
Beyond Security and Efficiency: On-Demand Ratcheting
with Security Awareness ?

Andrea Caforio1, F. Betül Durak2, and Serge Vaudenay1

1 Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

2 Robert Bosch LLC - Research and Technology Center
Pittsburgh PA, USA

Abstract. Secure asynchronous two-party communication applies ratcheting to strengthen
privacy, in the presence of internal state exposures. Security with ratcheting is provided in
two forms: forward security and post-compromise security. There have been several such
secure protocols proposed in the last few years. However, they come with a high cost.
In this paper, we propose two generic constructions with favorable properties. Concretely,
our first construction achieves security awareness. It allows users to detect non-persistent
active attacks, to determine which messages are not safe given a potential leakage pattern,
and to acknowledge for deliveries.
In our second construction, we define a hybrid system formed by combining two protocols:
typically, a weakly secure “light” protocol and a strongly secure “heavy” protocol. The
design goals of our hybrid construction are, first, to let the sender decide which one to use
in order to obtain an efficient protocol with ratchet on demand ; and second, to restore the
communication between honest participants in the case of a message loss or an active attack.
We can apply our generic constructions to any existing protocol.

1 Introduction

In recent messaging applications, protocols are secured with end-to-end encryption to enable secure
communication services for their users. Besides security, there are many other characteristics of
communication systems. The nature of two-party protocols is that it is asynchronous: the messages
should be transmitted regardless of the counterpart being online; the protocols do not have any
control over the time that participants send messages; and, the participants change their roles as
a sender or a receiver arbitrarily.

Many deployed systems are built with some sort of security guarantees. However, they often
struggle with security vulnerabilities due to the internal state compromises that occur through
exposures of participants. In order to prevent the attacker from decrypting past communication
after an exposure, a state update procedure is applied. Ideally, such updates are done through one-
way functions which delete the old states and generate new ones. This guarantees forward secrecy.
Additionally, to further prevent the attacker from decrypting future communication, ratcheting is
used. This adds some source of randomness in every state update to obtain what is called future
secrecy, or backward secrecy, or post-compromise security, or even self-healing.

Formal definitions of ratcheting security given have been recently studied, by Bellare et al. [2],
followed by many others subsequent studies [1, 7–10]. Some of these schemes are key-exchange
protocols while others are secure messaging. Since secure ratcheted messaging boils down to secure
key exchange, we consider these works as equivalent.

Previous work. Early ratcheting protocols were suggested in Off-the-Record (OTR) and then
Signal [3, 11]. The security of Signal was studied by Cohn-Gordon et al. [5]. Unger et al. [12]
surveyed many ratcheting techniques. Alwen et al. [1] formalized the concept of “double ratcheting”
from Signal.

? This is the full version of a paper presented at the PKC 2021 conference [4].

Cohn-Gordon et al. [6] proposed a ratcheted protocol at CSF 2016 but requiring synchronized
roles. Bellare et al. [2] proposed another protocol at CRYPTO 2017, but unidirectional and without
forward secrecy. Poettering and Rösler (PR) [10] designed a protocol with “optimal ” security
(in the sense that we know no better security so far), but using a random oracle, and heavy
algorithms such as hierarchical identity-based encryption (HIBE). Yet, their protocol does not
guarantee security against compromised random coins. Jaeger and Stepanovs (JS) [8] proposed a
similar protocol with security against compromised random coins: with random coin leakage before
usage. Their protocol also requires HIBE and a random oracle.

Durak and Vaudenay (DV) [7] proposed a protocol with slightly lower security3 but relying
on neither HIBE nor random oracles. They rely on a public-key cryptosystem, a digital signature
scheme, a one-time symmetric encryption scheme, and a collision-resistant hash function. They
further show that a unidirectional scheme with post-compromise security implies public-key cryp-
tography, which obviates any hope of having a fully secure protocol solely based on symmetric
cryptography. At EUROCRYPT 2019, Jost, Maurer, and Mularczyk (JMM) [9] proposed concur-
rently and independently a protocol with security between optimal security and the security of
the DV protocol.4 They achieve it even with random coin leakage after usage. Contrarily to other
protocols achieving security with corrupted random coins, in their protocol, random coin leakage
does not necessarily imply revealing part of the state of the participant. In the same conference,
Alwen, Coretti, and Dodis [1] proposed two other ratcheting protocols denoted as ACD and ACD-
PK with security against adversarially chosen random coins and immediate decryption. Namely,
messages can be decrypted even though some previous messages have not been received yet. The
ACD-PK protocol offers a good level of security, although having immediate decryption may lower
it a bit as it will be discussed shortly. On the other hand, during a phase when the direction of
communication does not change, the ACD protocol is fully based on symmetric cryptography,
hence has lower security (in particular, no post-compromise security in this period). However, it
is much more efficient. Following the authors of ACD, we consider Signal and ACD as equivalent.

We summarize these results in Table 1. The first four rows are based on DV [7, Table 1]. The
other rows of the table will be discussed shortly.

Recently, Yan and Vaudenay [13] proposed Encrypt-then-Hash (EtH), a simple, natural, and
extremely efficient ratchet protocol based on symmetric cryptography only, which provides forward
secrecy but not post-compromise security. In short, it replaces the encryption key by its hash after
every encryption or decryption, and needs one key for each direction of communication.

We are mostly interested in the DV model [7]. It gives a simple description of the KIND security
and FORGE security. The former deals with key indistinguishability where the generated keys are
indistinguishable from random strings and the latter states that update messages for ratcheted
key exchange are unforgeable. Additionally, they present the notion of RECOVER-security which
guarantees that participants can no longer accept messages from their counterpart after they
receive a forged message. Even though FORGE security avoids non-trivial forgeries, there are still
(unavoidable) trivial forgeries. They occur when the state of a participant is exposed and the
adversary decides to impersonate him. With RECOVER security, when an adversary impersonates
someone (say Bob), the impersonated participant is out and can no longer communicate with the
counterpart (say Alice). It does not mean to bother participants but rather work for their benefit.
Indeed, this security notion guarantees that the attack is eventually detected by Bob if he is still
alive. If the protocol has a way to resume secure communication based on an explicit action from
the users, this property is particularly appealing.

What makes the DV model simple is that all technicalities are hidden in a cleanness notion
which eliminates trivial attack strategies. The adversary can only win when the attack scenario
trace is “clean”. This model makes it easy to consider several cleanness notions, specifically for
hybrid protocols. The difficulty is perhaps to provide an exhaustive list of criteria for attacks to
be clean.

3 More precisely, the security is called “sub-optimal ” [7].
4 They call this security level “near-optimal ” [9].

2

Our objectives. In this paper, we study various security notions for the asynchronous ratcheted
communication with additional data which we call ARCAD in short. Experience showed that when
we want the protocols to be highly secure, we have to give up the efficiency of the protocol and rely
on heavy tools. For instance, DV [7] showed that post-compromise secure communication implies
public-key cryptography, hence a complexity overhead. Equivalently, when we want protocols to
perform fast, then the security should be lowered to a reasonable level. For instance, we know that
symmetric cryptography can handle forward secrecy at a very low cost. In real-world applications,
the developers do not want to over-complicate or under-perform. At the same time, users seek
usability and strong privacy. Therefore, we believe that the confidentiality level of sending messages
should be set on demand by the sender or could be tuned by the application itself based on time
intervals. For instance, if the users are exchanging hundreds of messages per day, there may not be
any real need for ratcheting all the time with strongly secure protocols. Instead, a lighter version
of the protocol only with forward secrecy (e.g. symmetric-key ratcheting) should be enough for
security. Alternatively, the sender could ask for healing only when an exposure is likely (e.g.
because his device was taken by a third party, remained unattended for a while etc.) or just once
a day. Healing may actually scarcely occur in intensive communication. Therefore, we construct a
protocol called hybridARCAD that runs a healing ratchet on demand.

We also define a security notion by improving RECOVER-security from DV [7]. This security
implies that when a participant receives a forgery, he should not be able to receive genuine messages
any longer. What is also needed is that the participant who has received a forgery should not be
able to send messages to his counterpart either. This makes sure that forgeries are eventually
detected.

Another interesting notion is given in Alwen et al. [1] as immediate decryption. It allows
receiving messages even though some previous ones were not received. Concretely, it is done by
keeping all keys in the state of the receiver to decrypt messages until they are needed. Obviously,
it has some consequences with regards to security. Namely, when an adversary prevents a message
from being delivered, the key remains in the receiver state and this key may be stolen in the future.
Hence, even though communication can continue, the participants have no guarantee about the
safety status of this message until it is received. For instance, we can imagine that the adversary
may collect a few sensitive messages (e.g. all the large ones as they may contain media content)
and decrypt them all after exposure of the receiver state. Immediate decryption is nice when the
communication network is not reliable and messages may come in a different order at random.
However, we believe that this problem can be solved by independent techniques and need not
to be addressed by the cryptographic protocol. More precisely, messages can be encapsulated in
containers which makes sure that if a message is missing, it can be requested for a second delivery
and the received messages can be held until the sequence is reconstructed with no loss. Adding
reliability on the communication channel can indeed be solved by a lower-level protocol. Hence,
we do not provide immediate-decryption security in our constructions. Instead, we focus on a
very important aspect of secure messaging protocol which is described as security awareness. To
defeat communication interruption due to a message loss or a forgery, we will propose a way for
participants to repair it.

Our contributions. We start with formally and explicitly defining a notion of security awareness
in which the users detect active attacks by realizing they can no longer communicate; users can
be confident that nothing in the protocol can compromise the confidentiality of an acknowledged
message if it did not leak before; and users can deduce from an incoming message which of the
messages they sent have been delivered when the incoming message was formed.

More concretely, we elaborate on the RECOVER security to offer optimal security awareness.
We start by defining a new notion called s-RECOVER. We make sure that not only is a receiver of
a forgery no longer able to receive genuine messages via r-RECOVER-security but he can no longer
send a message to his counterpart either via s-RECOVER-security. The r-RECOVER security is equal
to RECOVER security of the DV protocol. Both r-RECOVER and s-RECOVER notions imply that
reception of a genuine message offers a strong guarantee of having no forgery in the past: after an
active attack ended, participants realize they can no longer communicate. Our security-awareness

3

notion makes also explicit that the receiver of a message can deduce (in absence of a forgery) which
of his messages have been seen by his counterpart (which we call an acknowledgment extractor).
Hence, each sent message implicitly carries an acknowledgment for all received messages. Finally,
what we want from the history of receive/send messages and exposures of a participant is the
ability to deduce which message remains private (or “clean”). We call it a cleanness extractor.

Then, we give another generic construction to compose “any” two protocols with different
security levels to allow a sender to select which security level to use. By composing a strongly
secure protocol (such as PR, JS, JMM, DV) with a lighter and weakly secure one (such as EtH [13],
which is solely based on symmetric cryptography), we obtain the notion of ratchet on-demand.
When the ratcheting becomes infrequent, we obtain the excellent software performances of EtH as
we will show in our implementation results. Hybrid constructions already exist, like Signal/ACD.
However, they offer no control on the choice of the protocol to be used. Instead, they ratchet if
(and only if) the direction of communication alternates.

We find that there would be an advantage to offer more fine grained flexibility. The decision to
ratchet or not could of course be made by the end user or rather be triggered by the application
at an upper layer, based on a security policy. For instance, it could make sense to ratchet on a
smartphone for every new message following bringing back the app to foreground, or to ratchet
no more than once an hour.

Another interesting outcome of our hybrid system is that we can form our hybrid system with
two identical protocols: an upper one and a lower one. The lower protocol is used to communicate
the messages and the upper protocol is used to control the lower protocol: to setup or to reset it.
With this hybrid structure with identical protocols, we can repair broken communication in the
case of a message loss or active attacks. As far as we observe, the complexity of the hybrid system
is the same as the complexity of the underlying protocol. Since our security-aware property breaks
communication in the case of an active attack, this repairing construction is a nice additional tool.

Last but not least, we implemented the many existing protocols: PR, JS, DV, JMM, ACD,
ACD-PK, together with EtH. We observe that EtH is the fastest one. This is not surprising for all
protocols which heavily use public-key cryptography, but it is surprising for ACD. Our goal is to
offer a high level of security with the performances of EtH. We reach it with on-demand ratcheting
when the participant demands healing scarcely.

Finally, we conclude that security awareness can be added on top of an existing protocol (even
a hybrid one) in a generic way to strengthen security. We propose this generic strengthening (called
chain) of protocol to obtain r-RECOVER and s-RECOVER security on the top of any protocol. As
an example, we apply it on the ratchet-on-demand hybrid protocol composed with DV and EtH
and obtain our final protocol.

We provide a comparison of all the protocols with r-RECOVER-security, s-RECOVER-security,
acknowledgment extractor and cleanness extractor in Table 1. Note that this table is made to
help both the authors and the readers to have a fair understanding of what specified properties
each protocol has or not. We stress that “any” protocol could form a hybrid system to provide
ratchet-on-demand and repairing a broken communication in the case of message loss or active
attacks. The protocol which is shown in the last column is the case where we chose to use DV and
EtH to construct our hybrid system.

To summarize, our contributions are:

– we formally define the notion of security awareness, construct a generic protocol strengthening
called chain, and prove its security;

– we define the notion of on-demand ratcheting, construct a generic hybrid protocol called hybrid,
define and prove its security;

– we implement PR, JS, DV, JMM, ACD, ACD-PK, and EtH protocols in order to clearly compare
their performances.

Notation. We have two participants named Alice (A) and Bob (B). Whenever we talk about either
one of the participants, we represent it as P, then P refers to P’s counterpart. We have two roles
send and rec for sender and receiver respectively. We define send = rec and rec = send. When the
communication is unidirectional, the participants are called the sender S and the receiver R.

4

Table 1: Comparison of Several Protocols with our protocol chain(hybrid(ARCADDV, EtH)) from
Cor. 33 in Section 3.3: security level; worst case complexity for exchanging n messages; types of
coin-leakage security; plain model (i.e. no random oracle); PKC or less (i.e. no HIBE). DV and
ARCADDV have identical characteristics. ARCADDV is based on DV and described in Appendix B.
The terms “optimal”, “near-optimal”, and “sub-optimal” from Durak-Vaudenay [7] are mentioned
on p. 2. “Pragmatic” degrades a bit security to offer on-demand ratcheting. “id-optimal” is optimal
among protocols with immediate decryption.

PR [10] JS [8] JMM [9] DV [7] ACD-PK [1] ours

Security optimal optimal near-optimal sub-optimal id-optimal pragmatic

Worst case complexity O(n2) O(n2) O(n2) O(n) O(n) O(n)

Coins leakage resilience no pre-send post-send no chosen coins no

Plain model (no ROM) no no no yes yes yes

PKC or less no no yes yes yes yes

Immediate decryption no no no no yes no

r-RECOVER security no yes no yes no yes

s-RECOVER security no yes no no no yes

ack. extractor yes yes yes yes no yes

cleanness extractor yes yes yes yes yes yes

category BARK ARCAD ARCAD BARK ARCAD ARCAD

Structure of the paper. In Section 2, we revisit the preliminary notions from Durak-Vaudenay [7]
and Alwen-Coretti-Dodis [1]. They all are essential to be able to follow our results. In Section 3,
we define a new notion named security awareness and build a protocol with regard to the notion.
In Section 4, we define a new protocol called on-demand ratcheting with better performance than
state-of the-art. Finally, in Appendix A, we present our implementation results with the figures
comparing various protocols. Appendix B presents ARCADDV: the DV protocol in a simplified form
and in the frame of ARCAD. Appendix C proposes liteARCAD: an example of lightweight ARCAD
protocol which is derived from DV.

2 Preliminaries

2.1 ARCAD Definition and Security

In this section, we recall the DV model [7] and we slightly adapt it to define asynchronous ratcheted
communication with additional data denoted as ARCAD. That is, we consider message encryp-
tion instead of key agreement (BARK: bidirectional asynchronous ratcheted key agreement). The
difference between BARK and ARCAD is the same as the difference between KEM and cryptosys-
tems: pt is input to Send instead of output of Send. Additionally, we treat associated data ad
to authenticate. Like DV [7]5, we adopt asymptotic security rather than exact security, for more
readability. Adversaries and algorithms are probabilistic polynomially bounded (PPT) in terms of
a parameter λ.

As we slightly change our direction from key exchange to encryption, we feel that it is essential
to redefine the set of definitions from BARK for ARCAD. In this section, some of the definitions are
marked with the reference [7]. It means that these definitions are unchanged except for possible
necessary notation changes. The other definitions are straightforward adaptations to fit ARCAD.

Definition 1 (ARCAD). An asynchronous ratcheted communication with additional data (ARCAD)
consists of the following PPT algorithms:

5 Proceedings version.

5

– Setup(1λ)
$−→ pp: This defines the common public parameters pp.

– Gen(1λ, pp)
$−→ (sk, pk): This generates the secret key sk and the public key pk of a participant.

– Init(1λ, pp, skP, pkP,P) → stP: This sets up the initial state stP of P given his secret key, and
the public key of his counterpart.

– Send(stP, ad, pt)
$−→ (st ′P, ct): it takes as input a plaintext pt and some associated data ad and

produces a ciphertext ct along with an updated state st ′P.
– Receive(stP, ad, ct) → (acc, st ′P, pt): it takes as input a ciphertext ct and some associated data

ad and produces a plaintext pt with an updated state st ′P together with a flag acc.6

An additional Initall(1λ, pp) → (stA, stB, z) algorithm, which returns the initial states of A and B
as well as public information z, is defined as follows:

Initall(1λ, pp):
1: Gen(1λ, pp)→ (skA, pkA)
2: Gen(1λ, pp)→ (skB, pkB)
3: stA ← Init(1λ, pp, skA, pkB,A)

4: stB ← Init(1λ, pp, skB, pkA,B)
5: z← (pp, pkA, pkB)
6: return (stA, stB, z)

Initall is defined for convenience as an initialization procedure for all games. None of our security
games actually cares about how Initall is made from Gen and Init. This is nice because there is
little to change to define a notion of “symmetric-cryptography-based ARCAD” with a slight abuse
of definition: we only need to define Initall. This approach was already adopted for EtH [13] which
was proven as a “secure ARCAD” in this way.

For all global variables v in the game such as receivedPct, stP, or ctP (which appear in Fig. 1
and Fig. 3, for instance), we denote the value of v at time t by v(t). The notion of time is
participant-specific. It refers to the number of elementary operations he has done. We assume
neither synchronization nor central clock. Time for two different participants can only be compared
when they are run non-concurrently by an adversary in a game.

Definition 2 (Correctness of ARCAD). Consider the correctness game given on Fig. 1.7 We say
that an ARCAD protocol is correct if for all sequence sched of tuples of the form (P, “send”, ad, pt)
or (P, “rec”), the game never returns 1. Namely,

– at each stage, for each P, receivedPpt is prefix of sentPpt
8;

– each RATCH(P, “rec”) call returns acc = true.

We note that RATCH(P, “rec”, ad, ct) ignores messages when decryption fails. For this reason,
when we say that a participant P “receives” a message, we may implicitly mean that the message
was accepted. More precisely, it means that decryption succeeded and RATCH returned acc = true.

In addition to the RATCH oracle (in Fig. 1) which is used to ratchet (either to send or to receive),
we define several other oracles (in Fig. 3): EXPst to obtain the state of a participant; EXPpt to
obtain the last received message pt; CHALLENGE to send either the plaintext or a random string.
All those oracles are used without change throughout all security notions in this paper.

Definition 3 (Matching status [7]). We say that P is in a matching status at time t for P if

1. at any moment of the game before time t for P, receivedPct is a prefix of sentPct — this defines
the time t for P when P sent the last message in receivedPct(t);

2. at any moment of the game before time t for P, receivedPct is a prefix of sentPct.

6 In our work, we assume that acc = false implies that st ′P = stP and pt = ⊥, i.e. the state is not updated
when the reception fails. Other authors assume that st ′P = pt = ⊥, i.e. no further reception can be done.

7 We use the programming technique of “function overloading” to define the RATCH oracle: there are two
definitions depending on whether the second input is “rec” or “send”.

8 By saying that receivedPpt is prefix of sentPpt, we mean that sentPpt is the concatenation of receivedPpt with
a (possible empty) list of (ad, pt) pairs.

6

Oracle RATCH(P, “rec”, ad, ct)
1: ctP ← ct
2: adP ← ad
3: (acc, st ′P, ptP)← Receive(stP, adP, ctP)
4: if acc then
5: stP ← st ′P
6: append (adP, ptP) to receivedPpt
7: append (adP, ctP) to receivedPct
8: end if
9: return acc

Oracle RATCH(P, “send”, ad, pt)
10: ptP ← pt
11: adP ← ad
12: (st ′P, ctP)← Send(stP, adP, ptP)
13: stP ← st ′P
14: append (adP, ptP) to sentPpt
15: append (adP, ctP) to sentPct
16: return ctP

Game Correctness(sched)
1: set all sent∗∗ and received∗∗ to ∅
2: Setup(1λ)

$−→ pp

3: Initall(1λ, pp)
$−→ (stA, stB, z)

4: initialize two FIFO lists incomingA, incomingB ← ∅
5: i← 0
6: loop
7: i← i+ 1
8: if schedi of form (P, “rec”) then
9: if incomingP is empty then return 0

10: pull (ad, ct) from incomingP
11: acc← RATCH(P, “rec”, ad, ct)
12: if acc = false then return 1
13: else
14: parse schedi = (P, “send”, ad, pt)
15: ct← RATCH(P, “send”, ad, pt)
16: push (ad, ct) to incomingP
17: end if
18: if receivedApt not prefix of sentBpt then return 1

19: if receivedBpt not prefix of sentApt then return 1
20: end loop

Fig. 1: The Correctness Game of ARCAD Protocol.

We further say that time t for P originates from time t for P.

Intuitively, P is in a matching status at a given time if his state is not influenced by an active
attack (i.e. message injection/modification/erasure/replay).

Definition 4 (Direct leakage). Let t be a time and P be a participant. We say that ptP(t) has
a direct leakage if one of the following conditions is satisfied:

– The last RATCH call before time t is a RATCH(P, “send”, ad, pt) call by the adversary defining
ptP(t) = pt.

– There is an EXPpt(P) at a time te such that the last RATCH call which is executed by P before
time t and the last RATCH call which is executed by P before time te are the same.

– P is in a matching status and there exists t0 6 te 6 tRATCH 6 t and t such that time t originates
from time t; time t originates from time t0; there is one EXPst(P) at time te; there is one
RATCH(P, “rec”, ., .) at time tRATCH; and there is no RATCH(P, ., ., .) between time tRATCH and
time t.

The first condition is specific to ARCAD: Obviously, an adversarial RATCH send call counts as an
EXPpt call.

Definition 5 (Indirect leakage [7]). We consider a time t and a participant P. Let tRATCH be
the time of the last successful RATCH call and role be its input role. We say that ptP(t) has an
indirect leakage if P is in matching status at time t and one of the following conditions is satisfied

– There exists a RATCH(P, role, ., .) corresponding to that RATCH(P, role, ., .) and making a ptP
which has a direct leakage for P.

– There exists t ′ 6 tRATCH 6 t and t 6 te such that P is in a matching status at time te, t
originates from t, te originates from t ′, there is one EXPst(P) at time te, and role = “send”.

Lemma 6 (Trivial attacks [7]). Assume that ARCAD is correct. For any t and P, if ptP(t) has
a direct or indirect leakage, the adversary can deduce ptP(t).

7

Definition 7 (Forgery). Given a participant P in a game, we say that (ad, ct) ∈ receivedPct is a
forgery if at the moment of the game just before P received (ad, ct), P was in a matching status,
but no longer after receiving (ad, ct).

Definition 8 (Trivial forgery). Let (ad, ct) be a forgery received by P. At the time t just be-
fore the RATCH(P, “rec”, ad, ct) call, P was in a matching status. We assume that time t for
P originates from time t for P. If there is an EXPst(P) call between time t for P and the next
RATCH(P, “send”, ., .) call (or just after time t is there is no further RATCH(P, “send”, ., .) call),
we say that (ad, ct) is a trivial forgery.

We give a brief description of the DV security notions [7] as follows.
FORGE-security: It makes sure that there is no forgery, except trivial ones.
r-RECOVER-security9: If an adversary manages to forge (trivially or not) a message to one of

the participants, then this participant can no longer accept genuine messages from his counterpart.
PREDICT-security: The adversary cannot guess the value ct which will be output from the

Send algorithm.
KIND-security: We omit this security notion which is specific to key exchange. Instead, we

consider IND-CCA-security in a real-or-random style.
We define the ratcheting security with IND-CCA notion. Before defining it, we like to introduce

a predicate called Cclean as IND-CCA is relative to this predicate. The purpose of Cclean is to discard
trivial attacks. Somehow, the technicality of the security notion is hidden in this cleanness notion.
An “optimal” cleanness predicate discards only trivial attacks but other predicates may discard
more and allow to have more efficient protocols [7].

More precisely, for “clean” cases, a security property must be guaranteed. A “trivial” attack
(i.e. an attack that no protocol can avoid) implies a non-clean case. If the cleanness notion is tight,
this is an equivalence.

There exist different predicates which we recall here. Cclean is defined with a logical combination
of sub-predicates. For these helper predicates, we consider several of them as defined in the DV
model [7]:

Cleak: pttest(ttest) has no direct or indirect leakage (following Def. 4–5).
CPtest

trivialforge: Ptest received no trivial forgery until having seen (ad, ct)test (following Def. 8).

C
{A,B}
trivialforge: no participant received any trivial forgery until having seen (ad, ct)test (following Def. 8).

CPtest

forge: Ptest received no forgery until having seen (ad, ct)test (following Def. 7).

C
{A,B}
forge : no participant received any forgery until having seen (ad, ct)test (following Def. 7).

Cratchet: (ad, ct)test was sent by a participant Ptest, received and accepted by Ptest, then some
(ad ′, ct ′) were sent by Ptest, received and accepted by Ptest.

In Table 1, “optimal ” security refers to Cclean = Cleak ∧ C
Ptest

trivial forge and “sub-optimal ” security

refers to Cclean = Cleak ∧ C
A,B
trivial forge.

Additionally, we define a cleanness notion Csym for symmetric algorithms. It is known that a
protocol which a weak form of post-compromise security implies public-key cryptography [7]. So,
for symmetric cryptography, we limit to forward secrecy, hence we forbid any exposure after a
critical message. We obtain Cnoexp:

Cnoexp: neither A nor B had an EXPst before seeing (ad, ct)test.

When Cnoexp holds, the notion of direct and indirect leakage (Def. 4–5) boils down to the cases
based on EXPpt leakages. Hence, Cleak ∧ Cnoexp = Csym can be defined as follows:

9 It is called RECOVER-security in DV [7]. We call it r-RECOVER because we will enrich it with an
s-RECOVER notion in Section 3.1.

8

Csym: the following conditions are all satisfied (see Fig. 2)
– (no direct EXPpt leakage) there is no EXPpt(Ptest) after time ttest until there is a

RATCH(Ptest, .);
– (no indirect EXPpt leakage) if the CHALLENGE call makes the i-th RATCH(Ptest, “send”, ., .)

call and the i-th accepting RATCH(Ptest, “rec”, ., .) call occurs in a matching status at some
time t, then there is no EXPpt(Ptest) after time t until there is another RATCH(Ptest, .) call;

– (no EXPst leakage) neither A nor B had an EXPst before seeing (ad, ct)test.

Ptest

CHALLENGE (ttest)

RATCH

no EXPpt

Ptest Ptest

CHALLENGE (ttest)

RATCH

(t) RATCH

no EXPpt

Ptest Ptest

CHALLENGE (ttest)

(t) RATCH

no EXPst

no EXPst

no EXPpt direct leakage no EXPpt indirect leakage no EXPst leakage

Fig. 2: Csym Cleanness

Similarly, the notion of trivial forgery changes as the exposure of the state of P now allows to
forge for P as well, due to the symmetric key. (Before, it was only allowing to forge for P as keys
were asymmetric.) Thus, a forgery becomes trivial when an EXPst occurs. Hence, the FORGE game
cannot allow any state exposure at all. We formalize the security by using the Cnoexp cleanness
predicate in FORGE-security. There is no (ad, ct)test message in FORGE-security, thus Cnoexp means
no EXPst at all.

Game IND-CCAA
b,Cclean

(1λ)

1: Setup(1λ)
$−→ pp

2: Initall(1λ, pp)
$−→ (stA, stB, z)

3: set all sent∗∗ and received∗∗ variables to ∅
4: set ttest to ⊥
5: b ′ ← ARATCH,EXPst,EXPpt,CHALLENGE(z)
6: if ¬Cclean then return ⊥
7: return b’

Oracle EXPst(P)
1: return stP

Oracle CHALLENGE(P, ad, pt)
1: if ttest 6= ⊥ then return ⊥
2: if b = 0 then
3: replace pt by a random string of same length
4: end if
5: ct← RATCH(P, “send”, ad, pt)
6: (t,P, ad, pt, ct)test ← (timeP,P, ad, pt, ct)
7: return ct

Oracle EXPpt(P)
1: return ptP

Fig. 3: IND-CCA Game.
(Oracle RATCH is defined in Fig. 1)

Definition 9 (Cclean-IND-CCA security). Let Cclean be a cleanness predicate. We consider the
IND-CCAA

b,Cclean
game of Fig. 3. We say that the ARCAD is Cclean-IND-CCA-secure if for any PPT

adversary, the advantage

Adv(A) =
∣∣Pr

[
IND-CCAA

0,Cclean
(1λ)→ 1

]
− Pr

[
IND-CCAA

1,Cclean
(1λ)→ 1

]∣∣
9

of A in IND-CCAA
b,Cclean

security game is negligible.

Game FORGEA
Cclean

(1λ)

1: Setup(1λ)
$−→ pp

2: Initall(1λ, pp)
$−→ (stA, stB, z)

3: (P, ad, ct)← ARATCH,EXPst,EXPpt(z)
4: RATCH(P, “rec”, ad, ct)→ acc
5: if acc = false then return 0
6: if ¬Cclean then return 0
7: if (ad, ct) is not a forgery (Def. 7) for P then

return 0
8: return 1

Game r-RECOVERA(1λ)
1: win← 0
2: Setup(1λ)

$−→ pp

3: Initall(1λ, pp)
$−→ (stA, stB, z)

4: set all sent∗∗ and received∗∗ variables to ∅
5: P ← ARATCH,EXPst,EXPpt(z)
6: if we can parse receivedPct = (seq1, (ad, ct), seq2)

and sentPct = (seq3, (ad, ct), seq4) with seq1 6=
seq3 (where (ad, ct) is a single message and
all seqi are finite sequences of single messages)
then win← 1

7: return win

Game PREDICTA(1λ)

1: Setup(1λ)
$−→ pp

2: Initall(1λ, pp)
$−→ (stA, stB, z)

3: (P, ad, pt)← ARATCH,EXPst,EXPpt(z)
4: RATCH(P, “send”, ad, pt)→ ct

5: if (ad, ct) ∈ receivedPct then return 1
6: return 0

Fig. 4: FORGE, r-RECOVER, and PREDICT Games.
(Oracles RATCH, EXPst, EXPpt are defined in Fig. 1 and Fig. 3.)

Definition 10 (Cclean-FORGE security). Given a cleanness predicate Cclean, consider FORGEA
Cclean

game in Fig. 4 associated to the adversary A. Let the advantage of A be the probability that the
game outputs 1. We say that ARCAD is Cclean-FORGE-secure if, for any PPT adversary, the
advantage is negligible.

In this definition, we added the notion of cleanness which determines if an attack is trivial or
not. The original notion of FORGE security [7] is equivalent to using the following Ctrivial predicate
Cclean:

Ctrivial: the last (ad, ct) message is not a trivial forgery (following Def. 8).

The purpose of this update in the definition is to allow us to easily define a weaker form of
FORGE-security for symmetric protocols and in Section 3.3.

Definition 11 (r-RECOVER security [7]). Consider the r-RECOVERA game in Fig. 4 associated
to the adversary A. Let the advantage of A in succeeding in the game be Pr(win = 1). We say that
the ARCAD is r-RECOVER-secure, if for any PPT adversary, the advantage is negligible.

Definition 12 (PREDICT security [7]). Consider PREDICTA(1λ) game in Fig. 4 associated to
the adversary A. Let the advantage of A in succeeding in the game be the probability that 1 is
returned. We say that the ARCAD is PREDICT-secure, if for any PPT adversary, the advantage
is negligible.

PREDICT-security is useful to reduce the notion of matching status to the two conditions that

receivedPct is a prefix of sentPct at time t for P and receivedPct is a prefix of sentPct at time t for P.

10

2.2 The Epoch Notion in Secure Communication

We define the epochs in an equivalent way to the work done by Alwen et al. [1].10 Epochs are useful
to designate the sequence of messages, as both participants may not see exactly the same. We will
use epoch numbers in the design of our hybrid scheme for on-demand ratcheting in Section 4.1.

Epochs are a set of consecutive messages going in the same direction. An epoch is identified
by an integer counter e. Each message is assigned one epoch counter em. Hence, the epochs are
non-intersecting. For convenience, each participant P keeps the epoch value ePsend of the last sent
message and the epoch value ePrec of the last received message. They are used to assign an epoch
to a message to be sent.

Definition 13 (Epoch). Epochs are non-intersecting sets of messages which are defined by an
integer. During the game, we let ePrec (resp. ePsend) be the epoch of the last received (resp. sent)
message by P. At the very beginning of the protocol, we define ePsend and ePrec specifically. For the
participant A, eArec = −1 and eAsend = 0. For the participant B, eBsend = −1 and eBrec = 0. The
procedure to assign an epoch em to a new sent message follows the rule described next:
If ePrec < ePsend, then the message is put in the epoch em = ePsend. Otherwise, it is put in epoch
em = ePrec + 1.

Let eP = max{ePrec, ePsend}. Let bA = 0 and bB = 1. We have

ePsend =

{
eP if eP mod 2 = bP

eP − 1 otherwise
ePrec =

{
eP if eP mod 2 6= bP
eP − 1 otherwise

Therefore, it is equivalent to maintain (ePrec, ePsend) or eP. The procedure to manage eP and em
is described by Alwen et al. [1].

We depict a sample of a bidirectional communication in Fig. 5. The figure shows the epoch
number assignments based on our definitions.

A

e
m

=
2

B

e
m

=
1

e
m

=
0

e
m

=
0

e
m

=
0

e
m

=
0

e
m

=
1

e
m

=
2

e
m

=
3

e
m

=
3

Fig. 5: Bidirectional Exchanges between A and B with Epoch Numbers.

Property 14. From the epoch definition, we have the following properties.

1. At all times, |ePsend − ePrec| 6 1.
2. The epoch numbers for a unidirectional stream of messages are even if the sender is the

participant A and it is odd if the sender is B.
3. A new epoch for a participant P always starts with a RATCH(P, “send”) calls and ends with
RATCH(P, “rec”) calls.

4. If a participant P accepts a message corresponding to an epoch number em, then ePsend > em+1.

We will use a counter c for each epoch e. We will use the order on (e, c) pairs defined by

(e, c) < (e ′, c ′)⇐⇒ (e < e ′ ∨ (e = e ′ ∧ c < c ′))

10 The notion of epoch appeared in Poettering-Rösler [10] before.

11

3 Security Awareness

3.1 s-RECOVER Security

We gave the DV r-RECOVER security definition [7] in Def. 11. It is an important notion to capture
that P cannot accept a genuine ct from P after P receives a forgery. However, r-RECOVER-security
does not capture the fact that when it is P who receives a forgery, P could still accept messages
which come from P. We strengthen r-RECOVER security with another definition called s-RECOVER.

Definition 15 (s-RECOVER security). In the s-RECOVERA game in Fig. 6 with the adversary
A, we let the advantage of A in succeeding in the game be Pr(win = 1). We say that the ARCAD
is s-RECOVER-secure, if for any PPT adversary, the advantage is negligible.

Game s-RECOVERA(1λ)
1: win← 0
2: Setup(1λ)

$−→ pp

3: Initall(1λ, pp)
$−→ (stA, stB, z)

4: set all sent∗∗ and received∗∗ variables to ∅
5: P ← ARATCH,EXPst,EXPpt(z)
6: if receivedPct is a prefix of sentPct then
7: set t to the time when P sent the last message in receivedPct
8: if receivedPct(t) is not a prefix of sentPct then win← 1
9: end if

10: return win

Fig. 6: s-RECOVER Security Game.
(RATCH and EXP oracles are defined in Fig. 1 and Fig. 3.)

Ideally, what we want from the protocol is that participants can detect forgeries by realizing
that they are no longer able to communicate to each other. We cannot prevent impersonation to
happen after a state exposure but we want to make sure that the normal exchange between the
participants is cut. Hence, if a participant eventually receives a genuine message (e.g. because it
was authenticated after meeting in person), he should feel safe that no forgeries happened. Con-
trarily, detecting a communication cut requires an action from the participants, such as restoring
communication using a super hybrid structure, as we will suggest in Section 4.1.

We directly obtain the following useful result:

Lemma 16. If an ARCAD is r-RECOVER, s-RECOVER, and PREDICT secure, whenever P receives
a genuine message from P (i.e., an (ad, ct) pair sent by P is accepted by P), P is in a matching
status (following Def. 3), except with negligible probability.

Proof. Let Γ be a game. Let (ad, ct) be a message which was sent by P then received and accepted
by P.

We consider an r-RECOVER adversary A which simulates Γ until P receives (ad, ct), and output

P. We can parse receivedPct = (seq1, (ad, ct), seq2) with seq2 empty and sentPct = (seq3, (ad, ct), seq4).
Due to r-RECOVER security, we have seq1 = seq3, but with negligible cases. Hence, receivedPct is

prefix of sentPct, except with negligible probability.
We now let the same A play the s-RECOVER security game. Due to s-RECOVER security, since

receivedPct is prefix of sentPct, then receivedPct(t) is a prefix of sentPct, but with negligible probability.
Due to PREDICT-security, no message arrives before it is sent. Hence, P is in a matching status,
except with negligible probability. ut

12

Our notion of RECOVER-security and forgery is quite strong in the sense that it focuses on
the ciphertext. Some protocols such as JMM [9] focus on the plaintext. In JMM, ct includes some
encrypted data and some signature but only the encrypted data is hashed. Hence, an adversary
can replace the signature by another signature after exposure of the signing key. It can be seen
as not so important because it must sign the same content. However, the signature has a key
update and the adversary can make the receiver update to any verifying key to desynchronize,
then re-synchronize at will. Consequently, the JMM protocol does not offer RECOVER security as
we defined it. Contrarily, PR [10] hashes (ad, ct) but does not use it in the next ad or to compute the
next ct. Thus, PR has no RECOVER security either.11 One may think that it is easy to fix this by
hashing all messages but this is not as simple. We propose in Section 3.3 the chain transformation
which can fix any protocol, thanks to Lemma 22.

3.2 Security Awareness

To have a security-awareness notion, we want r-RECOVER, s-RECOVER, and PREDICT security12,
we want to have an acknowledgment extractor (to be aware of message delivery), and we want
to have a cleanness extractor (to be aware of the cleanness of every message, if not subject to
trivial exposure). The last two notions are defined below. This means that on the one hand, im-
personations are eventually discovered, and on the other hand, by assuming that no impersonation
occurs and assuming that exposures are known, a participant P knows exactly which messages are
safe, at least after one round-trip occurred.

Definition 17 (Security-awareness). A protocol is Cclean-security-aware if

– it is r-RECOVER, s-RECOVER, and PREDICT-secure;

– there is an acknowledgment extractor (Def. 19);

– there is a cleanness extractor for Cclean (Def. 20).

To make participants aware of the security status of any (challenge) message, they need to
know the history of exposures, they need to be able to reconstruct the history of RATCH calls
from their own view, and they need to be able to evaluate the Cclean predicate. Thankfully, the
Cclean predicates that we consider only depend on these histories. We first formally define the
notion of transcript.

Definition 18 (Transcript). In a game, for a participant P, we define the transcript of P as
the chronological sequence TP of all (oracle, extra) pairs involving P where each pair represents
an oracle call to oracle with P as input (i.e. either RATCH(P, “rec”, ., .), RATCH(P, “send”, ., .),
EXPpt(P), EXPst(P), or CHALLENGE(P)), except the unsuccessful RATCH calls which are omitted.
For each pair with a RATCH or CHALLENGE oracle, extra specifies the role (“send” or “rec”) and
the message (ad, ct) of the oracle call. For other pairs, extra = ⊥.

The partial transcript of P up to time t is the prefix TP(t) of TP of all oracle calls until time
t. The RATCH-transcript of P is the list TRATCHP of all extra elements in TP which are not ⊥ (i.e.
it only includes RATCH/CHALLENGE calls). Similarly, the partial RATCH-transcript of P up to
time t is the list TRATCHP (t) of extra elements in TP(t) which are not ⊥.

Next, we formalize that a participant can be aware of which of his messages were received by
his counterpart.

11 More precisely, in PR, if A is exposed then issues a message ct, the adversary can actually forge a
ciphertext ct ′ transporting the same pk and vfk and deliver it to B in a way which makes B accept.
If A issues a new message ct ′′, delivering ct ′′ to B will pass the signature verification. The decryption
following-up may fail, except if the kuKEM encryption scheme taking care of encryption does not check
consistency, which is the case in the proposed one [10, Fig. 3, eprint version]. Therefore, ct ′′ may be
accepted by B so PR is not r-RECOVER secure. The same holds for s-RECOVER security.

12 We want it to be able to apply Lemma 16 and be aware of matching status.

13

Definition 19 (Acknowledgment extractor). We consider a game Γ where the transcript TP
is formed for a participant P. Given a message (ad, ct) successfully received by P at time t and
which was sent by P at time t, we let (ad ′, ct ′) be the last message successfully received by P before
time t. (If there is no such message, we set it to ⊥.)

An acknowledgment extractor is an efficient function f such that f(TRATCHP (t)) = (ad ′, ct ′) for
any time t when P is in a matching status (Def. 3).

Given this extractor, P can iteratively reconstruct the entire flow of messages, and which messages
crossed each other during transmission.

We formalize awareness of a participant for the safety of each message.

Definition 20 (Cleanness extractor). We consider a game Γ where the transcript TP is formed
for a participant P. Let t be a time for P and t be a time for P. Let TP(t) and TP(t) be the partial
transcripts at those time. We say that there is a cleanness extractor for Cclean if there is an efficient
function g such that g(TP(t), TP(t)) has the following properties: if there is one CHALLENGE in the
TP(t) transcript and, either P received (adtest, cttest) or there is a round trip P → P → P starting
with P sending (adtest, cttest) to P, then g(TP(t), TP(t)) = Cclean(Γ). Otherwise, g(TP(t), TP(t)) = ⊥.

The function g is able to predict whether the game is “clean” for any challenge message. The case
with an incomplete round trip P → P → P starting with P sending (adtest, cttest) to P is when
the tested message was sent but somehow never acknowledged for the reception. If the message
never arrived, we cannot say for sure if the game is clean because the counterpart may later either
receive it and make the game clean or have a state exposure and make the game not clean. In
other cases, the cleanness can be determined for sure.

3.3 Strongly Secure ARCAD with Security Awareness

In this section, we take a secure ARCAD (it could be ARCADDV, in Appendix B, or the hybrid
one defined in Section 4) which we denote by ARCAD0 and we transform it into another secure
ARCAD which we denote by ARCAD1 = chain(ARCAD0), that is security aware. We achieve security
awareness by keeping some hashes in the states of participants. The intuitive way to build it is
to make chains of hash of ciphertexts (like a blockchain) which will be sent and received and to
associate each message to the digest of the chain. This enables a participant P to acknowledge its
counterpart about received messages whenever P sends a new message.

We define a tuple (Hsent, Hreceived, snt noack, rec toack) and store it in the state of a partici-
pant. Hsent is the hash of all sent ciphertexts. It is computed by the sender and delivered to the
counterpart along with ct. It is updated with hashing key hk and the old Hsent every time a new
Send operation is called. Likewise, Hreceived is the hash of all received ciphertexts. It is computed
with hk and the last stored Hreceived by the receiver upon receiving a message. It is updated every
time a new Receive operation is run.

Using Hsent and Hreceived alone is sufficient for r-RECOVER security but not for s-RECOVER
security.

rec toack is a counter of received messages which need to be reported when the next Send oper-
ation is run. For each Send operation, the protocol attaches to ct the last Hreceived to acknowledge
for received messages and reset rec toack to 0. rec toack is incremented by each Receive.

snt noack is a list of the hashes of sent ciphertexts which are waiting for an acknowledgment.
Basically, it is initialized to an empty array in the beginning and whenever a new Hsent is computed,
it is accumulated in this array. The purpose of such a list is to keep track of the sent messages
for which the sender expects an acknowledgment. More precisely, when the participant P keeps
its list of sent ciphertexts in snt noack, the counterpart P keeps a counter rec toack telling that
an acknowledgment is needed. Remember that P sends Hreceived back to the participant P to
acknowledge him about received messages. As soon as P acknowledges, P deletes the hash of the
acknowledged ciphertexts from snt noack.

The principle of our construction is that if an adversary starts to impersonate a participant
after exposure, there is a fork in the list of message chains which is viewed by both participants
and those chains can never merge again without making a collision.

14

We give our security aware protocol on Fig. 7. The security of the protocol is proved with the
following lemmas.

ARCAD1.Setup(1λ)

1: ARCAD0.Setup(1λ)
$−→ pp0

2: H.Gen(1λ)
$−→ hk

3: pp← (hk, pp0)
4: return pp

ARCAD1.Gen = ARCAD0.Gen

ARCAD1.Init(1λ, pp, skP, pkP,P)
1: parse pp = (hk, pp0)

2: ARCAD0.Init(1λ, pp0, skP, pkP,P)
$−→ st ′P

3: Hsent, Hreceived← ⊥
4: snt noack← [], rec toack← 0
5: stP ← (st ′P, hk, Hsent, Hreceived, snt noack, rec toack)
6: return stP

ARCAD1.Send(stP, ad, pt)
1: parse stP as (st ′P, hk, Hsent, Hreceived, snt noack, rec toack)
2: if rec toack = 0 then ack← ⊥ else ack← Hreceived
3: ad ′ ← (ad, Hsent, ack)

4: ARCAD0.Send(st ′P, ad ′, pt)
$−→ (st ′P, ct ′)

5: ct← (ct ′, Hsent, ack)
6: rec toack← 0
7: Hsent← H.Eval(hk, Hsent, ad, ct)
8: snt noack← (snt noack, Hsent)
9: stP ← (st ′P, hk, Hsent, Hreceived, snt noack, rec toack)

10: return (stP, ct)

ARCAD1.Receive(stP, ad, ct)
1: parse stP as (st ′P, hk, Hsent, Hreceived, snt noack, rec toack)
2: parse ct as (ct ′,h, ack)
3: if h 6= Hreceived or ack 6∈ {⊥} ∪ snt noack then
4: return (false, stP,⊥)
5: end if
6: ad ′ ← (ad,h, ack)
7: ARCAD0.Receive(st ′P, ad ′, ct ′)→ (acc, st ′P, pt ′)
8: if acc then
9: Hreceived← H.Eval(hk, Hreceived, ad, ct)

10: rec toack← rec toack + 1
11: if ack 6= ⊥ then remove in snt noack all elements

of snt noack until ack (included)
12: stP ← (st ′P, hk, Hsent, Hreceived, snt noack, rec toack)
13: end if
14: return (acc, stP, pt ′)

Fig. 7: Our Security-Aware ARCAD1 = chain(ARCAD0) Protocol.

Theorem 21. If ARCAD0 is correct, then chain(ARCAD0) is correct.

The proof is straightforward.

Lemma 22. If H is collision-resistant, chain(ARCAD0) is RECOVER-secure (for both s-RECOVER
and r-RECOVER security).

Proof. All (ad, ct) messages seen by one participant P in one direction (send or receive) are chained
by hashing. Hence, if receivedPct = (seq1, (ad, ct), seq2), the (ad, ct) message includes (in the second

field of ct) the hash h of seq1. If sentPct = (seq3, (ad, ct), seq4), the (ad, ct) message includes the
hash h of seq3. If H is collision-resistant, then seq1 6= seq3 with negligible probability. Hence, we
have r-RECOVER security.

Additionally, all genuine (ad, ct) messages include (in the third field of ct) the hash ack of
messages which are received by the counterpart. This list must be approved by P, thus it must
match the list of hashes of messages that P sent. Hence, if receivedPct is prefix of sentPct and t is the

time when P sent the last message in receivedPct, then this message includes the hash of receivedPct(t)
which must be a hash of a prefix of sentPct. Thus, unless there is a collision in the hash function,

receivedPct(t) is a prefix of sentPct and we have s-RECOVER security. ut

Lemma 23. chain(ARCAD0) has an acknowledgment extractor.

Proof. Let (ad, ct) be a message sent by P to P in a matching status. Let (ad ′, ct ′) be the last
message received by P before sending (ad, ct). Due to the protocol, ct includes the value of Hreceived
after receiving (ad ′, ct ′). Since this message is from P, P recognizes this hash Hreceived = Hsent from
snt noack. Both (ad ′, ct ′) and this hash can be computed from TRATCHP (t). Hence, chain(ARCAD0)
has an extractor. ut

15

Lemma 24. chain(ARCAD0) has a cleanness extractor for the following predicates:

Cleak,C
Ptest

trivialforge,C
A,B
trivialforge,C

Ptest

forge,C
A,B
forge,Cratchet,Cnoexp

Hence, there is an extractor for all cleanness predicates which we considered.

Proof. For Cnoexp and Cratchet, we just look at the appropriate oracle calls. For C∗∗forge, we can
directly see from transcripts where the forgeries are and we can determine if they are trivial or
not. For Cleak, we can easily inspect all cases of direct and indirect leakage and see that they can
be deduced from the available transcripts. ut

The following result is trivial.

Lemma 25. If ARCAD0 is PREDICT-secure, then chain(ARCAD0) is PREDICT-secure.

Consequently, if ARCAD0 is PREDICT-secure, chain(ARCAD0) is security-aware.

4 On-Demand Ratcheting

In this section, we define a bidirectional secure communication messaging protocol with hybrid on-
demand ratcheting. The aim is to design such a protocol to integrate two ratcheting protocols with
different security levels: a strongly secure protocol using public-key cryptography and a weaker
but much more efficient protocol with symmetric key primitives. The core of the protocol is to use
the weak protocol with frequent exchanges and to use the strong one on demand by the sending
participant. Hence, we build a more efficient protocol with on-demand ratcheting. Yet, it comes
with a security drawback. Even though the security for the former is to provide post-compromise
security, we secure part of the communication only with the forward secure protocol.

The sender uses a flag to tell which level of security the communication will have and apply
ratcheting with public-key cryptography or the lighter primitives such as the EtH protocol [13].
The flag is set in the ad input and it is denoted as ad.flag. We call the strong protocol as ARCADmain

and the weak one as ARCADsub. Ideally, the time to set the flag for specific security can be decided
during the deployment of the application using the protocol. This choice may also be left to the
users who can decide based on the confidentiality-level of their communication. The more often
the protocol turns the flag on, the more secure is the hybrid on-demand protocol. If we do it for
every message exchange, then we obtain ARCADmain without ARCADsub. If we do it for no message
exchange, then we obtain ARCADsub. The evolution of states is depicted on Fig. 8. The details are
explained shortly in the following sections.

4.1 Our Hybrid On-Demand ARCAD Protocol

We give our on-demand ARCAD protocol on Fig. 9. It uses two sub-protocols called ARCADmain and
ARCADsub. The former is to represent a strong-but-slow protocol such as ARCADDV (Fig. 14). The
latter is typically a weaker-but-faster protocol like EtH [13]. The use of one or the other is based
on a flag that can be turned on and off in ad (it is checked with ad.flag operation in the protocol).
To have the flag on lets the protocol run ARCADmain while setting the flag off means to run
ARCADsub. Assuming that ARCADmain is ratcheting (i.e. post-compromise secure) and ARCADsub

is not, this defines on-demand ratcheting. We denote our hybrid protocol as hybridARCAD =
hybrid(ARCADmain, ARCADsub).

We use as a reference the (e, c) number of messages in the ARCADmain thread. Every ARCADmain

message creates a new ARCADsub send/receive state pair. The sending participant keeps the gen-
erated send state in a sub[e, c] register under the (e, c) number of the message and sends the
generated receive state together with his message. The very first message which a participant
sees (either in sending or receiving) forces the flag to indicate ARCADmain as we have no initial
ARCADsub state. The (e, c) number if authenticated and also explicitly added in the ciphertext.
The receiving participant checks that (e, c) increases and uses the sub[e, c] register state to receive
the message.

16

(
st1main

·

) (
st2main

st2,1sub

)

st2,2sub

st2,3sub

...

(
st3main

st3,1sub

)

st3,2sub

st3,3sub

...

main

sub

sub

main

sub

sub

· · ·

Fig. 8: Evolution of States in the Hybrid Protocol

Theorem 26. If the protocols ARCADmain and ARCADsub are both correct, then the protocol
hybrid(ARCADmain, ARCADsub) is correct.

Proof. We want to prove that the list of sent (ad, ct) by P matches the list of received (ad, ct)
by P, for each P. We first rewrite a list of (ad, ct) as follows. We note that ct is in the form of
(ct ′, e, c). We define below a bit b for each (ad, ct) from the list, then ad ′ = (ad,b, e, c), and we
rewrite each (ad, ct) into (ad ′, ct ′). Hence, we rewrite (ad, (ct ′, e, c)) into ((ad,b, e, c), ct ′). Clearly,
the only significant change is to add this bit b.

The bit b indicates which ARCAD protocol this message belongs to. We define b for (ad, ct) in
the list as follows. If one of the two following conditions is satisfied, we define b = 1. Otherwise,
we define b = 0.

C1: ad.flag is set.
C2: (e, c) = (0, 0) and there is no prior message in the list with (e, c) = (0, 0).

Condition C2 is to identify the very first message for which the sender is forced to use ARCADmain.
We now show that b = 1 if and only if the message belongs to ARCADmain and use the correctness
of both protocols to conclude.

Clearly, if ad.flag is set, ARCADmain is used.
For a sent message by P, the condition ctr[max(esend, erec)] = −1 and Condition C2 are both

equivalent to that P received no message and is sending his very first one. Hence, they are equiv-
alent.

For a received message by P, the condition (e, ctr[0]) = (0,−1) and Condition C2 are similarly
equivalent to that P = B and this is the very first received message. Hence, they are equivalent.

Therefore, the conditions in Send and Receive defining whether the message belongs to ARCADmain

are equivalent to b = 1.
Once we have rewritten the messages with (b, e, c), we can clearly identify which protocol they

belong to. If b = 1, this is an ARCADmain message. If b = 0, this is an ARCADsub message in a
session state indexed by (e, c). We can extract from the lists all messages with b = 1 and use the
correctness of ARCADmain to show that they match. Similarly, for each (e, c), we can extract from
the lists all messages with b = 0 and this (e, c) index and use the correctness of ARCADsub to
show that they match. Next, we observe that (e, c) is non-decreasing in each list and that the first

17

message with an index (e, c) must have b = 1. Hence, there cannot be any order mismatch. The
list of sent (ad ′, ct ′) by P matches the list of received (ad ′, ct ′) by P, for each P. So is the list of
sent (ad, ct) and the list of received (ad, ct). ut

4.2 Application: Super-Scheme to (Re)set a Protocol

Our hybrid construction finds another application than on-demand ratcheting: defense against
message loss or active attacks. Indeed, by using ARCADmain = ARCADsub, we can set ad.flag to
restore an ARCADsub communication which was broken due to a message loss. Normal communi-
cation works in the ARCADsub session, hence with a flag down. However, we may use ARCADmain

to start a new ARCADsub session. If ARCADsub gets broken due to a message loss or an active
attack on it, ARCADmain can be used to restart a new ARCADsub session. We cannot resume if the
ARCADmain session is broken. However, we can also make nested hybrid protocols with more than
two levels of protocols inside for safety. It may increase the state sizes but the performance should
be nearly the same. Then, only persistent message drop attacks would succeed to make a denial
of service.

4.3 Security Definitions

We modify the predicates and the notion of FORGE-security from Section 2. In our hybrid protocol,
each message (ad, ct) has a clearly defined (e, c) pair. A ct which is input or output from RATCH
comes with an ad which has a clearly defined ad.flag bit.

Sub-games. Given a game Γ for the hybridARCAD scheme with an adversary A, we define a game
main(Γ) for ARCADmain with an adversary A ′ which simulates everything but the ARCADmain calls
in Γ . Namely, A ′ simulates the enrichment of the states and all ARCADsub management together
with A.

Given a game Γmain for ARCADmain using no CHALLENGE oracle and an (e, c) pair, we denote
by maine,c(Γmain) the variant of Γmain in which the RATCH Send call making the message (ad, ct)
with pair (e, c) is replaced by a CHALLENGE query with b = 1. This perfectly simulates Γmain and
produces the same value, and we can evaluate a predicate Cclean relative to this challenge message.
We define Ce,cclean(Γmain) = Cclean(maine,c(Γmain)). Intuitively, Ce,cclean(Γmain) means that the message
of pair (e, c) was safely encrypted and should be considered as private because no trivial attack
leaks it.

We also define sube,c(Γ) and sub ′e,c(Γ). We let P be the sending participant of the ARCADmain

message of pair (e, c). In sub ′e,c(Γ), the adversary A ′ simulates everything but the ARCADsub calls

involving messages with pair (e, c). The initial states of P and P are also set by the game sub ′e,c(Γ).

However, it makes an EXPst(P) call at the beginning of the protocol to get the initial state stR
for ARCADsub. With this state, A ′ can simulate the encryption of stR with ARCADmain and all the
rest. Clearly, the simulation is perfect but it adds an initial EXPst(P) call.

The sube,c(Γ) game is a variant of sub ′e,c(Γ) without the additional EXPst(P). To simulate the
encryption of stR, A ′ encrypts a random string instead. When it comes to decrypt the obtained
ciphertext, the random plaintext is ignored and the RATCH calls with stR are simulated with the
RATCH calls for the ARCADsub game. The simulation is no longer perfect but it does not add an
EXPst(P) call.

Hybrid cleanness. We assume two cleanness predicates Cclean and Cmain (which could be the same)
for ARCADmain and one cleanness predicate Csub for ARCADsub. We define a hybrid predicate
CCclean

Cmain,Csub
as follows. By abuse of notation, we write Cclean

main,sub instead, for more readability. Let Γ
be a game played by an adversary A against hybridARCAD.

18

hybridARCAD.Setup(1λ)
1: ppmain ← ARCADmain.Setup(1λ)
2: ppsub ← ARCADsub.Setup(1λ)
3: return (ppmain, ppsub)

hybridARCAD.Gen(1λ, ppmain, ppsub)
4: return ARCADmain.Gen(1λ, ppmain)

hybridARCAD.Init(1λ, (ppmain, ppsub), skP, pkP,P)
1: ARCADmain.Init(1λ, ppmain, skP, pkP,P)→ stmain

2: initialize array stsub[] to empty
3: if P = A then (esend, erec)← (0,−1)
4: else (esend, erec)← (−1, 0)
5: end if
6: initialize array ctr with ctr[0] = −1
7: stP ← (λ, ppsub, stmain, stsub[], esend, erec, ctr[])
8: return stP

hybridARCAD.Send(stP, ad, pt)
1: parse stP as (λ, ppsub, stmain, stsub[], esend, erec, ctr[])
2: e← max(esend, erec); c← ctr[e] . current epoch
3: if ad.flag or c = −1 then
4: if esend < erec then e← erec + 1; c← 0
5: else e← esend ; c← ctr[e] + 1
6: end if
7: ARCADsub.Initall(1λ, ppsub)

$−→ (stS, stR, z) . create a new sub-state.
8: stsub[e, c]← stS
9: pt ′ ← (stR, pt); ad ′ ← (ad, 1, e, c)

10: ARCADmain.Send(stmain, ad ′, pt ′)
$−→ (stmain, ct ′) . send using the main state.

11: ct← (ct ′, e, c)
12: esend ← e ; ctr[esend]← c

13: else
14: ad ′ ← (ad, 0, e, c)

15: ARCADsub.Send(stsub[e, c], ad ′, pt)
$−→ (stsub[e, c], ct ′) . send using the sub-state.

16: ct← (ct ′, e, c)
17: end if
18: clean-up: erase stsub[e, c] for all (e, c) such that (e, c) < (esend, ctr[esend]) and (e, c) < (erec, ctr[erec])
19: clean-up: erase ctr[e] for all e such that e < esend and e < erec
20: stP ← (λ, ppsub, stmain, stsub[], esend, erec, ctr[])
21: return (stP, ct)

hybridARCAD.Receive(stP, ad, ct)
22: parse stP as (λ, ppsub, stmain, stsub[], esend, erec, ctr[])
23: parse ct as (ct ′, e, c)
24: if (e, c) < (erec, ctr[erec]) then return (false, stP,⊥) . (e, c) must increase
25: if ad.flag or (e = 0 and ctr[0] = −1) then
26: ad ′ ← (ad, 1, e, c)
27: ARCADmain.Receive(stmain, ad ′, ct ′)→ (acc, stmain, pt ′)
28: parse pt ′ as (stR, pt)
29: if acc then
30: stsub[e, c]← stR
31: erec ← e; ctr[e]← c

32: end if
33: else
34: ad ′ ← (ad, 0, e, c)
35: if stsub[e, c] undefined then return (false, stP,⊥)
36: ARCADsub.Receive(stsub[e, c], ad ′, ct ′)→ (acc, stsub[e, c], pt)
37: end if
38: clean-up: erase stsub[e, c] for all (e, c) such that (e, c) < (esend, ctr[esend]) and (e, c) < (erec, ctr[erec])
39: clean-up: erase ctr[e] for all e such that e < esend and e < erec
40: stP ← (λ, ppsub, stmain, stsub[], esend, erec, ctr[])
41: return (acc, stP, pt)

Fig. 9: On-Demand hybridARCAD = hybrid(ARCADmain, ARCADsub) Protocol.

19

We let (ad, ct) be the challenge message (adtest, cttest) if it exists. Otherwise, (ad, ct) is the last
message in Γ . We let (e, c) be the number of (ad, ct). We let

Cclean
main,sub(Γ) =

if (ad, ct) belongs to ARCADmain : Cmain(main(Γ))

else :

{
if Ce,cclean(main(Γ)) :
else :

Csub(sube,c(Γ))
Csub(sub ′e,c(Γ))

This means that if the challenge holds on an ARCADmain message, we only care for main(Γ) to be
Cmain-clean. Otherwise, either the ARCADmain message initiating the relevant ARCADsub session is
Cclean or not. If it is clean, we can replace it and consider Csub-cleanness for sube,c(Γ). Otherwise,
the initial ARCADsub state stR trivially leaked (or was exposed, equivalently) and we consider
Csub-cleanness for sub ′e,c(Γ). The role of Cclean is to control which of the two games to use. Cclean

must be a privacy cleanness notion for main. Contrarily, Cmain and Csub could be either privacy or
authenticity notions.

Note that Csub(sub ′e,c(Γ)) = false for Csub = Cnoexp, due to the EXPst call.
We easily obtain the following result.

Lemma 27. If ARCADmain is Cmain-IND-CCA-secure and ARCADsub is Csub-IND-CCA-secure, then
hybridARCAD is Cclean-IND-CCA with Cclean = C

main
main,sub.

Proof. Let Γ be an IND-CCA game for hybridARCAD. Let us assume that Γ is clean with our new
cleanness notion Cclean = C

main
main,sub.

Let (ad, ct) be the challenge message. If there is no challenge message in Γ , we let (ad, ct) be
the last message sent by any participant in Γ . The (ad, ct) message belongs to either ARCADmain or
ARCADsub. It depends on ad.flag and on whether this is the very first message of the participant
or not (because we force to use ARCADmain in this case).

We define the following non-overlapping events/cases:

– Cmain: (ad, ct) belongs to ARCADmain;
– Ce,ctrue: (ad, ct) belongs to ARCADsub, has number (e, c), and Ce,cmain(main(Γ)) is true;
– Ce,cfalse: (ad, ct) belongs to ARCADsub, has number (e, c), and Ce,cmain(main(Γ)) is false.

We know that Γ is clean following Cclean. In the Cmain case ((ad, ct) belongs to ARCADmain),
by definition of Cclean, we deduce that main(Γ) is Cmain-clean. The outcome of main(Γ) and Γ is
obviously the same. So is the advantage. Due to the Cmain-IND-CCA security of ARCADmain, the
advantage in Γ conditioned to Cmain is negligible.

In what follows, we consider that (ad, ct) belongs to ARCADsub.
Ce,cmain indicates if the ARCADmain message of pair (e, c) can be replaced by the encryption of

something random to produce the same result, except with negligible probability: If Ce,cCmain
is true,

sube,c(Γ) produces the same outcome as Γ . So, the advantages of Γ and sube,c(Γ) have a negligible
difference when Ce,ctrue holds. By definition of Cclean, sube,c(Γ) must be Csub-clean. Due to the Csub-
IND-CCA security of ARCADsub, the advantage in sube,c(Γ) is negligible. Hence, the advantage in
Γ conditioned to Ce,ctrue is negligible.

Similarly, if Ce,cclean(Γ) does not hold, Cclean implies that sub ′e,c(Γ) is clean. This game produces
exactly the same outcome as Γ when Ce,cfalse holds. So is the advantage. Due to the Csub-IND-CCA
security of ARCADsub, the advantage in Γ conditioned to Ce,cfalse is negligible.

In all cases, the advantage in Γ is negligible. As the number of cases is polynomially bounded,
the advantage in Γ is negligible. ut

In the FORGE game, we replace the Ctrivial predicate. Typically, by taking Cmain as the predicate
that tests if the last (ad, ct) message is a trivial forgery and by taking Csub as the predicate that
additionally tests if no EXPst occurred, the Cclean

main,sub predicate defines a new FORGE notion for
hybrid(ARCADDV, EtH). More generally, if ARCADmain is Cmain-FORGE-secure and ARCADsub is
Csub-FORGE-secure, we would like to have CCclean

Cmain,Csub
-FORGE-security.

20

Game FORGE∗ACclean
(1λ)

1: Setup(1λ)
$−→ pp

2: Initall(1λ, pp)
$−→ (stA, stB, z)

3: (P, ad, ct)← ARATCH,EXPst,EXPpt(z)
4: if one participant (or both) is NOT in a matching status then return 0
5: RATCH(P, “rec”, ad, ct)→ acc
6: if acc = false then return 0
7: if ¬Cclean then return 0
8: if we can parse receivedPct = (seq1, (ad, ct)) and sentPct = (seq1, seq2, (ad, ct), seq3) then return 0
9: return 1

Fig. 10: Relaxed FORGE Security.

We almost have the reduction but there is something missing. Namely, a forgery for hybridARCAD
in Γ may not be a forgery for neither ARCADmain in main(Γ) nor ARCADsub in sube,c(Γ). This hap-
pens if the adversary in Γ drops the delivery of the last messages in a sub scheme. We relax
FORGE-security using the FORGE∗ game in Fig. 10. Only Steps 4 and 8 are new. Our chain
strengthening in Section 3 can later make the protocols fully FORGE-secure. We easily prove the
following result.

Lemma 28. If ARCADmain is Cclean-IND-CCA-secure and Cmain-FORGE∗-secure and if ARCADsub

is Csub-FORGE∗-secure, then hybridARCAD is Chybrid-FORGE∗, where Chybrid = C
clean
main,sub.

Proof. We proceed like in the proof of Lemma 27. Let Γ be a FORGE∗ game for hybridARCAD.
Let (P, ad, ct) be the output of the adversary. The (ad, ct) message belongs to either ARCADmain

or ARCADsub. We show below that

Adv(Γ) 6 Adv(main(Γ)) +
∑
e,c

Adv(sube,c(Γ)) +
∑
e,c

Adv(sub ′e,c(Γ)) + negl

Applying FORGE∗ security for the three terms, Adv(Γ) is negligible. To prove the above inequality,
we show that when Γ returns 1, then at least one of the three other games return 1, with negligible
exceptions.

We first assume that (ad, ct) belongs to ARCADmain and Γ = FORGE∗ succeeds to return 1.
Since Γ returns 1, both participants are in a matching status before we deliver the forgery to
P. Hence, both participants are in a matching status in main(Γ) too. Similarly, since (ad, ct) is
accepted by RATCH(P, .) in Γ and it belongs to main(Γ), it is accepted by RATCH(P, .) in main(Γ)
too. Let seq1 be the value of receivedPct in Γ before receiving (ad, ct). Since both participants were in

a matching status, we know that sentPct starts with seq1 in Γ . As Γ returns 1, we know that (ad, ct)

does not appear anywhere in sentPct after seq1. In main(Γ), the values of receivedPct and sentPct are sub-
sequences of the values in Γ . By the same reasoning, we have receivedPct = (seq ′1, (ad, ct)) in main(Γ)

and sentPct starts with seq ′1. But seq ′1 must be a sub-sequence of seq1 so (ad, ct) cannot appear after

it in sentPct. Finally, since Chybrid holds and (ad, ct) belongs to ARCADmain, Cmain(main(Γ)) holds,
by definition of Chybrid. This means that main(Γ) is Cmain-clean. We deduce that main(Γ) succeeds
to return 1 as well.

Similarly, if (ad, ct) belongs to ARCADsub and Γ returns 1, we treat two cases depending on
whether Ce,cclean(Γ) holds or not. Let Γ ′ be the game in which ct is replaced by the encryption of a
random string. If Ce,cclean(Γ) is true, thanks to Cclean-IND-CCA security, Γ and Γ ′ produce the same
output, but with negligible probability. Hence, Γ ′ outputs 1, except in negligible cases. Like in the
previous case, we deduce that sube,c(Γ) outputs 1:

– RATCH accepts in Γ ′ implies that RATCH accepts in sube,c(Γ);

– (ad, ct) appears in sentPct in neither Γ ′ nor sube,c(Γ));
– sube,c(Γ) is Csub-clean because (ad, ct) belongs to ARCADsub and Ce,cclean(Γ) is true.

21

Finally, if Ce,cclean(Γ) is false, we apply the same reasoning with sub ′e,c(Γ). ut

What FORGE∗ security does not guarantee is that some forgeries in a sub-scheme may occur in
the far future, due to state exposure. Fortunately, our protocol mitigates this problem by making
sure that old sub-protocols become obsolete. Indeed, our protocol makes sure that sent messages
always have an increasing sequence of (e, c) pairs, and the same for received messages. Hence, we
cannot have a forgery with an old (e, c) pair. Another problem which is explicit in Step 8 of the
game is that the adversary may prevent P from receiving a sequence seq2 sent from P (namely in
a sub-protocol). In Section 3, making the protocol r-RECOVER-secure fixes both problems. (See
Lemma 30.) Hence, we will obtain FORGE-security.

4.4 Security-aware Hybrid Construction

In this section, we apply our results from Section 3.3 to our hybrid constructions.

Lemma 29. Let Cclean ∈ {Ctrivial,Cnoexp} and ARCAD1 = chain(ARCAD0). If ARCAD0 is Cclean-
FORGE-secure (resp. Cclean-FORGE∗-secure), then ARCAD1 is Cclean-FORGE-secure (resp. Cclean-
FORGE∗-secure).

Proof. We reduce an adversary playing the FORGE game with ARCAD1 to an adversary playing the
FORGE game with ARCAD0 by simulating the hashings. ARCAD1 is an extension of ARCAD0 such
that an ARCAD1 message (ad, (ct ′,h, ack)) is equivalent to an ARCAD0 message ((ad,h, ack), ct ′).
It is just reordering (ad, ct). Hence, a forgery for ARCAD1 must be a forgery for ARCAD0. FORGE∗-
security works the same. ut

Lemma 30. Given ARCADmain and ARCADsub, let

ARCAD0 = hybrid(ARCADmain, ARCADsub) , ARCAD1 = chain(ARCAD0)

If ARCADmain is Cclean-IND-CCA-secure and Cmain-FORGE∗-secure and ARCADsub is Csub-FORGE∗-
secure, then ARCAD1 is Cclean

main,sub-FORGE∗-secure. If H is additionally collision-resistant, then

ARCAD1 is Cclean
main,sub-FORGE-secure.

Proof. Due to Lemma 28, Cclean
main,sub-FORGE∗-security works like in the previous result. To ex-

tend to Cclean
main,sub-FORGE-security, we just observe that ARCAD1 is r-RECOVER-secure due to

Lemma 22. We thus deduce seq2 = ⊥ from having receivePct = (seq1, (ad, ct)) and sentPct =
(seq1, seq2, (ad, ct), seq3). Hence, we have a full forgery, except with negligible probability. ut

Lemma 31. Let Cclean = Cleak, Cratchet, Cnoexp, or CStforge (t = trivial or ⊥}, S = Ptest or {A,B}),
If ARCAD0 is Cclean-IND-CCA-secure, then ARCAD1 is Cclean-IND-CCA-secure.

Proof. We reduce an adversary playing the IND-CCA game with ARCAD1 to an adversary playing
the IND-CCA game with ARCAD0 by simulating the hashings. We easily see that the cleanness is
the same and that the simulation is perfect. ut

We easily extend this result to hybrid constructions. We conclude with our final result.

Theorem 32. Given ARCADmain and ARCADsub, let

ARCAD0 = hybrid(ARCADmain, ARCADsub) , ARCAD1 = chain(ARCAD0)

We assume that 1. H is collision-resistant; 2. ARCADmain is Cclean-IND-CCA-secure and Cmain-
FORGE∗-secure; 3. ARCADsub is Csub-FORGE∗-secure and C ′clean-IND-CCA-secure. Then, ARCAD1

is 1. r-RECOVER-secure, 2. s-RECOVER-secure, 3. Cclean
main,sub-FORGE-secure, 4. Cclean

clean,clean′-IND-CCA-
secure, 5. with acknowledgement extractor.

22

Corollary 33. Let ARCAD1 = chain(hybrid(ARCADDV, EtH)) (where ARCADDV is defined on

Fig. 14) and let Cclean = Cleak ∧ C
A,B
forge. With the assumptions from Th. 34 and the EtH result [13,

Th.2], if H is collision-resistant, ARCAD1 is Cclean
trivial,noexp-FORGE-secure, Cclean

clean,sym-IND-CCA-secure,
and with security-awareness.

In particular, when a sender deduces an acknowledgment for his messagem from a received message
m ′, if he can make sure that m ′ is genuine and that no trivial exposure for m happened, then he
can be sure that his message m is private, no matter what happened before or what will happen
next.

5 Conclusion

We revisited the DV security model. We proposed an hybrid construction which would mostly use
EtH and occasionally a stronger protocol, upon the choice of the sender, thus achieving on-demand
ratcheting. Finally, we proposed the notion of security awareness to enable participants to have
a better idea on the safety of their communication. We achieved what we think is the optimal
awareness. Concretely, a participant is aware of which of his messages arrived to his counterpart
when he sent the last received one. We make sure that any forgery (possibly due to exposure)
would fork the chain of messages which is seen by both participants and result in making them
unable to continue communication. We also make sure that assuming that the exposure history is
known, participants can deduce which messages leaked.

References

1. Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions, proofs, and
modularization for the signal protocol. In Advances in Cryptology – EUROCRYPT 2019 (1), volume
11476 of Lecture Notes in Computer Science, pages 129–158. Springer, 2019. Full version: https:

//eprint.iacr.org/2018/1037.pdf.

2. Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs. Ratcheted
encryption and key exchange: The security of messaging. In Advances in Cryptology – CRYPTO 2017,
pages 619–650. Springer International Publishing, 2017.

3. Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communication, or, why not to use
PGP. In Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, WPES ’04,
pages 77–84, New York, NY, USA, 2004. ACM.

4. Andrea Caforio, F. Betül Durak, and Serge Vaudenay. Beyond security and efficiency: On-demand
ratcheting with security awareness. In Public-Key Cryptography – PKC 2021, volume 12711 of Lecture
Notes in Computer Science, pages 649–677. Springer, 2021. Full version https://eprint.iacr.org/

2019/965.pdf.

5. Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila. A formal
security analysis of the signal messaging protocol. In 2017 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 451–466, April 2017.

6. Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On post-compromise security. In 2016 IEEE
29th Computer Security Foundations Symposium (CSF), pages 164–178, June 2016.

7. F. Betül Durak and Serge Vaudenay. Bidirectional asynchronous ratcheted key agreement with linear
complexity. In Advances in information and Computer Security – IWSEC 2019, volume 11689 of
Lecture Notes in Computer Science, pages 343–362. Springer, 2019. Full version: https://eprint.
iacr.org/2018/889.pdf.

8. Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-grained state compromise:
The safety of messaging. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
– CRYPTO 2018, pages 33–62. Springer International Publishing, 2018.

9. Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting: Almost-optimal guarantees for
secure messaging. In Advances in Cryptology – EUROCRYPT 2019 (1), volume 11476 of Lecture
Notes in Computer Science, pages 159–188. Springer, 2019. Full version: https://eprint.iacr.org/
2018/954.pdf.

23

https://eprint.iacr.org/2018/1037.pdf
https://eprint.iacr.org/2018/1037.pdf
https://eprint.iacr.org/2019/965.pdf
https://eprint.iacr.org/2019/965.pdf
https://eprint.iacr.org/2018/889.pdf
https://eprint.iacr.org/2018/889.pdf
https://eprint.iacr.org/2018/954.pdf
https://eprint.iacr.org/2018/954.pdf

10. Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted key exchange. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, pages 3–32. Springer
International Publishing, 2018.

11. Open Whisper Systems. Signal protocol library for Java/Android. GitHub repository https://

github.com/WhisperSystems/libsignal-protocol-java, 2017.
12. Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Goldberg, and Matthew

Smith. SoK: Secure messaging. In 2015 IEEE Symposium on Security and Privacy, pages 232–249,
May 2015.

13. Hailun Yan and Serge Vaudenay. Symmetric asynchronous ratcheted communication with associated
data. In Advances in information and Computer Security – IWSEC 2020, volume 12231 of Lecture
Notes in Computer Science, pages 184–204. Springer, 2020.

A Implementations/Comparisons with Existing Protocols

We compare the performances of ARCADDV and EtH to other ratcheted messaging and key agree-
ment protocols that have surfaced since 2018. In particular, we implemented five other schemes
from the literature. Namely, the bidirectional asynchronous key-agreement protocol BRKE by
PR [10], the similar secure messaging protocol by JS [8], the secure messaging protocol by JMM [9]
and a modularized version of two protocols by ACD [1]. In ACD [1], the given protocols are both
with symmetric key cryptography ACD and public-key cryptography ACD-PK. We did not imple-
ment the DV protocol [7], as ARCADDV is a slightly modified version of DV, hence has identical
performances.

All the protocols were implemented in Go 13 and measured with its built-in benchmarking
suite 14 on a regular fifth generation Intel Core i5 processor. In order to mitigate potential overheads
garbage collection has been disabled for all runs. Go is comparable in speed to C/C++ though
further performance gains are within reach when the protocols are re-implemented in the latter
two. Additionally, some protocols deploy primitives for which no standard implementations exist,
which is, for example, the case for the HIBE constructions used in the PR and JS protocols,
making custom implementations necessary that can certainly be improved upon. For the deployed
primitives, when we needed an AEAD scheme, we used AES-GCM. For public key cryptosystem,
we used the elliptic curve version of ElGamal (ECIES); for the signature scheme, we used ECDSA.
And, finally for the PRF-PRNG in [1] protocol, we used HKDF with SHA-256. Lastly, the protocols
themselves may offer some room for performance tweaks.

The benchmarks can be categorized into two types as depicted in Fig. 11–12.

(a) Runtime designates the total required time to exchange n messages, ignoring potential latency
that normally occurs in a network.

(b) State size shows the maximal size of a user state throughout the exchange of n messages.

A state is all the data that is kept in memory by a user. Each type itself is run on three canonical
ways traffic can be shaped when two participants are communicating. In alternating traffic the
parties are synchronized, i.e. take turns sending messages. In unidirectional traffic one participant
first sends n

2 messages which are received by the partner who then sends the other half. Finally,
in deferred unidirectional traffic both participants send n

2 messages before they start receiving.
ACD-PK adds some public-key primitives to the double ratchet by ACD [1] to plug some post-
compromise security gaps. These two variations serve as baselines to see how the metrics of a
protocol can change when some of its internals are replaced or extended. Also note that due to
the equivalent state sizes in unidirectional and deferred unidirectional traffic one figure is omitted.

As we can see, overall, the fastest protocol is EtH, followed by the two ACD protocols, then
ARCADDV, then the JMM protocol, and lastly the strongest protocols PR and JS. ARCADDV and
JMM may be comparable except for deferred unidirectional communication.

The smallest state size is obtained with EtH. ARCADDV performs well in terms of state size.
Clearly, hybrid(ARCADDV, EtH) has performances which are weighted averages of the ones of

ARCADDV and EtH, depending on the frequency of on-demand ratcheting.

13 https://golang.org/
14 https://golang.org/pkg/testing/

24

https://github.com/WhisperSystems/libsignal-protocol-java
https://github.com/WhisperSystems/libsignal-protocol-java
https://golang.org/
https://golang.org/pkg/testing/

0 200 400 600 800 1,000

10−4

10−3

10−2

10−1

100

101

102

103

104

Number of Sent Messages

T
im

e
(s

)

Alternating

ARCADDV EtH PR

JS JMM ACD

ACD-PK

0 200 400 600 800 1,000

10−4

10−3

10−2

10−1

100

101

102

103

104

Number of Sent Messages

T
im

e
(s

)

Unidirectional

ARCADDV EtH PR

JS JMM ACD

ACD-PK

0 200 400 600 800 1,000

10−4

10−3

10−2

10−1

100

101

102

103

104

Number of Sent Messages

T
im

e
(s

)

Def. Unidirectional

ARCADDV EtH PR

JS JMM ACD

ACD-PK

Fig. 11: Runtime Benchmarks
The protocol in [10] is represented with PR; [8] with JS; [9] with JMM; and [1] with ACD and ACD-PK.

ACD-PK is the public-key version with stronger security.

25

0 200 400 600 800 1,000
10−2

10−1

100

101

102

103

104

Number of Sent Messages

S
iz

e
(K

il
o
b
y
te

)

Alternating

ARCADDV EtH PR JS

JMM ACD ACD-PK

0 200 400 600 800 1,000
10−2

10−1

100

101

102

103

104

Number of Sent Messages

S
iz

e
(K

il
o
b
y
te

)

[Def.] Unidirectional

ARCADDV EtH PR JS

JMM ACD ACD-PK

Fig. 12: State Size Benchmarks
Due to the equivalent state sizes in unidirectional and deferred unidirectional traffic, one figure is

omitted

B ARCADDV Formal Protocol

With slight modifications, we transform the DV protocol [7] into an ARCAD that we call ARCADDV.
ARCADDV is based on a hash function H 15, a one-time symmetric cipher Sym16, a digital

signature scheme DSS17, and a public-key cryptosystem PKC18.
ARCADDV, just as DV, consists of many modules which are built on top of each other. The

“smallest” module is a “naive” signcryption scheme SC which can be of the form

SC.Enc(

stS︷ ︸︸ ︷
skS, pkR, ad, pt) = PKC.Enc(pkR, (pt, DSS.Sign(skS, (ad, pt))))

SC.Dec(skR, pkS︸ ︷︷ ︸
stR

, ad, ct) =

[
(pt,σ)← PKC.Dec(skR, ct) ;
DSS.Verify(pkS, (ad, pt),σ) ? pt : ⊥

]

SC extends to a multiple-state (and multiple-key) encryption called onion. It handles the the
case where the states get accumulated during a sequential send or receive operation during the
communication. It generates a secret key to encrypt a plaintext. This secret key is, then, secret
shared and encrypted under different states so that if a state is exposed, its shares would still
remain confidential. onion leads to a unidirectional scheme called uni where participants have fixed
roles as either senders or receivers. The underlying idea of unidirectional communication is to let
the sender generate the next send/receive states for the future exchange during the current send
operation and transmit the next receive state to the receiver. These future states are shown as st ′S
and st ′R in the second row of Fig. 13. After each uni.Send and uni.Rec operations, the states are
completely flushed to ensure security.

Finally, unidirectional communication allow us to construct the bidirectional ARCADDV as
shown in the last row of Fig.13. Since the communication become bidirectional, the participant P
also keeps states for receiving. More specifically, the sender generates a pair of fresh states and

15 H uses a common key hk generated by H.Gen and an algorithm H.Eval.
16 Sym uses a key of length Sym.kl, encrypts over the domain Sym.D with algorithm Sym.Enc and decrypts

with Sym.Dec.
17 DSS uses a key generation DSS.Gen, a signing algorithm DSS.Sign, and a verification algorithm

DSS.Verify.
18 PKC uses a key generation PKC.Gen, an encryption algorithm PKC.Enc, and a decryption algorithm

PKC.Dec.

26

transmits the send state to the counterpart so that s/he can use it to send a reply to back to the
sender with this states.

ARCADDV is depicted on Fig. 14.
Note that we removed some parts of the protocol which ensure r-RECOVER security. This is

because the generic transformation in Section 3 which we apply on ARCADDV will restore it in a
stronger and generic way.

We recall the security results.

Theorem 34 (Security of ARCADDV [7]). ARCADDV is correct. If Sym.kl(λ) = Ω(λ), H is
collision-resistant, DSS is SEF-OTCMA, PKC is IND-CCA-secure, and Sym is IND-OTCCA-secure,
then ARCADDV is Ctrivial-FORGE-secure, (Cleak∧C

A,B
forge)-IND-CCA-secure and PREDICT-secure.19,20

C liteARCAD: a Light Protocol without Post-Compromise Security

We adapt ARCADDV of Fig. 14 by replacing the signcryption SC21 by a symmetric one-time
authenticated encryption (OTAE) scheme.22 We obtain a lightweight ARCAD which achieves most
of the security properties except post-compromise security. In fact, it is known that a secure and a
correct unidirectional ARCAD implies public-key encryption [7]. Therefore, we do not expect full
security from this symmetric-only protocol. The full specification of liteARCAD is on Fig. 15.

Theorem 35 (Security of liteARCAD). Let liteARCAD be the ARCAD scheme on Fig. 15.
It is correct. If Sym.kl = Ω(λ), liteARCAD is PREDICT-secure. If OTAE is SEF-OTCMA and
IND-OTCCA-secure, Sym is IND-OTCCA-secure, and H is collision-resistant, then liteARCAD is
Cnoexp-FORGE-secure and Csym-IND-CCA-secure.

Proof. We start from an initial game Γ which has a “special message” (ad, ct). The notions of game
Γ and of special message will differ for the proof of FORGE security (where the special message
is the final forgery) and IND-CCA security (where the special message is the challenge). It will be
made precise later in the proof. We denote by Q the participant who plays the sender role for
the special message. In the game Γ , we define the event E that no participant P has an EXPst(P)
query before having seen the special message. We assume that the game Γ has the property that
whenever E does not occur, then Γ never returns 1. Typically, this will be the case because ¬E
implies a non-clean game, as it will be made more precise later. We define below for every tuple
(Q,msend,mrec), the hybrids ΓQ,msend,mrec

and Γ ′Q,msend,mrec
which essentially guess Q and how many

messages are sent and received by Q when sending the special message.
First of all, we extend the data structure of a stored OTAE key sk by adding a boolean object

sk.flag. By default, sk.flag is down. When we raise the flag, we say that the key sk is marked.
Our aim is to mark keys which should not leak. The defined hybrids ΓQ,msend,mrec

and Γ ′Q,msend,mrec

essentially mark the keys in the msend first messages by Q and the mrec first messages by Q but
abort if any marked key is exposed. Note that sk is encrypted without the extension sk.flag.

We denote by vP the length of strecP , which is also one plus the number of sent messages by
P. Similarly, we denote by uP the length of stsendP , which is also one plus the number of received
messages by P.

We show on Fig. 16 the modifications of the game to define the hybrids.
The Initall code is modified by marking the initial keys sk1 and sk2. If an EXPst reveals a marked

key, the game aborts. This is enforced by the following change in EXPst:

19 SEF-OTCMA is the strong existential one-time chosen message attack. IND-OTCCA is the real-or-random
indistinguishability under one-time chosen plaintext and chosen ciphertext attack. Their definitions are
given in [7].

20 Following Durak-Vaudenay [7], for a Ctrivial-FORGE-secure scheme, (Cleak ∧ C
A,B
forge)-IND-CCA security is

equivalent to (Cleak ∧C
A,B
trivial forge)-IND-CCA security, which corresponds to the “sub-optimal” security in

Table 1.
21 SC is a public-key primitive that combines encryption and signature; see Appendix B.
22 OTAE consists of a key space OTAE.Kλ and the OTAE.Enc and OTAE.Dec algorithms.

27

onion.Enc

SC.Enc

SC.Enc

Enc

$

$

⊕

H

H

pt

ad

st1 st2

ct1

ct2

ct3

onion.Dec

SC.Dec

SC.Dec

Dec

⊕

H

H

pt

ad

st1st2

ct1

ct2

ct3

uni.Send

onion.Enc

onion.Gen

pt

ad

stS1 , stS2 , . . . , stSn

st ′S

st ′R
ct1, . . . , ctn+1

uni.Rec

onion.Dec pt/⊥ct1, . . . , ctn+1

ad

stR1 , stR2 , . . . , stRn

st ′R

bid.Send

uni.Send

uni.Gen

pt

ad

stRP(1), . . . , stRP(m− 1)

stRP(1), . . . , stRP(m)

stRP(1), . . . , stRP(n)

stS
′
P (n)

‖

stS
P
(j)

stRP(m)

ct1, . . . , ctn+1

bid.Rec

uni.Rec pt

ad

stR
P
(1), . . . , stR

P
(i) stS

P
(1), . . . , stS

P
(j− 1)

st
′R
P
(n), stR

P
(n+ 1), . . . , stR

P
(i) stS

P
(1), . . . , stS

P
(j)

‖‖ stS
P
(j)

ct1, . . . , ctn+1

Fig. 13: ARCADDV Protocol Adapted from DV [7] without RECOVER-Security.

Oracle EXPst(P)
1: if stsendP or strecP in stP contain any sk with sk.flag up then
2: abort the game
3: end if
4: return stP

When the special message is identified as coming from P, the following verification is made by the
game:

1: if P 6= Q or vQ + 1 6= msend or uQ + 1 6= mreceive then
2: abort the game
3: end if

In liteARCAD, Send and Receive are also modified in order to mark the keys in the msend first
messages byQ and themrec first messages byQ. onion.Send and onion.Receive are also modified but
in a way which does not change the result. Those modifications will become useful in Γ ′Q,msend,mrec

.

Clearly, the only behavior difference between Γ and ΓQ,msent,mrec
is that ΓQ,msent,mrec

may abort
if a marked key is requested to be revealed or if (Q,msend,mrec) is a wrong guess. Because of the
property of Γ , we know that the former abort cases imply Γ not returning 1. The latter abort cases

28

onion.Enc(1λ, hk, st1S, . . . , stnS , ad, pt)
1: pick k1, . . . ,kn in {0, 1}Sym.kl(λ)

2: k← k1 ⊕ · · · ⊕ kn
3: ctn+1 ← Sym.Enc(k, pt)
4: adn+1 ← ad
5: for i = n down to 1 do
6: adi ← H.Eval(hk, adi+1,n, cti+1)
7: cti ← SC.Enc(stiS, adi,ki)
8: end for
9: return (ct1, . . . , ctn+1)

onion.Dec(hk, st1R, . . . , stnR , ad, ~ct)
1: if |~ct| 6= n+ 1 then return ⊥
2: parse ~ct = (ct1, . . . , ctn+1)
3: adn+1 ← ad
4: for i = n down to 1 do
5: adi ← H.Eval(hk, adi+1,n, cti+1)
6: SC.Dec(stiR, adi, cti)→ ki
7: if ki = ⊥ then return ⊥
8: end for
9: k← k1 ⊕ · · · ⊕ kn

10: pt← Sym.Dec(k, ctn+1)
11: return pt

uni.Init(1λ)

1: SC.GenS(1
λ)

$−→ (skS, pkS)

2: SC.GenR(1
λ)

$−→ (skR, pkR)
3: stS ← (skS, pkR)
4: stR ← (skR, pkS)
5: return (stS, stR)

uni.Send(1λ, hk, ~stS, ad, pt)

1: SC.GenS(1
λ)

$−→ (sk ′S, pk ′S)

2: SC.GenR(1
λ)

$−→ (sk ′R, pk ′R)
3: st ′S ← (sk ′S, pk ′R)
4: st ′R ← (sk ′R, pk ′S)
5: pt ′ ← (st ′R, pt)
6: onion.Enc(1λ, hk, ~stS, ad, pt ′)→ ~ct
7: return (st ′S, ~ct)

uni.Receive(hk, ~stR, ad, ~ct)
1: onion.Dec(hk, ~stR, ad, ~ct)→ pt ′

2: if pt ′ = ⊥ then
3: return (false,⊥,⊥)
4: end if
5: parse pt ′ = (st ′R, pt)
6: return (true, st ′R, pt)

ARCADDV.Setup(1λ)

1: H.Gen(1λ)
$−→ hk

2: return hk

ARCADDV.Gen(1λ, hk)

1: SC.GenS(1
λ)

$−→ (skS, pkS)

2: SC.GenR(1
λ)

$−→ (skR, pkR)
3: sk← (skS, skR)
4: pk← (pkS, pkR)
5: return (sk, pk)

ARCADDV.Init(1λ, pp, skP, pkP,P)
1: parse skP = (skS, skR)
2: parse pkP = (pkS, pkR)
3: stsendP ← (skS, pkR)
4: strecP ← (skR, pkS)
5: stP ← (λ, hk, (stsendP), (strecP))
6: return stP

ARCADDV.Send(stP, ad, pt)
1: parse stP = (λ, hk, (stsend,1P , . . . , stsend,uP), (strec,1P , . . . , strec,vP))

2: uni.Init(1λ)
$−→ (stSnew, strec,v+1

P) . append a new receive state to the strecP list
3: pt ′ ← (stSnew, pt) . then, stSnew is erased to avoid leaking
4: take the smallest i s.t. stsend,iP 6= ⊥ . i = u− n if we had n Receive since the last Send

5: uni.Send(1λ, hk, stsend,iP , . . . , stsend,uP , ad, pt ′)
$−→ (stsend,uP , ct) . update stsend,uP

6: stsend,iP , . . . , stsend,u−1
P ← ⊥ . flush the send state list: only stsend,uP remains

7: st ′P ← (λ, hk, (stsend,1P , . . . , stsend,uP), (strec,1P , . . . , strec,v+1
P))

8: return (st ′P, ct)

ARCADDV.Receive(stP, ad, ct)
9: parse stP = (λ, hk, (stsend,1P , . . . , stsend,uP), (strec,1P , . . . , strec,vP))

10: set n+ 1 to the number of components in ct . the onion has n layers
11: set i to the smallest index such that strec,iP 6= ⊥
12: if i+ n− 1 > v then return (false, stP,⊥)
13: uni.Receive(hk, strec,iP , . . . , strec,i+n−1

P , ad, ct)→ (acc, st ′P
rec,i+n−1, pt ′)

14: if acc = false then return (false, stP,⊥)
15: parse pt ′ = (stsend,u+1

P , pt) . a new send state is added in the list
16: strec,iP , . . . , strec,i+n−2

P ← ⊥ . update stage 1: n− 1 entries of strecP were erased
17: strec,i+n−1

P ← st ′P
rec,i+n−1 . update stage 2: update strec,i+n−1

P

18: st ′P ← (λ, hk, (stsend,1P , . . . , stsend,u+1
P), (strec,1P , . . . , strec,vP))

19: return (acc, st ′P, pt)

Fig. 14: ARCADDV Protocol Adapted from DV [7] without RECOVER-Security.

actually partition the success cases into several (Q,msent,mrec) parameters. Hence, we have

Pr[Γ → 1] =
∑

Q,msent,mrec

Pr[ΓQ,msent,mrec
→ 1]

29

liteARCAD.Setup = H.Gen

liteARCAD.Initall(1λ, hk)
1: pick sk1, sk2 in OTAE.Kλ
2: stsendA ← (λ, hk, (sk1), (sk2))
3: stsendB ← (λ, hk, (sk2), (sk1))
4: return (stA, stB,⊥)

onion.Send(1λ, hk, st1S, . . . , stnS , ad, pt)
1: pick k1, . . . ,kn in {0, 1}Sym.kl(λ)

2: k← k1 ⊕ · · · ⊕ kn
3: ctn+1 ← Sym.Enc(k, pt)
4: adn+1 ← ad
5: for i = n down to 1 do
6: adi ← H.Eval(hk, adi+1,n, cti+1)
7: cti ← OTAE.Enc(stiS, adi,ki)
8: end for
9: return (ct1, . . . , ctn+1)

onion.Receive(hk, st1R, . . . , stnR , ad, ~ct)
1: parse ~ct = (ct1, . . . , ctn+1)
2: adn+1 ← ad
3: for i = n down to 1 do
4: adi ← H.Eval(hk, adi+1,n, cti+1)
5: OTAE.Dec(stiR, adi, cti)→ ki
6: if ki = ⊥ then return ⊥
7: end for
8: k← k1 ⊕ · · · ⊕ kn
9: pt← Sym.Dec(k, ct0)

10: return pt

uni.Init(1λ)
1: pick sk in OTAE.Kλ
2: stS ← sk
3: stR ← sk
4: return (stS, stR)

uni.Send(1λ, hk, ~stS, ad, pt)
1: pick sk in OTAE.Kλ
2: pt ′ ← (sk, pt)
3: onion.Enc(1λ, hk, ~stS, ad, pt ′)→ ~ct
4: return (sk, ~ct)

uni.Receive(hk, ~stR, ad, ~ct)
1: onion.Dec(hk, ~stR, ad, ~ct)→ pt ′

2: if pt ′ = ⊥ then
3: return (false,⊥,⊥)
4: end if
5: parse pt ′ = (sk, pt)
6: return (true, sk, pt)

liteARCAD.Send(stP, ad, pt)
1: parse stP = (λ, hk, (stsend,1P , . . . , stsend,uP), (strec,1P , . . . , strec,vP))

2: uni.Init(1λ)
$−→ (stSnew, strec,v+1

P) . append a new receive state to the strecP list
3: pt ′ ← (stSnew, pt) . then, stSnew is erased to avoid leaking
4: take the smallest i s.t. stsend,iP 6= ⊥ . i = u− n if we had n Receive since the last Send

5: uni.Send(1λ, hk, stsend,iP , . . . , stsend,uP , ad, pt ′)
$−→ (stsend,uP , ct) . update stsend,uP

6: stsend,iP , . . . , stsend,u−1
P ← ⊥ . flush the send state list: only stsend,uP remains

7: st ′P ← (λ, hk, (stsend,1P , . . . , stsend,uP), (strec,1P , . . . , strec,v+1
P))

8: return (st ′P, ct)

liteARCAD.Receive(stP, ad, ct)
9: parse stP = (λ, hk, (stsend,1P , . . . , stsend,uP), (strec,1P , . . . , strec,vP))

10: set n+ 1 to the number of components in ct . the onion has n layers
11: set i to the smallest index such that strec,iP 6= ⊥
12: if i+ n− 1 > v then return (false, stP,⊥)
13: uni.Receive(hk, strec,iP , . . . , strec,i+n−1

P , ad, ct)→ (acc, st ′P
rec,i+n−1, pt ′)

14: if acc = false then return (false, stP,⊥)
15: parse pt ′ = (stsend,u+1

P , pt) . a new send state is added in the list
16: strec,iP , . . . , strec,i+n−2

P ← ⊥ . update stage 1: n− 1 entries of strecP were erased
17: strec,i+n−1

P ← st ′P
rec,i+n−1 . update stage 2: update strec,i+n−1

P

18: st ′P ← (λ, hk, (stsend,1P , . . . , stsend,u+1
P), (strec,1P , . . . , strec,vP))

19: return (acc, st ′P, pt)

Fig. 15: liteARCAD Protocol (Adapted from ARCADDV in Fig. 14).

Next, we can focus on the modification in onion.Send and onion.Receive. When onion.Send
applies a OTAE.Enc with a marked key, the plaintext ki is replaced by a random one r and the
value of pt is saved in a dictionary S with a key u referring to the sender P, an identifier i of
the key, and the ciphertext (ad, ct). We can easily see that (u,n, i) uniquely identifies which key
was used by P to encrypt with OTAE. Hence, we store pt in [P,u,n, i, ad, ct]. The values of P,u,n
should be passed by the algorithm Send (which we did not explicitly write for simplicity). This
dictionary is to remember that if we decrypt (ad, ct) with a key corresponding to (P,u, v, i), the
result should be pt instead of the actual decryption. This is what onion.Receive is doing. Similarly,
there is a dictionary S[P,u,n, ct] for the encryptions using Sym.

We construct a sequence of hybrids starting by ΓQ,msent,mrec
and ending by Γ ′Q,msent,mrec

in which
we treat all keys one after the other. In Γ ′Q,msent,mrec

, none of the marked key is ever used for anything
but encryption or decryption. Each key is used to encrypt only one message. The IND-OTCCA
game can simulate the difference between two hybrids. Hence, we obtain that Pr[ΓQ,msent,mrec

→
1] − Pr[Γ ′Q,msent,mrec

→ 1] is negligible.

30

liteARCAD.Setup = H.Gen

liteARCAD.Initall(1λ, hk)
1: pick sk1, sk2 in OTAE.Kλ
2: raise sk1.flag and sk2.flag
3: stsendA ← (λ, hk, (sk1), (sk2))
4: stsendB ← (λ, hk, (sk2), (sk1))
5: return (stA, stB,⊥)

onion.Send(1λ, hk, st1S, . . . , stnS , ad, pt)
1: get P,u from higher calls
2: pick k1, . . . ,kn in {0, 1}Sym.kl(λ)

3: k← k1 ⊕ · · · ⊕ kn
4: if game is Γ ′ and ∃i stiS.flag then
5: pick ρ of same size as pt
6: ctn+1 ← Sym.Enc(k, ρ)
7: S[P,u,n, ctn+1]← pt
8: else
9: ctn+1 ← Sym.Enc(k, pt)

10: end if
11: adn+1 ← ad
12: for i = n down to 1 do
13: adi ← H.Eval(hk, adi+1,n, cti+1)
14: if game is Γ ′ and stiS.flag then
15: pick r ∈ {0, 1}Sym.kl(λ)

16: cti ← OTAE.Enc(stiS, adi, r)
17: S[P,u,n, i, adi, cti]← ki
18: else
19: cti ← OTAE.Enc(stiS, adi,ki)
20: end if
21: end for
22: return (ct1, . . . , ctn+1)

onion.Receive(hk, st1R, . . . , stnR , ad, ~ct)
1: get P, i from higher calls
2: u← i+ n− 1
3: parse ~ct = (ct1, . . . , ctn+1)
4: adn+1 ← ad
5: for i = n down to 1 do
6: adi ← H.Eval(hk, adi+1,n, cti+1)
7: if game is Γ ′ and stiS.flag and
S[P,u,n, i, adi, cti] defined then

8: ki ← S[P,u,n, i, adi, cti]
9: else

10: OTAE.Dec(stiR, adi, cti)→ ki
11: end if
12: if ki = ⊥ then return ⊥
13: end for
14: k← k1 ⊕ · · · ⊕ kn
15: if game is Γ ′ and S[Q,u,n, ctn+1]

exists then
16: pick ρ of same size as pt
17: pt← S[Q,u,n, ctn+1]
18: else
19: pt← Sym.Dec(k, ct0)
20: end if
21: return pt

uni.Init(1λ)
1: pick sk in OTAE.Kλ
2: stS ← sk
3: stR ← sk
4: return (stS, stR)

uni.Send(1λ, hk, ~stS, ad, pt)
1: pick sk in OTAE.Kλ
2: pt ′ ← (sk, pt)
3: onion.Enc(1λ, hk, ~stS, ad, pt ′)→ ~ct
4: return (sk, ~ct)

uni.Receive(hk, ~stR, ad, ~ct)
1: onion.Dec(hk, ~stR, ad, ~ct)→ pt ′

2: if pt ′ = ⊥ then
3: return (false,⊥,⊥)
4: end if
5: parse pt ′ = (sk, pt)
6: return (true, sk, pt)

liteARCAD.Send(stP, ad, pt)
1: parse stP = (λ, hk, (stsend,1P , . . . , stsend,uP), (strec,1P , . . . , strec,vP))

2: uni.Init(1λ)
$−→ (stSnew, strec,v+1

P)
3: pt ′ ← (stSnew, pt)
4: take the smallest i s.t. stsend,iP 6= ⊥
5: uni.Send(1λ, hk, stsend,iP , . . . , stsend,uP , ad, pt ′)

$−→ (stsend,uP , ct)
6: stsend,iP , . . . , stsend,u−1

P ← ⊥
7: if (P = Q and v < msend) or (P = Q and v < mrec) then
8: raise stsend,uP .flag and strec,v+1

P .flag
9: end if

10: st ′P ← (λ, hk, (stsend,1P , . . . , stsend,uP), (strec,1P , . . . , strec,v+1
P))

11: return (st ′P, ct)

liteARCAD.Receive(stP, ad, ct)
12: parse stP = (λ, hk, (stsend,1P , . . . , stsend,uP), (strec,1P , . . . , strec,vP))
13: set n+ 1 to the number of components in ct
14: set i to the smallest index such that strec,iP 6= ⊥
15: if i+ n− 1 > v then return (false, stP,⊥)
16: uni.Receive(hk, strec,iP , . . . , strec,i+n−1

P , ad, ct)→ (acc, st ′P
rec,i+n−1, pt ′)

17: if acc = false then return (false, stP,⊥)
18: parse pt ′ = (stsend,u+1

P , pt)
19: strec,iP , . . . , strec,i+n−2

P ← ⊥
20: strec,i+n−1

P ← st ′P
rec,i+n−1

21: if (P = Q and v < msend) or (P = Q and v < mrec) then
22: raise stsend,u+1

P .flag and strec,i+n−1
P .flag

23: end if
24: st ′P ← (λ, hk, (stsend,1P , . . . , stsend,u+1

P), (strec,1P , . . . , strec,vP))
25: return (acc, st ′P, pt)

Fig. 16: Proof for liteARCAD (modifications are in gray)

31

We deduce that the difference between Pr[Γ → 1] and
∑
Q,msent,mrec

Pr[Γ ′Q,msent,mrec
→ 1] is

negligible.

FORGE-security. We continue from the same setting. We take Γ as the Cnoexp-FORGE game. The
extra RATCH(P, “rec”, ad, ct) query to P by the FORGE game defines the special message (ad, ct).
Namely, we set Q = P and msent (resp. mrec) to the number of messages sent (resp. received) by
P at the end of the game. The property of Γ is satisfied: there is no EXPst. The game Γ ′Q,msent,mrec

returns 1 if the special message is a forgery. In this case, the special message is not sent by Q. It
is a forgery for the onion scheme. We can apply the collision-resistance of H and the SEF-OTCMA
security of OTAE on this game to show that Pr[Γ ′Q,msent,mrec

→ 1] is negligible. Hence, Pr[Γ → 1] is
negligible.

IND-CCA-security. In the IND-CCA game, Γb = IND-CCAA
b,Csym

and the special message is the
one of the CHALLENGE query. Again, the property of Γ is satisfied: no participant has a EXPst

before seeing the special message. We add the subscript b in Γ ′Q,msent,mrec,b
game. We can use the

IND-OTCCA security again to show that Pr[Γ ′Q,msent,mrec,0
→ 1]−Pr[Γ ′Q,msent,mrec,1

→ 1] is negligible.
Actually, pt0 is replaced twice by some random pt0 for b = 0 and once for b = 1. The difference
is what is stored in ptQ after receiving the special message, since it is not revealed due to Csym

cleanness, there is no difference in the game. Hence Pr[Γ0 → 1] − Pr[Γ1 → 1] is negligible.

PREDICT-security. Like in DV [7], due to the correctness of OTAE, guessing ct before it is produced
by RATCH implies guessing the kn key which RATCH will select on onion.Send. Hence, we obtain
PREDICT-security. ut

32

	Beyond Security and Efficiency: On-Demand Ratcheting with Security Awareness

