
A Note on Parameter Choices of Round5

Yongha Son

August 21, 2019

1 Overview

We examine the current parameter choice of Round5, and rectify its considera-
tion of the improved dual attack due to Albrecht [Alb17]: there is one significant
optimization of Albrecht’s dual attack, which was not reflected to Round5 pa-
rameter choices. By taking this into consideration, some parameter choices of
Round5 cannot enjoy the claimed security level.

For simplicity, we omit the details for the dual attack (and primal attack) and
assume the readers are already familiar with the attacks. Please refer to Section
2.7.4 and 2.7.5 of original specification document [BBF+19] for the detailed
explanation for the attacks.

2 Sparse-secrets Attacks

We briefly review the current consideration for sparse secret of [BBF+19]. Al-
brecht [Alb17] observed that one can reduce the LWE sample dimension by
ignoring randomly chosen k columns of A while expecting all the corresponding
components of secret are zero. In this case, the total complexity is estimated by

min
k

Tdual(n− k)

pk,h

where pk,h is the probability that all the k ignored components of secret are
zero where the Hamming weight of secret key is h, computed by

pk,h =

(
n−h
k

)(
n
k

) .

One can apply the dual attack (or the primal attack) for the lower-dimensional
LWE sample, and this corresponds to Sparse-secrets attack of the current Round5
parameter choice table; for instance, Table 3 in page 45 of [BBF+19].

1

3 Albrecht’s Dual Attack

Indeed, Albrecht [Alb17] further observed that, unlike the primal attack, the
dual attack for the sparse secret can be further improved by admitting some
failures on guessing zero components with some post-process: We may assume
that one ignores the first k columns of A, and denote A = [A1|A2]. Then the

dual attack applied on (A2,~b) finds short vectors ~yi ∈ L⊥q (A2). It gives

〈~yi,~b〉 = 〈~yi, A~s+ ~e〉
= 〈~yi, A1~s1 +A2~s2 + ~e〉
= ~yTi A1~s1 + ~yTi A2~s2 + 〈~yi, ~e〉
= ~yTi A1~s1 + 〈~yi, ~e〉

By writing a matrix Y consisting of rows ~yTi , we have

Y~b = Y A1~s1 + Y ~e1,

from which (Y A1, Y~b) can be viewed as another LWE-instance with secret ~s1
and error Y~b. Now by exhaustively searching some candidates for ~s1 to some
extent, the dual attack for the sparse secret succeeds even if all the guessing are
not correct.

By putting ` by the (expected) Hamming weight of ~s1, we conclude the total
complexity by

min
k

Tdual(n− k) + Texh(k, `)∑`
i=0 pk,i

where pk,h,i is the probability that HW(~s1) = i, easily computed by

pk,h,i =

(
n−k
h−i
)
·
(
k
i

)(
n
k

)
4 Applying Albrecht’s Dual Attack

By taking this improvement of the dual attack for sparse secret, we observe that
some parameter sets of [BBF+19] fail to have the claimed security level. For that,
we modified the LWE-estimator [APS15] to follow the cost estimation of Section
2.7.5 in [BBF+19] for the dual attack (without postprocess improvement), and
it almost reproduces the bit-security of the dual attack estimated in [BBF+19].
In Appendix A, we specify the changes in code line compared to the original
LWE-estimator.

Since the postprocess strategy has already been considered and implemented
in LWE-estimator, we just toggle postprocess option to estimate the bit-
security of Albrecht’s dual attack, which gives Table 1, 2 and 3.

Remark. To reproduce the tables, run the following with our Sage module;

1Note that the original strategy simply expects ~s1 = ~0 to have Y A1~s1 = ~0.

2

sage: n = 490; q = 2**10; h = 162; stddev = 2.29
sage: alpha = stddev * sqrt (2*pi) / q
sage: #‘Dual ’ in Round5 specification document
sage: dual_scale(n, alpha , q, secret_distribution =((-1,1),h))
sage: #‘Primal ’ in Round5 specification document
sage: primal_usvp(n, alpha , q, secret_distribution =((-1,1),h))
sage: #Alb ’s Dual
sage: duald = partial(drop_and_solve , dual_scale)
sage: duald(n, alpha , q, secret_distribution =((-1,1),h), postprocess=True)

Table 1: Solving costs for λ = 128 parameters in [BBF+19].

(Claimed to be) 128 bit-security

n log q h σ Primal Hybrid Alb’s Dual[Alb17]

490 10 162 2.29 130 128 123.6
508 10 136 2.29 132 128 124.6
586 13 182 4.61 130 128 124.3
618 11 104 2.29 144 128 131.8

Table 2: Solving costs for λ = 192 parameters in [BBF+19].

(Claimed to be) 192 bit-security

n log q h σ Primal Hybrid Alb’s Dual[Alb17]

756 12 242 4.61 194 192 183.2
786 13 384 4.61 192 194 184.6
852 12 212 2.29 199 192 186.6

Table 3: Solving costs for λ = 256 parameters in [BBF+19].

(Claimed to be) 256 bit-security

n log q h σ Primal Hybrid Alb’s Dual[Alb17]

940 12 414 4.61 256 263 243.6
946 11 388 2.29 256 263 245.2
1018 14 428 9.23 256 261 245.3
1170 13 222 4.61 281 257 256.3

3

References

[Alb17] Martin R Albrecht. On dual lattice attacks against small-secret LWE
and parameter choices in helib and SEAL. In Proc. of EUROCRYPT
‘17, pages 103–129. Springer, 2017.

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of learning with errors. Journal of Mathematical Cryptology,
9(3):169–203, 2015.

[BBF+19] Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-
Morchon, Thijs Laarhoven, Rachel Player, Ronald Rietman, Markku-
Juhani O Saarinen, Ludo Tolhuizen, José Luis Torre-Arce, and Zhen-
fei Zhang. Round5:kem and pke based on (ring) learning with round-
ing. Technical report, 2019.

A Code changes

A.1 BKZ cost model

The default BKZ cost model of LWE-estimator is different from the cost model
of [BBF+19]. We change the line 1496 of the original code by

1497: reduction_default_cost = BKZ.ADPS16

A.2 Number of repeats

In the dual attack, finding only one short vector ~y ∈ L⊥q (A) is not enough, as
the resulting distinguishing advantage from 〈~y,~e〉 and 〈~y, ~u〉 is too small. Thus
a lots of short vectors in L⊥q (A) are required to have sufficient advantage, and
LWE-estimator and Round5 differently estimates the number of such required
vectors. Moreover, Round5 also accepts a heuristic that one sieving oracle call
gives 20.2075β numbers of short vectors at once, and hence the number of SVP
oracle calls is estimated by the number of required vectors divided by 20.2075β ,
which is not considered in LWE-estimator.

To relfect this, we change the line 2530 of the original code by

2531: vecnum = RR(exp(RR(2*pi**2 * RR(v*stddev/q)**2))/ sqrt (2))**2
2532: repeat = max(1, vecnum / (2**(0.2075* ret["beta "])))

To evaluate the postprocess cost, we need to memorize the number of re-
quired vectors. Thus we add new lines

536: u"vecnum ": False
2541: ret[u"vecnum "] = vecnum

and change line 1801 of the original code by

1802: repeat = current [" vecnum "]

4

A.3 Repeating BKZ cost

As mentioned above, the dual attack requires a lots of short vectors in L⊥q (A).
In this regard, LWE-estimator accepts a heuristic due to [Alb17] that says,
after one (expensive) BKZ, the LLL algorithm followed by re-randomizing also
outputs sufficiently short vector. Align with this, LWE-estimator measures the
costs for finding short vectors in the same lattice by one BKZ cost plus several
LLL costs.

Since Round5 does not consider this heuristic, we switch-off this option by
changing the line 2438 of the original code by

2439: c=None , use_lll=False):

5

