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Abstract. Ratcheting communication strengthens privacy, specifically in the presence of
internal state exposures or random coin corruptions. This is called post-compromise security.
There have been several such secure protocols proposed in the last few years. The strongest
level of security comes with a high cost, because of the need for HIBE or at least public-key
cryptography.

In this paper, we first design a lightweight protocol called liteARCAD which is solely based
on symmetric cryptography, hence only forward secure.

We then present a generic hybrid protocol allowing to compose any two protocols so that
the sender can select which of the two protocols to use. When composing liteARCAD and
a post-compromise secure protocol, the sender can decide to ratchet or not. For instance,
the sender can ratchet once a while, or after letting his device unattended. When doing so
with infrequent ratchet, we obtain the strongest security at the price of efficient symmetric
cryptography.

We then propose the notion of security awareness. This lets a sender learns, after a while,
if his message was safely received (i.e. if it was received and if no adversary can decrypt it,
except from trivial attacks) and that no finished active attack occurred (i.e. active attack
must continue forever or be detected). We finally propose a generic strengthening to add
security awareness to any protocol.

1 Introduction

In recent messaging applications, protocols are secured with end-to-end encryption to enable secure
communication services for their users. Besides security, there are many other characteristics of
communication systems. The nature of two-party protocols is that it is asynchronous: the messages
should be transmitted regardless of the counterpart being online. Moreover, the protocols do not
have any control over the time that participants send messages, and, by the same token, the
participants change their roles as a sender or a receiver arbitrarily.

Many deployed systems are built with some sort of security guarantees. However, they often
struggle with security vulnerabilities due to the internal state compromises that occur through
exposures of participants. In order to prevent the attacker from decrypting past communication
after an exposure, a state update procedure is applied. Ideally, such updates are done through one-
way functions which delete the old states and generate new ones. This guarantees forward secrecy.
Additionally, to further prevent the attacker from decrypting future communication, ratcheting is
used. This adds some source of randomness in every state update to obtain what is called future
secrecy, or backward secrecy, or post-compromise security, or even self-healing.

Even though forward secrecy or post-compromise security have been integrated for a while,
there have been no formal definitions and protocols provably secure under such notions until re-
cently. After the first formal definitions of ratcheting security given by Bellare et al. [2], many
subsequent studies about secure protocols have followed with different security levels and primi-
tives [1,6-9]. Some of these results are about key-exchange while others study secure messaging.
Since secure ratcheted messaging can reduce to secure key exchange, we consider these works as
equivalent.



Previous work. Early ratcheting protocols were suggested in Off-the-Record (OTR) and then
Signal [3,10]. The security of Signal was studied by Cohn-Gordon et al. [4]. Unger et al. [11]
surveyed many techniques in ratcheting. More recently, Alwen et al. [1] formalized the concept of
“double ratcheting” from Signal.

Cohn-Gordon et al. [5] proposed a ratcheted protocol at CSF 2016 but requiring synchronized
roles. Bellare et al. [2] proposed another protocol at CRYPTO 2017, but unidirectional and with-
out forward secrecy. Poettering and Rosler (PR) [9] designed a protocol at CRYPTO 2018 with
“optimal’ security (in the sense that we know no better security so far), but using a random oracle,
and heavy algorithms such as hierarchical identity-based encryption (HIBE). Yet, their protocol
does not guarantee security against compromised random coins. Jaeger and Stepanovs (JS) [7]
proposed a similar protocol with security against compromised random coins: with random coin
leakage before usage. Their protocol also requires HIBE and a random oracle.

Durak and Vaudenay (DV) [6] proposed a protocol called BARK with slightly lower security®
but relying on neither HIBE nor random oracle. They rely on a public-key cryptosystem, a digital
signature scheme, a one-time symmetric encryption scheme, and a collision-resistant hash function.
They further show that a unidirectional scheme with post-compromise security implies public-key
cryptography, which obviates any hope of having a fully secure protocol solely based on symmetric
cryptography. At EUROCRYPT 2019, Jost, Maurer, and Mularczyk (JMM) [8] proposed concur-
rently and independently a protocol with security between optimal security and the security of
BARK.* They achieve it even with random coin leakage after usage. Contrarily to other protocols
achieving security with corrupted random coins, in their protocol, random coin leakage does not
necessarily imply revealing part of the state of the participant. In the same conference, Alwen,
Coretti, and Dodis [1] proposed two other ratcheting protocols denoted as ACD and ACD-PK with
security against adversarially chosen random coins and immediate decryption. Namely, messages
can be decrypted even though some previous messages have not been received yet. The ACD-PK
protocol offers a good level of security, although having immediate decryption may lower it a bit
as it will be discussed shortly. On the other hand, during a phase when the direction of commu-
nication does not change, the ACD protocol is fully based on symmetric cryptography, hence has
lower security (in particular, no post-compromise security in this period). However, it is much
more efficient.

We summarize these results in Table 1. The first four rows are based on Durak-Vaudenay [6,
Table 1]. The last rows of the table will be discussed shortly.

We are mostly interested in the DV model [6]. It gives a simple description of the KIND security
and FORGE security. The former deals with key indistinguishability where the generated keys are
indistinguishable from random strings and the latter states that update messages for ratcheted
key exchange are unforgeable. Additionally, they present the notion of RECOVER-security which
guarantees that a participant can no longer accept messages from his counterpart after he receives
a forged message. Actually, even though FORGE security avoids non-trivial forgeries, there are
still (unavoidable) trivial forgeries. They occur when the state of a participant is exposed and the
adversary decides to impersonate him. With RECOVER security, when an adversary impersonates
someone (say Bob), the impersonated participant is out and can no longer communicate with the
counterpart (say Alice). This guarantees that the attack is eventually detected by Bob if he is still
alive. This property is particularly nice under two assumptions: a lower protocol makes sure that
messages come in the right order (as an out of order message is treated as a forgery); an upper
protocol can reset a broken communication after the attack is detected.

What makes the DV model simple is that all technicalities are hidden in a cleanness notion.
That is, the adversary wins only when the attack scenario trace is “clean”. The cleanness predicate
eliminates trivial attack strategies. This model makes it easy to consider several cleanness notions,
specifically for hybrid protocols. The difficulty is perhaps to provide an exhaustive list of criteria
for attacks to be clean.

3 More precisely, the security is called “sub-optimal’ as detailed later.
4 We call this security level “near-optimal’.



Our objectives. In this paper, we study various security notions for the asynchronous ratcheted
communication with additional data which we call ARCAD in short. Experience showed that when
we want the protocols to be highly secure, we have to give up the efficiency of the protocol and
rely on heavy tools. Equivalently, when we want protocols to perform fast, then the security
should be lowered to a reasonable level. In real-world applications, the developers do not want
to over-complicate or under-perform. At the same time, users seek usability and strong privacy.
Therefore, we believe that the confidentiality level of sending messages should be set on demand by
the sender or could be tuned by the application itself based on time intervals. For instance, if the
users are exchanging hundreds of messages per day, there may not be any real need for ratcheting
with strongly secure protocols with healing. Instead, a lighter version of the protocol only with
forward secrecy (which is symmetric-key ratcheting) should be enough for security. Alternatively,
the sender could ask for healing only when an exposure is likely (e.g. because his device was taken
by a third party, remained unattended for a while etc.) or just once a day. Healing may actually
scarcely occur in intensive communication. Therefore, we construct a protocol called hybridARCAD
that runs a healing ratchet on demand.

We also define a security notion by improving RECOVER-security from DV [6]. This security
implies that when a participant receives a forgery, he should not be able to receive genuine messages
any longer. What is also needed is that the participant who has received a forgery should not be
able to send messages to his counterpart either. This makes sure that man-in-the-middle attacks
are eventually detected.

Another interesting notion is given in Alwen et al. [1] as immediate decryption. It allows
receiving messages even though some previous ones were not received. Concretely, it is done by
keeping all keys in the state of the receiver to decrypt messages until they are needed. Obviously,
it has some consequences with regards to security. Namely, when an adversary prevents a message
from being delivered, the key remains in the receiver state and this key may be stolen in the future.
Hence, even though communication can continue, the participants have no guarantee about the
safety status of this message until it is received. For instance, we can imagine that the adversary
may collect a few sensitive messages (e.g. all the large ones as they may contain media content)
and decrypt them all after exposure of the receiver state. Immediate decryption is nice when the
communication network is not reliable and messages may come in a different order at random.
However, we believe that this problem can be solved by independent techniques and need not
to be addressed by the cryptographic protocol. More precisely, messages can be encapsulated in
containers which makes sure that if a message is missing, it can be requested for a second delivery
and the received messages can be held until the sequence is reconstructed with no loss. Adding
reliability on the communication channel can indeed be solved by a lower-level protocol. Hence,
we do not provide immediate-decryption security in our constructions. Instead, we focus on a
very important aspect of secure messaging protocol which is described as security awareness. To
defeat communication interruption due to a message loss or a forgery, we will propose a way for
participants to repair it.

Our contributions. We first construct liteARCAD, a weakly secure but efficient protocol which is
solely based on symmetric cryptography.

We give an on-demand ratcheting protocol by generically composing any strong protocol with
any weakly secure but fast one. A concrete instance is built from ARCADpy and liteARCAD proto-
cols where the former is the modified version of BARK for ratcheted communication and the latter
is a symmetric-cryptography-based variant of BARK. ARCADpy is post-compromise secure while
liteARCAD is only forward secure. Our on-demand ratcheting protocol is actually a generic hybrid
construction (denoted hybrid) which can be based on any two protocols. The sending participant
sets which of the two to use in our on-demand ratcheting protocol. The hybrid construction further
offers a solution to restore broken communication.

Another important contribution of the present paper is that we implemented PR, JS, ARCADpy,
JMM, ACD, ACD-PK, together with liteARCAD. We observe that liteARCAD is the fastest one.
Our goal is to offer a high level of security with the performances of liteARCAD. We reach it with
on-demand ratcheting when the participant demands healing scarcely.



Our final contribution is to elaborate on the RECOVER security to offer optimal security aware-
ness. We start by defining a new notion called s-RECOVER. We make sure that not only is a receiver
of a forgery no longer able to receive genuine messages via r-RECOVER-security but he can no
longer send a message to his counterpart either via s-RECOVER-security. The r-RECOVER security
is equal to RECOVER security of BARK. Both r-RECOVER and s-RECOVER notions imply that
reception of a genuine message offers a strong guarantee of having no forgery in the past: after an
active attack ended, participants realize they can no longer communicate. Our security-awareness
notion makes also explicit that the receiver of a message can deduce (in absence of a forgery) which
of his messages have been seen by his counterpart (which we call an acknowledgment extractor).
Hence, each sent message implicitly carries an acknowledgment for all received messages. Finally,
what we want from the history of receive/send messages and exposures of a participant is the
ability to deduce which message remains private. We call it a cleanness extractor.

We propose a generic strengthening (called blockchain) of protocol to obtain r-RECOVER and
s-RECOVER security on the top of any protocol. Applying it to our on-demand ratcheting protocol,
we obtain our final protocol ARCAD.

We provide a comparison of all the protocols with r-RECOVER-security, s-RECOVER-security,
acknowledgment extractor and cleanness extractor in Table 1.

Table 1: Comparison of Several Protocols with our ARCAD =
blockchain(hybrid(ARCADpy, liteARCAD)) from Cor. 33 in Section 5.3: security level; com-
plexity for exchanging n messages; types of coin-leakage security; plain model (i.e. no random
oracle); PKC or less (i.e. no HIBE). BARK and ARCADpy have identical characteristics. The
terms “optimal”, “near-optimal”, and “sub-optimal” from Durak-Vaudenay [6] are defined on
p- 2. “Pragmatic” degrades a bit security to offer on-demand ratcheting. “Id-optimal” is optimal
among protocols with immediate decryption.

PR [9] | JS [7] JMM [8] BARK [6] |ACD-PK [1]| ARCAD
Security optimal | optimal |near-optimal |sub-optimal| id-optimal |pragmatic
Complexity OMn?) | O(n?) O(n?) On) O(n) O(n)
Coins leakage resilience| no |pre-send| post-send no chosen coins no
Plain model no no no yes yes yes
PKC or less no no yes yes yes yes
Immediate decryption no no no no yes no
r-RECOVER security no yes no yes no yes
s-RECOVER security no yes no no no yes
ack. extractor yes yes yes yes no yes
cleanness extractor yes yes yes yes yes yes

To summarize, our contributions are:

— we design liteARCAD with provable (forward) security;

— we define the notion of on-demand ratcheting, construct a generic hybrid protocol called hybrid,
define and prove its security;

— we implement PR, JS, JMM, ACD, ACD-PS, liteARCAD and ARCADpy protocols and compare
their performances;

— we define the notion of security awareness, construct a generic protocol strengthening called
blockchain, and prove its security.



Notations. We have two participants named Alice (A) and Bob (B). Whenever we talk about
either one of the participants, we represent it as P, then P refers to P’s counterpart. We have two
roles send and rec for sender and receiver respectively. We define send = rec and rec = send. When
the communication is unidirectional, the participants are called the sender S and the receiver R.

Structure of the paper. In Section 2, we revisit the preliminary notions from Durak-Vaudenay [6]
and Alwen-Coretti-Dodis [1]. They all are essential to be able to follow our results. In Section 3, we
define a new protocol called on-demand ratcheting with better performance than state-of the-art.
In Section 4, we present our implementation results with the figures comparing various protocols
with our on-demand ratcheting protocol. Finally, in Section 5, we define a new notion named
security awareness and build a protocol with regard to the notion.

2 Preliminaries

2.1 ARCAD Definition and Security

In this section, we recall the DV model [6] and we slightly adapt to define asynchronous ratcheted
communication with additional data denoted as ARCAD (instead of bidirectional asynchronous
ratcheted key agreement BARK). The difference between BARK and ARCAD is the same as the
difference between KEM and cryptosystems: pt is input to the Send (instead of output). Addi-
tionally, we treat associated data ad to authenticate. Like DV [6]°, we adopt asymptotic security
rather than exact security, for more readability. Adversaries and algorithms are probabilistic poly-
nomially bounded (PPT) in terms of a parameter A. All definitions with the reference [6] are
unchanged except for possible necessary notation changes. The other definitions in this section are
straightforward adaptations to fit ARCAD.

Definition 1 (ARCAD). An asynchronous ratcheted communication with additional data (ARCAD)
consists of the following PPT algorithms:

Setup(1*) 3, pp: This defines the common public parameters pp.

— Gen(1*, pp) 3, (sk, pk): This generates the secret key sk and the public key pk of a participant.
Init(1, pp, skp, pkp, P) — stp: This sets up the initial state stp of P given his secret key, his
role rolep, and the public key of his counterpart.

Send(stp, ad, pt) 3, (stp,ct): it takes as input a plaintext pt and some associated data ad and
produces a ciphertext ct along with updated state stp.

Receive(stp,ad, ct) — (acc,stp, pt): it takes as input a ciphertext ct and some associated data
ad and produces a plaintext pt with an updated state st} together with a flag acc.

For convenience, we define the following initialization procedure for all games. It returns the initial
states of A and B as well as some public information z.

Initall(1*, pp): 4: stg < Init(1*, pp, skg, pk, B)
1: Gen(1*,pp) — (ska, pka) 5: z < (pp, Pka, Pkg)
2: Gen(1*, pp) — (skg, pkg) 6: return (sta,stp,z)

3: sta « Init(1*, pp, ska, pkg, A)

None of our security games care about how Initall is made from Gen and Init. This is nice because
there is little to change to define a notion of “symmetric-cryptography-based ARCAD”: we only
need to define Initall. We will do so with liteARCAD and prove it a “secure ARCAD” by slight abuse
of definition.

In what follows we only consider an ARCAD protocol.

5 Proceedings version.
6 In our work, we assume that acc = false implies that st = stp and pt = L, i.e. the state is not updated
when the reception fails. Other authors assume that st, = pt = L, i.e. no further reception can be done.



Definition 2 (Correctness of ARCAD). Consider the correctness game given on Fig. 1.7 We say
that an ARCAD protocol is correct if for all sequence sched of tuples of the form (P, “send”, ad, pt)
or (P, “rec”), the game never returns 1. Namely,

Ps.

— at each stage, for each P, receivedpPt is prefiz of senty®;

— each RATCH(P, “rec”) call returns acc = true.

Oracle RATCH(P, “rec”, ad, ct) Game Correctness(sched)
1: ctp + ct 1: set all sent* and received? to ()
2: adp < ad _ 2: Setup(1*) > pp
3: (acc, stp, ptp) < Receive(stp, adp, ctp) 3: Initall(1*, pp) kX (st stp, 2)
4: if ace then, 4: initialize two FIFO lists incoming ,, incomingy <
5: stp < stp 5 i 0
6: append (adp, ptp) to received":t 6: loop
7: append (adp, ctp) to receivedft 7' ieitt
8: end if 8 if sched; of form (P, “rec”) then
9: return acc 9: if incomingp is empty then return 0
B N 10: pull (ad, ct) from incomingp
Oracle RATCH(P7 send ,ad, pt) 11: acc «— RATCH(P, “rec”,ad, Ct)
10: ptp < pt 12: if acc = false then return 1
11: adP < ad 13: else
12: (St{;,Ctp) < Send(stp, adp, ptp) 14: parse sched; = (P, “send”, ad, pt)
. 7 b b b
13: stp < stp . 15: ct ¢~ RATCH(P, “send”, ad, pt)
14: append (adp, ptp) to sent}; 16: push (ad,ct) to incomingy
15: append (adp,ctp) to sent}, 17: end if
16: return ctp 18: if received;\t not prefix of sent?, then return 1
19: if receivedft not prefix of sent} then return 1
20: end loop

Fig. 1: The Correctness Game of ARCAD Protocol.

For all global variables v in the game such as receivedft7 stp, or ctp, we denote the value of v
at time t by v(t). The notion of time is participant-specific. It refers to the number of elementary
operations he has done. We assume neither synchronization nor central clock. Time for two different
participants can only be compared when they are run non-concurrently by an adversary in a game.

In addition to the RATCH oracle (in Fig. 1) which is used to ratchet (either to send or to receive),
we define several other oracles (in Fig. 2): EXPg to obtain the state of a participant; EXP to
obtain the last received message pt; CHALLENGE to send either the plaintext or a random string.
We give a brief description of the DV security notions [6] as follows.

FORGE-security: It makes sure that there is no forgery, except trivial ones.

r-RECOVER-security”: If an adversary manages to forge (trivially or not) a message to one of
the participants, then this participant can no longer accept genuine messages from his counterpart.

PREDICT-security: No message can be received before it was sent.

KIND-security: We omit this security notion which is specific to key exchange. Instead, we
consider IND-CCA-security in a real-or-random style.

7 We use the programming technique of “function overloading” to define the RATCH oracle: there are two
definitions depending on whether the second input is “rec” or “send”.
P

8 By saying that receivedl}:t is prefix of senty,

a (possible empty) list of (ad, pt) pairs.
9 Tt is called RECOVER-security in [6]. We call it -RECOVER because we will enrich it with an s-RECOVER
notion in Section 5.1.

we mean that sent}, is the concatenation of receivedst with



Definition 3 (Matching status [6]). We say that P is in a matching status at time t for P if

1. at any moment of the game before time t for P, received]; is a prefix of sentg — this defines
the time t for P when P sent the last message in received;t(t);

2. at any moment of the game before time t for P, receivedft is a prefir of sent?.
We further say that time t for P originates from time t for P.

Intuitively, P is in a matching status at a given time if his state is not influenced by an active
attack (i.e. message injection/modification/erasure/replay). The PREDICT-security will become
useful to reduce this definition to the two conditions that received’, is a prefix of sent?. at time t
for P and received!, is a prefix of sent’, at time t for P.

Definition 4 (Corresponding RATCH calls [6]). Let P be a participant. We consider only
the RATCH(P, “rec”, .,.) calls by P returning true. We say that the it call corresponds to the j*"
RATCH(P, “send”, .,.) call by P ifi =j and P is in matching status at the time of this i" accepting
RATCH(P, “rec”,.,.) call.

Definition 5 (Forgery). Given a participant P in a game, we say that (ad,ct) € received’: is a
forgery if at the moment of the game just before P received (ad,ct), P was in a matching status,
but no longer after receiving (ad, ct).

Definition 6 (Trivial forgery). Let (ad,ct) be a forgery received by P. At the time t just be-
fore the RATCH(P, “rec”,ad,ct) call, P was in a matching status. We assume that time t for
P originates from time t for P. If there is an EXPg(P) call between time t for P and the next
RATCH(P, “send”, .,.) call (or just after time t is there is no further RATCH(P, “send”, .,.) call),
we say that (ad, ct) is a trivial forgery.

Definition 7 (Direct leakage). Let t be a time and P be a participant. We say that ptp(t) has
a direct leakage if one of the following conditions is satisfied:

— The last RATCH call before time t is a RATCH(P, “send”, ad, pt) call by the adversary defining
ptp(t) = pt.

— There is an EXPp(P) at a time te such that the last RATCH call which is executed by P before
time t and the last RATCH call which is executed by P before time te are the same.

— P isin a matching status and there exists tog < te < tratcn < t and t such that time t originates
from time t; time t originates from time tg; there is one EXPg(P) at time te; there is one
RATCH(P, “rec”, .,.) at time traTcH; and there is no RATCH(P, ., .,.) between time tratcH and
time t.

The first condition is specific to ARCAD: Obviously, an adversarial RATCH send call counts as an
EXPp call.

Definition 8 (Indirect leakage [6]). We consider a time t and a participant P. Let tratcn be
the time of the last successful RATCH call and role be its input role. We say that ptp(t) has an
indirect leakage if P is in matching status at time t and one of the following conditions is satisfied

— There exists a RATCH(P, role, .,.) corresponding to that RATCH(P, role, .,.) and making a pty
which has a direct leakage for P.

— There exists t' < tratcn < t and T < te such that P is in a matching status at time te, t
originates from t, t. originates from t’, there is one EXP«(P) at time te, and role = “send”.

The IND-CCA security is relative to a Cgean predicate. We consider several predicates as defined
in the DV model [6]:

Cleak: Ptiest(tiest) has no direct or indirect leakage.
Cfforge: (with t = trivial or t void, and S = {Piest} or S ={A, B})
no P € S received any t-forgery until having seen (ad, ct)test-
Cratchet: (ad, ct)iest Was sent by a participant Pies, then received and accepted by Piest, then some

(ad’,ct’) were sent by Piest, then (ad’, ct’) were received and accepted by Piest.




In Table 1, “optimal” security refers to Cgean = Cleak /\ Clest and “sub-optimal’ security refers

trivial forge
_ A,B
to Cclean - Cleak A C1:rivia| forge*

Lemma 9 (Trivial attacks [6]). Assume that ARCAD is correct. For any t and P, if ptp(t) has
a direct or indirect leakage, the adversary can deduce ptp(t).

Game IND—CCA{,‘chlean (1) Oracle CHALLENGE(P, ad, pt)
Setup(1%) N PP 1: ?f tiest # L then return |
Initall( 1 $ 2: if b =0 then
nitall(1%, pp) = (sta »Sts ’*Z) ) 3 replace pt by a random string of same length
set all sent’ and received! variables to () 4: end if
set test tO L « ”
iy ;leATcH,Expst,Exppt,CHALLENGE(Z) 5: ct «— RATCH(P, “send”, ad, pt)
6: (t,P,ad, pt, ct)iest < (time, P, ad, pt, ct)
7

if =Cgean then return L . return ct

return b’

Oracle EXP(P)

Oracle EXP(P) 1: return ptp

1: return stp

Fig.2: IND-CCA Game.
(Oracles RATCH are defined in Fig. 1)

Definition 10 (Cgean-IND-CCA security). Let Ceean be a cleanness predicate. We consider the
IND—CCAﬁ,Cdea" game of Fig. 2. We say that the ratcheted communication ARCAD is Cclean-
IND-CCA-secure if for any PPT adversary, the advantage

Adv(A) = |Pr [IND-CCAJ'¢ (1*) — 1] —Pr [IND-CCA{'. (1%) — 1]|

of A in |ND‘CCA£,CC|%" security game is negligible.

Definition 11 (Cgean-FORGE security). Given a cleanness predicate Cejean, consider FORGEfCldean
game in Fig. 8 associated to the adversary A. Let the advantage of A be the probability that the
game outputs 1. We say that ARCAD is Ccean-FORGE-secure if, for any PPT adversary, the
advantage is negligible.

In this definition, we added the notion of cleanness which determines if an attack is trivial or not.
The original notion of FORGE security is equivalent to using the following Civiai predicate Cgean:

]Ctriviau the last (ad, ct) message is not a trivial forgery (following Def. 6). \

The purpose of this update in the definition is to allow us to easily define a weaker form of
FORGE-security in Th. 17 and in Section 5.3.

Definition 12 (r-RECOVER security [6]). Consider the r-RECOVER™ game in Fig. 3 associated
to the adversary A. Let the advantage of A in succeeding the game be Pr(win = 1). We say that the
ratcheted communication protocol is r-RECOVER-secure, if for any PPT adversary, the advantage
is negligible.

Definition 13 (PREDICT security [6]). Consider PREDICT*(1*) game in Fig. 3 associated to
the adversary A. Let the advantage of A in succeeding playing the game be the probability that
1 is returned. We say that the ratcheted communication protocol is PREDICT-secure, if for any
adversary limited to a polynomial number of queries, the advantage is negligible.



Game FORGEZ (1%) Game r-RECOVER*(1%)

1: Setup(1*) 2 pp L: win 0}\ $
. A $ 2: Setup(1*) = pp
2: Initall(1*, pp) — (sta,stg,z) . A $
3: (P, ad, ct) « ARATCH.EXPw EXPyt () 3: Initall(1*, pp) = (sta,stg, z)
4: RA’\TC’H(P “rec” ad, ct) — acc 4: set all sent’ and received] variables to ()
: ) »ad, . RATCH,EXPg; , EXP
5: if acc = false then return 0 o: P “ A i ,pt(Z)P
6: if —Cueay then return 0 6: if we can parse received;, = (seqy, (ad, ct),seq,)
: 5 .
7: if (ad,ct) is not a forgery for P then return 0 and sent, = (seqs, (éd’ ct),.seq4) with seq; #
8: return 1 seqs; (where (ad,ct) is a single message and

all seq; are finite sequences of single messages)
then win + 1
7: return win

Game PREDICT#(1}) 3: (P, ad, pt) < ARATCHEXPs EXPp ()

1: Setup(1*) 2 pp 4: RATCH(P, “send”, a% pt) — ct

9: Initall(1*, pp) 3, (sta,stp, 2) 5: if (ad,ct) € received/, then return 1
6: return 0

Fig.3: FORGE, r-RECOVER, and PREDICT Games.
(Oracle RATCH, EXPy, EXP,; are defined in Fig. 1 and Fig. 2 .)

We give an ARCADpy protocol on Fig. 4 by slightly updating the BARK protocol [6]. It is
updated for secure communication instead of key agreement. Also, some part of the protocol
ensuring r-RECOVER security is removed. We will re-introduce it generically and in a strengthened
manner in Section 5. ARCADpy is based on a hash function H!?, a one-time symmetric cipher
Sym'!, a digital signature scheme DSS'2, and a public-key cryptosystem PKC!3. First, we construct
a “naive” signcryption scheme SC which can be of form

sts
SC.Enc(sks, pkg, ad, pt) = PKC.Enc(pkg, (pt, DSS.Sign(sks, (ad, pt))))

| (pt, 0) <= PKC.Dec(skg,ct) ;
SC.Dec(w,ad,ct) ~ | DSS.Verify(pks, (ad, pt),0) ? pt : L

str

Then, we extend SC to a multiple-key encryption called onion. Then, we construct a unidirectional
scheme uni. Finally, we construct ARCADpy (see Fig.4).

Theorem 14 (Security of ARCADpy [6]). ARCADpy is correct. If Sym.kl(A) = Q(A), H is
collision-resistant, DSS is SEF-OTCMA, PKC is IND-CCA-secure, and Sym is IND-OTCCA-secure,

then ARCADpy s Cirivia-FORGE-secure, (C|eak/\Cgr’gBe)-IND-CCA-secure and PREDICT -secure.'4:15

10 H yses a common key hk generated by H.Gen.

11 Sym uses a key of length Sym.kl, encrypts over the domain Sym.D with algorithm Sym.Enc and decrypts
with Sym.Dec.

12 DSS uses a key generation DSS.Gen, a signing algorithm DSS.Sign, and a verification algorithm
DSS.Verify.

13 PKC uses a key generation PKC.Gen, an encryption algorithm PKC.Enc, and a decryption algorithm
PKC.Dec.

14 SEF-OTCMA is the strong existential one-time chosen message attack. IND-OTCCA is the real-or-random
indistinguishability under one-time chosen plaintext and chosen ciphertext attack. Their definitions are
given in [6].

15 Following Durak-Vaudenay [6], for a Cyivia-FORGE-secure scheme, (Ceax /A CQ;;)—IND—CCA security is
equivalent to (Cieax A Covr, forge)-IND-CCA security, which corresponds to the “sub-optimal” security in
Table 1.



onion.Enc(1*, hk,sti, ..., stl, ad, pt) onion.Dec(hk, st}, . . ., stk, ad, ct)
1: pick kq,...,ky, in {0, 13K 1: if |ct| #n + 1 then return L
2 kK@ Dkn 2: parse ¢t = (cty,...,Ctny1)
3: ctny1 < Sym.Enc(k, pt) 3: adnq « ad
4: ady 41 < ad 4: for i =n down to 1 do
5: for i =n down to 1 do 5: ad; < H.Eval(hk,adi 1,1, cti;1)
6: ad; « H.Eval(hk,ad;;1,n,ctiy1) | 6 SC.Dec(st, adi, cti) — ki
7: ct; < SC.Enc(stl, adi, ki) 7: if ki = L then return L
8: end for 8: end for
9: return (cty,...,ctny1) 9 kKb Dk
10: pt < Sym.Dec(k, ctn 1)
11: return pt
uni.Init(1*) uni.Send(1*, hk, s?s,ad pt) uni.Receive(hk, stg, ad, ct)
1: SC.Geng(1*) 2 (sks, pks) 1: SC.Gens(1%) 25 (sk§, pks) 1: ?nion/‘DeC(hk,stk,ad,ct) — pt’
2: SC.Geng (1) 5 (skg, pkg) 2: SC.Geng (1) 5 (skp, pkb) 2 if pt’ = L then
3: return (false, 1, 1)
3: stg < (sks, pkg) 3: st§ < (skg, pkg) .
/ ! I 4: end if
4: stg < (skg, pks) 4: sty < (skg, pks) , ,
R ; 5: parse pt’ = (stg, pt)
5: return (sts,stg) 5: pt’ < (stg, pt) 6: return (true, sth. pt)
6: onion.Enc(1*, hk, sts,ad, pt’) — ct ’ »Stro P
7: return (st,ct)
ARCADpy.Setup(1*) ARCADpy . Gen(l?‘ hk) ARCADpy.Init(1*, pp, skp, pks, P)
1: H.Gen(1}) 3 hk 1: SC. Gens(ﬂ) 2, (sks, pks) 1: parse skp = ((Sksﬁkk))
2: return hk . A 2: parse pky = (pks, pkg
2: SC.GenR(l ) (Skk7ka) 3: St?;end . (Sks,pkk)
3: sk < (sks,skg) fec
4: sti© < (skg, pkg)
4: pk < [pks, pke) 5: sty (A, hk, (st} (stie))
5: return (sk, pk) 6. return stp
ARCADpy.Send(stp, ad, pt)
1: parse stp = (?\ hk, (st?f"d v stff"d W), (stiet, LstEe)
2: uni. |n|t(17‘) (Stsnews Stp™ "“) > append a new receive state to the stis list
3: pt’ + (stsnew, Pt) > then, stsnew is erased to avoid leaking
4: take the smallest i s.t. sti"™®' £ | >i=u—n if we had n Receive since the last Send
5: uni.Send(1*, hk, stse"d i st?f"d ¥ ad, pt’) 3 (st?f"d’”,ct) > update stSend v
6: st ,st?f"d’ufl «— L > flush the send state list: only st"** remains
7: sth < (A, hk, (st ! L sty (st stieevT)
8: return (stp,ct)
ARCADpy .Receive(stp, ad, ct)
9: parse stp = (A, hk, (st se"d L 7stff"d’“) (stie=!, Lsthe)
10: set n+ 1 to the number of components in ct > the onion has n layers
11: set i to the smallest index such that stp=" # L
12: if i+n —1>v then return (false,stp, 1) )
13: uni.Receive(hk,sts", ... ste>"" ™1 ad, ct) — (acc, st pt/)
14: if acc = false then return (false,stp, 1)
15: parse pt’ = (st?,end v bt) > a new send state is added in the list
16: stie=t .. strec ez > update stage 1: n — 1 entries of stis® were erased
17: steettnl gppreottnot b update stage 2: update st "
18: stp < (A, hk, (st !, .., st (st L stEY))
19: return (acc,stp, pt)

Fig. 4: ARCADpy Protocol Adapted from BARK [6] without RECOVER-Security.

2.2 The Epoch Notion in Secure Communication

We will define the epochs according to the work done by Alwen et al. [1] but in a different way.'¢
Epochs are a set of messages. An epoch is identified by an integer counter e. Each message is

16 The notion of epoch appeared in Poettering-Rosler [9] before.
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assigned one epoch counter e,. Hence, the epochs are non-intersecting. For convenience, each
participant P keeps the epoch value e;nd of the last sent message and the epoch value e, of the
last received message. They are used to assign an epoch to a message to be sent.

Definition 15 (Epoch). Epochs are non-intersecting sets of messages which are defined by an
integer. Let €”_ (resp. P ) be the epoch of the last received (resp. sent) message by P. At the very

rec send
beginning of the protocol, there is not last message. Therefore we define efend and eF _ differently.

rec
For the participant A, e, = —1 and e 4 = 0. For the participant B, eB —1 and eB_ =0. The

sen send — rec
procedure to assign an epoch ey to a new sent message follows the rule described next:
Ifef. < efend, then the message is put in the epoch ey = e_fend. Otherwise, it is put in epoch

em=cel +1.

Let ep = max{el_,eP ). Let ba =0 and bg = 1. We have

rec’ “send
P ep if ep mod 2 = bp p ep if ep mod 2 # bp
€send = . = .
sen ep —1 otherwise rec ep —1 otherwise

Therefore, it is equivalent to maintain (erpec,e_fend) or ep. The procedure to manage ep and eq,
is described by Alwen et al. [1].

We depict a sample of a bidirectional communication in Fig. 5. The figure shows the epoch
number assignments based on our definitions.

B
i
Il
o o o o — E [ | »m
([ | I I N\ 1
g o\ =N g g\
13
()
A

Fig. 5: Bidirectional Exchanges between A and B with Epoch Numbers.

Property 16. From the epoch definition, we have the following properties.

1. At all times, |ef , —eh | < 1.
2. The epoch numbers for a unidirectional stream of messages are even if the sender is the

participant A and it is odd if the sender is B.
3. A new epoch for a participant P always starts with a RATCH(P, “send”) calls and ends with
RATCH(P, “rec”) calls.

4. If a participant P accepts a message corresponding to an epoch number e, then efend >en+1.

We will use a counter ¢ for each epoch e. We will use the order on (e, c) pairs defined by

(e,c) < (e,c) <= (e<e'V(ie=e Ac<c))

3 On-Demand Ratcheting

In this section, we define a bidirectional secure communication messaging protocol with hybrid
on-demand ratcheting. The aim is to design such a protocol to integrate two ratcheting protocols
with different security levels: a strongly secure protocol using public-key cryptography and a
weaker but much more efficient protocol with symmetric key primitive. The core of the protocol
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is to use the weak protocol with frequent exchanges and to use the strong one on demand by the
sending participant. Hence, we build a more efficient protocol with on-demand ratcheting. Yet, it
comes with a security drawback. Even though the security for the former is to provide the post-
compromise security, we secure part of the communication only with the forward secure protocol.
While the forward secrecy can be built along with symmetric key primitives, the post-compromise
security cannot be achieved without public-key cryptosystems as it is shown in [6]. Therefore, we
use two subroutines in the protocol.

The sender uses a flag to tell which level of security the communication will have and apply
ratcheting with public-key cryptography or the lighter primitives such as the liteARCAD protocol
given in Section 3.1. The flag is set in the ad input and it is denoted as ad.flag. We call the strong
protocol as ARCAD.in and the weak one as ARCADg,,. The first message which a participant
sees (either in sending or receiving) forces the flag to indicate ARCAD.in as we have no initial
ARCADg,p state. Ideally, the time to set the flag for specific security can be decided during the
deployment of the application using the protocol. This choice also may be left to the users who
can decide based on the confidentiality-level of their communication. The more often the protocol
turns the flag on, the more secure is the hybrid on-demand protocol. If we do it for every message
exchange, then we obtain ARCAD ,in without ARCADgp. If we do it for no message exchange,
then we obtain ARCADg,,. The details are explained shortly in the following sections.

We start by designing liteARCAD.

3.1 liteARCAD: a Light Protocol without Post-Compromise Security

In deployed communication protocols such as Signal, apart from the ratcheting with public-key
cryptosystem, there are lighter cryptographic primitives to enable ratcheting with less security
but more efficiency. We define a generic version of the lighter layer of “double ratcheting” with
the liteARCAD protocol.

On Fig. 6, we adapt ARCADpy of Fig. 4 by replacing the signcryption SC by a symmetric one-
time authenticated encryption (OTAE) scheme.!” We obtain a lightweight ARCAD which achieves
most of the security properties except post-compromise security. In fact, it is known that a secure
and a correct unidirectional ARCAD implies public-key encryption [6]. Therefore, we do not expect
full security from this symmetric-only protocol.

When there is a state exposure, it allows simulating every subsequent reception of messages.
Additionally, it also allows to decrypt what is sent and to simulate a new state exposure. Therefore,
there is no possible healing after a state exposure. To formalize our IND-CCA-security, we prune
out post-compromise security but leave forward secrecy by using the following cleanness predicate.

’Cnoexp: neither A nor B had an EXPg; before seeing (ad, ct)test. ‘

When Cpoexp holds, the notion of direct and indirect leakage boils down to the cases based on
EXPy; leakages. Hence, Cieak /\ Croexp = Csym can be defined by

Coym: the following conditions are all satisfied

— there is no EXPp¢(Prest) after time ties: until there is a RATCH(Pyest, .);

— if Piest is in a matching status at time ties; and its last RATCH(Pyest, .) call corresponds to
some RATCH(Piest, .) at some time t, then there is no EXPpt (Piest) after time t until there
is another RATCH (Pyest, .) call;

— neither A nor B had an EXPg; before seeing (ad, ct)iest.

Similarly, the notion of trivial forgery changes as the exposure of the state of P now allows to
forge for P as well, due to the symmetric key. (Before, it was only allowing to forge for P as keys
were asymmetric.) Thus, a forgery becomes trivial when an EXPg occurs. Hence, the FORGE game
cannot allow any state exposure at all. We formalize the security by using the Cpoexp Cleanness
predicate in FORGE-security. There is no (ad, ct)test message in FORGE-security, thus Cpoexp means
no EXPg; as all.

17 OTAE uses a key in space OTAE.X, and algorithms OTAE.Enc and OTAE.Dec.
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liteARCAD.Setup = H.Gen onion.Send(1%, hk,stl, ..., st} ad, pt) onion.Receive(hk, sty, . . ., sty ad, ct)
. : Sym.kI(A) . o —
lite ARCAD. Initall (1%, hk) 1: pick ky, ..., kn in {0, 1 1: parse ct = (cty, ..., Ctas1)
; . 2: ke ki @ - Dky 2: adp4q « ad
1: pick sk, sky in OTAE. X, ;
nd 3: ctny1 < Sym.Enc(k, pt) 3: for i =n down to 1 do
2: st < (A, hk, (sky), (skz)) . ad d . d Eval(hk. ad
31 st%1 o (A hk. (ska). (k1)) 4: adny1 < a 4: ad; < H.Eval(hk,adi 1, m, ctiyq)
4: Bt ( t’ ,t i)’ B 5: for i =n down to 1 do 5: OTAE.Dec(stk, ad;, cti) — ki
; return ista, sts, 6:  ad; « H.Eval(hk,adis1,n,ctii1) | 61 if ki = L then return L
7: ct; < OTAE.Enc(st}, adi, ki) 7: end for
8: end for 8 kK1 @ Bkn
9: return (cty,...,ctny1) 9: pt « Sym.Dec(k, cto)
10: return pt
uni.Init(1*) uni.Send(1*, hk, sts, ad, pt) uni.Receive(hk, stg, ad, ct)
1: pick sk in OTAE. X 1: pick sk in OTAE. X 1: onion.Dec(hk, stg, ad, ct) — pt’
2: stg sk 2: pt’ < (sk, pt) 2: if pt’ = L then
3: stg < sk 3: onion.Enc(1%, hk, sts, ad, pt’) — ct 3: return (false, 1, 1)
4: return (sts,stg) 4: return (sk, ct) 4: end if
5: parse pt’ = (sk, pt)
6: return (true,sk, pt)

liteARCAD.Send(stp, ad, pt)

send, 1

1: parse stp = (A, hk, (stp""", ... 7stff"d’”)7 (stee!, ..., stov))
2: uni.lnit(1%) 3, (Stsnew, Ste=¥ 1) > append a new receive state to the st's list
3: pt’ + (stsnew, Pt) ) > then, stsnew is erased to avoid leaking
4: take the smallest i s.t. sti™®' £ | >i=u—n if we had n Receive since the last Send
5: uni.Send(1*, hk, st L st ad, pt’) 3 (st ct) > update st
6: st L stienduTl | > flush the send state list: only st"** remains
7: sth < (A, hk, (st ! L sty (st stieevT)
8: return (stp,ct)
liteARCAD.Receive(stp, ad, ct)
9: parse stp = (A, hk, (st?f"d‘l, . 7stff"d’”)7 (ste=!, ... ,stpe)
10: set n+ 1 to the number of components in ct > the onion has n layers
11: set i to the smallest index such that stp=" # L
12: if i+n —1>v then return (false,stp, 1) )
13: uni.Receive(hk,sts", ... ste>"" ™1 ad, ct) — (acc, st pt/)
14: if acc = false then return (false, stp, L)
15: parse pt’ = (st;end"”l7 pt) > a new send state is added in the list
16: stpct, ..., sty o | > update stage 1: n — 1 entries of stjs® were erased
17: steetnl gppreottnot > update stage 2: update st "
18: st) < (A, hk, (st !, .., st (st L stEY))
19: return (acc,stp, pt)

Fig. 6: liteARCAD Protocol (Adapted from ARCADpy in Fig. 4).
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Theorem 17 (Security of liteARCAD). Let liteARCAD be the ARCAD scheme on Fig. 6. It is cor-
rect. If Sym.kl = Q(A), liteARCAD is PREDICT -secure. If OTAE is SEF-OTCMA and IND-OTCCA-
secure, Sym is IND-OTCCA-secure, and H is collision-resistant, then liteARCAD is Cpoexp-FORGE-
secure and Cgym-IND-CCA-secure.

Proof. We start from an initial game I' which has a “special message” (ad,ct). We denote by Q
the participant who sends the special message. This special message could be a challenge message
in the IND-CCA game. In the game I, we define the event E that no participant P has an EXPg;(P)
query before having seen the special message. We assume that the game I' has the property that
whenever E does not occur, then I' never returns 1. We define below for every (Q,1,j) hybrids
l'o,i; and Fém- which essentially guess Q and how many messages are sent and received by Q
before sending the special message.

First of all, we extend the data structure of an OTAE key sk by adding a flag. By default, the
flag of sk is down. When the flag is up, we say that the key sk is marked. Like this, we want to
mark keys which never leak. The hybrids I'g ;; and r(/g,i,j essentially mark the keys in the 1i first

messages by Q and the j first messages by Q. The game maintains counters mp for the number
of messages sent by P and counters mj for the number of messages received by P, for every P.
The liteARCAD.Initall code is modified by marking the initial keys sk; and sko as follows:

liteARCAD.Initall(1%, hk)

1: pick sk, sko in OTAE.X,
mark sk; and sko
st"d «— (A, hk, (sk1), (skz))
sti"d «— (A, hk, (ska), (sk1))
initialize ma, mg, My, mp < 0
6: return (sta,stg, L)

If an EXPg; reveals a marked key, the game aborts:

Oracle EXP4 (P)
1: if st or st’sC in stp contain a marked key then
2: abort the game
3: end if
4: return stp

If uni.Send on participant P is invoked for the mp-th time for P = Q (resp. for P = Q), if all
the keys on sts are marked, and if mp < i (resp. mp < j), the plaintext pt’ is stored with
index (P, mp) together with (ad,ct), and the keys sk and sts~*"' are marked. The game Foi
additionally replaces pt’ = (sk, Stsnew, Pty) by pt’ = (sk’,st§, .., Pto) with random sk’ and st§,., -
The change also checks the guesses Q, i, and j when the special message is sent.
uni.Send (1%, hk, sts, ad, pt)

1: mp <~ mp+1

2: pick sk in OTAE.XK)

3: pt’ < (sk,pt)

4: ptg + pt’

5: if all the keys on sts are marked then

6: if (P=Q and mp <1i) or (P =Q and mp < j) then
7 parse pt = (Stsnew, Ptg)

8: mark sk (to be stored in st"*™) and stg=V !

9: (TY; only) pick sk’ and stg,,, at random

10: (T{; only) pt’ « (sk’, 5t&ews Pto)

11: end if

12: end if

13: onion.Enc(1%, hk, sts, ad, pt’) — ct

14: S[P,mp] + (ptg, ad, ct)

15: if this is the special message and either Q # P, mp #1i+ 1, or m} # j then

16: abort the game
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17: end if
18: return (sk, ct)
If uni.Receive is invoked for the mp-th time for P = Q (resp. for P = Q), if all the keys on sty are
marked, if mp <j (resp. mp < 1), then the keys in pt’ are marked. For I"é’i’j, pt’ = (sk’, st§, e Pt)
is replaced by pt’ = (sk, stsnew, pt) before marking and the game checks that it is not a forgery
(the game aborts otherwise).
uni.Receive(hk, stg, ad, ct)

1 mp <~ mp+1

2: onion.Dec(hk, stg, ad, ct) — pt’

3: if pt’ = L then

4: return (false, 1, 1)

5. end if

6: if all the keys on stg are marked and S[P, mp] is defined then
7: if (P=Q and mj <j) or (P =Q and mj, < i) then

8: parse S[P,m}] = (pts, ads, cts)

9: (T{; only) if ad # ads or ct # ct then abort the game
10: (T{; only) pt’ < ptg

11: parse pt’ = (sk, stspew, Ptg) and mark sk and stgpe, in pt’
12: end if

13: end if

14: parse pt’ = (sk, pt)

15: return (true, sk, pt)

Clearly, the only behavior difference between I' and I'q i ; is that I'g i,; may abort if a marked key
is requested to be revealed or (Q,1,j) is a wrong guess. Because of the property of I, we know
that the abort case imply a wrong guess for (Q,1,j) or I' not returning 1. Hence, we have

Pr" = 1] = ) Prllq; — 1]
Q7i’7j

For every i and j, we prove by induction that Pr[lgi; — 1] — Pr[[’émj — 1] is negligible.
Actually, none of the marked key is ever used for anything but encryption or decryption. Each
key is used to encrypt only one message. If uni.Send encrypts a message with sts, it can only be
decrypted with the same keys. Hence, we can use the IND-OTCCA security of OTAE to replace the
encrypted ki, then the IND-OTCCA security of Sym to show that Pr[l'gi; — 1] — Pr[r(/?,i,j — 1]
is negligible. Similarly, SEF-OTCMA security implies no forgery on OTAE messages (adi,ct;),
i=1,...,n for marked keys. Due to the way ad; is computed (namely: n and ctn4; are hashed
into ad, and the message pieces are chained by hashing adi;; and cti;; into adj), since H is
collision-resistant, this implies no forgery on n and ct, 1 either. Hence, we have no forgery on
(ad, ct). This implies that I"(’N" does not abort due to receiving a forgery.

We deduce that the difference between Pr[I" — 1] and ZQ,LJ' Pr[lﬂémj — 1] is negligible.

FORGE-security. In the FORGE game, we make an extra send query to P which is the special
message. The property of T is satisfied: there is no EXPg;. The game r(lli,i returns 1 if P receives
a forgery, which cannot be the case as it occurs before the special message and the game would
abort otherwise. Hence, Pr[FéM — 1] is negligible.

IND-CCA-security. In the IND-CCA game, the special message is the one of the CHALLENGE query.
Again, the property of I is satisfied: no participant has a EXPg before seeing the special message.
Hence, we can use the IND-OTCCA security of Sym and OTAE to replace pt for the difference in
I!; between b =0 and b = 1.

PREDICT -security. Like in DV [6], due to the correctness of OTAE, guessing ct before it is produced

by RATCH implies guessing the k,, key which RATCH will select on onion.Send. Hence, we obtain
PREDICT-security. ad
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3.2 Our Hybrid On-Demand ARCAD Protocol

We give our on-demand ARCAD protocol on Fig. 7. It uses two sub-protocols called ARCAD yain
and ARCADyg,p. The former is to represent a strong-but-slow protocol such as ARCADpy (Fig. 4).
The latter is typically a weaker-but-faster protocol like liteARCAD (Fig. 6). The use of one or
the other is based on a flag that can be turn on and off in ad (it is checked with ad.flag oper-
ation in the protocol). To have the flag on lets the protocol run ARCAD i, while setting the
flag off means to run ARCADgyp. Assuming that ARCADpain is ratcheting (i.e. post-compromise
secure) and ARCADg,p, is not, this defines on-demand ratcheting. We denote our hybrid protocol
as hybridARCAD = hybrid(ARCADmain, ARCADgyp).

Our hybrid construction finds another application than on-demand ratcheting: defense against
message loss or active attacks. Indeed, by using ARCADmain = ARCADgup, we can set ad.flag to
restore a communication which was broken due to a message loss. Normal communication works in
the lower ARCAD session, hence with a flag down. That is, normal communication uses ARCADg,y,
but we may use ARCADnain to start a new ARCADyg,;, session. If ARCADy,;, gets broken due to a
message loss or an active attack on it, ARCAD.in can be used to restart a new ARCADg,, session.
Of course, we can also make nested hybrid protocols with more than two levels of protocols inside.
It may increase the state sizes but the performance should be nearly the same.

3.3 Security Definitions

We modify the predicates and the notion of FORGE-security from Section 2. In our hybrid protocol,
each message (ad, ct) has a clearly defined (e, c) pair. A ct which is input or output from RATCH
comes with an ad which has a clearly defined ad.flag bit.

Sub-games. Given a game I' for the hybridARCAD scheme with an adversary A, we define a game
main(I") for ARCAD main with an adversary A’ which simulates everything but the ARCAD i, calls
in I'. Namely, A’ simulates the enrichment of the states and all ARCADs,, management together
with A.

Given a game pain for ARCAD ain using no CHALLENGE oracle and an (e, ¢) pair, we denote
by maine ¢ (Imain) the variant of Mp,in in which the RATCH Send call making the message (ad, ct)
with pair (e, c) is replaced by a CHALLENGE query with b = 1. This perfectly simulates ., and
produces the same value, and we can evaluate a predicate Cgean relative to this challenge message.
We define Cg:, (Tmain) = Celean(maine ¢ (Mmain)). Intuitively, C5 (Tmain) means that the message
of pair (e,c) was safely encrypted and should be considered as private because no trivial attack
leaks it.

We also define sube ¢ (T") and subfm(r). We let P be the sending participant of the ARCAD main
message of pair (e, c). In subé)c(r)7 the adversary A’ simulates everything but the ARCADy,, calls

involving messages with pair (e, c). However, it makes an EXP¢(P) call at the beginning of the
protocol to get the initial state stg for ARCADs,p. With this state, A’ can simulate the encryption
of stg with ARCADain and all the rest. Clearly, the simulation is perfect but it adds an initial
EXP4(P) call.

The sube (") game is a variant of subéyc(l") without the additional EXP(P). To simulate the
encryption of stg, A’ instead encrypts a random string of the same length. When it comes to
decrypt the obtained ciphertext, the random plaintext is ignored and the RATCH calls with stg
are simulated with the RATCH calls for the ARCADyg,,, game. The simulation is no longer perfect
but it does not add an EXPg(P) call.

Hybrid cleanness. We assume two cleanness predicates Ceean and Cpmain (which could be the same)
for ARCAD.in and one cleanness predicate Cgyp for ARCADg,,. We define a hybrid predicate
ngea" , as follows. Let " be an IND-CCA game played by an adversary A against hybrid ARCAD.

main Csu
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hybrid ARCAD.Setup(1*) hybrid ARCAD.Init(1*, (PPmains PPsub)s Skp» Pk#, P)
1: PPmain < ARCAD jain-Setup(1*) 1: ARCAD pain-Init (1%, pPmain, Skp» PkF, P) — Stmain

2: PPeus < ARCADg,.Setup(17)
3: return (ppmaim ppsub)

hybridARCAD.Gen (1%, ppnyins PPsub)
4: return ARCAD.i».Gen(1*, pp,.in)

: initialize array stgpl] to empty

if P = A then (egwnd, €rec) < (0,—1)

else (esendyerec) . (7170)

end if

: initialize array ctr with ctr[0] =0

2 stp < (A, PPsub» Stmains Stsub [l €send) €rec; Ctrl, true)
: return stp

0N DU WY

hybridARCAD.Send(stp, ad, pt)
1: parse stp as (A, PPsyb» Stmain, Stsubll; €send; €rec, ctrll, init)
2: if ad.flag or init then

15:
16:
17:
18:
19:
20:
21:

if €send < €rec then e < e +1; ¢+ 0

else e < ey nq ; ¢ < ctrle] + 1

end if

ARCADg,p.Initall (1%, ppg,,) 3 (sts, str, z) > create a new sub-state.
steple, ] < stg

pt’ < (stg,pt); ad’ < (ad,1,e,c)

ARCAD .in-Send (stmain, ad’, pt’) 3 (Stmain, ct’) > send using the main state.
ct + (ct’,e,c)

€send < € ; Ctrleseng] < ¢

: else

€ < max(esenda erec); ¢ < ctrle]
ad’ « (ad,0,e,c)
ARCADy,;,.Send(steple, cl, ad’, pt) 3 (stsuble, cl, ct’) > send using the sub-state.
ct « (ct’,e,c)
end if
clean-up: erase styple, c] for all (e, c) such that (e, c) < (€send, Ctrl€send]) and (e, c) < (€rec, Ctrlerec))
clean-up: erase ctrle] for all e such that e < €gnq and e < eec
stp ()\a PPsub>» Stmain, Stsubﬂyesendy €rec; CtrDa false)
return (stp,ct)

hybridARCAD.Receive(stp, ad, ct)

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

parse stp as ()\7 PPsubs Stmain, StsubDy €send) €rec Ctl’ﬂ, init)
parse ct as (ct’, e, c)
if (e,c) < (€rec, Ctrlerec]) then return (false,stp, 1) > (e, c) must increase
if ad.flag or init then

ad’ « (ad,1,e,c¢)

ARCAD .in.Receive(stmain, ad’, ct’) — (acc, Stmain, pt’)

parse pt’ as (stg, pt)

if acc then

staple, c] « stg
€rec < €; Ctrle] < ¢

end if
else

ad’ « (ad,0,e,c)

if styyle, ¢] undefined then return (false,stp, 1)

ARCAD,;,.Receive(sty[e, c],ad’, ct’) — (acc, stople, cl, pt)
end if
clean-up: erase stqle, c] for all (e, c) such that (e,c) < (€send, Ctrlesend)) and (e, ¢) < (erec, Ctrlerec))
clean-up: erase ctrle] for all e such that e < esng and e < €yec
stp < (A, PPsubs Stmains Stsubll, €send, €rec, Ctrll, false)
return (acc, stp, pt)

Fig. 7: On-Demand hybridARCAD = hybrid(ARCAD 4in, ARCADg,) Protocol.
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We let (ad, ct) be the challenge message (adiest, Ctrest) 1f 1t exists. Otherwise, (ad,ct) is the last
message in I'. We let (e, c) be the number of (ad, ct). We let

Crain(main(T)) if (ad, ct) belongs to ARCADnain

)
C Cetean (r = Csub(SUbe,c(r)) if Cg. (main(T")) }otherwise
r

Cmain, Csub clean
Casub(suby (1) if =C&5 (main(T))

clean

This means that if the challenge holds on an ARCAD ., message, we only care about main(T") to
be Chain-clean. Otherwise, either the ARCAD 4, message initiating the relevant ARCADg,p session
is Cglean, in which case we can replace it and consider Cgyp-cleanness for sube ('), or it is not Cejean,
in which case the initial ARCADy,, state stg trivially leaked (or was exposed, equivalently) and
we consider Cg,p-cleanness for sub'e’c (T). The role of Cgjean is to control which of the two games to
use. Cglean must be a privacy cleanness notion for main. Contrarily, Cpain and Cgyp could be either
privacy or authenticity notions.

Note that for Csyb = Choexp; Csub(sub;,c(r)) is always false due to the EXPg; call.

We easily obtain the following result.

Lemma 18. If ARCADain i Cmain-IND-CCA-secure and ARCADgyp is Csup-IND-CCA-secure, then
hybridARCAD is Cclean-IND-CCA with Celean = CCma'" c

Chmains Csub

Proof. Let T be an IND-CCA game for hybridARCAD. Let us assume that I is clean with our new
cleanness notion Cgjean = Cg::::,Csub'

Let (ad,ct) be the challenge message. If there is no challenge message in I', we let (ad,ct) be
the last message sent by any participant in I'. The (ad, ct) message belongs to either ARCAD i, or
ARCADgyp. It depends on ad.flag and on whether this is the very first message of the participant
or not (because we force to use ARCAD pain in this case).

We define the following non-overlapping events/cases:

— Cain: (ad, ct) belongs to ARCAD main;
— Cfe: (ad, ct) belongs to ARCADgyp, has number (e, c), and C&¢ (main(T)) is true;

ain

— Ciiie: (ad, ct) belongs to ARCADgyp, has number (e, c), and CZ¢ (main(T)) is false.

false* ’ main

We know that T is clean following Ccjean. In the Cpain case ((ad,ct) belongs to ARCADmain),
by definition of Cgean, we deduce that main(T") is Cpain-clean. The outcome of main(T") and T is
obviously the same. So is the advantage. Due to the Cyain-IND-CCA security of ARCADyain, the
advantage in I' conditioned to Cpi, is negligible.

In what follows, we consider that (ad,ct) belongs to ARCADgp.

Ce’cai" indicates if the ARCAD n.in message of pair (e, c) can be replaced by the encryption of
something random to produce the same result, but with negligible probability: If Ce C, is true,
sube ¢ (T") produces the same outcome as I'. So, the advantages of I' and sube (T") have a neghglble
dlfference when Cgj. holds. By definition of Cejean, Sube ¢ (') must be Cgyp-clean. Due to the Cgyp-
IND-CCA security of ARCADyyp, the advantage in sube (") is negligible. Hence, the advantage in
I conditioned to C¢5. is negligible.

Similarly, if Ce :© (F) does not hold, Cgjean implies that subé}c(r) is clean. This game produces
exactly the same outcome as I' when C]calse holds. So is the advantage. Due to the Cg,,-IND-CCA
security of ARCADgp, the advantage in T conditioned to Cfjc, is negligible.

In all cases, the advantage in T is negligible. As the number of cases is polynomially bounded,
the advantage in T is negligible. a

In the FORGE game, we replace the Cyyvial predicate. Typically, by taking Cain as the predicate
that tests if the last (ad, ct) message is a tr1v1a1 forgery and by taking Cgup as the predicate that
additionally tests if no EXPg occurred, the CS coen ¢, Ppredicate defines a new FORGE notion for

hybrid(ARCADpy, liteARCAD). More generally, if ARCADma,n iS Cmain-FORGE-secure and ARCADg,p
is Csub-FORGE-secure, we would like to have CC:“" Ca, -FORGE -security.

ain
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Game FORGEZ: (1)

: Setup(1") 3, pp

: Initall(1*, pp) 3 (sta,stg,z)

- (P,ad, ct) « ARATCHEXP EXPy ;)

if one participant (or both) is NOT in a matching status then return 0

RATCH(P, “rec”,ad, ct) — acc

if acc = false then return 0

if =Cgean then return 0 B

: if we can parse received’, = (seq, (ad,ct)) and sent!, = (seq,, seq,, (ad, ct), seq;) then return 0
: return 1

Fig. 8: Relaxed FORGE security.

We almost have the reduction but there is something missing. Namely, a forgery for hybridARCAD
in I may not be a forgery for neither ARCADp,in in main(T") nor ARCADgyp, in sube ¢ (I"). This hap-
pens if the adversary in I' drops the delivery of the last messages in a sub scheme. We relax
FORGE-security using the FORGE* game in Fig. 8. Only Steps 4 and 8 are new. Later in Sec-
tion 5, we will strengthen the protocols so that it becomes fully FORGE-secure. We easily prove
the following result.

Lemma 19. If ARCADmain 78 Celean-IND-CCA-secure and Cnain-FORGE™-secure and if ARCADgyp
is Csub-FORGE™-secure, then hybridARCAD is Chypria-FORGE™, where Chypria = CC“'ea" c b—FORGE*.

Chains Csu

Proof. We proceed like in the proof of Lemma 18. Let ' be a FORGE* game for hybrid ARCAD.
Let (P,ad,ct) be the output of the adversary. The (ad, ct) message belongs to either ARCAD main
or ARCADg,,. We show below that

Adv(T") < Adv(main(I") + ) Adv(sube (T +ZAdvsub’ ) + negl

e,c

Applying FORGE* security for the three terms, Adv(T") is negligible. To prove the above inequality,
we show that when T returns 1, then at least one of the three other games return 1, with negligible
exceptions.

We first assume that (ad,ct) belongs to ARCADyain and T' = FORGE™ succeeds to return 1.
Since T" returns 1, both participants are in a matching status before we deliver the forgery to
P. Hence, both participants are in a matching status in main(T") too. Similarly, since (ad,ct) is
accepted by RATCH(P,.) in I" and it belongs to main(T"), it is accepted by RATCH(P,.) in main(I")
too. Let seq; be the value of receivedft in I before receiving (ad, ct). Since both participants were in
a matching status, we know that sentl, starts with seq; in T'. As T returns 1, we know that (ad, ct)
does not appear anywhere in sent’, after seq;. In main(T"), the values of receivedft and sent! are sub-
sequences of the values in I'. By the same reasoning, we have receivedft = (seqq, (ad, ct)) in main(T")
and sent’. starts with seq;. But seq] must be a sub-sequence of seq; so (ad, ct) cannot appear after
it in sent’. Finally, since Chyprig holds and (ad,ct) belongs to ARCADmain, Cmain(main(T")) holds,
by definition of Chyprig. This means that main(I") is Cmain-clean. We deduce that main(T") succeeds
to return 1 as well.

Similarly, if (ad,ct) belongs to ARCADgy, and I' returns 1, we treat two cases depending on
whether C5 (') holds or not. Let T’ be the game in which ct is replaced by the encryption of a

clean

random string. If Cflecan( ) is true, thanks to Cgean-IND-CCA security, I' and '’ produce the same

output, but with negligible probability. Hence, I'" outputs 1, except in negligible cases. Like in the
previous case, we deduce that sube (") outputs 1:

— RATCH accepts in I'" implies that RATCH accepts in sube ¢ (I');

— (ad, ct) appears in sentﬁt in neither I'" nor sube (I"));
— sube (") is Cgyp-clean because (ad, ct) belongs to ARCADy,, and Cdean( ) is true.
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Finally, if Cg, (T') is false, we apply the same reasoning with suby, .(T"). O

clean

What FORGE”" security does not guarantee is that some forgeries in a sub scheme may occur in
the far future, due to state exposure. Fortunately, our protocol mitigates this problem by making
sure that old sub protocols become obsolete. Indeed, our protocol makes sure that sent messages
always have an increasing sequence of (e, c) pairs, and the same for received messages. Hence, we
cannot have a forgery with an old (e, c) pair. Another problem which is explicit in Step 8 of the
game is that the adversary may prevent P from receiving a sequence seq, sent from P (namely in
a sub-protocol). In Section 5, we will enrich the protocol with r-RECOVER security which will fix
both problems. Hence, we will obtain FORGE-security.

4 Implementations/Comparisons with Existing Protocols

We compare the performances of ARCADpy and liteARCAD to other ratcheted messaging and
key agreement protocols that have surfaced throughout 2018. In particular, we implemented five
other schemes from the literature. They are the bidirectional asynchronous key-agreement protocol
BRKE by PR [9], the similar secure messaging protocol by JS [7], the secure messaging protocol by
JMM [8] and a modularized version of two protocols by ACD [1]. In ACD [1], the given protocols
are both with symmetric key cryptography and public-key cryptography. We did not implement
the BARK protocol [6], as ARCADpy is a slightly modified version of BARK.

All the protocols were implemented in Go '® and measured with its built-in benchmarking
suite 12 on a regular fifth generation Intel Core i5 processor. In order to mitigate potential overheads
garbage collection has been disabled for all runs. Go is comparable in speed to C/C++ though
further performance gains are within reach when the protocols are re-implemented in the latter
two. Additionally, some protocols deploy primitives for which no standard implementations exists,
which is for example the case for the HIBE constructions used in the PR and JS protocols,
making custom implementations necessary that can certainly be improved upon. For the deployed
primitives, when we needed an AEAD scheme, we used AES-GCM. For public key cryptosystem,
we used elliptic curve version of ElGamal (ECIES); for the signature scheme, we used ECDSA.
And, finally for the PRF-PRNG in [1] protocol, we used HKDF with SHA-256. Lastly, the protocols
themselves may offer some room for performance tweaks.

The benchmarks can be categorized into two types as depicted in Fig. 9—10.

(a) Runtime designates the total required time to exchange n messages, ignoring potential latency
that normally occurs in a network.
(b) State size shows the maximal size of a user state throughout the exchange of n messages.

A state is all the data that is kept in memory by a user. Each type itself is run on three canonical
ways traffic can be shaped when two participants are communicating. In alternating traffic the
parties are synchronized, i.e. take turns sending messages. In unidirectional traffic one participant
first sends & messages which are received by the partner who then sends the other half. Finally,
in deferred unidirectional traffic both participants send % messages before they start receiving.
ACD-PK adds some public-key primitives to the double ratchet by ACD [1] to plug some post-
compromise security gaps. These two variations serve as baselines to see how the metrics of a
protocol can change when some of its internals are replaced or extended. Also note that due to
the equivalent state sizes in unidirectional and deferred unidirectional traffic one figure is omitted.

As we can see, overall, the fastest protocol is liteARCAD, followed by the two ACD protocols,
then ARCADpy, then the JMM protocol, and lastly the strongest protocols PR and JS. ARCADpy
and JMM may be comparable except for deferred unidirectional communication.

The smallest state size is obtained with liteARCAD. ARCADpy performs well in terms of state
size.

Clearly, hybrid(ARCADpy, liteARCAD) has performances which are weighted averages of the
ones of ARCADpy and liteARCAD, depending on the frequency of raising the flag ad.flag.

'8 https://golang.org/
19 https://golang.org/pkg/testing/
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Fig.9: Runtime Benchmarks

The protocol in [9] is represented with PR; [7] with JS; [8] with JMM; and [1] with ACD and ACD-PK.
ACD-PK is the public-key version with stronger security.
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Due to the equivalent state sizes in unidirectional and deferred unidirectional traffic, one figure is
omitted
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5 Security Awareness

5.1 s-RECOVER Security

We gave the DV r-RECOVER security definition [6] in Def. 12. It is an important notion to capture
that P cannot accept a genuine ct from P after P receives a forgery. However, r-RECOVER-security
does not capture the fact that when it is P who receives a forgery, P could still accept mes-
sages which come from P. We strengthen r-RECOVER security with an another definition called
s-RECOVER.

Definition 20 (s-RECOVER security). Consider the s-RECOVER? game in Fig. 11 associated
to the adversary A. Let the advantage of A in succeeding the game be Pr(win = 1). We say that the
ratcheted communication protocol is ss-RECOVER-secure, if for any PPT adversary, the advantage
is negligible.

Game s-RECOVER* (1)

1: win <0

2: Setup(1*) 3 pp

3: Initall(1*, pp) 3 (sta,stg,z)

4: set all sent* and received] variables to {)

5: P < ARATCH.EXPSEXPy (5)

6: if received”, is a prefix of sentf, then

T set t to the time when P sent the last message in received?,
8: if received’, (t) is not a prefix of sent?, then win « 1

9: end if

10: return win

Fig.11: ss-RECOVER security game.
(RATCH and EXP oracles are defined in Fig. 1 and Fig. 2.)

Ideally, what we want from the protocol is that participants can detect forgeries by realizing
that they are no longer able to communicate to each other. We cannot prevent impersonation to
happen after a state exposure but we want to make sure that it cuts the normal exchange between
the participants. Hence, if a participant eventually receives a genuine message, he should feel safe
that no forgeries happened. Contrarily, detecting a communication cut requires an action from
the participants, such as restoring communication using a super hybrid structure, as suggested in
Section 3.2.

We directly obtain the following useful result:

Lemma 21. If ARCAD is r-RECOVER, s-RECOVER, and PREDICT secure, whenever P receives
a genuine message from P (i.e., an (ad,ct) pair sent by P is accepted by P), P is in a matching
status, except with negligible probability.

Proof. Let T be a game. Let (ad, ct) be a message which was sent by P then received and accepted
by P.

We consider an r-RECOVER adversary A which simulates I" until P receives (ad, ct), and output
P. We can parse received”, = (seqy, (ad, ct),seq,) with seq, empty and sentﬁ = (seqs, (ad, ct),seqy).
Due to r-RECOVER security, we have seq; = seqs, but with negligible cases. Hence, received]; is
prefix of sentg, except with negligible probability.

We now let A play the ssRECOVER security game. Due to s-RECOVER security, since receivedft
is prefix of sentg, then receivedft(f) is a prefix of sent, but with negligible probability. Due to

PREDICT-security, no message arrives before it is sent. Hence, P is in a matching status, except
with negligible probability. a
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Our notion of RECOVER-security and forgery is quite strong in the sense that it focuses on the
ciphertext. Some protocols such as JMM [8] focus on the plaintext. In JMM, ct includes some
encrypted data and some signature but only the encrypted data is hashed. Hence, an adversary
can replace the signature by another signature after exposure of the signing key. It could be seen
as not so important because it must sign the same content. However, the signature has a key
update and the adversary can make the receiver update to any verifying key to desynchronize,
then re-synchronize at will. Consequently, the JMM protocol does not offer RECOVER security as
we defined it. Contrarily, PR [9] hashes (ad, ct) but does not use it in the next ad or to compute
the next ct. So, PR has no RECOVER security, either.2°

5.2 Security Awareness

To make participants aware of the security status of any (challenge) message, they need to know
the history of exposures, they need to be able to reconstruct the history of RATCH calls from
their own view, and they need to be able to evaluate the Cgean predicate. Thankfully, the Cgean
predicates that we consider only depend on these histories. We first formally define the notion of
transcript.

Definition 22 (Transcript). In a game, for a participant P, we define the transcript of P as
the chronological sequence Tp of all (oracle,extra) pairs involving P where each pair represents
an oracle call to oracle with P as input (i.e. either RATCH(P, “rec”,.,.), RATCH(P, “send”, ., .),
EXP(P), EXP(P), or CHALLENGE(P)), except the unsuccessful RATCH calls which are omitted.
For each pair with a RATCH or CHALLENGE oracle, extra specifies the role (“send” or “rec” ) and
the message (ad,ct) of the oracle call. For other pairs, extra = L.

The partial transcript of P up to time t is the prefix Tp(t) of Tp of all oracle calls until time
t. The RATCH-transcript of P is the list TRAT™M of all extra elements in Tp which are not L.
Similarly, the partial RATCH-transcript of P up to time t is the list T]',?ATCH(’L) of extra elements
in Tp(t) which are not L.

Next, we formalize that a participant can be aware of which of his messages were received by
his counterpart.

Definition 23 (Acknowledgment extractor). We consider a game T and a participant P.
Given a message (ad,ct) successfully received by P at time t and which was sent by P at time t,
we let (ad’,ct’) be the last message successfully received by P before time t. (If there is no such
message, we set it to L.)

An acknowledgment extractor is an efficient function f such that f(TRATH(t)) = (ad’,ct’)
when P is in a matching status.

Given this extractor, P can reconstruct the sub-sequence of TFRATCH (t) iteratively. Typically, the
genuine (ad, ct) implies no forgery before. Thus, our extractor is not required to detect forgeries.
We formalize awareness of a participant for the safety of each message.

Definition 24 (Cleanness extractor). We consider a game I' and a participant P. Let t be a
time for P and t be a time for P. Let Tp(t) and Tg(t) be the partial transcripts at those time.
We say that there is a cleanness extractor for Cgean if there is an efficient function g such
that g(Tp(t), Tp(t)) has the following properties: if there is one CHALLENGE in the transcript
and, either P received (adiest, Ctiest) o there is a round trip P — P — P starting with P sending
(adtest, Ctrest) o P, then g(Tp(t), Tp(t)) = Ceean(T"). Otherwise, g(Tp(t), Tp(t)) = L.

20 More precisely, in PR, if A is exposed then issues a message ct, the adversary can actually forge a
ciphertext ct’ transporting the same pk and vfk and deliver it to B in a way which makes B accept.
If A issues a new message ct”, delivering ct” to B will pass the signature verification. The decryption
following-up may fail, except if the kuKEM encryption scheme taking care of encryption does not check
consistency, which is the case in the proposed one [?, Fig.3, eprint version]. Therefore, ct” may be
accepted by B so PR is not r-RECOVER secure. The same holds for s-RECOVER security.
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The function g is able to predict whether the game is “clean” for any challenge message. The case
with an incomplete round trip P — P — P starting with P sending (adiest, Ctrest) to P is when
the tested message was sent but somehow never acknowledged for the reception. If the message
never arrived, we cannot say for sure if the game is clean because the counterpart may later either
receive it and make the game clean or have a state exposure and make the game not clean. In
other cases, the cleanness can be determined for sure.

To have a security-awareness notion, we want r-RECOVER and s-RECOVER security, we want
to have an acknowledgment extractor, and we want to have a cleanness extractor. This means that
on the one hand, impersonations are eventually discovered, and on the other hand, by assuming
that no impersonation occurs and assuming that exposures are known, a participant P knows
exactly which messages are safe, at least after one round-trip occurred.

Definition 25 (Security-awareness). A protocol is Cejean-security-aware if

— it is r-RECOVER, s-RECOVER, and PREDICT -secure;
— there is an acknowledgment extractor;
— there is a cleanness extractor for Cglean-

5.3 Strongly Secure ARCAD with Security Awareness

In this section, we will take a secure ARCAD such as the one defined in Section 3, which we
denote by ARCADg and transform it into another secure ARCAD which we denote by ARCAD =
blockchain(ARCADy), that is security aware. We achieve security awareness by keeping some hashes
in the states of participants. The intuitive way to build it is to make chains of hash of ciphertexts
(like a blockchain) which will be sent and received and to associate each message to the digest of
the chain. This enables a participant P to acknowledge its counterpart about received messages
whenever P sends a new message.

We define a tuple (Hsent, Hreceived, Asent, Areceived) and store it as the state of a participant.
Hsent is the hash of all sent ciphertexts. It is computed by the sender and delivered to the coun-
terpart along with ct. It is updated with hashing key hk and the old Hsent every time a new Send
operation is called. Likewise, Hreceived is the hash of all received ciphertexts. It is computed with
hk and the last stored Hreceived by the receiver upon receiving a message. It is updated every time
a new Receive operation is run.

Areceived is a counter of received messages which need to be reported when we run the next
Send operation. For each Send operation, we may attach to ct the last Hreceived to acknowledge
for received messages and reset Areceived to 0.

Asent is a list of the hash of sent ciphertexts which are waiting for an acknowledgment. Basically,
it is initialized to an empty array in the beginning and whenever a new Hsent is computed, it is
accumulated in this array. The purpose of such a list is to keep track of the sent messages for which
the sender expects an acknowledgment. More precisely, when the participant P keeps its list of sent
ciphertexts in Asent, the counterpart P keeps a counter Areceived telling that an acknowledgment
is needed. Remember that P sends Hreceived back to the participant P to acknowledge him about
received messages. As soon as P acknowledges, P deletes the hash of the acknowledged ciphertexts
from Asent.

The principle of our construction is that if an adversary starts to impersonate a participant
after exposure, there is a fork in the list of message chains which is viewed by both participants
and those chains can never merge again without making a collision.

We give our security aware protocol on Fig. 12. The security of the protocol is proved with the
following lemmas.

Lemma 26. If H is collision-resistant, ARCAD is s-RECOVER and r-RECOVER-secure.

Proof. All (ad, ct) messages seen by one participant P in one direction (send or receive) are chained
by hashing. Hence, if received?, = (seqy, (ad, ct), seqy), the (ad, ct) message includes (in the second
field of ct) the hash h of seq;. If sent’, = (seqs, (ad,ct),seq,), the (ad,ct) message includes the
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ARCAD.Setup(1*) ARCAD.Init(1%, pp, skp, pk, P)

1: ARCAD.Setup(1*) 3, PPo 1: parse pp = (hk, ppy) ]
2: H‘Gen(lx] i hk 2: ARCADO'Inlt(l)\7 pp07SkP7 ka: P) - Stll)
3: pp « (hk, ppy) 3: Hsent, Hreceived = 1
4: return pp 4: Asent «+ [|, Areceived < 0
5: stp < (stp, hk, Hsent, Hreceived, Asent, Areceived)
ARCAD.Gen = ARCAD,.Gen 6: return stp
ARCAD.Send(stp, ad, pt) ARCAD.Receive(stp, ad, ct)

: parse stp as (stp, hk, Hsent, Hreceived, Asent, Areceived)
: if Areceived = 0 then ack + L else ack < Hreceived
: ad’ < (ad, Hsent, ack)

1: 1: parse stp as (stp, hk, Hsent, Hreceived, Asent, Areceived)

2 2: parse ct as (ct’, h,ack)

3 3: if h # Hreceived or ack ¢ {L}U Asent then

4: ARCAD,.Send(st},ad’, pt) 5, (stp,ct’) 4: r(?turn (false, stp, L)

5: ct « (ct’, Hsent, ack) 5: en/d if

6: Areceived < 0 6: ad’ + (ad,h, a_ck) /

7: Hsent « H.Eval(hk, Hsent, ad, ct) 7: ARCADo.Receive(stp, ad’, ct') — (acc, stp, pt’)

8: Asent < (Asent, Hsent) 8: if acc then

9 9

10 0
1

: stp < (stp, hk, Hsent, Hreceived, Asent, Areceived) Hreceived < H.Eval(hk, Hreceived, ad, ct)
: return (stp, ct) Areceived < Areceived + 1

if ack # L then remove in Asent all elements of]
Asent until ack (included)
12: stp < (stp, hk, Hsent, Hreceived, Asent, Areceived)
13: end if
14: return (acc,stp, pt’)

[EE——

Fig. 12: Our security-aware ARCAD = blockchain(ARCAD,) Protocol.

hash h of seqy. If H is collision-resistant, then seq; # seqs with negligible probability. Hence, we
have r-RECOVER security.

Additionally, all genuine (ad,ct) messages include (in the third field of ct) the hash ack of
messages which are received by the counterpart. This list must be approved by P, thus it must
match the list of hash of messages that P sent. Hence, if received!, is prefix of sentP and t is the
time when P sent the last message in recelvedft, then this message includes the hash of recelvedct(t)
which must be a hash of a prefix of sent’,. Thus, unless there is a collision in the hash function,

receivedg(f) is a prefix of sent’, and we have s-RECOVER security. O
Lemma 27. ARCAD has an acknowledgment extractor.

Proof. Let (ad,ct) be a message sent by P to P in a matching status. Let (ad’,ct’) be the last
message received by P before sending (ad, ct). Due to the ARCAD protocol, ct includes the value of
Hreceived after receiving (ad’, ct’). Since this message is from P, P recognizes this hash Hreceived =
Hsent from Asent. Both (ad’,ct’) and this hash can be computed from TRATH(t). Hence, ARCAD
has an extractor. a

Lemma 28. ARCAD has a cleanness extractor for Cieak, Cfforge (t = trivial or void, S = Pt or
S={A, B})7 Cratchet, and Cnoexp-

Hence, there is an extractor for all cleanness predicates which we considered.

Proof. This is quite trivial for Choexp and Cratchet. For thorge, we can directly see from transcripts
where the forgeries are and we can determine if they are trivial or not. For Cieax, we can easily
inspect all cases of direct and indirect leakage and see they they can be deduced from the available
transcripts. a

Consequently, ARCAD is security-aware. We additionally show that ARCAD is as secure as
ARCADy in the next results.
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Lemma 29. Let Cqean € {Chrivial; Cnoexp) and ARCAD = blockchain(ARCADy). If ARCADg 4s Cclean-
FORGE-secure (resp. Cclean-FORGE*-secure), then ARCAD is Ccean-FORGE-secure (resp. Celean-
FORGE"-secure).

Proof. We reduce an adversary playing the FORGE game with ARCAD to an adversary playing the
FORGE game with ARCADg by simulating the hashings. ARCAD is an extension of ARCADg such
that and ARCAD message (ad, (ct’, h, ack)) is equivalent to an ARCADg message ((ad, h, ack),ct’).
It is just reordering (ad, ct). Hence, a forgery for ARCAD must be a forgery for ARCAD,. FORGE*-
security works the same. O

We easily extend this result to hybrid constructions.
Lemma 30. Given ARCADain and ARCADg,,, let
ARCADq = hybrid(ARCADnain, ARCADgy) , ARCAD = blockchain(ARCADy)

If ARCAD main 5 Celean-IND-CCA-secure and Cnain-FORGE™-secure and ARCADgyp, 75 Csup-FORGE™ -
secure, then ARCAD s Cg:'f;" c.. -FORGE"-secure. If H is additionally collision-resistant, then

iny “sub

ARCAD is Cgéer . -FORGE-secure.

iny “sub

Proof. Due to Lemma 19, ngeé" c

main s \-sul

tend to Cgcm'jn"ycsub-FORGE—security, we just observe that ARCAD is r-RECOVER-secure due to

b-FORGE*—security works like in the previous result. To ex-

Lemma 26. We thus deduce seq, = L from having receivel, = (seq,(ad,ct)) and sentg =
(seqq, seqsq, (ad, ct), seqs). Hence, we have a full forgery, but with negligible probability. O

troree (t = trivial or L}, S = Piegt or {A,B}),
If ARCADg is Cgean-IND-CCA-secure, then ARCAD is Cglean-IND-CCA-secure.

_ S
Lemma 31. Let Cgean = Cieak, Cratchet, Cnoexpy or C

Proof. We reduce an adversary playing the IND-CCA game with ARCAD to an adversary playing
the IND-CCA game with ARCADg by simulating the hashings. We easily see that the cleanness is
the same and that the simulation is perfect. a

We easily extend this result to hybrid constructions. We conclude with our final result.
Theorem 32. Given ARCAD.in and ARCADg,,, let
ARCADq = hybrid(ARCADnain, ARCADgy) , ARCAD = blockchain(ARCADy)

We assume that 1. H is collision-resistant; 2. ARCADmain S Ceean-IND-CCA-secure and Cmain-
FORGE*-secure; 3. ARCADs,p, s Csup-FORGE" -secure and C/,_, -IND-CCA-secure. Then, ARCAD is

clean
1. -RECOVER-secure, 2. s-RECOVER-sccure, 3. Cc2 . -FORGE-secure, 4. % o, -IND-CCA-

cleans“~clean

secure, 5. with acknowledgement extractor.

Corollary 33. Let ARCAD = blockchain(hybrid(ARCADpy, liteARCAD)). With the assumptions
from Th. 14 and Th. 17, if H is collision-resistant, ARCAD is ngie:izhcnoexp-FORGE-secure, C&:::,Cnoexp'
A,B

forge*

IND-CCA-secure, and with security-awareness, with Ceean = Cieak /\ C
In particular, when a sender deduces an acknowledgment for his message m from a received message
m/, if he can make sure that m’ is genuine and that no trivial exposure for m happened, then he
can be sure that his message m is private, no matter what happened before or what will happen
next.
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6 Conclusion

We revisited the security of ARCAD protocols. We proposed an additional lite protocol liteARCAD.
We compared the performance of existing protocols with liteARCAD. Based on the good results
of liteARCAD, we proposed an hybrid construction which would mostly use liteARCAD and occa-
sionally a stronger protocol, upon the choice of the sender, thus achieving on-demand ratcheting.
Finally, we proposed the notion of security awareness to enable participants to have a better idea
on the safety of their communication. We achieved what we think is the optimal awareness. Con-
cretely, a participant is aware of which of his messages arrived to his counterpart when he sent
the last received one. We make sure that any forgery (possibly due to exposure) would fork the
chain of messages which is seen by both participants and result in making them unable to continue
communication. We also make sure that assuming that the exposure history is known, participants
can deduce which messages leaked.
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