProtocolΣstd
and replace sendingz by proving∃z : [A]z = β[t]+[a] via LMPAnoZK.
This gives a proof of knowledge, and is quite communication effi-
cient. But computing [A]r for randomr is expensive.This approach
is similar to [12, 15], where LMPAnoZK only saves communication.

We achieve zero-knowledge more carefully. Instead of blinding
the witness, we note that it is enough to blind the prover’s re-
sponses. For this, a logarithmic amount of randomness suffices.This
should make the prover more efficient.

Warm-up: Proving knowledge of opening of a commitment. For
simplicity, we first sketch a protocol which assumes that [A] =
[д] ∈ G1×n , and [д] is a commitment key. Thus, [A] has hard kernel
assumption by construction. Later, we deal withm > 1 and adver-
sarially chosen [A], which we actually solve with a different tech-
nique. But the techniques employed in this simple example help
understanding the more complex technique, and they are reused
and extended in Section 4.4.

Our current problem is to prove∃w : [д]w = [t] in zero-knowledge.
We will employ a masked version of LMPAnoZK, with judiciously
chosen randomness r , to achieve this. In particular, we do not pick
r ← Fnp . We pick r so that only logarithmically many ri are non-
zero. Thus, computing [д]r = [a] is quite cheap (unlike in Proto-
col Σstd). By the uniform-or-unique guideline, we want that each
message [u±1] looks uniformly random. By analysing the recur-
sive structure of LMPAnoZK, one sees that picking ri ← Fp for
i ∈ Mn ⊆ {0, . . . ,n − 1} with Mn as defined below, and ri = 0
else, achieves this property.⁷

Definition 3.10 (Masking sets). Wedefine themasking (random-
ness) sets/spacesMn ⊆ {0, . . . ,n − 1} (for n = 2d) by the formu-
las below. The set Mn describes the unit vectors of Fnp (with zero-
based indexing) which are used for random masking. We typically
treatMn as a subvector space of Fnp (instead of explicitly referring
to its span ⟨ei | i ∈ Mn⟩).
• M1 B {0} andM2 B {0, 1}.
• M2d B {M2d−1 } ∪̇ {2d−1, 2d−1 + 1} for d ≥ 2.

See Fig. 2 for a pictorial description.

By the structure of the masking sets, we have that (for k = 2),
if r is split into r =

(r1
r2

)
as in LMPAnoZK, then [uj−i] = [дi]r j

is uniformly distributed for r ← Mn . Moreover, r̂ = y1r1 + y2r2
is distributed like a fresh r ′ ← Mn/2. This holds even when con-
sidering the joint distribution ([u−1], [u1], r̂). Thus, masking sets
exhibit a useful recursive structure. There are some minor prereq-
uisites to use the recursive structure, which we ignore for now.

Protocol 3.11. Let crs = [д] ∈ G1×n be a uniformly random
commitment key (in particular, [д] has hard kernel relation under
the DLOG assumption on G.). The following is a protocol to prove
∃w : [t] = [д]w . Let χ̃3 be a testing distribution as in Protocol 3.7.
Common input is (crs, [t]) ∈ G1×n × G. We assume n = 2d . The
prover’s witness is somew ∈ Fnp .
• P→ V: Choose r ← Mn . Compute [a] = [д]r . Send [a].
• V→ P: Choose β ← χ (β). Send β .

⁷ The masking setsM use zero-based indexing for convenience.

• P ↔ V: Let z B βw + r and [t ′] B β[t] + [a]. Engage in
LMPAnoZK for ∃z : [д]z = [t ′].

It is clear that this protocol is correct. Short-circuit extraction
follows easily as this is a composition of ProtocolΣstd and LMPAnoZK.
Thus, only zero-knowledge remains. For this, one should note that
z = βw +r behaves like a linear combination throughout the pro-
tocol, because the reduced witness ẑ is of the form βŵ+ r̂ . Indeed,
we can view the protocol as a linear combination of protocols.Thus,
to see that [u±1] is uniformly distributed, we can focus our atten-
tion on r and its effect alone. As explained before, due to the form
of Mn , (r̂ , [u−1], [u1]) is uniformly distributed in Mn/2 × G × G.
Thus, each iteration outputs uniformly distributed [u±1], and r̂ dis-
tributed as r̂ ← Mn/2. For the base case, we note that by construc-
tion,M2 = {0, 1}. Thus, r ← M2 is uniformly random in F2p , and
hence βw + r̂ is uniformly random for n ≤ 2, perfectly hiding w .
In particular, the messages in the base case are uniformly random
too. The HVZK simulator can be built as usual, since the uniform-
or-unique property is satisfied.

Difficulties arising from general [A]. There are two main difficul-
ties arising from general [A] ∈ Gm×n . First, the higher dimension
due tom > 1makes masking sets as described not directly applica-
ble anymore. Second, we want to deal with adversarial [A]. In the
above sketch for zero-knowledge, we ignored a detail concerning
the recursion. If it ever happens that in [д], for some i ∈ Mn , the
element [дi] is zero, the distribution of (r̂ , [u−1], [u1]) is skewed
and zero-knowledge fails. An adversary can provoke this.

Resolving these problems efficiently (for the prover) is techni-
cal. See Appendix B for the construction and security claims. We
remark that the naive approach to zero-knowledge for general [A]
is a simple and viable option if the computational overhead is ac-
ceptable. Considering the computational costs of LMPAnoZK, this
is often the case. Nevertheless, we demonstrate that, by applying
our design guidelines, a more efficient, but more technical, conver-
sion to zero-knowledge (with slightly larger proofs) is possible.

3.5 Step 3: Adding (arithmetic circuit) relations
to the witness

If the witnessw for [A]w = [t] is committed to, e.g. if the first row
of [A] is a Pedersen commitment CRS [д], it is easily possible to
make other (zero-knowledge) statements aboutw by composition
of zero-knowledge protocols. Using Protocol QESACopy from Sec-
tion 4 (or [15] in special cases), it is possible to add constraints on
the witness. In particular, one can use range-proofs to controlw .

Remark 3.12. Often, w is much larger than the part which has
to satisfy some constraints. It is efficiently possible to “split” and
“merge” Pedersen commitments i.e. [c] = [c1] + [c2] where [G] =
[G1 |G2] and [ci] = [Gi]wi . (Indeed, we use this quite often. With
small changes, this is possible in zero-knowledge.) With this, one
can split off the relevant portionw1 ofw into the commitment [c1]
and prove additional relations about this portion only. Splitting is
generally very cheap. See Appendix D.1 for a concrete application.

9

=̂ r

y1r1 =̂
+

y2r2 =̂

Figure 2: Left: The (construction of the) masking randomness sets M4, M8, M16 and M32 (for k = 2). The squares denote the
numbers 0, . . . ,n−1 (or the respective basis vectors (with zero-based indexing)). Right: A demonstration of the “overlap” when
a recursive step is applied to M16, i.e. r̂ = y1r1 + y2r2 is computed. Note that by removing two dark squares in the overlap
(i.e. the randomness being “used up” in [u±1]), the sum is still is randomised asM8. This “recursive property” is essential. The
indices inMn can also be constructed recursively via string concatenation:m2n =mn |110n−2 andm1 = 1,m2 = 11.

4 ARITHMETIC CIRCUIT SATISFIABILITY
FROM QUADRATIC EQUATIONS

In this section, we describe quadratic gates, and relate them to rank
1 constraint systems (R1CS) and arithmetic circuits (AC). Then, we
construct a proof of satisfiability of a set of quadratic equations via
a (zero-knowledge) inner-product argument.

4.1 Quadratic gates
The equations our scheme is able to prove are quadratic equations,
i.e. given a witness w ∈ Fnp and a matrix Γ ∈ Fn×np we wish to
prove

w⊤Γw = 0.

We choose this description of quadratic equations for simplicity
and uniformity of notation. In particular, we assume without loss
of generality, that the witnessw has the constant 1 as first compo-
nent, i.e.w1 = 1. Our notation is similar to [21], which uses such
notation for Groth–Sahai proofs [32]. Indeed, our arguments are
essentially commit-and-prove systems [21].

Consider a general quadratic equation x⊤Γx + a⊤x = t , with
a,x ∈ Fnp , Γ ∈ Fn×np , t ∈ Fp with statement given by the constants
(a,Γ, t). This can be encoded viaw =

(
1
x

)
and suitably (re)defined

Γ, namely w⊤
(−t 0
a Γ

)
w = 0.

It is straightforward to encode arithmetic circuits (ACs) as sys-
tems of quadratic equations. Doing this allows for ACs built from
quadratic gates, i.e. gateswhose input-output behaviour is described
by a quadratic equation.

4.2 Arithmetic circuits and rank 1 constraint
systems

Rank 1 constraint systems (R1CS) are systems of equations of the
form (w⊤a)(b⊤w)−c⊤w = 0, where a,b,c ∈ Fnp . Evidently, these
are special cases of quadratic equations with Γ = ab⊤ + e1c⊤.⁸
Arithmetic circuit satisfiability can be encoded in R1CS, c.f. [8].

The gates testable by one R1CS equation allow a single “multi-
plication”. As we saw in the introduction, quadratic equations are
more flexible. For example, the inner product x⊤y is a single qua-
dratic gate. To the best of our knowledge, n gates are necessary to
encode this in R1CS (essentially one per xiyi multiplication). Thus,

⁸ The name R1CS may be misleading, sinceΓ can have (tensor) rank 2, i.e. the (tensor)
rank ofΓ is ≤ 2 for R1CS. Nevertheless, we follow this standard naming convention.

quadratic gates enable new optimisations. Indeed, all “AC to R1CS”
optimisations (and more), are applicable for “AC to QE”.

4.3 The verification strategy
Verifying that a system of quadratic gates is satisfied is easy given
the witness w , in our case the wire assignments of the AC, and
equationsΓg (the gate g encoded as amatrix). Just checkw⊤Γgw =
0 for all g ∈ G. By batching this can be sped up: Pick (rg)g ← χ#G
from a testing distribution. Then compute Γ B

∑
g∈G rgΓg as the

“batched statement”. Finally, check ifw⊤Γw = 0.
We run this strategy in a commit-then-provemanner. First, com-

mit to the witnessw . Then let the verifier pick testing randomness
(rg)g and prove that w⊤Γw = 0 where Γ B

∑
g∈G rgΓg is the

“batched statement”. Note thatw⊤Γw = ⟨w,Γw⟩ is an inner prod-
uct. Hence, we require a zero-knowledge inner-product argument.

For technical reasons, we cannot generate a commitment toΓw
efficiently (prior to knowing Γ). Therefore, the prover first com-
mits tow as [cx] = Comck1(w). Then he obtainsΓ and commits to
Γw as [cy] = Comck2(Γw). Then the prover carries out the inner
product argument. He must also prove that the commitments [cx]
and [cy] open to values x = w and y = Γw as promised. Again,
we use (linear) batching to shorten the proof for y = Γx . Namely,
to checky = Γx , the verifier picks random s ← χn (after [cx], [cy]
and hence x , y are fixed) and the prover proves 0 = ⟨Γx −y, s⟩.

Instead of two inner product arguments (for ⟨x ,y⟩ = 0 and
⟨Γx −y, s⟩ = 0) we batch verify again: The verifier picks random-
ness α and the prover proves knowledge of openings x ,y such that,

⟨x − αs,y + αΓ⊤s⟩ = ⟨x ,y⟩ + α
(
⟨x ,Γ⊤s⟩ − ⟨s,y⟩

)
− α2⟨s,Γ⊤s⟩

= ⟨x ,y⟩ + α ⟨Γx −y, s⟩ − α2⟨s,Γ⊤s⟩
!
= −α2⟨s,Γ⊤s⟩ C t

(4.1)
where t is fixed by the random choices of the verifier. If x ,y,Γ, s
are fixed, the lemma of Schwartz–Zippel can be applied to the poly-
nomial in α . If α ← S, the probability that Eq. (4.1) holds but
⟨x ,y⟩ , 0 or ⟨Γx −y, s⟩ , 0 is 2/#S. If s is chosen from a testing
distribution χn with error δsnd(χn), the probability thatΓx−y , 0
is at most δsnd(χn). Thus, this strategy is sound. To instantiate it,
we need a zero-knowledge inner product argument.

10

4.4 Zero-knowledge inner product argument
Now, we show how to construct a zero-knowledge inner product
argument (IPA). We first recall [12, 15], from a high level. We iden-
tify [15] as a linear combination of protocols. We achieve HVZK
similar to Protocol 3.11 bymasking the witness, but we also exploit
redundancy (or kernel) guideline. Addition of zero-knowledge adds
a single round, where one group element and one challenge are
sent. For technical reasons we have a base case at n = 8.

4.4.1 Inner product argument (IPA). First, we describe the IPA fol-
lowing [12, 15]. For simplicity, we ignore zero-knowledge.

Our setting is as follows: We have a CRS crs = ([д′], [д′′], [Q])
forwhich finding a non-trivial kernel element of [д′,д′′,Q] ∈ G2n+1

is hard. In other words, these are three independent (or one large
three-split) Pedersen commitment keys.

Naively, one proves knowledge of openings of c ′w and c ′′w with
⟨w ′,w ′′⟩ = t . The idea and argument Protocol 3.11 allow to recur-
sively shrink our statement. After one recursion step, we obtain
⟨ŵ ′, ŵ ′′⟩ = t̂ . The prover sends v±1 = ⟨w ′i ,w

′′
j ⟩ (for j − i = ±1),

so that the verifier can compute t̂ , analogous to [u±1] in Section 3.4,
To save communication, we use a linear combination of Proto-

col LMPAnoZK in our argument. Using the same challenge (x ,y,z)
for both runs does not work. But when swapping the challenge for,
say the first instance, we see that the linear combination works.
Concretely, let x = (1, ξ), y = (ξ , 1). Then

⟨x⊤w ′,y⊤w ′′⟩ = ξ ⟨w ′,w ′′⟩ + ⟨w ′1,w
′′
2 ⟩ + ξ2⟨w ′2,w

′′
1 ⟩

Thus, analogous to [u0] = [t] in LMPAnoZK, the term ⟨w ′,w ′′⟩ = t
is preserved.Therefore we run the first protocol forw ′with flipped
challenge (y,x), and the second protocol for w ′′ with challenge
(x ,y). Now, as in Protocol LMPAnoZK, it suffices to send vj−i B
⟨w ′i ,w

′′
2−i ⟩ (for i = 1, 2).

The argument described above is a hybrid of [12] and [15]. For
security, we need that “commitment merging” (see Remark 3.12),
which the linear combination of protocols induces, still is binding.
To obtain [15], we simply commit tovℓ aswell (using [Q]), and send
the combined commitment, i.e. apply again a linear combination.
This “merged” commitment key is now [д′,д′′,Q]. Thus instead
of sending two messages thrice (namely [u ′±1], [u

′′
∓1], [v∓1Q]), we

only send the two “merged commitments” [u±1] = [u ′±1]+ [u ′′∓1]+
[v∓1Q]. Unlike [15], which uses x = (ξ−1, ξ) we prefer x = (1, ξ)
since exponentiation with 1 is free.

We sketch the protocol. The CRS is crs = [д′,д′′,Q] where [д′],
[д′′] ∈ G1×n and [Q] ∈ G are random. To prove

∃w ′,w ′′ ∈ Fnp : [c] = [д′]w ′ + [д′′]w ′′ + t [Q] ∧ ⟨w ′,w ′′⟩ = t ,

the prover computes [u ′
ℓ
], [u ′′

ℓ
as in Protocol 3.11, but with chal-

lenges flipped as described above. For ℓ = ±1, the prover sends
[uℓ] B [u ′

ℓ
] + [u ′′−ℓ] + v−ℓ [Q]. Both parties compute the reduced

statement, and another iteration (or base case) is run.
The resulting protocol is called IPAnoZK, see Appendix E.1 for

a full description. It is µ-special sound (with µ = (2, 4, . . . , 4)) for
finding awitness or a non-trivial element in the kernel of [д′,д′′,Q].
And it has short-circuit extraction with µ ′ = (1, 2, . . . , 2). The
proof is essentially as in [12, 15].

4.4.2 Going zero-knowledge. Making the inner-product argument
zero-knowledge can be done in many ways. To be competetive
with Bulletproofs [15], we directly mask the witness. This is prob-
lematic, since the scalar product is non-linear. Consequently, our
(initial) approach only works under some (mild) constraints.

As mentioned above, the problem with using masking random-
ness and proving ⟨w ′ + r ′,w ′′ + r ′′⟩ is the non-linearity: Sending
only tr = ⟨r ′,r ′′⟩ to the verifier is not enough. So we need to send
also ⟨w ′,r ′′⟩ or ⟨r ′,w ′′⟩ or some other “error term” to correct the
non-linearity. Then we have to show that these terms don’t expose
“information” about the witness. In particular, sending βw ′ + r ′,
which was possible in Section 3.3, seems impossible.

Fortunately, we already saw that the recursive argument only
needs a small amount of randomness to conceal the witness. We
exploit this now to show that the sketched masking almost yields
zero-knowledge. Instead of sending the error terms, we pick ran-
domness with the “kernel guideline” in mind:
• r ′ ∈ ker(w ′′⊤), i.e. ⟨r ′,w ′′⟩ = 0.
• r ′′ ∈ ker(w ′⊤) ∩ ker(r ′⊤), i.e. ⟨w ′,r ′′⟩ = 0 = ⟨r ′,r ′′⟩.

In other words, we pick randomness which does not induce errors.
Thus, the prover only has to send [tr] = [д′]r ′+[д′′]r ′′ to the ver-
ifier. We first outline an almost zero-knowledge argument, using
augmented masking setsM+

n which are defined later.
Protocol 4.1 (IPAalmZK). The following is an inner product ar-

gument with the same statement, witness and notation as Proto-
col E.1 (IPAnoZK).
• P→ V: Pickr ′ ← ker(w ′′⊤)∩M+

n andr ′′ ← ker(
(
w ′⊤
r ′⊤

)
)∩

M+
n . Compute [cr] B [д′]r ′ + [д′′]r ′′. Send [cr].

• V→ P: Pick β ← χ (β). Send β .
• P↔ V: Run Protocol IPAnoZK for ⟨βw ′ + r ′, βw ′′ + r ′′⟩ =
β2t (with commitment [c] = β[cw]+[cr]+β2t [Q]). To com-
pute [c], the values t and [cw] from the statement are used.

Correctness follows by inspection. Special soundness follows es-
sentially from Lemma E.2 and Lemma 3.2.
Corollary 4.2. Protocol 4.1 is special µ-sound (with µ = (2, 2, 4,
. . . , 4)) for finding a witness or a non-trivial element in the kernel of
[д′,д′′,Q]. It has short-circuit extraction with µ = (2, 1, 2, . . . , 2).

Showing zero-knowledge ismore contrived. As for Protocol 3.11,
we want to show that the prover’s messages are uniformly ran-
dom. Unfortunately, the constraints which must be satisfied now
depend on the witness. Thus, an adversarially chosen witness may
be a problem. Fortunately, we use IPAalmZK with “randomised” wit-
nesses, so this problem does not manifest.

Definition 4.3. Letk be fixed andn ≥ 8. DefineM+
n B Mn ∪̇{n−

2,n−1}. (Recall thatMn indices are zero-based andn−2,n−1 < Mn
for n ≥ 8.)

We introduceM+
n because satisfying the kernel constraints “con-

sumes” one (resp. two) pieces of randomness in r ′ (resp. r ′′). We
compensate this inM+

n .
Lemma 4.4 (Informal, see [34]). Ifw ′,w ′′ are of a suitable form,

then the responses in IPAalmZK are uniform-or-unique. More con-
cretely, ifw ′n−1,w

′
n are random, andw ′′n−1,w

′′
n also (not necessarily

independent), thenw is suitable.
11

4.5 Quadratic equation satisfiability
We can finally instantiate our sketch of an argument system for
satisfiability of a system of quadratic equations from Section 4.3. It
is a commit-and-prove system as follows. The prover commits to
the solution w . Then Γ is fixed and ⟨w,Γw⟩ = 0 shown to hold.
The commitment scheme pads w ∈ Fn−2p with randomness and
extends Γ in a suitable way. Intuition for soundness is given in
Section 4.3.

Protocol 4.5 (QESAZK). Let Γi ∈ F(n−2)×(n−2)p (i = 1, . . . ,N)
be a system of quadratic eqations. Suppose N ≥ 2.⁹ Let w ∈ Fn−2p
be a solution, i.e. w⊤Γiw = 0 for all i . We assume that the first
componentw1 ofw is 1.

Let crs = [д′,д′′,Q], χ̃3, χ (β,0) and n ≥ 8 as in Protocol 4.1,
and M+

n as in Lemma 4.4. Let x ← χN be a testing distribution
with x1 = 1 and x2 , 0 for all x .¹⁰ Let y ← χn+1 be a testing
distribution with y1 = 1 always. The following is a protocol for
proving

∃w ∈ Fn−2p : ∀i : w⊤Γiw = 0

where crs and Γi are common inputs and the prover’s witness is
w .
• P → V: (Step 0: Commitment.) Pick r ′ ← F2p . Let the “ex-

tended” witness be w ′ B
(w
r ′

)
and compute the commit-

ment [c ′w] = [д′]w ′. Send [c ′w].
• V→ P: (Step 1: Batch verification.) Pick and send x ← χN .
• (Batch equations): Both parties compute Γ B

∑
xiΓi .

• (Fix w1 to 1): Both parties let β B x2 and redefine [д′1] ←
β−1[д′1]. Then [c ′w]← [c ′w]− (β − 1)[д′1] (with the new [д′1]).
• P → V: Let r ′′ = Rr ′ where R =

(
0 −1
1 0

)
is a rotation by

90 degrees. Letw ′′ =
(
Γw
r ′′

)
. Send [c ′′w] = [д′′]w ′′.

• V → P: Pick (1, s,b) ← χn+1, where s ∈ Fn−2p , b ∈ F2p .
Send s ′ B

(s
b

)
.

• P↔ V: Run Protocol IPAalmZK for ⟨w ′ − s ′,w ′′ + Γ′⊤s ′⟩ =
t with t = −⟨s,Γ⊤s⟩, and commitment ([c ′w] − [д′]s ′) +
([c ′′w] + [д′′]Γ′⊤s ′) and the modified [д′] (and unmodified
[д′′], [Q]) as commitment keys. Here Γ′ =

(
Γ 0
0 R

)
∈ Fn×np

where R is as in Step 1.

See Appendix I for a sketch of this protocol.

Remark 4.6. It is not hard to see that the prover never needs to
compute [c] = ([c ′w] − [д′]s ′) + ([c ′′w] + [д′′]Γ′⊤s ′). (In general,
P does not need [u0].) While the verifier has to check [c], using
lazy evaluation and optimisations from [15], this hardly affects its
runtime. All in all, dealing with s ′ is almost free.

We now state basic properties of QESAZK.

Lemma 4.7. Protocol QESAZK has perfect correctness.

Using ⟨
(
u ′
r ′

)
,
(
u ′′
r ′′

)
⟩ = ⟨u ′,u ′′⟩ + ⟨r ′,r ′′⟩ and ⟨r ,Rr ⟩ = 0 for

all r ∈ F2p , this is a straightforward check.

Lemma 4.8. Protocol QESAZK has µ-special soundess (with µ =
(N ,n + 1, 2, 2, 4, . . . , 4)) for extracting a witness or a non-trivial

⁹Otherwise, add trivial equations Γ = 0.
¹⁰ Restrictions on χN are merely to simplify protocol description and proofs.

kernel element of [д′,д′′,Q]. It inherits short-circuit extraction with
µ = (1, 1, 2, 2, 2, . . . , 2).

Wedid awaywith “α” compared to Section 4.3 to improve sound-
ness. Extracting a challenge (α , s) naively requires a (3,n−2) sub-
tree. Our construction only needs an (n + 1) sub-“tree”.

Lemma 4.9. Protocol QESAZK is ε-statistical zero-knowledge for
some ε ∈ O(2 log2(n))/p.

For the proof, we establish that the conditions of Lemma 4.4
are met except with probability O(2 log2(n))/p. This follows es-
sentially becauseQESAZK usesw ′ = (wr), where r is random (and
similar for w ′′). Thus, IPAalmZK is statistical zero-knowledge, and
consequently QESAZK is statistical zero-knowledge as well.

4.6 Combining QESAZK with other proof
systems

As is, QESAZK can be used to commit-and-prove quadratic equa-
tions. However, oftentimes, one wishes to prove statements about
commitments which come from some other source. For example,
Bulletproofs [15]were designed for confidential transaction, where
the commitments are input to the proof system.This is not immedi-
ately feasible with QESAZK as is, because QESAZK is commit-and-
prove only w.r.t. the solution of the set of quadratic equations.

Fortunately, extendingQESAZK is not hard. We consider follow-
ing setting. There are commitment keys c̃k(i) for i = 1, . . . ,M .
Each commitment key corresponds to a subset Ii ⊆ {1, . . . ,n} of
the components of [д′], where crs = ([д′,д′′,Q]) is the commit-
ment key of QESAZK. That is c̃k(i) =̂ {[д′j]}j ∈Ii . Let I B ∪

M
i=1Ii

be the set of all indices which are part of some c̃k(i). Let M(i) B
#Ii be the size of c̃k(i). We assume the following: Every commit-
ment key c̃k(i) uses [д′n] (or [д′n−1]) as its randomess components.
Moreover, 1 < Ii , because the index 1 =̂ [д′1] is reserved for the
commitment to value 1 in QESAZK. A useful point of view is that
c̃k(i) is a commitment under [д′] ∈ Gn to a vectorv(i) ∈ Fnp with

∀i < Ii : vi = 0. (4.2)
We assume for simplicity that there is one commitment per key
c̃k(i). To model the case of multiple commitments [c1], . . . , [cM]

per key, e.g. all commitments are under c̃k = c̃k(1), we simply
duplicate c̃k, i.e. we rewrite this as [̃c(i)] = [ci], c̃k(i) = c̃k.

Example 4.10. In a typical range proof, with Pedersen commit-
ted value, we would have c̃k(1) =̂ [д′2,д

′
n], whereM = 1. We write

c̃k B c̃k(1) for simplicity. This means I = {2,n}.
Remark 4.11. Using the in n varying [д′n] in the commitment

keys c̃k(i) is problematic and inconvenient. We want the random-
ness terms in QESAZK and our commitment to “overlap”. But now,
running QESAZK for a smaller or larger instance, e.g. an instance
of size n/2 or 2n is incompatible. A simple solution is to fix some
(random) [д′,⋆rnd1,д

′,⋆
rnd2] (as part of crs) and construct [д′]when start-

ing Protocol QESAZK so that [д′n−1,д
′
n] = [д′,⋆rnd2,д

′,⋆
rnd2]. Another

solution is to permute the position of the randomness and reserve
the fixed indices 2, 3 for randomness (instead of n − 1,n).

With this setup, we can extend QESAZK as follows: Given com-
mitments [̃c(i)] under keys c̃k(i), prove that the values committed

12

in [̃c(i)] satisfy some set of quadratic equations. In other words,
prove that the [̃c(i)] satisfy some arithmetic circuit.

Example 4.12 (Aggregate range proof). Consider [̃c(j)], j = 1, ..., 10.
We wish to prove that the valuesv(j) committed in [̃c(j)] all lie in
the range {0, . . . , 28 − 1}.

Unsurprisingly, our solution to the problem is probabilistic ver-
ification. Our idea for general interoperability is as follows: The
initial QESAZK witnessw (commitment c ′w) has all components in
I zeroed (except for randomness n − 1, n) and also contains copies
of the committed v(i). The actual equations, i.e. the Γi , only refer
to the copies and the componentsI.The verifier sends randomness
α ← χM+1 with α0 = 0, and we set [c ′w] ← [c ′w] +

∑
i αi [̃c

(i)],
and w ′ ← w ′ +

∑
i αiv

(i) as new (extended) witness. Note that
all (extended) equationsw ′Γ′⊤i w ′ still hold (for an honest prover).
Now we add (linear) equations Γ(i)

copy to the statement, which we
call copy-equations andwhich depend on the randomness αi .These
equations simply assert that, if we compute

∑
i αiv

(i) using the
committed copies in w , then this equals the values committed in
components I (again excluding the randomness components n−1,
n). In other words, we assert that the purported copies of v(i) in
witness [c ′w ,old] were valid copies. This “copy-based” approach is
simple and modular.

The formulaic description of ProtocolQESACopy is arguably tech-
nical. However, the example in Fig. 3 demonstrates that it is actu-
ally a simple concept. In Appendix E.2, Fig. 4, we give a more com-
plex example.This extension ofQESAZK is again complete, special-
sound, and statistical zero-knowledge. See Appendix E for more
details.

c̃(1) =̂ I1 = {2, n }: m(1) r (1)

c̃(2) =̂ I2 = {2, n }: m(2) r (2)

w ′ =
(w
r ′

)
: 1 0 m(1) m(2) r1 r2

α0w ′ + α1v
(1)

+α2v
(2) 1

α1m(1)

+α2m(2)m(1) m(2) r1 r ∗2

α1

α2

α0

= 1

Figure 3: An example of a copying two values from two com-
mitments. The blocks are colour-coded as follows: White
blocks contain either 0 or the value indicated. Orange blocks
belong to the (value-part) of commitment indices, i.e. to I.
Green blocks denote “copied” values. Gray blocks contain
an arbitrary value. Blue blocks refer to randomness parts (i.e.
components n − 1,n). Note that randomness is not copied, as
it is not a relevant part of the committed value. It is simply
accumulated in r∗2 = α0r2 + α1r

(1) + α2r
(2). The actual state-

ments (i.e. the matrices Γi) are statements over all variables
except the orange (and blue) blocks, as these aremerely “test-
values” which ensure thatw contains copies of (the message
part of)v(i), herem(i), as claimed.

Parameters Bulletproofs QESARP QESARP(short)
P V P V P V

60 bit 0.26 0.17 0.16 0.07 0.15 0.06
60 bit × 2 0.47 0.29 0.32 0.15 0.30 0.10
60 bit × 32 7.4 4.5 5.1 2.4 4.6 1.7
60 bit × 128 28.9 17.9 20.6 9.4 18.4 6.7
60 bit × 512 116 78.7 82.3 37.5 73.8 27.1
124 bit 0.46 0.29 0.32 0.15 0.29 0.11
124 bit × 32 14.9 9.2 10.4 4.7 9.3 3.4
124 bit × 128 59.7 36.8 41.4 18.9 37.2 13.5
124 bit × 512 238 147 165 75.4 149 54.6
252 bit 0.95 0.59 0.65 0.30 0.57 0.22
252 bit × 32 30.2 18.6 20.8 9.5 18.9 6.8
252 bit × 128 121 74.3 83.5 37.8 76.1 27.4
252 bit × 512 484 297 358 165 302 109

Table 3: Comparison of runtime in seconds of aggregate
range proofs from [15] with this work.

5 IMPLEMENTATION
We implemented all protocols in C++17 using the RELIC toolkit
[4] for underlying group operations. Our instantiation uses G =
Curve25519 and thus Fp = F2255−19. For a fair comparison, we im-
plemented Bulletproofs on the same architecture with equal care.
The code is available on GitHub.¹¹

RepresentingΓ. AllQESA protocols make use of sparsematrices
Γ. For efficient computation, a suitable representation is necessary.
Decomposing Γ into a sum

∑
i aib

⊤
i , similar to R1CS, allows for

both runtime and memory optimizations. Note that vectors ai and
bi are sparse themselves, allowing for even further optimization
via an appropriate data structure. For multiplications Γs , at most
m

∑
i ki ℓi scalar multiplications are necessary, wherem, ki , ℓi are

the number of non-zero entries in s , ai , bi . Thus, all operations
remain polynomial in the input size.

Results. Webenchmarked our protocols on an Intel Core i7-6600U
CPU at 2.6GHz running Debian Stretch 4.9.168 using a single core.
A point multiplication with a random 254-bit scalar takes on av-
erage 0.28ms on this platform. Table 3 shows how our aggregate
range proofsQESARP compare to Bulletproofs. ForQESARP, the in-
ternal witnessw contains 4 static elements: the constant 1, the ag-
gregate element for QESACopy, and the 2 random elements added
by QESAInner, c.f. Appendix I. Hence, we select the range as a
power of 2minus 4, in order to keep the CRS size from expanding to
the next power of two. Our results show thatQESARPoutperforms
Bulletproofs for all tested parameters. Allowing batching random-
nesses to be small further improves the performance (cf. QESARP
(short) for 140-bit random values).¹² Note that the execution times
given in [15] are lower, since a highly optimized library dedicated
to a single elliptic curve was used instead of a general purpose

¹¹https://github.com/emsec/QESA_ZK
¹² To justify short exponents, concrete security estimates are needed.We are not aware
of results justifying any concrete instantiations. If our conjectures in Appendix F hold,
we can justify at least 80 bit security for witness size n ≤ 216 .

13

https://github.com/emsec/QESA_ZK

Shuffle size 1000 10000 100000
P V P V P V

Time [s] 8.8 4.4 117 56.1 1009 491
Table 4: Evaluation of shuffle proofs via QESACopyand
LMPAsimpleZK.

library as in this work. However, since both protocols were bench-
marked on the same platform with the same underlying library,
the values in Table 3 give a fair comparison.

Table 4 gives execution times for our shuffle proofs. They are
an instantiation of [5], c.f. Appendix D, and we project them to be
2–3× more computationally expensive than [5], but they are size
O(log(N)) instead of O(

√
N) for N ciphertexts. Again the very

high execution times compared to [5] are caused by the underlying
library.

ACKNOWLEDGMENTS
We thank the anonymous reviewers of CRYPTO ’19 and CCS ’19
for helpful comments, which improved the overall quality and pre-
sentation of this work. This work is supported by the German Re-
search Association under grants PA 587/10-1 and RU 1664/3-1.

REFERENCES
[1] [n.d.]. What is Jubjub? https://z.cash/technology/jubjub.
[2] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. 2018. Non-

Interactive Zero-Knowledge Proofs for Composite Statements. In CRYPTO 2018,
Part III (LNCS), Hovav Shacham and Alexandra Boldyreva (Eds.), Vol. 10993.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 643–673. https:
//doi.org/10.1007/978-3-319-96878-0_22

[3] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-
ramaniam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted
Setup. InACMCCS 17, Bhavani M.Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA, 2087–2104. https://doi.org/10.
1145/3133956.3134104

[4] D. F. Aranha and C. P. L. Gouvêa. [n.d.]. RELIC is an Efficient LIbrary for Cryp-
tography. https://github.com/relic-toolkit/relic.

[5] Stephanie Bayer and Jens Groth. 2012. Efficient Zero-Knowledge Argument for
Correctness of a Shuffle. In EUROCRYPT 2012 (LNCS), David Pointcheval and
Thomas Johansson (Eds.), Vol. 7237. Springer, Heidelberg, Germany, Cambridge,
UK, 263–280. https://doi.org/10.1007/978-3-642-29011-4_17

[6] Mihir Bellare and Oded Goldreich. 1993. On Defining Proofs of Knowledge. In
CRYPTO’92 (LNCS), Ernest F. Brickell (Ed.), Vol. 740. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA, 390–420. https://doi.org/10.1007/3-540-48071-
4_28

[7] Mihir Bellare and Oded Goldreich. 2011. On Probabilistic versus Deterministic
Provers in the Definition of Proofs of Knowledge. In Studies in Complexity and
Cryptography. Lecture Notes in Computer Science, Vol. 6650. Springer, 114–123.

[8] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in
Zero Knowledge. In CRYPTO 2013, Part II (LNCS), Ran Canetti and Juan A. Garay
(Eds.), Vol. 8043. Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 90–
108. https://doi.org/10.1007/978-3-642-40084-1_6

[9] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P. Ward. 2018. Aurora: Transparent Succinct Arguments for
R1CS. IACR Cryptology ePrint Archive 2018 (2018), 828.

[10] David Bernhard, Olivier Pereira, and BogdanWarinschi. 2012. HowNot to Prove
Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In ASI-
ACRYPT 2012 (LNCS), Xiaoyun Wang and Kazue Sako (Eds.), Vol. 7658. Springer,
Heidelberg, Germany, Beijing, China, 626–643. https://doi.org/10.1007/978-3-
642-34961-4_38

[11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin,
Aviad Rubinstein, and Eran Tromer. 2017. The Hunting of the SNARK. Jour-
nal of Cryptology 30, 4 (Oct. 2017), 989–1066. https://doi.org/10.1007/s00145-
016-9241-9

[12] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. 2016. Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the
Discrete Log Setting. In EUROCRYPT 2016, Part II (LNCS), Marc Fischlin and
Jean-Sébastien Coron (Eds.), Vol. 9666. Springer, Heidelberg, Germany, Vienna,
Austria, 327–357. https://doi.org/10.1007/978-3-662-49896-5_12

[13] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Ha-
jiabadi, and Sune K. Jakobsen. 2017. Linear-Time Zero-Knowledge Proofs for
Arithmetic Circuit Satisfiability. In ASIACRYPT 2017, Part III (LNCS), Tsuyoshi
Takagi and Thomas Peyrin (Eds.), Vol. 10626. Springer, Heidelberg, Germany,
Hong Kong, China, 336–365. https://doi.org/10.1007/978-3-319-70700-6_12

[14] Jonathan Bootle and Jens Groth. 2018. Efficient Batch Zero-Knowledge Argu-
ments for Low Degree Polynomials. In PKC 2018, Part II (LNCS), Michel Abdalla
and Ricardo Dahab (Eds.), Vol. 10770. Springer, Heidelberg, Germany, Rio de
Janeiro, Brazil, 561–588. https://doi.org/10.1007/978-3-319-76581-5_19

[15] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transac-
tions andMore. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, San Francisco, CA, USA, 315–334. https://doi.org/10.1109/SP.2018.
00020

[16] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017. Post-
Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. In
ACMCCS 17, BhavaniM.Thuraisingham, David Evans, TalMalkin, andDongyan
Xu (Eds.). ACM Press, Dallas, TX, USA, 1825–1842. https://doi.org/10.1145/
3133956.3133997

[17] Michele Ciampi, Giuseppe Persiano, Luisa Siniscalchi, and Ivan Visconti. 2016. A
Transform for NIZK Almost as Efficient and General as the Fiat-Shamir Trans-
form Without Programmable Random Oracles. In TCC 2016-A, Part II (LNCS),
Eyal Kushilevitz and TalMalkin (Eds.), Vol. 9563. Springer, Heidelberg, Germany,
Tel Aviv, Israel, 83–111. https://doi.org/10.1007/978-3-662-49099-0_4

[18] Ronald Cramer and Ivan Damgård. 1998. Zero-Knowledge Proofs for Finite Field
Arithmetic; or: Can Zero-Knowledge Be for Free?. In CRYPTO’98 (LNCS), Hugo
Krawczyk (Ed.), Vol. 1462. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA, 424–441. https://doi.org/10.1007/BFb0055745

[19] Ivan Damgård. 2000. Efficient Concurrent Zero-Knowledge in the Auxiliary
StringModel. In EUROCRYPT 2000 (LNCS), Bart Preneel (Ed.), Vol. 1807. Springer,
Heidelberg, Germany, Bruges, Belgium, 418–430. https://doi.org/10.1007/3-540-
45539-6_30

[20] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. 2014.
Square Span Programs with Applications to Succinct NIZK Arguments. In ASI-
ACRYPT 2014, Part I (LNCS), Palash Sarkar and Tetsu Iwata (Eds.), Vol. 8873.
Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C., 532–550. https:
//doi.org/10.1007/978-3-662-45611-8_28

[21] Alex Escala and Jens Groth. 2014. Fine-Tuning Groth-Sahai Proofs. In PKC 2014
(LNCS), Hugo Krawczyk (Ed.), Vol. 8383. Springer, Heidelberg, Germany, Buenos
Aires, Argentina, 630–649. https://doi.org/10.1007/978-3-642-54631-0_36

[22] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. 2013. An
Algebraic Framework for Diffie-Hellman Assumptions. In CRYPTO 2013, Part II
(LNCS), Ran Canetti and Juan A. Garay (Eds.), Vol. 8043. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA, 129–147. https://doi.org/10.1007/978-3-642-
40084-1_8

[23] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-
dratic Span Programs and Succinct NIZKs without PCPs. In EUROCRYPT 2013
(LNCS), Thomas Johansson and Phong Q. Nguyen (Eds.), Vol. 7881. Springer, Hei-
delberg, Germany, Athens, Greece, 626–645. https://doi.org/10.1007/978-3-642-
38348-9_37

[24] Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. 2018.
Lattice-Based zk-SNARKs from Square Span Programs. In ACM CCS 18, David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM
Press, Toronto, ON, Canada, 556–573. https://doi.org/10.1145/3243734.3243845

[25] Irene Giacomelli, JesperMadsen, and Claudio Orlandi. 2016. ZKBoo: Faster Zero-
Knowledge for Boolean Circuits. In USENIX Security Symposium. USENIX Asso-
ciation, 1069–1083.

[26] Jens Groth. 2004. Honest verifier zero-knowledge arguments applied. Ph.D. Dis-
sertation. Aarhus University.

[27] Jens Groth. 2009. Linear Algebra with Sub-linear Zero-Knowledge Arguments.
In CRYPTO 2009 (LNCS), Shai Halevi (Ed.), Vol. 5677. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA, 192–208. https://doi.org/10.1007/978-3-642-
03356-8_12

[28] Jens Groth. 2010. Short Non-interactive Zero-Knowledge Proofs. In ASI-
ACRYPT 2010 (LNCS), Masayuki Abe (Ed.), Vol. 6477. Springer, Heidelberg, Ger-
many, Singapore, 341–358. https://doi.org/10.1007/978-3-642-17373-8_20

[29] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In
EUROCRYPT 2016, Part II (LNCS), Marc Fischlin and Jean-Sébastien Coron (Eds.),
Vol. 9666. Springer, Heidelberg, Germany, Vienna, Austria, 305–326. https://doi.
org/10.1007/978-3-662-49896-5_11

[30] Jens Groth and Yuval Ishai. 2008. Sub-linear Zero-Knowledge Argument for
Correctness of a Shuffle. In EUROCRYPT 2008 (LNCS), Nigel P. Smart (Ed.),

14

https://z.cash/technology/jubjub
https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1007/978-3-319-96878-0_22
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-76581-5_19
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/978-3-662-49099-0_4
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/3243734.3243845
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-642-17373-8_20
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11

Vol. 4965. Springer, Heidelberg, Germany, Istanbul, Turkey, 379–396. https:
//doi.org/10.1007/978-3-540-78967-3_22

[31] Jens Groth, Yael Kalai, Muthu Venkitasubramaniam, Nir Bitansky, Ran Canetti,
Henry Corrigan-Gibbs, Shafi Goldwasser, Charanjit Jutla, Yuval Ishai, Rafail Os-
trovsky, Omer Paneth, Tal Rabin, Mariana Raykova, Ron Rothblum, Alessan-
dra Scafuro, Eran Tromer, and Douglas Wikström. 2018. Security Track Proceed-
ing. Technical Report. ZKProof Standards, Berkeley, CA. https://zkproof.org/
documents.html.

[32] Jens Groth and Amit Sahai. 2008. Efficient Non-interactive Proof Systems for
Bilinear Groups. In EUROCRYPT 2008 (LNCS), Nigel P. Smart (Ed.), Vol. 4965.
Springer, Heidelberg, Germany, Istanbul, Turkey, 415–432. https://doi.org/10.
1007/978-3-540-78967-3_24

[33] RyanHenry and Ian Goldberg. 2013. Batch Proofs of Partial Knowledge. InACNS
13 (LNCS), Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and
Reihaneh Safavi-Naini (Eds.), Vol. 7954. Springer, Heidelberg, Germany, Banff,
AB, Canada, 502–517. https://doi.org/10.1007/978-3-642-38980-1_32

[34] Max Hoffmann, Michael Klooß, and Andy Rupp. 2019. Efficient zero-knowledge
arguments in the discrete log setting, revisited. IACR Cryptology ePrint Archive
2019 (2019), XXXX.

[35] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2009. Extracting
Correlations. In 50th FOCS. IEEE Computer Society Press, Atlanta, GA, USA,
261–270. https://doi.org/10.1109/FOCS.2009.56

[36] Ahmed E. Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T.-H. Hubert Chan,
Charalampos Papamanthou, Rafael Pass, Abhi Shelat, and Elaine Shi. 2015.
C ∅C ∅: A Framework for Building Composable Zero-Knowledge Proofs. IACR
Cryptology ePrint Archive 2015 (2015), 1093.

[37] Yehuda Lindell. 2015. An Efficient Transform from Sigma Protocols to NIZK
with a CRS and Non-programmable Random Oracle. In TCC 2015, Part I (LNCS),
Yevgeniy Dodis and Jesper Buus Nielsen (Eds.), Vol. 9014. Springer, Heidelberg,
Germany, Warsaw, Poland, 93–109. https://doi.org/10.1007/978-3-662-46494-
6_5

[38] Helger Lipmaa. 2013. Succinct Non-Interactive Zero Knowledge Arguments
from Span Programs and Linear Error-Correcting Codes. In ASIACRYPT 2013,
Part I (LNCS), Kazue Sako and Palash Sarkar (Eds.), Vol. 8269. Springer, Hei-
delberg, Germany, Bengalore, India, 41–60. https://doi.org/10.1007/978-3-642-
42033-7_3

[39] Ueli Maurer. 2015. Zero-knowledge proofs of knowledge for group homomor-
phisms. Des. Codes Cryptography 77, 2-3 (2015), 663–676.

[40] Paz Morillo, Carla Ràfols, and Jorge Luis Villar. 2016. The Kernel Matrix Diffie-
Hellman Assumption. In ASIACRYPT 2016, Part I (LNCS), Jung Hee Cheon and
Tsuyoshi Takagi (Eds.), Vol. 10031. Springer, Heidelberg, Germany, Hanoi, Viet-
nam, 729–758. https://doi.org/10.1007/978-3-662-53887-6_27

[41] C. Andrew Neff. 2001. A Verifiable Secret Shuffle and Its Application to e-Voting.
In ACM CCS 01. ACM Press, Philadelphia, PA, USA, 116–125. https://doi.org/10.
1145/501983.502000

[42] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. 2013. Pinoc-
chio: Nearly Practical Verifiable Computation. Cryptology ePrint Archive, Re-
port 2013/279. http://eprint.iacr.org/2013/279.

[43] Kun Peng, Colin Boyd, and Ed Dawson. 2007. Batch zero-knowledge proof and
verification and its applications. ACM Trans. Inf. Syst. Secur. 10, 2 (2007), 6.

[44] Björn Terelius and Douglas Wikström. 2010. Proofs of Restricted Shuffles. In
AFRICACRYPT 10 (LNCS), Daniel J. Bernstein and Tanja Lange (Eds.), Vol. 6055.
Springer, Heidelberg, Germany, Stellenbosch, South Africa, 100–113.

[45] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.
2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In 2018 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society Press, San Francisco, CA,
USA, 926–943. https://doi.org/10.1109/SP.2018.00060

[46] Douglas Wikström. 2018. Special Soundness Revisited. IACR Cryptology ePrint
Archive 2018 (2018), 1157. https://eprint.iacr.org/2018/1157

A OMISSIONS: PRELIMINARIES
A.1 Testing distributions

Lemma A.1 (Schwartz–Zippel). Let f ∈ Fp [X1, . . . ,Xn] be a
non-zero polynomial of (total) degree d . Let χ be a distribution on
Fp . Let p∞(χ) B supx ∈Fp χ(x), where χ(x) B P(x = y | x ← χ).
Then P(f (x) = 0) ≤ dp∞(χ) for x ← χn (i.e. xi ← χ). Moreoever,
since p∞(ψ) ≤ 1

ε p∞(χ) for any subdistributionψ of weight ε , we get

Px←ψ n (f (x) = 0) ≤ dp∞(χ)
ε .

The usual proof can be adapted easily.

A.1.1 Dual testing distributions. Testing distributions are essen-
tially a stronger (and simplified) form of the general concept of
probabilistic verification with efficient extraction. They allow to
test if an element in Fnp is 0. By dualising, we find another concept,
for which an intuitive description seems harder. Instead of a distri-
bution onx⊤ ∈ F1×mp satisfyingwith high probability

∩m
i=1 ker(x⊤) =

{0}, we consider a distribution on M ∈ Fm×m−1p , satisfying with
high probability

∩m
i=1 im(M) = {0}, In a sense, M guarantees

that for any 0 , z ∈ Fmp , z < im(M) with high probability. Hence,
we can use it to enforce z = 0, instead of testing for it.

More concretely, we use this to ensure that for a Pedersen com-
mitment [c] = [G |H](wz) the adversary must have z = 0. We do
so by constructing [H] as [H] B [Q]M . Intuitively, knowledge of
some [c ′] = [G |Q]

(w
y

)
cannot be transferred to [G |H] because we

must have z = My, i.e. z ∈ im(M), which is unlikely (except for
z = 0 or ifA breaks the binding property). Thus, we can provably
“zero” a part of a commitment without an (expensive) argument.
Generally, this allows to derive “fresh” commitment keys. Using
this is more communication efficient than picking and sending a
fresh [H]← Gm .

Morally, dual testing enforces z = 0, while “normal” testing ver-
ifies z = 0.

Definition A.2. An (arbitrary) dual testing distribution χ∨m is
a distribution on Fm×(m−1)p . The (computational) soundess error
δsnd(χ

∨
m) is defined as before, but using P(∩mi=1 im(Mi) , {0}).

Let χm be a testing distribution on Fmp such that x ← χm al-
ways has x1 = 1. Then χ∨m defined as follows is a dual testing
distribution: To pick M ← χ∨m , pick x⊤ = (1,x ′)⊤ ← χm and let
M B Mx B

(
x ′

− idm−1

)
. By construction ker(x⊤) = im(Mx), and

consequently δsnd(χ∨) = δsnd(χm).

Note that by construction, Mx is the (parity) check matrix for
the linear code with generator x . In particular, x⊤Mx = 0. For
simplicity, we only consider dual testing distributions associated
to some testing distribution.

B OMISSIONS: LMPA
B.1 LMPAZK
We expand on sketches in Section 3.4 and give the description
of our LMPAZK construction with logarithmic computional over-
head.

Difficulties arising from general [A]. There are two main difficul-
ties arising from general [A] ∈ Gm×n . First, the higher dimension
due tom > 1 makes masking sets as described not directly appli-
cable anymore. Since [uℓ] ∈ Gm , the prover now communicates
mk elements, and hence we expect thatmk log(n) random entries
are necessary to randomise all of [uℓ]. Interestingly, the naive ap-
proach of using ProtocolΣstd shows that n random entries are suf-
ficient. Note that n < mk log(n) is possible for largem. (In practice
mk log(n) ≪ n.)

Second, wewant to dealwith adversarial [A]. In the above sketch
for zero-knowledge, we ignored a detail concerning the recursion.
If it ever happens that in [д], for some i ∈ Mn , the elementдi is zero,
the distribution of (r̂ , [u−1], [u1]) is skewed and zero-knowledge

15

https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-540-78967-3_22
https://zkproof.org/documents.html
https://zkproof.org/documents.html
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-38980-1_32
https://doi.org/10.1109/FOCS.2009.56
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1145/501983.502000
https://doi.org/10.1145/501983.502000
http://eprint.iacr.org/2013/279
https://doi.org/10.1109/SP.2018.00060
https://eprint.iacr.org/2018/1157

fails. Note that [д] is reduced in each statement, so this can happen
randomly. Thus, even the naive reduction is only statistically zero-
knowledge. If [A] is chosen adversarially, it may be so that this fail-
ure case always (or often) happens. Making the definition of Mn
dynamic and depend on [A] is inconvenient and hard. Our choice is
therefore to act “dually” to commitment-extension. Remember that
a commitment-extension adds a row to [A] so that [A] is “computa-
tionally injective”. In contrast, we will, very roughly, add columns
to [A], to ensure that [A] is surjective. Our concrete approach is
detailed below.

Dealing with general [A]. Our proof system separates the mask-
ing randomness from the actual witness and is a linear combina-
tion of multiple protocol instances of LMPAnoZK: The actual proto-
col for [A] C [H (0)], and protocols for [H (i)], i = 1, . . . ,m, where
[H (i)] essentially contains a Pedersen commitment key in the i-th
row and is zero otherwise.

To keep things simple, we letm = 1 in the following discussion.
Inuitively, we want to run a “randomness-extended” protocol for
[B] = [A|H](wr). The intuition is that r will randomise all [u±1]’s
(because [H] is not adversarial). Unfortunately, this intuition is
wrong: [u1] = [H]w is certainly not zero-knowledge. The problem
is how LMPAnoZK divides the statement. Appropriate shuffling of
[B] and (wr) would solve this. Instead, we work with a linear com-
bination of LMPAnoZK instances.

More precisely, we run two arguments, one for [A]w = [t ′] and
one for [H]r = [t ′′]. The messages [u−1] and [u1] are the sums of
the messages which individual protocols would send, e.g. [u−1] =
[A2]w1 + [H2]r1. Concretely[
u ′−1
u ′1

]
=

[
A1w2

A2w1

]
,

[
u ′′−1
u ′′1

]
=

[
H1r2
H2r1

]
,

[
u−1
u1

]
=

[
u ′−1
u ′1

]
+

[
u ′′−1
u ′′1

]
This ensures that the [u ′′±1] are uniformly random in every round,

because [u ′′±1] is. In the base case of the recursion, i.e. small n, the
prover proves [A]w + [H]r = [t] in zero-knowledge, using (for
concreteness) Protocol Σstd.

To keep our protocol modular and comprehensible, we split it
into two steps.

Protocol B.1 (LMPAalmSnd). The following is a protocol to prove
∃w : [t(0)] = [A]w , using testing distributions χm+1 resp. χ̃2k−1
(resp. χ (β)). with χ̃3, χ (β) as in Protocol LMPAnoZK. Furthermore,
we require that x ← χm+1 satisfies xi , 0 for all i .

Common input is ([A], [t(0)]) ∈ Gm×n × Gn and some h ∈ Gn
(typically derived from the CRS when this protocol is used as a
subprotocol). We assume n = 2ℓ > 4. Moreover, we let [H (i)] ∈
Gm×n for i = 1, . . . ,m, be defined as the matrix with [h] in the i-th
row and zeroes elsewhere, i.e. [H (i)] = ei [h]. We use a superscript
0, e.g. [H (0)] B [A], for terms related to [A]. The prover’s witness
is somew ∈ Fnp (also written r (0)).

• P → V: (Step 1: Prepare masking.) Pick r (i) ← Mn ≤
Fnp and compute [t(i)] = [H (i)]r (i). Send [t(i)] for i =
1, . . . ,m.

• V→ P: (Step 2: Random linear combination.) Pick and send
x ← χm+1. The statement we prove is now effectively

[A|H (1) | . . . |H (m)]
©­­­«
x0w

x1r (1)

...

ª®®®¬ = [t] B
∑
i
xi [t

(i)].

For simplicity, the prover redefines r (i) B xir (i) for i =
0, . . . ,m.
• P → V: (Step 3: Begin the shrinking AoK.) Let [H (i)] =

[H
(i)
1 ,H

(i)
2]withH (i)

j ∈ Gm×n/2. Compute [uℓ] =
∑m
i=0[u

(i)
ℓ

],

where [u(i)
ℓ

] is computed as usual, i.e. [u(i)
ℓ

] =
∑
j−i=ℓ [H

(i)
ℓ

]r
(i)
ℓ

.
Send [uℓ] for ℓ = ±1.
• V→ P: Pick z ← χ̃3 (with associated x ,y). Send (x ,y,z).
• P → V: As in LMPAnoZK, compute w = x⊤w⃗ =

∑
j x jwi

and r̂ (i) = x⊤r⃗ (i) =
∑
j x jr

(i)
j and [Â] = x⊤[A⃗] =

∑
j x j [Aj],

[Ĥ (i)] =
∑
j x j [H

(i)
j], and [t] = z⊤u =

∑
ℓ zjuℓ , for the re-

duced statement (which V also computes).
If n > 4, engage recursively in the AoK for this statement,
i.e. goto Step 3. If n ≤ 4, engage in (for concreteness) Proto-
col Σstd to prove the statement.

It is easy to check that Protocol B.1 is complete.

Lemma B.2. Protocol LMPAalmSnd has µ-special soundness (with
µ = (m+1, 4, . . . , 4, 2)) for finding a preimage v⃗ ∈ (Fnp)m (uncon-

ditionally) with [A|H (1) | . . . |H (m)]
(
v0
...
vm

)
= [t(0)], or a non-trivial

kernel element of [A|H ′(1) | . . . |H ′(m)]. Here, [H ′(i)] consists only
of the non-zero components of [H (i)]. (It is easy to find non-trivial
kernel elements if [h] has zeroes, so we exclude them) The protocol
inherits short-circuit extraction with µ ′ = (m + 1, 2, . . . , 2, 2).

Note Lemma B.2 does not assert a witness w ∈ Fnp for [A]w =

[t(0)]. That will be assured in follow-up step.

Proof. We only sketch the proof. Let treeµ be a good µ-tree
of transcripts. First of all, we can extract the base subprotocol of
Step 3. Using these witnesses, we can extract the linearly com-
bined argument essentially as in Lemma 3.8.¹³ Now we extract
Step 2. From Step 3, we have m + 1 preimages v⃗i ∈ (Fmp)n with
[A|H (1) | . . . |H (m)]v⃗i = [T]xi where [T] = [t(0), . . . , t(m)]. Ar-
range matrices V = (v⃗0, . . . , v⃗m) and X as usual. (V corresponds
toŴ from Lemma 3.8.)We find [A|H (1) | . . . |H (m)]Vi = [t]X . Mul-
tiplying with X−1, we find preimages for each [t(i)], in particular
a preimage for [t(0)]. □

To prove zero-knowledge of Protocol LMPAalmSnd, we first show
that the prover’s messages [uℓ] in the recursive steps are almost al-
ways uniformly distributed.This yields statistical HVZKvia straight-
forward simulation.

As a preparation, note following (easy) linear algebra facts:

¹³ Indeed, after suitably permuting the columns of [A |H (1) | . . . |H (m)], witness,
and randomness, the exact same reasoning as in Lemma 3.8 works for the recursive
step.

16

Lemma B.3. Consider Protocol B.1 (LMPAalmSnd). Suppose that
(at least) all components of [h] inMn are distributed uniformly ran-
dom (and the rest may be 0). Suppose that for any x ← χm+1 we
have xi , 0 for all i .

Then, in this argument system, with probability aboutO(log2(n)k)/p
the vectorU consisting of messages [uℓ] of all recursive rounds is uni-
formly random. The randomness is over [h], the challenges and the
prover’s randomness.

We give a short proof intuition for the casem = 1. So we have
[A], [H] ∈ G1×n . Intuitively, we need 2 Fp -elements of random-
ness in each round to mask [u±1]. Moreover, these two terms of
randomness must be split so that one is in the first half r1 of r ,
and one in the second half r2, since [uj−i] = [Hi]r j . The mask-
ing sets Mn are built exactly as such, see Fig. 2. Moreover, to al-
low inductive reasoning, the masking sets are built in such a way
that even when “removing” two terms of randomness (say r1,0
and r2,1), the sum r ′1 + r ′2 is distributed according to Mn/2. Evi-
dently, we need xi , 0 to prevent loss of randomness bymultiplica-
tion with 0. More precisely, we want surjectivity of the “transition

map”,
(
x1 idn x2 idn
H2 0
0 H2

) (r1
r2

)
=

(
r̂
u′′−1
u′′1

)
when restricted toM2n ≤ F2np

in each step. See [34] for a full proof.

Lemma B.4. Protocol LMPAZK is ε-statistical zero-knowledge for
ε ∈ O(2 log2(n))/p.

We sketch HVZK simulation: For a recursive step, the HVZK
simulator picks [uℓ] ← Gm for ℓ , 0 and computes the uniquely
defined [u0]which makes the verifier accept that round. For Step 1
note that [t(i)] = [ei t(i)] (i , 0) and hence [t(0)] and [t] (which is
[u0] of the last recursion) uniquely define all [t(i)]. Since the mes-
sages [uℓ] are uniformly distributed in an honest execution with
probability O(2 log2(n)2)/p, our claim follows.

Now, we finish the protocol and ensure that extraction yields
a witness w for [A]w = [t] as we desired. For this, we use a dual
testing distribution to ensurevi

!
= 0 for i ≥ 1 (with notation as in

Lemma B.2).

Protocol B.5 (LMPAZK). The following is a protocol to prove∃w :
[A]w = [t]. We use Protocol B.1 (LMPAalmSnd) as a subprotocol
with the same testing distributions χm+1 resp. χ̃3 (resp. χ (β)). By
χ∨dim(Mn)+1

, we refer to the dual testing distribution of χdim(Mn)+1

as in Definition A.2. In particular, we require that the first compo-
nent x0 of x ← χdim(Mn)+1 is always 1.

Common input is ([A], [t]) ∈ Gm×n×Gn Weassumen = 2ℓ > 4.
The prover’s witness is some w ∈ Fnp (also written r (0)). The CRS
contains randomly (independently) chosen [q]← G1×dim(Mn)+1.
• V → P: (Step 0: Setup of a “new” crs.) V picks and sends
M B Mx ← χ∨dim(Mn)+1

(as described in Definition A.2).

• Both parties compute [h̃] B [q]M ∈ G1×dim(Mn). They de-
fine [h] ∈ Gn so that the componentsMn ⊆ {0, . . . ,n−1} of
[h] correspond to [h̃] (in order). All components of [h] not
in Mn are set to 0. See Fig. 2 for a pictorial description of
(non-)zero components of [h].
• P ↔ V: Engage in Protocol LMPAalmSnd for ∃w : [A]w =
[t] with parameters (in particular [h]) as above.

Lemma B.6. Protocol LMPAZK has µ-special soundness (with µ =
(dim(Mn) + 1,m + 1, 4, . . . , 4, 2)) for finding a witness w ∈ Fnp
with [A]w = [t], or a non-trivial kernel element of [A|e⊤1 q | . . . |e

⊤
mq]

(equivalently [A| diag(q, . . . ,q)]). Moreover, the protocol has short-
circuit extraction with µ ′ = (1,m + 1, 2, . . . , 2, 2).

There are reasons to suspect that LMPAZK may have uncondi-
tional extraction, i.e. it is proof of knowledge. But we could not
(dis)prove it yet. Compare to Question 3.5.

Proof. By extracting LMPAalmSnd i.e. applying Lemma B.2, we
can find preimages u⃗ ∈ (Fnp)

m+1. (Also, we inherit short-circuit
and unconditional extraction.) Let [h] and [H (i)] = ei [h] be as
constructed in the protocols.

For simplicity, we first consider the casem = 1 and remove all 0-
columns of [H]. In otherwords, we consider [A|qM] ∈ G1×n+dim(M).

We know (i.e. extracted) some w ∈ Fnp ,v ∈ F
dim(M)
p such that

[A]w + [H]v = [t]. We have to show that [A]w = [t], or we
find a non-trivial element in the kernel of [A|q]. In the case that
[H]v = 0, w is the witness we want. So suppose that [H]v , 0.
In that case, we guarantee short-circuit extraction. So, suppose we
have dim(M) + 1 transcripts with “independent” challenge matri-
cesMi . (Remember that this means

∩dim(M)
i=0 im(Mi) = {0}, which

is equivalent toxi being linearly independent sinceMi = Mxi .) By
subtracting the 0-th witness from the i-th witness, we find [A](wi−
w0) + [q](Mivi −M0v0). Thus, if Mivi −M0v0 , 0, we obtain a
non-trivial kernel element.The only case where we do not obtain a
non-trivial kernel element of [A|qM] is, if for all i we haveMivi =

M0v0 C u. However, this implies that u ∈ ∩dim(M)
i=0 im(Mi). But,

by assumptionwe have
∩dim(M)
i=0 im(Mi) = {0}.Thus, the bad case

is impossible.
For generalm, we have diag(Q, . . .) and diag(M, . . .) instead of

Q andM .We obtain (wv) from LMPAalmSnd with [A| diag(H , . . .)](wv) =

[t]. Evidently,
∩dim(M)
i=0 im(diag(Mi , . . . ,Mi)) =

∩dim(M)
i=0 im(Mi)

m =
{0}. Thus, our claim follows analogously. □

Corollary B.7. Protocol LMPAZK has ε-statistical HVZK with ε ∈
O(2 log2(n))/p.

Proof. This is immediate from Lemma B.4. □

B.2 LMPAbatch
We directly apply AND-compilation in the protocol. We use gen-
eral testing distributions, but the reader may want to imagine the
familiar setting of polynomial testing with x = (x0, . . . ,xm) first.

Protocol B.8 (Protocol LMPAbatch). The following is a protocol
to prove ∃w : [t] = [A]w . Let χm and χ (β) be testing distributions.
Common input is ([A], [t]) ∈ Gm×n ×Gm . The prover’s witness is
somew ∈ Fnp .
• P → V: pick rw ← Fp , and compute [cw] = [д0]rw +

[д]⊤w = Com(w; rw). Send [cw].
• V→ P: pick x ← χm . Send x .

Let [Â] = x⊤[A] ∈ G1×n and [̂t] = x⊤[t] ∈ G be the batched

statement (for both P and V). Let [B] B
[
д0 д

0 Â

]
and let

17

∃(w, rw) : [B]

(
rw
w

)
=

[
cw
t̂

]
C [u] be the new (AND-type)

statement.
• P↔ V: Engage in ProtocolΣstd for ∃(rww) : [B](rww) = [u].

In words, Protocol LMPAbatch batches [A] to [Â], and carries out
an AND-proof for opening the commitment [cw] and that the con-
tent w of [cw] is preimage of [̂t] under [Â]. This is proven via a
subprotocol call to Protocol Σstd.

Lemma B.9. Protocol Σ1 is a 5-move HVZK-AoK for ∃w : [t] =
[A]w with (m, 2)-special soundness for finding a witness or a non-
trivial kernel element for [д]. It has (1, 2) short-circuit extraction.

Proof. Completeness: It is straightforward to see that com-
pleteness holds.

Zero-knowledge:The simulator picks β,x according to the dis-
tributions. The simulator proceeds in two steps. First, simulate the
Protocol Σstd, i.e. the final three rounds. Since those are now sim-
ulated independently of [cw], we pick [cw] ← G randomly. This
gives a perfect HVZK simulation.

Extraction: Given a good (m, 2)-tree treeµ , we first extract the
second layer (i.e. the subprotocol Σstd). If not all of them yield the
same (rw ,w), we found a non-trivial kernel element for [д] and
are finished. To prove short-circuit extraction, we show that if this
does not happen, w is a valid witness. Now, for all xi , we have
[Bi](

rw
w) =

[cw
t̂i

]
, where the subscript i denotes the matrices of

the i-th round.Then in particular, x⊤i [A]w = [Âi]w = [̂ti] = x⊤i [t].
Arranging them linear equations into a vector, we find with X =
(x1, . . . ,xn),

X⊤[A]w = X⊤[t] and hence [A]w = [t].

Since treeµ is good, X is invertible. Thusw is a valid witness. □

C BATCH PROOFS OF KNOWLEDGE
By applying the “linear combination of protocols” technique, to
multiple “trivial proofs of knowledge” (c.f. Fig. 2) we obtain batch
verification of statements ([A], [ti]), i = 1, . . . ,N , i.e. the setting
of [43], in a straightforward way.

Protocol C.1. The following is a protocol to prove: ∃wi : [A]wi =
[ti] for i = 1, . . . ,N . Let χN+1 be a testing distribution for chal-
lenges, such that x ← χN+1 has xN+1 , 0 always. Common
input is ([A], ([ti])i) ∈ Gm×n ×Gn . The prover’s witness are some
wi ∈ Fnp .
• P→ V: Pick r ← Fnp and let [a] = [A]r . Send [a] ∈ Gm .
• V→ P: Pick x ← χN+1. Send x ∈ Fp .

• P → V: Compute z = x⊤
(w1
...
wN
r

)
=

∑N
i=1 xiwi + xN+1r .

Send z ∈ Fnp .
• V: Check [A]z

?
=

∑N
i=1 xi [ti] + xN+1[a], and accept/reject

if true/false.

Lemma C.2. Protocol C.1 is a HVZK-PoK for ∃w : [t] = [A]w . It is
perfectly complete, has perfect HVZK and is (N + 1)-special sound.

Proof. Completeness is straightforward.Extraction usesN+
1 accepting transcripts ([a],x j ,zj). Let [T] B [t1, . . . , tN ,a] andZ ,

X be appropriate matrices built from the N + 1 transcripts. Since
[A]Z = X , we find (w1, . . . ,wN ,r) B ZX−1 is a valid witness.
For HVZK note that xN+1 , 0. Hence z is uniformly distributed
for any honest execution. Thus, we can pick z ← Fmp and let
[a] B [A]z − [T]x as usual. □

Using vectors of vectors and matrices of matrices, we can write
the above as

x⊤ ⊗ id
[
A
. . .

A

] [w1
...
r

]
= [A]

[w1
...
r

]⊤
x = [A](

N∑
i=1

xiwi + xN+1r)

=
N∑
i=1

xi [ti] + xN+1[a] = x⊤
[t1
...
a

]
=

[t1
...
a

]⊤
x

In a sense, we run LMPAbatch, but exploit the structure (namely
block-diagonality) to “commute” x and diag([A], . . . , [A]). Linear
combination also yields efficient k-out-of-N proofs, by having the
verifier only partially fix the challenge. However, this must be done
carefully or it is unsound, see [33].

D AN EFFICIENT PROOF OF CORRECTNESS
OF A SHUFFLE

A proof of correctness of a shuffle is a proof that two (multi-)sets
of ciphertexts decrypt to the same multi-set of plaintexts. This is
especially interesting in settings with rerandomisable ciphertexts,
because the “shuffling party” does not need to decrypt. For elec-
tronic voting, a shuffle achieves a certain unlinkability between
the originally encrypted votes, and the (in a final step) decrypted
votes, while the proofs of correctness of the shuffle ensure that the
voting result is unaffected.

With our tools, it is possible to prove the correctness of a shuffle
in logarithmic communication for ElGamal ciphertexts in a very
naive manner. Namely, we commit to a permutation matrix (as
part of w) and rerandomisation randomness for the ElGamal ci-
phertexts (also part of w). Then we prove that [A]w = [c⃗], where
[A] is constructed from the old ciphertexts and the ElGamal pub-
lic key, and [c⃗] is the vector of shuffled ciphertexts. We also add a
proof that (the relevant part of)w commits to a permutationmatrix,
as sketched in Section 3.5. This all neatly fits into our framework,
giving a logarithmic size proof overall. However, there is a huge
drawback:The size of the permutationmatrix, hencew , isN 2 forN
ciphertexts. Thus, the computation grows quadratically in N . This
is unacceptable in practice.

D.1 Adapting the shuffle argument of
Bayer–Groth

The shuffle argument of Bayer and Groth [5] is built from two sub-
arguments, a “product argument” and a “multi-exponentiation ar-
gument”. A generic proof of security is given in [5, Theorem 5].
The former argument can be instantiated by QESAZK, or more
precisely, QESACopy. The latter argument can be instantiated by
LMPAZK. Since our arguments have logarithmic communication
and need linearlymany exponentiations, so does the resulting shuf-
fle argument. We give a more detailed instantiation below.

18

• CRS: ck = (ckQ , ckL), where ckQ = ([д′,д′′,Q]) is the
commitment key for QESAZK and ckL = [h] is the commit-
ment key for LMPAZK (or empty if a simple zero-knowledge
LMPA version is used). Here [д′] ∈ Fnp , where n ≥ N + 2

is a (suitably large) power of 2. Note that our commitment
keys consist of random group elements.
• Common input: Old and new ciphertexts [ctoldi], [ctnewi] ∈
G2 for i = {0, . . . ,N −1} and ElGamal public key [pk] ∈ G2.
• Prover’s witness: The random permutation π ∈ {0, . . . ,N −
1}N and rerandomisation randomnesses ρi ∈ Fp such that
[ctnewi] = [ctoldπi] + ρi [pk]. (Note that Enc(0; ρi) = ρi [pk]
for ElGamal.)
• P→ V: Compute and send the commitment [cπ] to π :

[cπ] = ComckQ (π ; 0, rπ)

= [д′1 | д
′
2, . . . ,д

′
N+1 | д

′
N+2, . . . ,д

′
n−2 | д

′
n−1,д

′
n]

©­­­­­«
0

π
0

0
rπ

ª®®®®®¬
(Remember that [д′n−1] and [д′n] are reserved for random-
ness inQESAZK commitments, and [д1] is also reserved (for
the constant 1).)
• V→ P: Send x = (x0, . . . ,xN−1)← χN .
• P→ V: Send [cy] = ComckQ (y; 0, ry), where [y] B π(x) =

(xπi)i = (xπ0 , . . . ,xπN−1).
• V→ P: Send ζ , z ← Fp .
• P↔ V: Prove following statements using (logarithmic com-

munication) sub-protocols QESACopy and LMPAZK:
– [cπ] is a permutation and [cy] is a commitment to
π(x): The prover shows (in zero-knowledge) that

N−1∏
i=0

(ζ πi + yi − z) =
N−1∏
i=0

(ζ i + xi − z).

Note that ζ [cπ] + [cy] is a commitment to ζπ +y, which
can be used for QESAZK, or more precisely, QESACopy.
Also note that the right-hand side is computable from
public information.

– [c⃗tnew] is a rerandomised permutation of [c⃗told]: The
prover shows (in zero-knowledge) that∑

i
[ctoldi]yi + [pk]

∑
i
ρixi =

∑
i
[ctnewi]xi .

This fits into our matrix multiplication proofs (with wit-
ness

(
y

x ⊤ρ

)
∈ FN+1

p). Concretely, the prover commits to
σ B x⊤ρ via [cσ] = ComckQ (

(
0
σ

)
; rσ , 0) = [д′N+2

,д′n−1]
(σ
rσ

)
for rσ ← Fp . He sends cσ to the verifier and engages in
a LMPAZK protocol for

д′2, . . . ,д
′
N+1

д′N+2
д′n−1 д′n

д′2, . . . ,д
′
N+1

0 0 д′n
0 д′N+2

д′n−1 0

ctold0 . . . ct
old
N−1 pk 0 0


©­­­«

y
σ

rσ
ry

ª®®®¬ =


cy + cσ

cy
cσ
u


where [u] B

∑
xi [ctnewi]. The top row is added so one can

run LMPAbatch, reducing to a 2 × n matrix. Since [д′] has
hard kernel relation, so has [A]. (This is a “commitment-
extension”, see Remark 3.4.) Also note that this LMPA

proof ensures the requirements ofQESACopy on the open-
ing of [cy], hence no additional subprotocolS is necessary
in this instance.

Honest verifier zero-knowledge of this protocol follows from
honest verifier zero-knowledge of the subprotocols. Soundness (and
extraction) follows from soundness (and extraction) of the subpro-
tocols. Namely, for fixedπ , randomly chosen x and arbitraryy, the
probability that

∏N−1
i=0 (ζ πi+yi−z) =

∏N−1
i=0 (ζ i+xi−z) holds for

ζ , z ← Fp ifyi , xπ (i) is negligible thanks to the Schwartz–Zippel
lemma.¹⁴

In [5], intuition and a detailed security argument is given. De-
spite our minor modifications, their proof adapts seamlessly to our
setting. The idea of using (permutation invariant sets of) roots of
polynomials to prove that one set of roots is a permutation of an-
other goes back to [41] and was extended to restricted permuta-
tions in [44].

A rough efficiency estimate of our scheme is 30N exponentia-
tions for the prover and 10N exponentiations for the verifier.These
are roughly twice the numbers of [5], when trading interaction
for efficiency. However [5] has O(

√
N) size proofs, while we have

O(log(N)) size proofs.

E OMISSIONS: QESA
E.1 IPAnoZK

Protocol E.1 (IPAnoZK). The following is an argument to prove

∃w ′,w ′′ ∈ Fnp : [c] = [д′]w ′ + [д′′]w ′′ + t [Q] ∧ ⟨w ′,w ′′⟩ = t .

Let χ̃3 (and χ (β,0)) be a testing distribution with the properties
as in Protocol 3.7, i.e. we for z ← χ̃3 (with z indexed from −1
to 1) together with x ,y such that zj−i = xiyj . Common input is
crs = ([д′,д′′,Q])) ∈ G1×n × G1×n × G and the statement ([c], t)
We assume n = 2d . The prover’s witness is (w ′,w ′′).
• V → P: (Step 0: “Fixing” t .) V picks α ← χ (β,0). Send α .

Both sides set [Q] B α−1[Q]. Then they set [c] B ([c] −
αt [Q]) + t [Q].¹⁵
Recursive step. Suppose n = 2d > 1.
• P → V: Compute [u ′−1] = [д′1]w

′
2, [u

′
1] = [д′2]w

′
1, where

[д′j] and [w
′
j] are as usual (i.e. split [д

′], [w ′] into 2 equal-size
pieces). Compute the respective [u ′′

ℓ
]. Let v−1 B ⟨w ′1,w

′′
2 ⟩,

v1 B ⟨w ′2,w
′′
1 ⟩. Let [uℓ] B [u ′

ℓ
]+ [u ′′−ℓ]+v−ℓ [Q]. Send [uℓ]

for ℓ = ±1.¹⁶
• V→ P: pickz ← χ̃3 with correspondingx ,y. Send (x ,y,z).
• Both parties compute [д̂′] =

∑2
i=1 xi [д

′
i] ∈ G

1×n/2 and
[д̂′′] =

∑
yi [д′′i] ∈ G

1×n/2. and [̂c] =
∑1

ℓ=−1 zℓ [uℓ] ∈
G as new batched statement. Moreover, P computes ŵ ′ =∑
i yiw⃗

′ and ŵ ′′ =
∑
i xiw⃗

′′, and t̂ =
∑

ℓ zℓvℓ .

¹⁴ In more detail: The degree of the (difference) polynomial in z is at most N . The two
polynomials are equal if and only if they have the same roots (withmultiplicity). So the
sets {ζ πi+yi }i and {ζ i+xi }i must be equal.The probability that ζ i+y = ζ j+x
if i , j is negligible (for any fixed choice of x, y). Hence if the sets are equal, with
overwhelming probability we find that the sets {(πi , yi)}i and {(j, x j)}i are equal.
In other words, π is a permutation of the roots. With probability 1−δsnd(χN) all x j
are distinct, see Remark G.6. Hence π is a permutation of {0, . . . , N − 1}.
¹⁵ This changes the committed value s in [c] to α (s − t) + t under the new [Q].
¹⁶ Note that [u0] is implicitly known to V.

19

Skipping Step 0, (recursively) continue with n ← n/2,w ′ ←
ŵ ′,w ′′ ← ŵ ′′, [c]← [̂c], [д′]← [д̂′], [д′′]← [д̂′′].
Base case. Suppose n = 1.
• P→ V: Sendw ′,w ′′, t .
• V: Test if [c] ?

= [д′]w ′ + [д′′]w ′′ + t [Q] and ⟨w ′,w ′′⟩ ?
= t .

See Appendix I for a sketch of this protocol.The above argument
is correct by inspection. Due to space constraints, we do not con-
sider Step 0 a transformation on its own, compare [15, Protocol 1].

Lemma E.2. Protocol IPAnoZK is µ-special sound (with µ = (2, 4,
. . . , 4)) for finding a witness or a non-trivial element in the kernel of
[д′,д′′,Q]. It has short-circuit extraction with µ ′ = (1, 2, . . . , 2).

The proof is essentially as in [12, 15]. See [34] for details.

E.2 Details on QESACopy
Protocol E.3 (QESACopy). Let n ≥ 8, Γi , crs = [д′,д′′,Q], χ̃3 be

as in Protocol QESAZK. Let χM+1 be a testing distribution where
the first component is always 1, i.e. α ← χM+1 has α0 = 1.¹⁷
Let c̃k(i) =̂ Ii be commitment keys for commitments (for i =

1, . . . ,M), as described above. Let [̃c(i)] be commitments to values
v(i). We identifyv(i) with a vector in Fnp when necessary (satisfy-
ing Eq. (4.2)). Letw ∈ Fn−2p be a solution, i.e.w⊤Γiw = 0 for all i .
We assume that the first componentw1 ofw is 1 and

∀i ∈ Ii ∩ {1, . . . ,n − 2} : wi = 0.

For simplicity, assume that the last component of v(i) is used for
commitment randomness and c̃k(i)

M(i) = [д′n], hence message size
is M(i) − 1. We assume there is an injective map τ with

τ (i, _) : {1, . . . ,M(i)−1} → {1, . . . ,n−2}\I such that wτ (i, j) = v
(i)
j ,

which tells us componentsv(i)
j of the committedmessage are copied

to. This excludes the commitment randomnessv(i)
M(i) , which by as-

sumption corresponds to component n and maps to component
n.¹⁸ In other words, the mapping τ tells us where copied compo-
nentsv(i)

j are stored inw . (We ignore commitment randomness at
indices n − 1,n, as this is of no interest,¹⁹ and part of the extended
witness w ′ =

(w
r ′

)
∈ Fnp .) Let S be a protocol proving knowledge

¹⁷ The restriction α0 = 1 is just for convenience.
¹⁸ This can trivially be relaxed to allowing randomness in components n−1 and n. By
construction, the commitment randomness is not copied and cannot be reconstructed
or used in the statements. If different components than n − 1, n are used as commit-
ment randomness, they are treated like a committed message, and (may be) copied as
well.
¹⁹ If commitment randomness is used in other indices, we treat it like the committed
message, and do copy it.

ofv(i) for all i .²⁰ Then the following is a protocol for proving

∃w ∈ Fn−2p ,v(i) ∈FM(i)

p ≤ Fnp such that
∀j : w⊤Γjw = 0

and ∀i ∀j ∈ I ∩ {1, . . . ,n − 2} : wτ (i, j) = v
(i)
j

and ∀i : [̃c(i)] = c̃k(i)v(i) =̂ [д′]v(i).

The prover’s witness consists ofw andv(i). The statement consists
of {Γj }j and [̃c(i)].
• P→ V: (Step −1: Prove well-formedness of [̃c(i)])

Engage in S to prove that ∃v(i) : [д]v(i) = [̃c(i)] and v(i)

satisfies Eq. (4.2). (This may be run in parallel.)
• P → V: (Step 0: Commit to w .) Send [c ′w] B [д′]w ′ with
w ′ =

(w
r ′

)
, wherew is as outlined above and r ′ ← F2p .

• V → P: (Step 1: Batch verification and statement adaption
forQESAZK) Pick and sendα ← χM+1, where (α0, . . . ,αM) =

α ∈ FM+1
p and where α0 = 1 always (by assumption).

Both sides set [c ′w] B α0[c
′
w] +

∑
i αi [̃c

(i)]. The prover sets
w ′ B α0w ′ +

∑
i αiv

(i) ∈ Fnp . The set of equations is aug-
mented by additional equations, given by “copy-matrices”
Γ
(k)
copy for each k ∈ I ∩ {1, . . . ,n − 2} as follows:

w⊤Γ(k)
copyw = 0 =̂

∑
τ (i, k) = j if k ∈ Ii

αiwτ (i,k) −wk = 0.

These equations merely formalise that computing the (ran-
dom) linear combination of the (purported) copies ofv(i) (as
part ofw ′) yield the same value as the (random) linear com-
bination of the commitments, c.f. Figs. 3 and 4. (Note the
linearity of the commitments).
With these additional equations and the adapted witness,
continue as in QESAZK (Step 1) without further changes.

See Appendix I for a sketch of this protocol.
It not hard to see thatQESACopy is correct. For zero-knowledge,

we merely note that QESAZK is statistical HVZK, and by a com-
pletely analogous proof, QESACopy is statistical HVZK as well.

LemmaE.4. SupposeS isν -special sound.Then ProtocolQESACopy
is (ν , µ)-special sound for extraction of a witness or a non-trivial ker-
nel element of [д′,д′′,Q], with µ = (M+1,N ′,n+1, 2, 2, 4, . . . , 4),
where N ′ is the number of equations plus the number of copy equa-
tions.The µ-part is short-circuit extractable with µ ′ = (1, 1, 1, 2, 2, 2,
. . . , 2).

Proof sketch. The proof is straightforward, but the indexing
is tedious. We only sketch it.

First of all, note that just like with QESAZK, we can for each
run with randomness α extract a witness wα satisfying all Γi ,
including the additional copy-equations. We only need to prove
that (all)wα have correctly copied the valuesv(i) of commitments

²⁰ It suffices to prove that Eq. (4.2) holds for all i . If allI are equal, dual testing distribu-
tions can be used instead, to freshly generate all components дi for i < I. Remember
that dual testing (Definition A.2) ensures that previous commitments must be zero for
all components i < I (or cannot be opened without breaking the hard kernel assump-
tion). If not all I are equal, treating them as equal, i.e. “extending” the commitment
keys c̃k(i) and proving that the copied values are zero outside Ii , still allows to resort
to dual testing.

20

[̃c(i)]. Since we assumed special soundness of the subprotocol S,
we could use it for extraction. However, we refrain from doing
so, to sketch how the lemma and proof generalise to the setting,
where S only ensures that any opening v(i) satisfies Eq. (4.2). So,
by soundness of S, we can assume that for all components not in
I, we know thatwα does not depend onα , i.e. is fixed. (Remember
that α0 = 1, and [cw] is the only commitment which is possibly
non-zero in components outside I.) In particular, the copies ofv(i)

inwα are always identical, and do not depend on α . Otherwise we
find a non-trivial kernel element. We show this in the following.

First, we note that fromM + 1 linearly independent challenges
α , we obtain (since [̃c(i)] and [c ′w] are fixed) openings to each com-
mitment in the usual way. A priori, the openings w and v(i) are
only openings w.r.t. [д′], and need not respect Eq. (4.2). However,
due to subprotocol S, we see that Eq. (4.2) holds for each i , or the
soundness of S is broken.

Now, we reinterpret the setting to avoid carrying around too
many indices. The “copy proofs” essentially state the following:
There is a subvector (a,b1, . . . ,bM) in w such that bi consists of
the copied values of all v(i), and a should be zero. In wα , we get
aα = a +

∑M
i=1 αiv

(i). (Note that a should be zero, but we need
to prove this.) By the “copy equations” from Step 1, we also have²¹

M∑
i=1

αibi = aα = α0a +
M∑
i=1

αiv
(i).

Given M + 1 linearly independent α , we find that a = 0. Thus,
we find that the v(i) which satisfy these equations are openings
of [̃c(i)]. If any of this fails, we find non-trivial kernel relations. A
priori, the opening v(i) only respects I, not Ii , in the sense of
Eq. (4.2). But another invocation of the soundness of S shows that
they do respect Ii . Thus, they are openings w.r.t. c̃k(i). (Actually,
to get openings we need to look at the randomness too, i.e. include
components n − 1,n. It is not hard to do this.)

Now, we have openings for the commitments, we know that w
actually contains copies of these commitments, we know that w
has zeroed all wi with i ∈ I, and w satisfies the all equations Γi .
This is what we wanted to show. □

Remark E.5. One can “optimise away” unnecessary copies. For
example, if the value of a copy can be computed from other val-
ues by some quadratic function, then one can use this instead of
making an explicit copy. This is the case for range proofs, where
v =

∑
i 2

ibi is is copied. The bit-decomposition of v is enough
to recover it, so no extra copy of v is necessary. Evidently, the
“copy-equations” must be adapted accordingly.

There is one futher optimisation: In the case of range proofs,
one does not need b0 if one proves instead that v − ∑

i≥1 2
ibi is

a bit (which is a quadratic, even R1CS, equation). A priori, this is
not possible with the copy approach. However, close inspection
shows that when copying a single commitment, one can, instead
of copying it, adapt all Γi of the statement by multiplying all rows
and columns in I by α−11 (except randomness indicices, which are
not even part of the equations).

In the “copy-based” case, we can combine both optimisations:
Given (implicit) copies of v(2), …, v(M), one can compute v(1)

²¹ If we don’t have this, QESAZK extraction would short-circuit.

from these and the sum
∑M
i=1 αiv

(i). By adapting all Γi with α−11
as before, we can make use ofv(1) implicitly, as α−11

∑M
i=2 αiv

(i)
copy.

Thus, we need at most M − 1 copies.
These optimisations are especially useful if a lot of components

need to be copied, i.e. if #I is large w.r.t. to the rest of the witness.

Example E.6. Consider the situation of (aggregate) range proofs
in [15], that is, we have a commitment key c̃k B [д′2,д

′
n] and want

to prove that commitments [ci], for i = 1, . . . ,M , all under this
key, contain values within a some ℓ-bit range. We would instanti-
ate QESACopy as follows: As the subprotocol S, use a batch proof
of knowledge of openings of [ci] (Appendix C). This requires trans-
mitting 1 group element and 2 scalars (and 1 challenge). Thus, the
corresponding (almost) naiveQESACopy requires ℓM+1 variables,
and hence n = ℓM + 4.²²

In total, the prover transmits 2⌈log(ℓM+4)⌉+5 group elements
and 4 scalars.This is almost identical to [15], where 2⌈log(ℓM)⌉+4
group elements and 5 scalars are transmitted. However, our ap-
proach is generic and not tailored to range proofs. Thus, the per-
formance seems adequate.²³

F WITNESS-EXTENDED EMULATION AND
TreeFind

F.1 Witness-extended emulation
We define (black-box) witness-extended emulation following [12,
30]. But we separate extraction and emulation, And we allow the
emulator to fail with probability depending on the extraction error.

Definition F.1 (Witness-extended emulation). Let (P,V) by an in-
teractive argument system for R. We say that (P,V) is an argu-
ment of knowledgewithwitness-extended emulation and ex-
traction errorδext if there exists a (universal) expected polynomial-
time emulator Emu. The emulator takes as input the CRS, a state-
ment st and a rewindable deterministic²⁴ proof-oracle P∗(state),
written Emu(crs, st,P∗(state)). (As usual, we suppress crs in the
following.) It outputs a pair (tr,w) of emulated transcript and pur-
ported witness. We require following properties. For every adver-
sary given by a pair of efficient algorithms (A,P∗) we have:
• (Computational) Emulation:

P

(
crs← GenCRS(1κ); (st, state)←A(crs);
tr← ⟨P∗(state),V(st)⟩ : A(state) ?

= 1

)
c≈ P

(
crs← GenCRS(1κ); (st, state)←A(crs);
(tr,w)← Emu(st,P∗(state)) : A(state) ?

= 1

)
• Extraction: For all (st, state) ← A(crs) and all crs ←
GenCRS(1κ)) we have

P (Emu(state,P∗(state)) fails | ⟨P∗(state),V(st)⟩ = 1) ≤ δext.

²² We either eliminate bit b0 or instead of copying we use the “implicit” copy
∑

2ibi .
Otherwise, we would need (ℓ + 1)M + 1 variables. With all optimisations of Re-
mark E.5, we could get down to ℓM variables, hence n = ℓM + 3.
²³ [15] instantiates arithmetic circuit proofs differently. While [15] can deal with com-
mitments, these are only single-valued Pedersen commitments. It should be possible,
but it is not obvious how hard it is to extend [15] to our more general setting.
²⁴ We refer to [7] for a comparison of deterministic and probabilistic proof-oracles.

21

I1 = {2, 3, n }: m(1)
2 m(1)

3 r (1)

I2 = {2, 4, n }: m(2)
2 m(2)

4 r (2)

w ′ =
(
w
r ′

)
: 1 0 0 0 m(1)

2 m(1)
3 m(2)

2 m(2)
4

r1 r2

w ′new : 1 ⋆ ⋆ ⋆ m(1)
2 m(1)

3 m(2)
2 m(2)

4
r1 ⋆

α1

α2

α0

= 1

Figure 4: This is a more complex example of the copying technique. Colour-coding is as before. Note that I1 , I2. Again, all
orange values m(i) =̂ v(i), are copied and appear as green values in w . Note that we can go much further than this: Green
values could be implicitly given by quadratic equations, as noted in Remark E.5. The copy for a one commitment, e.g. [̃c(1)]
could be elided, c.f. Remark E.5.

By “Emu fails”, we mean that the extracted witness w does
not satisfy (st,w) ∈ R. An equivalent formulation of the
inquality is

P (Emu(st,P∗(state)) fails) ≤ δext
P(⟨P∗(state),V(st)⟩ = 1︸ ︷︷ ︸

P∗ succeeds

)

(For simplicity, we assume that the P∗(state) oracle is determinis-
tic. This is not necessary.)

Note that if δext is negligible, then by repeatedly running the
emulator/extractor if the first transcript was accepting (and abort-
ing after too many, say 2κ , repetitions) we obtain an emulator with
overwhelming probability for extraction. The expected runtime is
still polynomial. However, in our setting where challenges are cho-
sen according to testing distributions, and witness-extended em-
ulator are constructed from µ-special soundness extractors and
TreeFind algorithms, a “one-shot” extractor with extraction error
δext is more natural.

Indeed, we have following question/conjecture which we leave
for future work:

Question F.2. Consider µ-special soundnesswith µ = (µ1, . . . , µℓ).
Suppose the respective testing distributions have soundness errors
δi = δsnd(χ

(i)). Hence, we have overall soundness error δsnd =∑
i δ

(i)
snd. Does there exist an efficient TreeFind algorithm such that

• TreeFind has runtime roughly Õ(n/ε)wheren =
∏

i µi and
ε is the probability for the verifier to accept. (By Õ(f), we
denote asymptotic behaviour up to logarithmic factors.)
• TreeFind returns a good tree with probability at least 1 −
δsnd/ε .

If the above is not satisfiable, how close can we get?

The algorithms from [12, 46] do not achieve this.The TreeFinder
in [12] has weak soundness guarantees, but satisfies the runtime
of first point. The one in [46] achieves the second point arbitrarily
close by sacrificing runtime. Moreover, we note that [46] gener-
alises testing distributions by working with matroids.

Relating knowledge errors. Our definition of soundness error is
“per extractor”, not per protocol (see [46] for a similar definition).
Moreover, we chose a definition of extraction error which implies
soundness, unlike Bellare and Goldreich [6], where soundness and

extraction is explicitly separated. We ignore these differences here.
For fixedP∗(state), the extractor runs in expected time²⁵ poly(κ)/ε ,
where ε is the probability forP∗ to succeed in convincing a verifier.
However, we only guarantee a success chance of 1− δext

ε = ε−δext
ε .

Thus, we have to repeat ε
ε−δext often to achieve a constant success

probability (assuming ε > δext), and a superconstant multiple for
overwhelming success. This yields a runtime of poly(κ)

ε−δext , just as in
[6]. Note that the (overall) runtime of such an emulator is not ex-
pected polynomial anymore. To retain expected polynomial time,
we must bound ε away from δext, e.g. choose some α > 1 and only
allow ε > δ ′ext B αδext.

The alternative definition of knowledge error [6, Section 6] also
fits nicely into our setting. Indeed, from P(Ext succeeds) ≥ 1 −
δext
ε we see that by first generating a (random) transcript, and only

invoking Ext if P∗ was successful, we get an extractor Ext′ with
P(Ext′ succeeds) ≥ ε − δext but expected polynomial runtime. (In
general, our witness-extended emulator works like this.)

F.1.1 Lower bounds for emulators. Wepose following natural ques-
tion.

Question F.3. Let R be a witness relation and ΠArg be an ar-
gument system for R. Suppose R has “short” witnesses of size n.
In particular, R defines a hard language. Suppose a transcript of
ΠArg has size sP+sV . Does an emulator need n/sP transcripts for
extraction?

If above assumption is true, it gives a lower-bound on the num-
ber of necessary rewinds of any efficient emulator. Indeed, it guar-
antees that small communication implies large black-box extrac-
tion overhead.

F.2 Modular extraction.
Witness-extended emulation for µ-special sound protocols can be
constructed work in two stages: First, run the protocol and keep
the transcript (for emulation). If it is a successful transcript, find
a good µ-tree. Second, apply the extractor from Definition 2.14 to
obtain a witness. To find a good transcript with acceptable runtime,
the straightforward “follow your nose” approach actually works,
c.f. the general forking lemma in [12]. An alternative with better
guarantees but worse runtime estimates is given in [46].

²⁵ This holds because the “full” emulator runs in expected polynomial time.
22

Given such TreeFind, we get the following:

Lemma F.4. Let ΠArg = (GenCRS,P,V) be a public coin inter-
active argument system with µ-special soundness and extractor Ext.
Let µ = (µ1, . . . , µℓ) and δi = δsnd(χ

(i)) the soundness error of
the i-th testing distribution. Suppose TreeFind is a tree-finding algo-
rithmwith expected runtimeO(poly(κ))/ε , where ε is the probability
the oracle P∗(st) convinces the verifier. Let η ≤ д(µ, (δi))i) be the
probability to that TreeFind outputs a bad µ-tree. Then ΠArg has a
witness-extended emulator Emu (as described above) with runtime
O(poly(κ))/ε +O(tExt) and extraction error η.

(For more precise runtime estimates, TreeFind should be mod-
elled as a transcript oracle for Ext. Otherwise, short-circuit extrac-
tion is not useful. We chose to simplify here.)

The TreeFind algorithm of [12] outputs the first µ-tree it finds,
if it is good. It generates trees recursively, always branching paths
with successful transcript, and aborts if it rewinds more than 1/α
times (for negligibleα). By a union bound, the probability that such
a tree is bad is at most η =

∑n
i=1

δi
α

∏i−1
j=1 kj . Here δi = δsnd(χ

(i))

Unfortunately, negligible α enforces negligible soundness errors
for all i . Thus one cannot fix the soundness level of the testing
distributions to some level, say 2−100.

The algorithm in [46] can be configured to do better, e.g. to attain
η =

∑n
i=1 δiν

i for any choice of ν > 1. The choice ν = 2 is quite
natural, but yields large bounds on runtime.

G TESTING DISTRIBUTIONS
In this section, we state some simple but helpful insights on testing
distributions. We note that linear independence can be generalised
and used instead. For example, [46] uses a generalised setting.

G.1 Conjectures and computational soundness
errors

We first conjecturally characterise the soundness error by a differ-
ent measure, namely we define

σ∞(χm) B max
H ≤Fnp

P(x ← χm : x ∈ H)

where H ranges over all (n − 1)-dimensional subspaces. We have
following lemma.

Conjecture G.1. Let χ be a testing distribution on Fmp . Then

δsnd(χm) = σ∞(χm).

Partial proof. The subdistribution ψH over the maximising
H always yields n linearly dependent vectors (i.e. determinant 0),
Moreover, ψH has weight ε = χm(H) = σ(χm). By definition of
δsnd, we find 1 ≤ 1

ε δsnd(χm). Therefore δsnd(χm) ≤ σ∞(χm).
To prove the claim, we need to show that σ∞(χm) is admissible

as a soundness error, i.e.

P(xi ← ψ : det(x1, . . . ,xm) = 0) ≤ 1

ε
σ∞(χm)

for all subdistributionsψ (with weight ε).
Note that the lefthand side is P(X ← ψm : X ∈ T) where T B

{X ∈ Fm×mp | det(X) = 0}. Equivalently T = ∪HHm where H

ranges over all hyperplanes. For convenience, we write ψ (M) B
P(M ∈ ψ). Thus, we find
P(X ← ψm : X ∈ T) = ψm(∪HHm)

=
∑
H1

ψm(Hm
1) − 1

2!

∑
H1,H2

ψm(Hm
1 ∩ H

m
2) + . . .

=
∑
H1

ψ (H1)
m − 1

2!

∑
H1,H2

ψ (H1 ∩ H2)
m + . . .

by application of the inclusion-exclusion principle, probabilistic in-
dependence (forψm(Hm) = ψ (H)m) and subspace properties (i.e.
Hm
1 ∩H

m
2 = (H1 ∩H2)

m). Here all Hi range over all hyperplanes.
Heuristically, the higher order term should only decrease the

sum. Moreover, a sum
∑
xmi under constraints

∑
xi = 1, xi ∈

[0,σ∞(χ)] is maximised by maximising all xi (i.e. to σ∞(χ), or
whatever is “left” for the last one). Thus, heuristically, we have an
upper bound Nσ∞(χ) where N = 1

ε (the “number” of xi ’s). This
is exactly our claim.

However, the heuristic oversimplifies possible interdependen-
cies of higher order terms (i.e. hyperplanes sharing lower-dimen-
sional subspaces). As is, this is not a proof. ⊏

The above conjectured characterisation of the soundness error
allows to prove and argue much easier. Most of the following re-
sults are stated w.r.t. to σ∞(χ).

The impact of the (or a) “favoured hyperplane”, that is a hyper-
plane H with P(H ∈ χ) = σ∞(χ), is evident in following example.

Example G.2. Fix some hyperplaneH ≤ Fmp . Consider the distri-
bution χ over Fmp induced by following algorithm: Pick x0 ← Fmp
and x1 ← H uniformly at random. Pick b ← {0, 1} uniformly at
random. Output xb .

This has following characteristics:With probability atmost 2−m+
3mp−1 a sample of m elements is linearly dependent.²⁶ But the
soundness error, or rather σ∞, is (slightly greater than) 1

2 . Because
the subdensityψ , which is χ conditioned onH , has weight (slightly
greater than) 1

2 andm samples are always linearly dependent.

Remark G.3. If the halfplane H in Example G.2 is chosen uni-
formly at random and secret, and m grows in κ fast enough, then
it is probably a hard problem to differentiate the distribution from
a uniformly random one. Note that for constantm, one can give a
(very inefficient) algorithm which finds H given enough (e.g. 2m)
samples. Namely, try every subset ofm−1 indices, compute a can-
didate H ′, and check if aboutm samples xi lie in H . This recovers
H with high probability, thus distinguishing the distribution from
random. (The effort to try all subsets is exponential im m, which
by assumption is constant. Thus the overall algorithm is still poly-
nomial in κ.)

The definition of soundness error δsnd(χ) of χ is a “perfect un-
conditional” notion. It assigns to the distribution in Example G.2 a
soundness error which is greater than 1

2 , even whenm = poly(κ)

²⁶ Split P(x1, . . . , xm lin. dep.) depending on the number k of picks withb = 1. For
fixed k and (x1, . . . , xm)← Hk × (Fmp)m−k (which is enough due to symmetry),
we find P(x1, . . . , xm lin. dep.) ≤ P({x1, . . . , xk ∈ H } ∪ {xk+1, . . . , xm ∈
Fmp }∪ {xk+1, . . . , xm ∈ H })which is easily bounded above by 3m/p for k < m.
For k =m, linear dependence is guaranteed, but this only happens with probability
2−m . Thus, 2−m +

∑m−1
k=0

(m
k
)
2−m3m/p ≤ 2−m + 3m/p is the desired bound.

23

grows with with the security parameter κ, and the distribution is
assumed to be pseudorandom.

This motivates a relaxation of the soundness error.There are dif-
ferent ways to define a(n admissible) computational soundness.²⁷
The cleanest one is by comparison to a (unconditionally) secure dis-
tribution, similar to computational entropy. Namely, we sayδ comp

snd (χ)

is a(n admissible) computational soundness error if there exists a
distribution χ ′ such that χ c≈ χ ′ and δsnd(χ ′) = δ

comp
snd . (Recall

that whenever we say “distribution” we actually mean probability
ensemble or family of distributions (paramterised over κ).)

While this definition is elegant and resembles pseudoentropy, it
has limited use: We would like to replace uniformly random sam-
ples by a PRG and give away the seed. Replacing uniform random-
ness with a PRG works nicely and yields a computational sound-
ness error which is identical to the statistical one, according to
the previous definition. However, giving away the seed makes no
sense in that model. There is no indistinguishability involved.

Reminder. Thesoundness error is a combinatorial property.There
is no need for pseudorandomness, as testing with powers of x
shows. However, since we do not know a simple example of a dis-
tribution with (small) exponents xi ∈ S for general S ⊆ Fp , it
is natural to turn to PRG’s. It is also a plausible assumption, that
non-pathological PRG’s have a (statistical) soundness error close
to the uniform choice. Otherwise, assuming Conjecture G.1, the
PRG would have to have hidden favoured hyperplanes.

To define computational soundness which can encompass the
setting where a PRG seed is sent (as a compressed challenge), we
need a few definitions. Since this is not the focus of the paper, we
will only sketch a possible choice. For this, we have to make en-
coding and decoding of a testing distributions test vector explicit.

A testing distribution χ over Fmp with decoding decode is a dis-
tribution χenc over some set of encodings, such that χ B decode(χenc).
The (encoded) challenge is s ← χenc, which the actual (decoded)
challenge vector is decode(s) ∈ Fmp . Note that encoding the chal-
lenge (i.e. recovering s) need not be efficient,²⁸ e.g. if decode =
PRG and χenc draws uniformly from {0, 1}κ .

A subdistributionψ of a testing distribution χ over Fmp (with de-
coding) is called efficiently samplable if there is an algorithm Rej,
the rejection sampler, such that decode(Rej(χenc)) has the distri-
bution of ψ , conditioned on Rej(χenc) , ⊥ (i.e. Rej not rejecting).
Note that Rej is given the encoding, e.g. the seed of the PRG chal-
lenge.

By taking a brief look at the previous definition of computa-
tional soundness error, and noting that the weights of efficiently
samplable subdistributions of a computationally indistinguishable
distributions must be close (up to negligible error), one sees the
following: To relax the notion of computational soundness, one

²⁷ We speak of admissible, because there may be different computational soundness
errors which are satisfied, depending on the choice of negligible functions. We do
not know whether there is a (uniquely) well-defined minimal one. (Unlike statisti-
cal soundness, where a unique (minimal) error is given essentially by definition, and
where Conjecture G.1 would imply very simple characterisation of it.)
²⁸ This is irrelevant for the stronger “perfect” notion of soundness error. Any “encod-
ing” is equivalent in that setting.

can allow a computational soundness error of δ comp
snd if for all ef-

ficiently samplable subdisitributions ψ there exist negligible func-
tions negl1, negl2 such that P(xi ← ψ : det(x1, . . . ,xm) = 0) ≤
(ε(ψ) + negl1(κ))δ

comp
snd + negl2(κ) where ε(ψ) is the weight ofψ .

This definition is somewhat unwieldy. But, to the best of our
knowledge, it is appropriate and we have no simpler notion.

Example G.4. Let PRG by a non-uniformly secure PRG. Suppose
Conjecture G.1 holds. Then PRG has statistical soundness error
negligibly close toδsnd(χuniform). Otherwise, due to ConjectureG.1,
there must be a favoured hyperplane H (with σ∞(PRG) non-negli-
gibly greater than σ∞(χuniform)). Encoding this hyperplane as the
non-uniform advice zκ , we can constructed a distinguisher with
non-negligible advantage. (If x ∈ H , say PRG. Else, return a ran-
dom guess.)

Remark G.5. It is not immediately clear how to generalise Exam-
ple G.4 to other settings, such as families of PRG’s or uniform se-
curity assumptions. Hence, it is rather a testament to the strength
of non-uniform security assumptions. However, by using compu-
tational soundness, the idea may be salvageable.

However, any successful “adversary” Rej induces some ψ with
non-negligible weight and non-negligible deviation from (ε(ψ) +

negl1(κ))δ
comp
snd +negl2(κ), wherewe setδ comp

snd (PRG) = δsnd(χuniform).
Thus, using Conjecture G.1 in a computational setting, the non-
negligibly more likely linear dependency ofψ may allow to sample
a favoured hyperplaneH ′ viaψ , as a preprocessing step.Then, one
can use using this H ′, as the advice above to break the PRG. If this
works, then the technique should also apply to families of PRG’s
(e.g. based on RSA). (This is only an unfinished sketch and not a
proof.)

G.2 Properties of testing distributions
Remark G.6. Let χm be a testing distribution. Then the proba-

bility that xi = x j for x ← χm is smaller than δsnd(χm). This is
due to following observation: Let B be the set of all vectors with
xi = x j and let ε be the probability of B under χm , that is, ε is the
weight of the subdistribution ψB belonging to B. Note that B con-
tains no basis of Fmp . Thus, the soundness error of χm is bounded
below by ε . In other words, ε ≤ δsnd(χm).

Remark G.6 above is another example demonstrating that the
soundness error can be very far from probability that aX ← χmm is
not invertible. For random binary n×n matrices over the reals, the
conjecture is that only a (1 + o(1))n22−n fraction is singular. But
the probability that xi = x j is 1

4 in this case. In our case, the ma-
trices are not over the reals, but modulo p. This makes a difference,
e.g. for p = 2, the fraction of singular matrices is roughly 1

2 . But it
is natural to assume that for large p ≫ n (e.g. an exponential gap
as in our case), asymptotics which could “justify” random binary
vectors modulo p as testing distributions do hold. Thus, there may
be distributions, where xi = x j with high probability, but where
any n random vectors are independent with very high probabity.
Again, this shows the importance of considering subdistributions
for δsnd.

Remark G.7. The above argument in Remark G.6 generalises
to other relations/properties of vectors which affect invertibility.

24

Thus, a testing distribution must be “well-spread” over a vector
space to achieve high (computational) soundness. We note that re-
lations which are computationally hard may affect the soundness
heavily, while leaving computational soundness “unaffected” (up
to a negligible loss).

G.3 Constructions of testing distributions
We consider the tensor product of testing distributions. In a sense,
this construction is the unrolling of the recursive steps in our proof
systems. The tensor product distribution χ = χ1 ⊗ . . . ⊗ χℓ is de-
fined by sampling z ← χ via z = z1 ⊗ . . . ⊗ zℓ for zi ← χi . Note
that z is therefore always an elementary tensor.

Lemma G.8. Let χ = χ1 ⊗ . . . ⊗ χℓ be the tensor product of ℓ
testing distributions χi on F

ki
p with σ∞(χi). Then χ has σ∞(χ) ≤∑ℓ

i=1 σ∞(χi). If Conjecture G.1 holds, this translates to δsnd(χ) ≤∑ℓ
i=1 δsnd(χi).

Proof. By induction, it suffices to consider ℓ = 2. Let δi B
σ∞(χi). Suppose V = ker(ϕ) is some hyperplane with σ∞(χ) =

Pz←χ (z ∈ V), where ϕ : Fk1p ⊗ F
k2
p → Fp is a linear map. Recall

that any element z in supp(χ) is an elementary tensor x ⊗y by
definition of χ = χ1 ⊗ χ2.

Since ϕ(_ ⊗y) induces a linear map Hom(Fk1p ,Fp) � F
k1
p , we

find that
Px←χ1(ϕ(x ⊗y) = 0) ≤ δ1

for any choice ofy, except ifϕ(_ ⊗y) = 0 as amap. Butϕ(_ ⊗y) =
0 implies that y ∈ K , where K B {b | ϕ(_ ⊗b) = 0} ≤ Fk2p .
which is at most a subspace of dimension (k2 − 1), (else ϕ = 0, a
contradiction).²⁹ Thus, we get

Py←χ2(ϕ(_ ⊗y) = 0) = Py←χ2(y ∈ K) ≤ δ2.

Then we find, by inclusion-exclusion, and z = x ⊗y that

P(z ∈ V) = P(ϕ(x ⊗y) = 0) ≤ δ1 + δ2 − δ1δ2 ≤ δ1 + δ2.

Consequently, σ∞(χ) ≤ σ∞(χ1) + σ∞(χ2). □

Our recursive arguments actually have a tensor structure, namely
they reduce Fnp = (Fkp)

ℓ to (Fkp)ℓ−1 in one step, i.e. they apply a lin-
ear map to one of the factors of the tensor product. It is not hard to
see that in Section 3.5, Protocol 3.7, one applies x1 ⊗ . . . ⊗ xℓ to [A]
and y1 ⊗ . . . ⊗yℓ to w when all batching steps are taken together.
It follows easily, that assuming quick-extraction in Lemma 3.8, this
means that we can extract a witness by obtaining n = kℓ sep-
arate transcripts with challenges y1 ⊗ . . . ⊗yℓ ← χ1 ⊗ . . . ⊗ χk ,
one can invert the respective matrix Y ∈ Fn×np to recover the wit-
ness. This way of extraction only needs a TreeFind algorithm of
depth 1. Therefore, simply rewinding until n transcripts are found
is sufficient, giving us a runtime of poly(κ)/ε (where ε is the proba-
bility of convincing the verifier). Furthermore, since the adversary
induces a subdistribution on the challenges, we obtain a knowl-
edge error of ℓδsnd(χk), which is almost optimal. Indeed, the emu-
lator has rewinding-tightness of O(n), which is almost best possi-
ble assuming the bound of O(n/ log(n)) from Question F.3 holds.

²⁹ K is a subspace because ϕ(x ⊗(b + γ c)) = ϕ(x ⊗ b) + γϕ(x ⊗ c).

Even though the above is a very special situation, we take this
as a hint that Question F.2 has a positive answer. Although the
strategy must be quite different in that case.

H FURTHER REMARKS ON OUR
IMPLEMENTATION

H.1 Arithmetic Circuits
We useQESAZK to proof arithmetic circuits. In contrast to existing
techniques,QESAZK is not restricted to R1CS circuits, but can also
handle quadratic equations. Hencewe include a preprocessing step
in Python, which transforms arithmetic circuits generated by the
Pinocchio compiler [42] or jsnark ³⁰ into quadratic equations.

Preprocessing. We preprocess the arithmetic circuit in order to
bettermake use of “quadratic equation gates” (quad gates in the fol-
lowing). To this end, we perform a series of transformations, which
in the end yield an equivalent circuit comprised almost entirely of
quad gates.

The transformations follow a few simple observations. Some
gates can be represented directly by (quadratic) constraints. For
example, xor(X ,Y) can be represented as (1−X)Y +X (1−Y) = 0.
We refer to these as isolated gates in the following. Other gates,
such as pack with pack(x1, . . . ,xk) =

∑k
1 xi2

i = x0 + 2(x1 +
2(. . . + 2xk . . .)), can be decomposed into a series of arithmetic
gates, hence we coin them decomposable gates. The remaining ba-
sic gates, i.e., add, sub, const-mul, and const-mul-neg, can bemerged
if they precede a mul gate, resulting in a quad gate computing∑
i, j wiΓi, jw j = wk . Such a quad gate g can be represented by

Γg =
∑
i ag,ib

⊤
g,i − e1e⊤g ∈ Fn×np , where ag,i , bg,i are constants

describing the gate. We find that w⊤Γgw = 0 iff g is satisfied by
the wire assignmentw .

Based on these observations, our preprocessing applies the fol-
lowing steps: First, decomposable gates are replaced with other
gates depending on their functionality.

Then, each wirew that is either a global output wire or an input
wire of an isolated gate, is prepended with a new mul gate where
one input isw and the other is the constant-1 wire. Naturally, this
is only applied ifw is not already the output of a mul gate. The in-
sertion allows for later aggregation of preceding logic into a single
quad gate.

Now, all remaining basic gates aremerged into quad gates of the
form

∑
i, j aiwiΓi, jbjw j = wk . This aggressive optimization may

result in several gates with constant wk = 0. Therefore, constant
zeros are propagated through the circuit, eliminating affected gates
and wires. Finally the circuit is stripped of floating gates where
no output is connected any more and for each remaining gate the
corresponding Γi is extracted.

Results. We evaluate QESAZK using the same 512-bit SHA256
circuit without padding as in [15]. The preprocessed circuit con-
sists of 25657 wires, i.e., w ∈ F25657p and 25840 matrices Γi ∈
F25657×25657p . If theΓi would have been stored without the sparse
matrix optimization, thiswould require the implementation to hold
25840 · 256572 > 243 Fp elements in memory just for the matri-
ces. The sparse representation reduces this to 197465 Fp elements.

³⁰See: https://github.com/akosba/jsnark
25

https://github.com/akosba/jsnark

Parameters Bulletproofs Bulletproofs with IPAnoZK
P V P V

60 bit 0.26 0.17 0.23 0.11
60 bit × 2 0.47 0.29 0.42 0.21
60 bit × 32 7.4 4.5 6.3 3.7
60 bit × 128 28.9 17.9 26.6 14.2
60 bit × 512 116 78.7 105 55.5
124 bit 0.46 0.29 0.41 0.22
124 bit × 32 14.9 9.2 13.6 7.0
124 bit × 128 59.7 36.8 54.1 29.7
124 bit × 512 238 147 219 117
252 bit 0.95 0.59 0.79 0.46
252 bit × 32 30.2 18.6 26.1 14.3
252 bit × 128 121 74.3 105 58.4
252 bit × 512 484 297 426 227

Table 5: Comparison of runtime in seconds of aggregate
range proofs from [15] with the original IPA and with
IPAnoZK.

Since QESAZK expects n to be a power of two, we set n = 215 =

32768 and the witness is zero-extended accordingly. As a result,
the implementation took 84.2s for P and 38.1s for V on average.

H.2 Bulletproofs with IPAnoZK
One of our main contributions is the improvement of the original
IPA from [15]. In order to practically evaluate the impact of said im-
provements, we benchmarked Bulletproofs aggregate range proofs
with the same parameters as in Table 3, but this time used IPAnoZK
instead. Table 5 shows the results.

I OVERVIEW OF PROTOCOLS
In the following, we give an overview of the protocols for with sev-
eral choices fixed. In particular, we fix k = 2. Otherwise, the re-
spective setting is as in the definition of the protocols. Let S ⊆ F×p .
Note that S are always non-zero. For simplicity, we use the test-
ing distribution χ (β,0), which draws α ← S and returns (α , 1).
(In this case, χ (β,0) = χ (β).) Moreover, we write α ← χ (β,0)

instead. For other testing distributions χn , we consider x ← {1} ×
Sn−1, that is x1 = 1 always and the other components are random
(small) exponents in S. These choices are compatible with the re-
strictions posed in some protocols. For χ̃2k−1 we use an explicit
choice (x ,y,z), namely (1, β) = x ← χ (β,0), y = (β , 1) and
z = (1, β, β2).

26

IPAnoZK(Protocol E.1)
Common Input: crs = ([д′,д′′,Q]), t

Prover P Verifier V
Input:w ′,w ′′ Input: [c]

α ← χ (β,0)
α←−−−−−−−−−−−−−−−

[Q] B α−1[Q] [Q] B α−1[Q]
[c] B [c] − (α − 1)t [Q]

Recursive step. Suppose n > 1
splitw ′ in halvesw ′1,w

′
2

splitw ′′,д′,д′′ analogously
[u ′−1] B [д′2]w

′
1, [u

′
+1] B [д′1]w

′
2

compute [u ′′±1] analogously
v−1 B ⟨w ′2,w

′′
1 ⟩

v+1 B ⟨w ′1,w
′′
2 ⟩

[u−1] B [u ′−1] + [u ′′+1] +v+1[Q]

[u+1] B [u ′+1] + [u ′′−1] +v−1[Q]
[u−1], [u+1]−−−−−−−−−−−−−−−→

ξ ← χ (β,0)

ξ
←−−−−−−−−−−−−−−−

[д′] B [д′1] + ξ [д′2] [д′] B [д′1] + ξ [д′2]
[д′′] B ξ [д′′1] + [д′′2] [д′′] B ξ [д′′1] + [д′′2]
w ′ B ξw ′1 +w ′2 [c] B ξ2[u−1] + ξ [c] + [u+1]
w ′′ B w ′′1 + ξw ′′2
t B v−1 + ξ t + ξ2v+1

n B n/2 n B n/2
Start next recursion iteration.
Base case. Suppose n = 1

w ′,w ′′,t−−−−−−−−−−−−−−−→
return true iff:
[c]

?
= [д′]w ′ + [д′′]w ′′ + t [Q]

and t ?
= ⟨w ′,w ′′⟩

IPAalmZK (Protocol 4.1)
Common Input: crs = ([д′,д′′,Q]), t

Prover P Verifier V
Input:w ′,w ′′ Input: [cw]

r ′ ← ker(w ′′⊤) ∩M+
n

r ′′ ← ker(
(
w ′⊤
r ′⊤

)
) ∩M+

n

[cr] B [д′]r ′ + [д′′]r ′′
[cr]−−−−−−−−−−−−−−−→

β ← χ (β)

β
←−−−−−−−−−−−−−−−

t B β2t t B β2t
w ′ B βw ′ + r ′ [c] = β[cw] + [cr] + β2t [Q]
w ′′ B βw ′′ + r ′′

Engage Protocol IPAnoZK(crs, P(w ′,w ′′, t), V([c]))

27

QESAInner (part of Protocol 4.5)
Common Input: crs = ([д′,д′′,Q]), {Γi }, [c ′w]

Prover P Verifier V
Input:w,r ′ Input: ∅

w ′ B
(w
r ′

)
x ← χN

x←−−−−−−−−−−−−−−−
Γ B

∑
xiΓi Γ B

∑
xiΓi

β B x2 β B x2
[д′1] B β−1[д′1] [д′1] B β−1[д′1]

w ′′ B
(
Γw
Rr ′

)
[c ′′w] B [д′′]w ′′

[c ′′w]
−−−−−−−−−−−−−−−→

(1, s,b)← χn , s ′ B
(s
b

)
s ′←−−−−−−−−−−−−−−−

t B −⟨s,Γ⊤s⟩ t B −⟨s,Γ⊤s⟩
w ′ B w ′ − s ′ [cw] B [c ′w] − [д′]s ′ + [c ′′w] + [д′′]Γ′⊤s ′

w ′′ B w ′′ + Γ′⊤s ′

Engage Protocol IPAalmZK((crs, t), P(w ′,w ′′), V([cw]))

QESAZK (Protocol 4.5)
Common Input: crs = ([д′,д′′,Q]), {Γi }

Prover P Verifier V
Input:w Input: ∅

r ′ ← F2p
[c ′w] B [д′]

(w
r ′

)
[c ′w]

−−−−−−−−−−−−−−−→
Engage QESAInner((crs, {Γi }, [c ′w]), P(w,r ′), V())

QESACopy(Protocol E.3)
Common Input: crs = ([д′,д′′,Q]), {Γi }, {c̃k(i)}, {[̃c(i)]}

Prover P Verifier V
Input:w , {v(i)} Input: ∅

r ′ ← F2p
w ′ B

(w
r ′

)
[c ′w] B [д′]w ′

[c ′w]
−−−−−−−−−−−−−−−→

α ← χM+1 with α0 = 1
α←−−−−−−−−−−−−−−−

[c ′w] B α0[c
′
w] +

∑
i αi [̃c

(i)] [c ′w] B α0[c
′
w] +

∑
i αi [̃c

(i)]

{Γi } ∪= {Γ(k)
copy for k ∈ I} {Γi } ∪= {Γ(k)

copy for k ∈ I}
w ′ B α0w ′ +

∑
i αiv

(i)

decompose (w,r ′) B w ′

Engage QESAInner((crs, {Γi }, [c ′w]), P(w,r ′), V())

28

LMPAnoZK(Protocol 3.7)
Common Input: [A]

Prover P Verifier V
Input:w Input: [t]

Recursive step. Suppose n > 1
[u−1] B [A1]w2

[u+1] B [A2]w1
[u−1], [u+1]−−−−−−−−−−−−−−−→

ξ ← χ (β,0)

ξ
←−−−−−−−−−−−−−−−

[A] B [A1] + ξ [A2] [A] B [A1] + ξ [A2]
w B ξw1 +w2 [t] B [u−1] + ξ [t] + ξ2[u+1]
n B n/2 n B n/2

Start next recursion iteration.
Base case. Suppose n = 1

w−−−−−−−−−−−−−−−→

return true iff [A]w
?
= [t]

LMPAsimpleZK

Common Input: [A]
Prover P Verifier V
Input:w Input: [t]

r ← Fnp
[a] B [A]r

[a]
−−−−−−−−−−−−−−−→

β ← χ (β,0)

β
←−−−−−−−−−−−−−−−

Engage LMPAnoZK([A], P(βw + r), V(β[t] + [a]))

29

	Abstract
	1 Introduction
	1.1 Basic techniques
	1.2 Contribution
	1.3 Related work

	2 Preliminaries
	2.1 Matrix kernel assumptions and Pedersen commitments
	2.2 Interactive arguments, extractability and zero-knowledge
	2.3 Testing distributions
	2.4 Special soundness

	3 HVZK arguments for [A] w = t
	3.1 Intuition
	3.2 Step 0: A standard -protocol for [A] w = t
	3.3 Step 1: Batching all equations together
	3.4 Step 2: ``Batching'' the witness
	3.5 Step 3: Adding (arithmetic circuit) relations to the witness

	4 Arithmetic circuit satisfiability from quadratic equations
	4.1 Quadratic gates
	4.2 Arithmetic circuits and rank 1 constraint systems
	4.3 The verification strategy
	4.4 Zero-knowledge inner product argument
	4.5 Quadratic equation satisfiability
	4.6 Combining QESAZK with other proof systems

	5 Implementation
	Acknowledgments
	References
	A Omissions: Preliminaries
	A.1 Testing distributions

	B Omissions: LMPA
	B.1 LMPAZK
	B.2 LMPAbatch

	C Batch proofs of knowledge
	D An efficient proof of correctness of a shuffle
	D.1 Adapting the shuffle argument of Bayer–Groth

	E Omissions: QESA
	E.1 IPAnoZK
	E.2 Details on QESACopy

	F Witness-extended emulation and TreeFind
	F.1 Witness-extended emulation
	F.2 Modular extraction.

	G Testing distributions
	G.1 Conjectures and computational soundness errors
	G.2 Properties of testing distributions
	G.3 Constructions of testing distributions

	H Further Remarks on our Implementation
	H.1 Arithmetic Circuits
	H.2 Bulletproofs with IPAnoZK

	I Overview of protocols

